1
|
Geng W, Zhang W, Lei Q, Gan X. Discovery of N-Phenylphthalimides Containing Ether Moiety as Potential Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6599-6609. [PMID: 40042937 DOI: 10.1021/acs.jafc.5c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The discovery of novel protoporphyrinogen IX oxidase (PPO) inhibitors has become a key focus in herbicide development. To explore new PPO inhibitors, a series of N-phenylphthalimide derivatives with ether moieties were designed and successfully synthesized. Among these, compound B18 (Ki = 10.3 nM) exhibited a strong inhibitory effect on NtPPO, outperforming flumiclorac-pentyl (Ki = 46.3 nM) and flumioxazin (Ki = 52.0 nM). It is noted that compounds A3, B18, B19, and B20 showed broad-spectrum herbicidal activity against the tested weeds at 75 g a.i./ha. In addition, results of molecular simulation and density functional theory (DFT) calculations indicated that compound B18 possessed not only a robust hydrogen bond with Arg98 of NtPPO but also superior chemical reactivity, electrostatic field, and strong polarity. Therefore, compound B18 may be regarded as a promising lead compound for the development of high-efficiency PPO inhibitors.
Collapse
Affiliation(s)
- Wang Geng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Qiong Lei
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
2
|
Iizumi K, Yamaguchi J. Transformative reactions in nitroarene chemistry: C-N bond cleavage, skeletal editing, and N-O bond utilization. Org Biomol Chem 2025; 23:1746-1772. [PMID: 39831336 DOI: 10.1039/d4ob01928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Nitroarenes are highly versatile building blocks in organic synthesis, playing a pivotal role in various reactions. Common transformations involving nitroarenes include nucleophilic aromatic substitution (SNAr) reactions, where the nitro group functions both as a potent electron-withdrawing group that activates the aromatic ring and as a leaving group facilitating the substitution. Additionally, the direct transformation of nitro groups, such as reduction-driven syntheses of amines and carboxylic acids, as well as ipso-substitution SNAr reactions, have been extensively explored. Interactions between ortho-nitro groups and neighboring substituents also provide unique opportunities for selective transformations. However, beyond these well-established processes, direct transformations of nitro groups have been relatively limited. In recent years, significant advancements have been made in alternative methodologies for nitro group transformations. This review focuses on the latest progress in novel transformations of nitroarenes, with emphasis on three major categories: (i) functional group transformations involving C-N bond cleavage in nitroarenes, (ii) skeletal editing via nitrene intermediates generated by N-O bond cleavage, and (iii) the utilization of nitroarenes as an oxygen source through N-O bond cleavage. These developments under-score the expanding utility of nitroarenes in modern organic synthesis.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| |
Collapse
|
3
|
Koudelka J, Tobrman T. Three-component synthesis of β-sulfonyl enamines and dienamines enabled by silver(i) acetate. RSC Adv 2025; 15:3602-3606. [PMID: 39906634 PMCID: PMC11792975 DOI: 10.1039/d4ra08480b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
We have developed a novel three-component synthesis of sulfonyl enamines by reacting secondary and tertiary amines with sodium sulfinic acid salt, a reaction that is mediated by silver acetate. The choice of solvent determines whether sulfonyl enamines or dienamines are obtained. The overall atom economy of this multicomponent reaction was further improved by isolating the resulting elemental silver and reconverting it into silver acetate.
Collapse
Affiliation(s)
- Jakub Koudelka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
4
|
Düker J, Philipp M, Lentner T, Cadge JA, Lavarda JE, Gschwind RM, Sigman MS, Ghosh I, König B. Cross-Coupling Reactions with Nickel, Visible Light, and tert-Butylamine as a Bifunctional Additive. ACS Catal 2025; 15:817-827. [PMID: 39839851 PMCID: PMC11744660 DOI: 10.1021/acscatal.4c07185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Transition metal catalysis is crucial for the synthesis of complex molecules, with ligands and bases playing a pivotal role in optimizing cross-coupling reactions. Despite advancements in ligand design and base selection, achieving effective synergy between these components remains challenging. We present here a general approach to nickel-catalyzed photoredox reactions employing tert-butylamine as a cost-effective bifunctional additive, acting as the base and ligand. This method proves effective for C-O and C-N bond-forming reactions with a diverse array of nucleophiles, including phenols, aliphatic alcohols, anilines, sulfonamides, sulfoximines, and imines. Notably, the protocol demonstrates significant applicability in biomolecule derivatization and facilitates sequential one-pot functionalizations. Spectroscopic investigations revealed the robustness of the dynamic catalytic system, while elucidation of structure-reactivity relationships demonstrated how computed molecular properties of both the nucleophile and electrophile correlated to reaction performance, providing a foundation for effective reaction outcome prediction.
Collapse
Affiliation(s)
- Jonas Düker
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Maximilian Philipp
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Thomas Lentner
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Jamie A. Cadge
- Department
of Chemistry, University of Utah, 315 1400 E, Salt Lake City 84112, Utah, United States
| | - João E.
A. Lavarda
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Ruth M. Gschwind
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Matthew S. Sigman
- Department
of Chemistry, University of Utah, 315 1400 E, Salt Lake City 84112, Utah, United States
| | - Indrajit Ghosh
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VSB - Technical University of Ostrava, Ostrava-Poruba 708 00, Czech Republic
| | - Burkhard König
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| |
Collapse
|
5
|
Teixeira R, Waldron Clarke TH, Love A, Sun XZ, Kayal S, George MW. Scale-Up of Continuous Metallaphotoredox Catalyzed C-O Coupling to a 10 kg-Scale Using Small Footprint Photochemical Taylor Vortex Flow Reactors. Org Process Res Dev 2025; 29:34-47. [PMID: 39839539 PMCID: PMC11744928 DOI: 10.1021/acs.oprd.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 01/23/2025]
Abstract
We report the development and optimization of a scalable flow process for metallaphotoredox (Ir/Ni) C-O coupling, a mild and efficient approach for forming alkyl-aryl ethers, a common motif in medicinal and process chemistry settings. Time-resolved infrared spectroscopy (TRIR) highlighted the amine as the major quencher of the photocatalyst triplet excited state, along with the formation of an Ir(II) species that, in the presence of the Ni cocatalyst, has its lifetime shortened, suggesting reductive quenching of Ir(III)*, followed by reoxidation facilitated by the Ni cocatalyst. TRIR and batch reaction screening was used to develop conditions transferrable to flow, and many processing benefits of performing the reaction in flow were then demonstrated using a simple to construct/operate, small-footprint FEP coil flow reactor, including short (<10 min) space times and reduced catalyst loadings (down to 0.1 mol % Ir, 1 mol % Ni) while retaining good yield/conversion. Scalability was demonstrated by increasing the length or diameter of the FEP coil flow reactor tubing, however, due to suspected mass transfer/mixing limitations, the yield decreased upon scale-up in some cases. Therefore, we applied a modified version of our previously reported photochemical Taylor Vortex Flow Reactor (PhotoVortex), where Taylor vortices and a short-irradiated path length allow photochemical reactions to be performed efficiently via excellent mixing. In a small PhotoVortex (8 mL irradiated volume), we have demonstrated projected productivities around 1 kg day-1 and >10 kg day-1 in a large PhotoVortex (185 mL irradiated volume) with good product yields (>90%) and low catalyst loadings (0.1 to 0.5 mol % of [Ir{dF(CF3)ppy}2dtbbpy]PF6), enabled by excellent mixing ensuring sufficient mass transfer between short-lived photoexcited and other transient species.
Collapse
Affiliation(s)
| | | | - Ashley Love
- School of Chemistry, The University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Xue-Zhong Sun
- School of Chemistry, The University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Surajit Kayal
- School of Chemistry, The University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Michael W. George
- School of Chemistry, The University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
6
|
Liu C, Liang J, Liang Y, Ouyang L, Li Y. Adaptive alcohols-alcohols cross-coupling via TFA catalysis: access of unsymmetrical ethers. BMC Chem 2025; 19:13. [PMID: 39799377 PMCID: PMC11725215 DOI: 10.1186/s13065-025-01379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
Ethers are high value organic compounds widely applied in chemical industry, natural products, material, pharmaceuticals, argochemicals, as well as modern organic synthesis. Herein, we report an adaptive TFA-catalyzed cross-coupling of alcohols with various oxygen nucleophiles (nitro-, halogen-, sulfur-, nitrogen-, aryl-, and alkynyl-substituted aliphatic alcohols), delivering diverse unsymmetrical ethers under mild conditions and simple operation. This protocol features a broad range of substrate scope and high catalytic efficiency (54 examples, up to 99% yield). The decagram scale performance and one-step synthesis of drug molecules evidenced the potential industrial production and practicability of this protocol.
Collapse
Affiliation(s)
- Chengxiu Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Jiaxin Liang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yuqiu Liang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lu Ouyang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| | - Youchun Li
- The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
7
|
Cheng L, Zhou C, Yuan Q, Zhang L, Shao X, Xu X, Li Z, Cheng J. 3D-QSAR model-oriented optimization of Pyrazole β-Ketonitrile derivatives with diphenyl ether moiety as novel potent succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2024; 80:5299-5306. [PMID: 38940289 DOI: 10.1002/ps.8269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Succinate dehydrogenase inhibitor (SDHI) fungicides play important roles in the control of plant fungal diseases. However, they are facing serious challenges from issues with resistance and cross-resistance, primarily attributed to their frequent application and structural similarities. There is an urgent need to design and develop SDHI fungicides with novel structures. RESULTS Aiming to discover novel potent SDHI fungicides, 31 innovative pyrazole β-ketonitrile derivatives with diphenyl ether moiety were rationally designed and synthesized, which were guided by a 3D-QSAR model from our previous study. The optimal target compound A23 exhibited not only outstanding in vitro inhibitory activities against Rhizoctonia solani with a half-maximal effective concentration (EC50) value of 0.0398 μg mL-1 comparable to that for fluxapyroxad (EC50 = 0.0375 μg mL-1), but also a moderate protective efficacy in vivo against rice sheath blight. Porcine succinate dehydrogenase (SDH) enzymatic inhibitory assay revealed that A23 is a potent inhibitor of SDH, with a half-maximal inhibitory concentration of 0.0425 μm. Docking study within R. solani SDH indicated that A23 effectively binds into the ubiquinone site mainly through hydrogen-bonds, and cation-π and π-π interactions. CONCLUSION The identified β-ketonitrile compound A23 containing diphenyl ether moiety is a potent SDH inhibitor, which might be a good lead for novel fungicide research and optimization. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liangliang Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qinglong Yuan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Letian Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Yao X, Yang X, Chen F, Chen R, Sun M, Cheng R, Ma Y, Ye J. Oxalamide ligands with additional coordinating groups for Cu-catalyzed arylation of alcohols and phenols. Chem Commun (Camb) 2024; 60:9210-9213. [PMID: 39109521 DOI: 10.1039/d4cc02331e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A novel class of chain-like multidentate oxalamide ligands with additional coordinating groups was developed for the coupling of (hetero)aryl bromides with both alcohols and phenols under mild conditions. Introduction of oxygen atoms in N-alkyl chains is pivotal for the high catalytic efficiency and broad substrate versatility.
Collapse
Affiliation(s)
- Xiantong Yao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Fanghua Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Rui Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Maolin Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruihua Cheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yueyue Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
9
|
Chen Y, Yan Y, Chen J, Zheng B, Jiang Y, Kang Z, Wu J. A Novel AHAS-Inhibiting Herbicide Candidate for Controlling Leptochloa chinensis: A Devastating Weedy Grass in Rice Fields. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16140-16151. [PMID: 39007211 DOI: 10.1021/acs.jafc.4c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Given the prevalence of the malignant weed Chinese Sprangletop (Leptochloa chinensis (L.) Nees) in rice fields, the development of novel herbicides against this weed has aroused wide interest. Here, we report a novel diphenyl ether-pyrimidine hybrid, DEP-5, serving as a systematic pre/postemergence herbicide candidate for broad-spectrum weed control in rice fields, specifically for L. chinensis. Notably, DEP-5 exhibits over 80% herbicidal activity against the resistant biotypes even at 37.5 g a.i./ha under greenhouse conditions and has complete control of L. chinensis at 150 g a.i./ha in the rice fields. We uncover that DEP-5 acts as a noncompetitive inhibitor of acetohydroxyacid synthase (AHAS) with an inhibition constant (Ki) of 39.4 μM. We propose that DEP-5 binds to AHAS in two hydrophobic-driven binding modes that differ from commercial AHAS inhibitors. Overall, these findings demonstrate that DEP-5 has great potential to be developed into a herbicide for L. chinensis control and inspire fresh concepts for novel AHAS-inhibiting herbicide design.
Collapse
Affiliation(s)
- Yinglu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yitao Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jie Chen
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Ben Zheng
- Hangzhou Jingyinkang Biological Technology Co., Ltd., Hangzhou 311110, China
| | - Youwei Jiang
- Hangzhou Jingyinkang Biological Technology Co., Ltd., Hangzhou 311110, China
| | | | - Jun Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
García-Rojas E, Leo P, Tapiador J, Martos C, Orcajo G. URJC-1: Stable and Efficient Catalyst for O-Arylation Cross-Coupling. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1103. [PMID: 38998707 PMCID: PMC11243573 DOI: 10.3390/nano14131103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
The design of metal-organic frameworks (MOFs) allows the definition of properties for their final application in small-scale heterogeneous catalysis. Incorporating various catalytic centers within a single structure can produce a synergistic effect, which is particularly intriguing for cross-coupling reactions. The URJC-1 material exhibits catalytic duality: the metal centers act as Lewis acid centers, while the nitrogen atoms of the organic ligand must behave as basic centers. The impact of reaction temperature, catalyst concentration, and basic agent concentration was evaluated. Several copper-based catalysts, including homogeneous and heterogeneous MOF catalysts with and without the presence of nitrogen atoms in the organic ligand, were assessed for their catalytic effect under optimal conditions. Among the catalysts tested, URJC-1 exhibited the highest catalytic activity, achieving complete conversion of 4-nitrobenzaldehyde with only 3% mol copper concentration in one hour. Furthermore, URJC-1 maintained its crystalline structure even after five reaction cycles, demonstrating remarkable stability in the reaction medium. The study also examined the impact of various substituents of the substrate alcohol on the reaction using URJC-1. The results showed that the reaction had high activity when activating substituents were present and for most cyclic alcohols rather than linear ones.
Collapse
Affiliation(s)
| | - Pedro Leo
- Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933 Móstoles, Spain
| | | | | | | |
Collapse
|
11
|
Li L, Ti W, Miao T, Ma J, Lin A, Chu Q, Gao S. Atroposelective Synthesis of Axially Chiral Diaryl Ethers by N-Heterocyclic-Carbene-Catalyzed Sequentially Desymmetric/Kinetic Resolution Process. J Org Chem 2024; 89:4067-4073. [PMID: 38391391 DOI: 10.1021/acs.joc.3c02912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We describe herein an N-heterocyclic-carbene-catalyzed atroposelective synthesis of axially chiral diaryl ethers. Through a sequentially enantioselective desymmetric process and a kinetic resolution process, the products could be constructed in good yields with excellent enantiopurities. Both alcohols and phenols were compatible with this catalytic system. The axially chiral carboxylic acids derived from the esters were proven to be potential chiral ligands for asymmetric synthesis, for example, Rh(III)-catalyzed enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Libo Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenqing Ti
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tianshu Miao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiao Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qian Chu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
12
|
Carson MC, Kozlowski MC. Recent advances in oxidative phenol coupling for the total synthesis of natural products. Nat Prod Rep 2024; 41:208-227. [PMID: 37294301 PMCID: PMC10709532 DOI: 10.1039/d3np00009e] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Covering: 2008 to 2023This review will describe oxidative phenol coupling as applied in the total synthesis of natural products. This review covers catalytic and electrochemical methods with a brief comparison to stoichiometric and enzymatic systems assessing their practicality, atom economy, and other measures. Natural products forged by C-C and C-O oxidative phenol couplings as well as from alkenyl phenol couplings will be addressed. Additionally, exploration into catalytic oxidative coupling of phenols and other related species (carbazoles, indoles, aryl ethers, etc.) will be surveyed. Future directions of this particular area of research will also be assessed.
Collapse
Affiliation(s)
- Matthew C Carson
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| |
Collapse
|
13
|
Baire B, Gandhi S, Bommanaboina B, Roy D. The Bis(indolylmethyl) ethers: Design, Prototypical Synthesis, and Scope Studies. J Org Chem 2023; 88:12115-12120. [PMID: 37537963 DOI: 10.1021/acs.joc.3c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The design, prototypical synthesis, isolation, and characterization of bis(indolylmethyl) ethers from corresponding indolylcarbinols is described. This approach involves very mild conditions and exhibits good scope for indolylcarbinols (both N-electron withdrawing group and N-electron donating group). Cross etherification between two electronically different indolylcarbinols is also demonstrated for the generation of unsymmetrical ethers. For the first time, the intermediacy of the bis(indolylmethyl) ethers for the formation of bis(indolyl)methanes from indolylcarbinols is proved experimentally and by 1H NMR analysis.
Collapse
Affiliation(s)
- Beeraiah Baire
- Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Soniya Gandhi
- Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | | | - Debayan Roy
- Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
14
|
Pamarthy D, Behera SK, Swain S, Yadav S, Suresh S, Jain N, Bhadra MP. Diaryl ether derivative inhibits GPX4 expression levels to induce ferroptosis in thyroid cancer cells. Drug Dev Res 2023; 84:861-887. [PMID: 37070554 DOI: 10.1002/ddr.22059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/19/2023]
Abstract
Papillary thyroid carcinoma contributes to about 80% of the total thyroid cancer cases. BRAFV600E is a frequently occurring mutation in PTCs. Although several BRAF inhibitors are available, many thyroid cancer patients acquire resistance to BRAF inhibitors. Therefore, new targets and drugs need to be identified as therapies. Ferroptosis is a recently discovered type of cell death, and inhibiting glutathione peroxidase 4 (GPX4) using small molecules was found to trigger ferroptosis. But it is unknown whether inhibiting GPX4 renders thyroid cancer cells susceptible to ferroptosis. To identify novel GPX4 inhibitors, we focused on our previously reported cohort of diaryl ether and dibenzoxepine molecules. In this study, we asked whether diaryl ether and dibenzoxepine derivatives trigger ferroptosis in thyroid cancer cells. To answer this question, we screened diaryl ether and dibenzoxepine derivatives in cell-based assays and performed mechanism of action studies. We found that a diaryl ether derivative, 16 decreased thyroid cell proliferation and triggered ferroptosis by inhibiting GPX4 expression levels. Molecular modeling and dynamics simulations showed that 16 binds to the active site of GPX4. Upon deciphering the mode of 16-induced ferroptosis, we found that 16 treatments decrease mitochondrial polarization and reduce mitochondrial respiration similar to a ferroptosis inducer, RSL3. We conclude that the diaryl ether derivative, 16 inhibits GPX4 expression levels to induce ferroptosis in thyroid cancer cells. Based on our observations, we suggest that 16 can be lead-optimized and developed as a ferroptosis-inducing agent to treat thyroid cancers.
Collapse
Affiliation(s)
- Deepika Pamarthy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Santosh Kumar Behera
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, (NIPER), Ahmedabad, Gujarat, India
| | - Sonam Swain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, Telangana, India
| | - Surisetti Suresh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, Telangana, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manika Pal Bhadra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Feng D, Wu S, Jiang B, He S, Luo Y, Li F, Song B, Song R. Discovery of Novel Isoxazoline Derivatives Containing Diaryl Ether against Fall Armyworms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6859-6870. [PMID: 37126004 DOI: 10.1021/acs.jafc.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
With the continuous evolution of insect resistance, it is a tremendous challenge to control the fall armyworm (Spodoptera frugiperda) with traditional insecticides. To solve this pending issue, a series of novel isoxazoline derivatives containing diaryl ether structures were designed and synthesized, and most of the target compounds exhibited excellent insecticidal activity. Based on the three-dimensional quantitative structure-activity relationship (3D-QSAR) model analysis, we further optimized the molecular structure with compound L35 obtained and tested for its activity. Compound L35 (LC50 = 1.69 mg/L) exhibited excellent insecticidal activity against S. frugiperda, which was better than those of commercial fipronil (LC50 = 70.78 mg/L) and indoxacarb (LC50 = 5.37 mg/L). The enzyme-linked immunosorbent assay showed that L35 could upregulate the levels of GABA in insects. In addition, molecular docking and transcriptomic results also indicated that compound L35 may affect the nervous system of S. frugiperda by acting on GABA receptors. Notably, through high-performance liquid chromatography (HPLC), we were able to obtain the two enantiomers of compound L35, and the insecticidal activity test revealed that S-(+)-L35 was 44 times more active than R-(-)-L35 against S. frugiperda. This study established the chemistry basis and mechanistic foundations for the future development of pesticide candidates against fall armyworms.
Collapse
Affiliation(s)
- Di Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Shang Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Biaobiao Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Siqi He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Yuqin Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Fangyi Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| |
Collapse
|
16
|
Liu H, Gong ZR, Lin ML, Luo W, Xu YJ, Dong L. C-O Coupling/[4+2] Cycloaddition Tandem Reactions via Oxidative Dearomatization of BINOLs: Access to Bridged Polycyclic Compounds. J Org Chem 2023; 88:3916-3926. [PMID: 36849248 DOI: 10.1021/acs.joc.2c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Intramolecular C-H activation/C-O coupling, dearomatization, and [4+2] cycloaddition of BINOL units have been well developed in a one-pot approach with maleimide derivatives as the dienophiles. This tandem catalytic system generates a variety of functionalized bridged polycyclic products in a step-economical manner, which greatly enriches the modification methods and strategies for the BINOL skeletons.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zi-Rong Gong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Meng-Ling Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Das A, Patil NT. Ligand-Enabled Gold-Catalyzed C(sp 2)–O Cross-Coupling Reactions. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Avishek Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
18
|
Miyauchi M, Hiraoka T, Raut VS, Asao N. Photocatalytic dehydrative etherification of alcohols with a nanoporous gold catalyst. Chem Commun (Camb) 2023; 59:1221-1224. [PMID: 36629818 DOI: 10.1039/d2cc04562a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A simple and efficient photocatalytic approach for dehydrative etherification of alcohols has been developed by a nanoporous gold catalyst. This protocol features no requirement of addition of acids or bases, broad substrate generality, and excellent acid-sensitive functional group tolerance. The mechanistic studies demonstrate the heterogeneous nature of the catalytic system and the recyclability of the catalyst was demonstrated repeatedly.
Collapse
Affiliation(s)
- Masato Miyauchi
- Division of Chemistry and Materials, Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan.
| | - Takehiro Hiraoka
- Division of Chemistry and Materials, Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan.
| | - Vivek S Raut
- Research Initiatives for Supra-Materials, Shinshu University, Ueda 386-8567, Japan
| | - Naoki Asao
- Division of Chemistry and Materials, Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan.
| |
Collapse
|
19
|
Synthesis and Antiproliferative Activity of Steroidal Diaryl Ethers. Molecules 2023; 28:molecules28031196. [PMID: 36770863 PMCID: PMC9919549 DOI: 10.3390/molecules28031196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Novel 13α-estrone derivatives have been synthesized via direct arylation of the phenolic hydroxy function. Chan-Lam couplings of arylboronic acids with 13α-estrone as a nucleophilic partner were carried out under copper catalysis. The antiproliferative activities of the newly synthesized diaryl ethers against a panel of human cancer cell lines (A2780, MCF-7, MDA-MB 231, HeLa, SiHa) were investigated by means of MTT assays. The quinoline derivative displayed substantial antiproliferative activity against MCF-7 and HeLa cell lines with low micromolar IC50 values. Disturbance of tubulin polymerization has been confirmed by microplate-based photometric assay. Computational calculations reveal significant interactions of the quinoline derivative with the taxoid binding site of tubulin.
Collapse
|
20
|
Linde E, Knippenberg N, Olofsson B. Synthesis of Cyclic and Acyclic ortho-Aryloxy Diaryliodonium Salts for Chemoselective Functionalizations. Chemistry 2022; 28:e202202453. [PMID: 36083826 PMCID: PMC10092902 DOI: 10.1002/chem.202202453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Two regioselective, high-yielding one-pot routes to oxygen-bridged cyclic diaryliodonium salts and ortho-aryloxy-substituted acyclic diaryliodonium salts are presented. Starting from easily available ortho-iodo diaryl ethers, complete selectivity in formation of either the cyclic or acyclic product could be achieved by varying the reaction conditions. The complimentary reactivities of these novel ortho-oxygenated iodonium salts were demonstrated through a series of chemoselective arylations under metal-catalyzed and metal-free conditions, to deliver a range of novel, ortho-functionalized diaryl ether derivatives.
Collapse
Affiliation(s)
- Erika Linde
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Niels Knippenberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Berit Olofsson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
21
|
Visible Light-Induced Deoxygenation and Allylation/Vinylation of Pyridyl Ethers. Org Lett 2022; 24:7309-7314. [PMID: 36190797 DOI: 10.1021/acs.orglett.2c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The generation of alkyl radicals by deoxygenation of unactivated ethers under visible light catalysis is a hitherto unmet challenge. Herein, we report a visible light-induced deoxygenation of pyridyl ethers via formation of their pyridinium salts. The generated benzylic radicals further react with allyl/alkenyl sulfones to provide a series of coupling products in good to moderate yields. This process is proposed to undergo a reductive quenching cycle, which was elucidated by chemical, optical, and electrical experiments.
Collapse
|
22
|
Onoda M, Fujita K. Dehydrogenative Esterification and Dehydrative Etherification by Coupling of Primary Alcohols Based on Catalytic Function Switching of an Iridium Complex. ChemistrySelect 2022. [DOI: 10.1002/slct.202201135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mitsuki Onoda
- Graduate School of Human and Environmental Studies Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Ken‐ichi Fujita
- Graduate School of Human and Environmental Studies Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
23
|
Su L, Xie S, Dong J, Pan N, Yin SF, Zhou Y. Copper-Catalyzed 6- endo- dig Cyclization-Coupling of 2-Bromoaryl Ketones and Terminal Alkynes toward Naphthyl Aryl Ethers in Water. Org Lett 2022; 24:4569-4574. [PMID: 35713412 DOI: 10.1021/acs.orglett.2c01654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cyclization-coupling reaction of 2-bromoaryl ketones and terminal alkynes is first realized by copper catalysis, which produces polyfunctional naphthyl aryl ethers in moderate to excellent yields with broad substrate scope and good functional group tolerance. This reaction proceeds via 6-endo-dig cyclization and C(sp2)-O coupling using green H2O as the unique solvent and 5-bromopyrimidin-2-amine as the critical additive. Mechanistically, a unique Cu(III)-acetylide probably is the key intermediate, which allows exclusive 6-endo-dig selectivity.
Collapse
Affiliation(s)
- Lebin Su
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
| | - Shimin Xie
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
| | - Neng Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuang-Feng Yin
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
24
|
Sharma D, Arora A, Oswal P, Bahuguna A, Datta A, Kumar A. Organosulphur and organoselenium compounds as emerging building blocks for catalytic systems for O-arylation of phenols, a C-O coupling reaction. Dalton Trans 2022; 51:8103-8132. [PMID: 35535745 DOI: 10.1039/d1dt04371d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diaryl ethers form an important class of organic compounds. The classic copper-mediated Ullmann diaryl ether synthesis has been known for many years and involves the coupling of phenols with aryl halides. However, the use of high reaction temperature, high catalyst loading and expensive ligands has created a need for the development of alternative catalytic systems. In the recent past, organosulphur and organoselenium compounds have been used as building blocks for developing homogeneous, heterogeneous and nanocatalysts for this C-O coupling reaction. Homogeneous catalytic systems include preformed complexes of metals with organosulphur and organoselenium ligands. The performance of such complexes is influenced dramatically by the nature of the chalcogen (S or Se) donor site of the ligand. Nanocatalytic systems (including Pd17Se15, Pd16S7 and Cu1.8S) have been designed using a single-source precursor route. Heterogeneous catalytic systems contain either metal (Cu or Pd) or metal chalcogenides (Pd17Se15 or Cu1.8S) as catalytically active species. This article aims to cover the simple and straightforward methodologies and approaches that are adopted for developing catalytically relevant organosulfur and organoselenium ligands, their homogeneous metal complexes, heterogeneous and nanocatalysts. The effects of chalcogen (S or Se) donor, halogen (Cl/Br/I) of aryl halide, nature (electron withdrawing or electron donating) of substituents present on the aromatic ring of aryl halides or substituted phenols and position (ortho or para) of substitution on the results of catalytic reactions have been critically analyzed and summarized. The effect of composition (Pd17Se15 or Pd16S7) on the performance of nanocatalytic systems is also highlighted. Substrate scope has also been discussed in all three types of catalysis. The superiority of heterogeneous catalytic systems (e.g., Pd17Se15 immobilised on graphene oxide) indicates the bright future possibilities for the development of efficient catalytic systems using similar or tailored ligands for this reaction.
Collapse
Affiliation(s)
- Deepali Sharma
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| |
Collapse
|
25
|
Yoshida T, Honda Y, Morofuji T, Kano N. Transition-Metal-Free O-Arylation of Alcohols and Phenols with S-Arylphenothiaziniums. J Org Chem 2022; 87:7565-7573. [PMID: 35578794 DOI: 10.1021/acs.joc.2c00771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the transition-metal-free O-arylation of alcohols and phenols with S-arylphenothiaziniums, which can be easily synthesized from boronic acids. Aryl substituents derived from arylboronic acids were selectively introduced into the hydroxy groups in alcohols and phenols, and a variety of aryl ethers were synthesized. This selectivity is supported by theoretical calculations.
Collapse
Affiliation(s)
- Tatsuki Yoshida
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Yuki Honda
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
26
|
Fukuyama Y. [Synthetic Studies on Small Molecule Natural Products with Neurotrophic Activity]. YAKUGAKU ZASSHI 2022; 142:241-277. [PMID: 35228379 DOI: 10.1248/yakushi.21-00201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurotrophic factors have been shown to potentially be beneficial for the treatment of neurodegenerative diseases such as Alzheimer's disease, because endogenous neurotrophic factors (NGF, BDNF) have been recognized to play critical roles in the promotion of neurogenesis, differentiation, and neuroprotection throughout the development of the central nervous system. However, high-molecular-weight proteins are unable to cross the blood-brain barrier and are easily decomposed under physiological conditions. Thus, small molecules that can mimic the functions of neurotrophic factors are promising alternatives for the treatment of neurodegenerative disease. Since 1990, the author has been involved in searching for natural products with typical neurotrophic properties that can cause neurogenesis, enhance neurite outgrowth, and protect against neuronal death by using three cellular systems (PC12, rat cortical neurons, and MEB5 cells). Through these research activities on neurotrophic natural products, the author has tried to induce a paradigm shift from the discipline of natural products chemistry to science disciplines. This review focuses on our independent synthetic studies of the neurotrophic natural products discovered in the plants. The following synthetic elaborations are described: syntheses of dimeric isocuparane-type sesquiterpenes mastigophorenes A and B, macrocyclic bis-bibenzyls plagiochins A-D and cavicularin through a Pd-catalyzed Stille-Kelly reaction; the formal synthesis of merrilactone A and jiadifenin, which are seco-prezizaane-type sesquiterpenes, through intramolecular Pd-catalyzed Mizoroki-Heck and Tsuji-Trost reactions; and finally the first enantioselective synthesis of neovibsanin B, a vibsane-type diterpene, through a Pd-catalyzed cyclic carbopalladation-carbonyl tandem reaction.
Collapse
|
27
|
Quivelli AF, Marinò M, Vitale P, García‐Álvarez J, Perna FM, Capriati V. Ligand-Free Copper-Catalyzed Ullmann-Type C-O Bond Formation in Non-Innocent Deep Eutectic Solvents under Aerobic Conditions. CHEMSUSCHEM 2022; 15:e202102211. [PMID: 34762333 PMCID: PMC9299726 DOI: 10.1002/cssc.202102211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Indexed: 05/17/2023]
Abstract
An efficient and novel protocol was developed for a Cu-catalyzed Ullmann-type aryl alkyl ether synthesis by reacting various (hetero)aryl halides (Cl, Br, I) with alcohols as active components of environmentally benign choline chloride-based eutectic mixtures. Under optimized conditions, the reaction proceeded under mild conditions (80 °C) in air, in the absence of additional ligands, with a catalyst [CuI or CuII species] loading up to 5 mol% and K2 CO3 as the base, providing the desired aryloxy derivatives in up to 98 % yield. The potential application of the methodology was demonstrated in the valorization of cheap, easily available, and naturally occurring polyols (e. g., glycerol) for the synthesis of some pharmacologically active aryloxypropanediols (Guaiphenesin, Mephenesin, and Chlorphenesin) on a 2 g scale in 70-96 % yield. Catalyst, base, and deep eutectic solvent could easily and successfully be recycled up to seven times with an E-factor as low as 5.76.
Collapse
Affiliation(s)
- Andrea Francesca Quivelli
- Dipartimento di Farmacia – Scienze del FarmacoUniversità di Bari “Aldo Moro”Consorzio C.I.N.M.P.I.S.Via E. Orabona 4I-70125BariItaly
| | - Manuela Marinò
- Dipartimento di Farmacia – Scienze del FarmacoUniversità di Bari “Aldo Moro”Consorzio C.I.N.M.P.I.S.Via E. Orabona 4I-70125BariItaly
| | - Paola Vitale
- Dipartimento di Farmacia – Scienze del FarmacoUniversità di Bari “Aldo Moro”Consorzio C.I.N.M.P.I.S.Via E. Orabona 4I-70125BariItaly
| | - Joaquín García‐Álvarez
- Laboratorio de Química Sintética Sostenible (QuimSinSos)Departamento de Química Orgánica e Inorgánica (IUQOEM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universidad de Oviedo33071OviedoSpain
| | - Filippo M. Perna
- Dipartimento di Farmacia – Scienze del FarmacoUniversità di Bari “Aldo Moro”Consorzio C.I.N.M.P.I.S.Via E. Orabona 4I-70125BariItaly
| | - Vito Capriati
- Dipartimento di Farmacia – Scienze del FarmacoUniversità di Bari “Aldo Moro”Consorzio C.I.N.M.P.I.S.Via E. Orabona 4I-70125BariItaly
| |
Collapse
|
28
|
Song G, Xue D. Research Progress on Light-Promoted Transition Metal-Catalyzed C-Heteroatom Bond Coupling Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202202018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Bashir MA, Tang L, Li L, Yu H, Yao W, Wu G, Zhong F. Formal dual C(sp 2)–H cross-dehydrogenative C–O bond formation to construct highly functionalized diaryl ethers with O 2. Org Chem Front 2022. [DOI: 10.1039/d1qo01942b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A formal dual C(sp2)–H cross-dehydrogenative C–O bond formation reaction between phenols and naphthylamine derivatives to construct diaryl ethers has been developed under mild conditions.
Collapse
Affiliation(s)
- Muhammad Adnan Bashir
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Langyu Tang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Longjie Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Huaibin Yu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, China
| | - Guojiao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
30
|
Liu W, He M, Li Y, Peng Z, Wang G. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2021; 37:9-38. [PMID: 34894980 PMCID: PMC8667932 DOI: 10.1080/14756366.2021.1976772] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microtubules play an important role in the process of cell mitosis and can form a spindle in the mitotic prophase of the cell, which can pull chromosomes to the ends of the cell and then divide into two daughter cells to complete the process of mitosis. Tubulin inhibitors suppress cell proliferation by inhibiting microtubule dynamics and disrupting microtubule homeostasis. Thereby inducing a cell cycle arrest at the G2/M phase and interfering with the mitotic process. It has been found that a variety of chalcone derivatives can bind to microtubule proteins and disrupt the dynamic balance of microtubules, inhibit the proliferation of tumour cells, and exert anti-tumour effects. Consequently, a great number of studies have been conducted on chalcone derivatives targeting microtubule proteins. In this review, synthetic or natural chalcone microtubule inhibitors in recent years are described, along with their structure-activity relationship (SAR) for anticancer activity.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
31
|
Halim PA, Hassan RA, Mohamed KO, Hassanin SO, Khalil MG, Abdou AM, Osman EO. Synthesis and biological evaluation of halogenated phenoxychalcones and their corresponding pyrazolines as cytotoxic agents in human breast cancer. J Enzyme Inhib Med Chem 2021; 37:189-201. [PMID: 34894967 PMCID: PMC8667918 DOI: 10.1080/14756366.2021.1998023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Novel halogenated phenoxychalcones 2a–f and their corresponding N-acetylpyrazolines 3a–f were synthesised and evaluated for their anticancer activities against breast cancer cell line (MCF-7) and normal breast cell line (MCF-10a), compared with staurosporine. All compounds showed moderate to good cytotoxic activity when compared to control. Compound 2c was the most active, with IC50 = 1.52 µM and selectivity index = 15.24. Also, chalcone 2f showed significant cytotoxic activity with IC50 = 1.87 µM and selectivity index = 11.03. Compound 2c decreased both total mitogen activated protein kinase (p38α MAPK) and phosphorylated enzyme in MCF-7 cells, suggesting its ability to decrease cell proliferation and survival. It also showed the ability to induce ROS in MCF-7 treated cells. Compound 2c exhibited apoptotic behaviour in MCF-7 cells due to cell accumulation in G2/M phase and elevation in late apoptosis 57.78-fold more than control. Docking studies showed that compounds 2c and 2f interact with p38alpha MAPK active sites.
Collapse
Affiliation(s)
- Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Soha O Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona G Khalil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Eman O Osman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Zhu DL, Jiang S, Wu Q, Wang H, Li HY, Li HX. Nickel-Catalyzed Etherification of Phenols and Aryl Halides through Visible-Light-Induced Energy Transfer. Org Lett 2021; 23:8327-8332. [PMID: 34633202 DOI: 10.1021/acs.orglett.1c03066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notwithstanding some progress in nickel-catalyzed etherification of alkanols and arylhalides, the ability of such a Ni-catalyzed transformation employing phenols to diaryl ethers is unsuccessful due to phenolates with much lower reduction potentials, which suppress the oxidation of nickel(II) intermediates into requisite Ni(III) species. We herein report visible-light-initiated, nickel-catalyzed O-arylation of phenols with arylhalides using t-BuNH(i-Pr) as the base and thioxanthen-9-one as the photosensitizer under visible light. This photocoupling exhibits a broad substrate scope.
Collapse
Affiliation(s)
- Da-Liang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.,Analysis and Testing Centre, Yancheng Teachers University, Yancheng 224051, China
| | - Shan Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hai-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
33
|
Lluna‐Galán C, Izquierdo‐Aranda L, Adam R, Cabrero‐Antonino JR. Catalytic Reductive Alcohol Etherifications with Carbonyl-Based Compounds or CO 2 and Related Transformations for the Synthesis of Ether Derivatives. CHEMSUSCHEM 2021; 14:3744-3784. [PMID: 34237201 PMCID: PMC8518999 DOI: 10.1002/cssc.202101184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Indexed: 05/27/2023]
Abstract
Ether derivatives have myriad applications in several areas of chemical industry and academia. Hence, the development of more effective and sustainable protocols for their production is highly desired. Among the different methodologies reported for ether synthesis, catalytic reductive alcohol etherifications with carbonyl-based moieties (aldehydes/ketones and carboxylic acid derivatives) have emerged in the last years as a potential tool. These processes constitute appealing routes for the selective production of both symmetrical and asymmetrical ethers (including O-heterocycles) with an increased molecular complexity. Likewise, ester-to-ether catalytic reductions and hydrogenative alcohol etherifications with CO2 to dialkoxymethanes and other acetals, albeit in less extent, have undergone important advances, too. In this Review, an update of the recent progresses in the area of catalytic reductive alcohol etherifications using carbonyl-based compounds and CO2 have been described with a special focus on organic synthetic applications and catalyst design. Complementarily, recent progress made in catalytic acetal/ketal-to-ether or ester-to-ether reductions and other related transformations have been also summarized.
Collapse
Affiliation(s)
- Carles Lluna‐Galán
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Luis Izquierdo‐Aranda
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Rosa Adam
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Jose R. Cabrero‐Antonino
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| |
Collapse
|
34
|
Lasso JD, Castillo-Pazos DJ, Li CJ. Green chemistry meets medicinal chemistry: a perspective on modern metal-free late-stage functionalization reactions. Chem Soc Rev 2021; 50:10955-10982. [PMID: 34382989 DOI: 10.1039/d1cs00380a] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The progress of drug discovery and development is paced by milestones reached in organic synthesis. In the last decade, the advent of late-stage functionalization (LSF) reactions has represented a valuable breakthrough. Recent literature has defined these reactions as the chemoselective modification of complex molecules by means of C-H functionalization or the manipulation of endogenous functional groups. Traditionally, these diversifications have been accomplished by organometallic means. However, the presence of metals carries disadvantages related to their cost, environmental hazard and health risks. Fundamentally, green chemistry directives can help minimize such hazards through the development of metal-free LSF methodologies. In this review, we expand the current discussion on metal-free LSF reactions by providing an overview of C(sp2)-H, and C(sp3)-H functionalizations, as well as the utilization of heteroatom-containing functional groups as chemical handles. Selected topics such as metal-free cross-dehydrogenative coupling (CDC) reactions, organocatalysis, electrochemistry and photochemistry are also discussed. By writing the first review on metal-free LSF methodologies, we aim to highlight current advances in the field with examples that reveal specific challenges and solutions, as well as future research opportunities.
Collapse
Affiliation(s)
- Juan D Lasso
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Durbis J Castillo-Pazos
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
35
|
Affiliation(s)
- Le Liu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
36
|
Preformed molecular complexes of metals with organoselenium ligands: Syntheses and applications in catalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213885] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Affiliation(s)
- Naoki Matsushita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Myuto Kashihara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Michele Formica
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
38
|
Sarkar T, Shah TA, Maharana PK, Talukdar K, Das BK, Punniyamurthy T. Transition-Metal-Catalyzed Directing Group Assisted (Hetero)aryl C-H Functionalization: Construction of C-C/C-Heteroatom Bonds. CHEM REC 2021; 21:3758-3778. [PMID: 34164920 DOI: 10.1002/tcr.202100143] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Transition-metal-catalyzed C-H functionalization is one of the fascinating scientific fronts in organic synthesis for the formation of conjugated arenes and has emerged as a benchmark to revolutionize the synthetic enterprise since past decades. In this realm, chelation-guided functionalization of C-H bonds using an exogenous directing group has received considerable attention recently for the expedient regioselective construction of C-C and C-heteroatom bonds as an efficient and sustainable alternative. This article outlines our contribution towards a wide variety of transformations that have been achieved by the directed C-H functionalization through the fine tuning of catalytic systems.
Collapse
Affiliation(s)
- Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039
| | - Tariq A Shah
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039
| | - Bijay Ketan Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039
| | | |
Collapse
|
39
|
Lu Y, Yin W, Alam MS, Kadi AA, Jahng Y, Kwon Y, Rahman AFMM. Synthesis, Biological Evaluation and Molecular Docking Study of Cyclic Diarylheptanoids as Potential Anticancer Therapeutics. Anticancer Agents Med Chem 2021; 20:464-475. [PMID: 31763968 DOI: 10.2174/1871520619666191125130237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cancer is one of the leading causes of mortality globally. To cope with cancer, it is necessary to develop anticancer drugs. Bioactive natural products, i.e. diarylheptanoids, have gained significant attention of researchers owing to their intriguing structures and potent biological activities. In this article, considering the development of anticancer drugs with enhanced selectivity towards cancerous cells, a series of Cyclic Diarylheptanoids (CDHs) are designed, synthesized and evaluated their biological activity. OBJECTIVE To establish an easy route for the synthesis of diarylheptanoids, and evaluate their antiproliferative, and topoisomerase-I & -IIα inhibitory activities, for developing potential anticancer drugs among CDHs. METHODS Diarylheptanoids were synthesized from reported linear diarylheptanoids using the classical Ullmann reaction. Antibacterial activity was evaluated by the filter paper disc diffusion method. Cell viability was assessed by measuring mitochondrial dehydrogenase activity with a Cell Counting Kit (CCK-8). Topoisomerases I and II (topo-I and -IIα) inhibitory activity was measured by the assessment of relaxation of supercoiled pBR322 plasmid DNA. IFD protocol of Schrodinger Maestro v11.1 was used to characterize the binding pattern of studied compounds with the ATPase domain of the human topo-IIα. RESULTS The synthesized CDHs were evaluated for their biological activities (antibacterial, antiproliferative, and topoisomerase-I & -IIα inhibitory activities, respectively). Leading to obtain a series of anticancer agents with the least inhibitory activities against different microbes, improving their selectivity for cancer cells. In brief, most of the synthesized CDHs had excellent antiproliferative activity against T47D (human breast cancer cell line). Pterocarine possessed the strongest activity (2i; IC50 = 0.63µM) against T47D. The cyclic diarylheptanoid 2b induced 30% inhibition of topoisomerase-IIα activity at 100μM compared with the reference of etoposide, which induced 72% inhibition. Among the tested compounds, galeon (2h) displayed very low activity against four bacterial strains. Compounds 2b, 2h, and 2i formed hydrogen bonds with Thr215, Asn91, Asn120, Ala167, Lys168 and Ile141 residues, which are important for binding of ligand compound to the ATPase binding site of topoisomerase IIα by acting as ATP competitive molecule validated by docking study. In silico Absorption, Distribution, Metabolism and Excretion (ADME) analysis revealed the predicted ADME parameters of the studied compounds which showed recommended values. CONCLUSION A series of CDHs were synthesized and evaluated for their antibacterial, antiproliferative, and topo-I & -IIα inhibitory activities. SARs study, molecular docking study and in silico ADME analysis were conducted. Five compounds exhibited excellent and selective antiproliferative activity against the human breast cancer cell line (T47D). Among them, a compound 2h showed topo-IIα activity by 30% at 100µM, which represented a moderate intensity of inhibition compared with etoposide. Three of them formed hydrogen bonds with Thr215, Asn91, Asn120, and Ala167 residues, which are considered as crucial residues for binding to the ATPase domain of topoisomerase IIα. According to in silico drug-likeness property analysis, three compounds are expected to show superiority over etoposide in case of absorption, distribution, metabolism and excretion.
Collapse
Affiliation(s)
- Yang Lu
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
| | - Wencui Yin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad S Alam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yurngdong Jahng
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
40
|
Huang Z, Ji X, Lumb JP. Total Synthesis of ( S)-Cularine via Nucleophilic Substitution on a Catechol. Org Lett 2021; 23:236-241. [PMID: 33325233 DOI: 10.1021/acs.orglett.0c04000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Catechols are part of many essential chemicals and are valuable, typically nucleophilic intermediates used in synthesis. Here we describe an unexpected transformation in which they play the role of the electrophile in a formal nucleophilic aromatic substitution. We made this discovery while studying a seven-membered dioxepin ring formation during a synthesis of the benzyltetrahydroisoquinoline (S)-cularine. We suggest a chain mechanism for this new transformation that is triggered by molecular oxygen and that propagates an electrophilic ortho-quinone.
Collapse
Affiliation(s)
- Zheng Huang
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Xiang Ji
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
41
|
Fang Y, Li W, Lin J, Li X. Different Bonds Cleavage of Arenesulfonates: Access to Diverse Aryl Ethers. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Sun M, Li L, Wang L, Huo J, Sun M, Li P. Controllable chemoselectivity in the reaction of 2H-indazoles with alcohols under visible-light irradiation: synthesis of C3-alkoxylated 2H-indazoles and ortho-alkoxycarbonylated azobenzenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00592h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A high chemoselectivity in the visible-light-induced reaction of 2H-indazoles with alcohols controlled by the reaction atmosphere was achieved, providing C3-alkoxylated 2H-indazoles and ortho-alkoxycarbonylated azobenzenes.
Collapse
Affiliation(s)
- Mingli Sun
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
- Department of Chemistry
| | - Laiqiang Li
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
- Department of Chemistry
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
- Department of Chemistry
| | - Jie Huo
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry
- Taizhou University
- Taizhou
- P. R. China
| | - Pinhua Li
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
43
|
Basuli S, Chinnabattigalla S, Gupta K, Gedu S. A concise route towards isoflavans. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Suchand Basuli
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi Sangareddy India
| | | | - Kshitija Gupta
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi Sangareddy India
| | - Satyanarayana Gedu
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi Sangareddy India
| |
Collapse
|
44
|
Qin X, Zhang J, He Y, Zhang R, Cheng H, Chen C, Qin X. Synthesis and Biological Activities of Coenzyme Q Derivatives Containing (4-Aryloxylaryl)amino Moiety. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202011026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Rahman AFMM, Yin W, Kadi AA, Jahng Y. Galeon: A Biologically Active Molecule with In Silico Metabolite Prediction, In Vitro Metabolic Profiling in Rat Liver Microsomes, and In Silico Binding Mechanisms with CYP450 Isoforms. Molecules 2020; 25:E5903. [PMID: 33322201 PMCID: PMC7763192 DOI: 10.3390/molecules25245903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/04/2022] Open
Abstract
Galeon, a natural cyclic-diarylheptanoid (CDH), which was first isolated from Myrica gale L., is known to have potent cytotoxicity against A549 cell lines, anti-tubercular activity against Mycobacterium tuberculosis H37Rv, chemo-preventive potential, and moderate topoisomerase inhibitory activity. Here, in silico metabolism and toxicity prediction of galeon by CYP450, in vitro metabolic profiling study in rat liver microsomes (RLMs), and molecular interactions of galeon-CYP450 isoforms were performed. An in silico metabolic prediction study showed demethyl and mono-hydroxy galeon were the metabolites with the highest predictability. Among the predicted metabolites, mono-hydroxy galeon was found to have plausible toxicities such as skin sensitization, thyroid toxicity, chromosome damage, and carcinogenicity. An in vitro metabolism study of galeon, incubated in RLMs, revealed eighteen Phase-I metabolites, nine methoxylamine, and three glutathione conjugates. Identification of possible metabolites and confirmation of their structures were carried out using ion-trap tandem mass spectrometry. In silico docking analysis of galeon demonstrated significant interactions with active site residues of almost all CYP450 isoforms.
Collapse
Affiliation(s)
- A. F. M. Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (W.Y.); (A.A.K.)
| | - Wencui Yin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (W.Y.); (A.A.K.)
| | - Adnan A. Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (W.Y.); (A.A.K.)
| | - Yurngdong Jahng
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
46
|
Milzarek TM, Gulder TAM. Total Synthesis of the Ambigols: A Cyanobacterial Class of Polyhalogenated Natural Products. Org Lett 2020; 23:102-106. [PMID: 33305960 DOI: 10.1021/acs.orglett.0c03784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The first total synthesis of all members of the cyanobacterial natural product class of the ambigols is described. Key steps of the synthetic strategy are the formation of sterically demanding mono- and bis-iodonium salts to install the required biaryl ether structural elements and Suzuki cross-coupling giving straightforward access to the biaryl bonds. The synthetic methods are also utilized to construct unnatural or hypothetical ambigols that are still awaiting discovery from Nature.
Collapse
Affiliation(s)
- Tobias M Milzarek
- Chair of Technical Biochemistry, Technical University of Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technical University of Dresden, Bergstraße 66, 01069 Dresden, Germany
| |
Collapse
|
47
|
Chen T, Xiong H, Yang JF, Zhu XL, Qu RY, Yang GF. Diaryl Ether: A Privileged Scaffold for Drug and Agrochemical Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9839-9877. [PMID: 32786826 DOI: 10.1021/acs.jafc.0c03369] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaryl ether (DE) is a functional scaffold existing widely both in natural products (NPs) and synthetic organic compounds. Statistically, DE is the second most popular and enduring scaffold within the numerous medicinal chemistry and agrochemical reports. Given its unique physicochemical properties and potential biological activities, DE nucleus is recognized as a fundamental element of medicinal and agrochemical agents aimed at different biological targets. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antibacterial, antimalarial, herbicidal, fungicidal, insecticidal, and so on. In this review, we highlight the medicinal and agrochemical versatility of the DE motif according to the published information in the past decade and comprehensively give a summary of the target recognition, structure-activity relationship (SAR), and mechanism of action of its analogues. It is expected that this profile may provide valuable guidance for the discovery of new active ingredients both in drug and pesticide research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
48
|
Choi SM, Byeon JS, Yum EK. Diversification of Heteroaryl‐Aryl Ether via Ligand‐Free, Copper‐Catalyzed
O
‐Arylation Under Microwave Heating. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sung Min Choi
- Department of ChemistryChungnam National University Yusung, Daejon 34134 Korea
| | - Jeong Seob Byeon
- Department of ChemistryChungnam National University Yusung, Daejon 34134 Korea
| | - Eul Kgun Yum
- Department of ChemistryChungnam National University Yusung, Daejon 34134 Korea
| |
Collapse
|
49
|
Affiliation(s)
- Sadegh Shabani
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Craig A. Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
50
|
Yang L, Lu HH, Lai CH, Li G, Zhang W, Cao R, Liu F, Wang C, Xiao J, Xue D. Light-Promoted Nickel Catalysis: Etherification of Aryl Electrophiles with Alcohols Catalyzed by a Ni II -Aryl Complex. Angew Chem Int Ed Engl 2020; 59:12714-12719. [PMID: 32281220 DOI: 10.1002/anie.202003359] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/06/2020] [Indexed: 11/06/2022]
Abstract
A highly effective C-O coupling reaction of (hetero)aryl electrophiles with primary and secondary alcohols is reported. Catalyzed by a NiII -aryl complex under long-wave UV (390-395 nm) irradiation in the presence of a soluble amine base without any additional photosensitizer, the reaction enables the etherification of aryl bromides and aryl chlorides as well as sulfonates with a wide range of primary and secondary aliphatic alcohols, affording synthetically important ethers. Intramolecular C-O coupling is also possible. The reaction appears to proceed via a NiI -NiIII catalytic cycle.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Huan-Huan Lu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Chu-Hui Lai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Fengyi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Jianliang Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.,Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|