1
|
Wang TY, Krylov SN. Deterministic error propagation in ITC: Revealing multi-fold errors in K d values under standard conditions. Biophys Chem 2025; 323:107455. [PMID: 40349382 DOI: 10.1016/j.bpc.2025.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Accurate determination of the equilibrium dissociation constant (Kd) is essential in fields such as drug discovery and molecular diagnostics, where a rigorous understanding of molecular interactions drives critical decisions. Among established techniques, isothermal titration calorimetry (ITC) is highly valued for its ability to directly capture binding thermodynamics without the need for labeling or immobilization. However, while ITC is often praised for its precision, potential inaccuracies due to the systematic errors in experimental variables (analyte concentrations and measured heat) are frequently overlooked. One key reason for this oversight is the lack of a deterministic framework that explicitly demonstrates how ITC-derived Kd values can be affected by these errors. To address this gap, we derived a closed-form mathematical model for error propagation in ITC-based Kd determination, quantifying the impact of inaccuracies in analyte concentrations and measured heat on the resulting Kd. This framework provides a robust foundation for understanding and predicting the influence of these systematic errors on Kd accuracy. Using this solution, we demonstrate that even within the conventionally recommended c-value range of 10-100, expected systematic errors in concentrations and heat can potentially lead to significant multi-fold deviations in Kd. These findings underscore the need for quantitative accuracy assessments in ITC experiments and highlight the importance of developing practical tools to support such evaluations.
Collapse
Affiliation(s)
- Tong Ye Wang
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada; Centre for Research on Biomolecular Interactions, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Sergey N Krylov
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada; Centre for Research on Biomolecular Interactions, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
2
|
Li G, Liu C, Qiu S, Wei L, Cao L, Wang K, Wang X, Lin H, Sui J. From non-affinity to high-affinity: Rapid preparation of nanobodies utilizing high-precision alphafold and structural-interaction analysis for detection of enrofloxacin in marine fish. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137394. [PMID: 39889601 DOI: 10.1016/j.jhazmat.2025.137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Traditional antibody preparation methods rely on animal immunization and experimental screening, often requiring 3-6 months, which cannot meet the urgent demands for antibodies in environmental emergencies or contamination events. Herein, a rapid antibody preparation method was proposed to transform anti-macromolecule nanobodies into high-affinity anti-small molecule (enrofloxacin) nanobodies, based on the high-precision predictive capabilities of AlphaFold, integrated with structural and interaction analysis. The high-precision prediction capability of AlphaFold ensured the accuracy of nanobody structural analysis and targeted modification. Binding structure design enabled the antigen and antibody to adopt an optimal binding conformation. Interaction analysis provided guidance for targeted modifications and served as a tool for evaluating the results. Molecular docking results revealed that the template nanobodies, which initially couldn't dock with enrofloxacin, formed 3-5 noncovalent bonds after modification. Bio-layer interferometry (BLI) assays demonstrated that the equilibrium dissociation constant (KD) of the modified nanobodies ranged from 5.56 ± 0.34 nM to 94.73 ± 4.35 nM, with half-maximal inhibitory concentration (IC50) between 231.9 and 3293.6 ng/mL. Based on the modified nanobodies and BLI platform, the detection of enrofloxacin in marine fish was achieved with a limit of detection (LOD) as low as 59.97 μg/kg. In summary, this study provided a novel perspective for the rapid nanobody preparation, showing significant potential in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Guoqiang Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Chang Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Shuo Qiu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Lin Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Limin Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Kaiqiang Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiudan Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Jianxin Sui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
| |
Collapse
|
3
|
Wang TY, Rukundo JL, Mao Z, Krylov SN. Maximizing the Accuracy of Equilibrium Dissociation Constants for Affinity Complexes: From Theory to Practical Recommendations. ACS Chem Biol 2024; 19:1852-1867. [PMID: 39121869 DOI: 10.1021/acschembio.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The equilibrium dissociation constant (Kd) is a major characteristic of affinity complexes and one of the most frequently determined physicochemical parameters. Despite its significance, the values of Kd obtained for the same complex under similar conditions often exhibit considerable discrepancies and sometimes vary by orders of magnitude. These inconsistencies highlight the susceptibility of Kd determination to large systematic errors, even when random errors are small. It is imperative to both minimize and quantitatively assess the systematic errors inherent in Kd determination. Traditionally, Kd values are determined through nonlinear regression of binding isotherms. This analysis utilizes three variables: concentrations of two reactants and a fraction R of unbound limiting reactant. The systematic errors in Kd arise directly from systematic errors in these variables. Therefore, to maximize the accuracy of Kd, this study thoroughly analyzes the sources of systematic errors within the three variables, including (i) non-additive signals to calculate R, (ii) mis-calibrated experimental instruments, (iii) inaccurate calibration parameters, (iv) insufficient incubation time, (v) unsaturated binding isotherm, (vi) impurities in the reactants, and (vii) solute adsorption onto surfaces. Through this analysis, we illustrate how each source contributes to inaccuracies in the determination of Kd and propose strategies to minimize these contributions. Additionally, we introduce a method for quantitatively assessing the confidence intervals of systematic errors in concentrations, a crucial step toward quantitatively evaluating the accuracy of Kd. While presenting original findings, this paper also reiterates the fundamentals of Kd determination, hence guiding researchers across all proficiency levels. By shedding light on the sources of systematic errors and offering strategies for their mitigation, our work will help researchers enhance the accuracy of Kd determination, thereby making binding studies more reliable and the conclusions drawn from such studies more robust.
Collapse
Affiliation(s)
- Tong Ye Wang
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jean-Luc Rukundo
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Zhiyuan Mao
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sergey N Krylov
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
4
|
Bržezická T, Kohútová L, Glatz Z. Atypical applications of transverse diffusion of laminar flow profiles methodology for in-capillary reactions in capillary electrophoresis. J Sep Sci 2024; 47:e2400157. [PMID: 38982555 DOI: 10.1002/jssc.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Capillary electrophoresis (CE) is a powerful separation technique offering quick and efficient analyses in various fields of bioanalytical chemistry. It is characterized by many well-known advantages, but one, which is perhaps the most important for this application field, is somewhat overlooked. It is the possibility to perform chemical and biochemical reactions at the nL scale inside the separation capillary. There are two basic formats applicable for this purpose, heterogeneous and homogeneous. In the former, one reactant is immobilized onto a particle or monolithic support or directly on the capillary wall, and the other is injected. In the latter, the reactant mixing inside a capillary is based on electromigration or diffusion. One of the diffusion-based methodologies, termed Transverse Diffusion of Laminar Flow Profiles, is the subject of this review. Since most studies utilizing in-capillary reactions in CE focus on enzymes, which are being continuously and exhaustively reviewed, this review covers the atypical applications of this methodology, but still in the bioanalytical field. As can be seen from the demonstrated applications, they are not limited to reactions, but can also be utilized for other biochemical systems.
Collapse
Affiliation(s)
- Taťána Bržezická
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Kohútová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Bílek J, Koval D, Šolínová V, Talele HL, Severa L, Gutiérrez PER, Teplý F, Kašička V. Determination of the binding constants and ionic mobilities of diquat complexes with randomly sulfated cyclodextrins by affinity capillary electrophoresis. J Sep Sci 2024; 47:e2400286. [PMID: 38863086 DOI: 10.1002/jssc.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/13/2024]
Abstract
The enantiomers of diquats (DQs), a new class of functional organic molecules, were recently separated by capillary electrophoresis (CE) with high resolution up to 11.4 within 5-7 min using randomly sulfated α-, β-, and γ-cyclodextrins (CDs) as chiral selectors. These results indicated strong interactions between dicationic diquats and multiply negatively charged sulfated CDs (S-CDs). However, the binding strength of these interactions was not quantified. For that reason, in this study, affinity CE was applied for the determination of the binding constants and ionic mobilities of the complexes of DQ P- and M-enantiomers with CD chiral selectors in an aqueous medium. The non-covalent interactions of 10 pairs of DQ enantiomers with the above CDs were investigated in a background electrolyte (BGE) composed of 22 mM NaOH, 35 mM H3PO4, pH 2.5, and 0.0-1.0 mM concentrations of CDs. The average apparent binding constant and the average actual ionic mobility of the DQ-CD complexes were determined by nonlinear regression analysis of the dependence of the effective mobility of DQ enantiomers on the concentration of CDs in the BGE. The complexes were found to be relatively strong with the averaged apparent binding constants in the range 13 600-547 400 L/mol.
Collapse
Affiliation(s)
- Jan Bílek
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Dušan Koval
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Veronika Šolínová
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Harish L Talele
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Lukáš Severa
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Paul E Reyes Gutiérrez
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Filip Teplý
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Václav Kašička
- Electromigration Methods, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
6
|
Štěpánová S, Kašička V. Determination of physicochemical parameters of (bio)molecules and (bio)particles by capillary electromigration methods. J Sep Sci 2024; 47:e2400174. [PMID: 38867483 DOI: 10.1002/jssc.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
The review provides an overview of recent developments and applications of capillary electromigration (CE) methods for the determination of important physicochemical parameters of various (bio)molecules and (bio)particles. These parameters include actual and limiting (absolute) ionic mobilities, effective electrophoretic mobilities, effective charges, isoelectric points, electrokinetic potentials, hydrodynamic radii, diffusion coefficients, relative molecular masses, acidity (ionization) constants, binding constants and stoichiometry of (bio)molecular complexes, changes of Gibbs free energy, enthalpy and entropy and rate constants of chemical reactions and interactions, retention factors and partition and distribution coefficients. For the determination of these parameters, the following CE methods are employed: zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography. In the individual sections, the procedures for the determination of the above parameters by the particular CE methods are described.
Collapse
Affiliation(s)
- Sille Štěpánová
- Electromigration methods, Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Kašička
- Electromigration methods, Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Miyabe K, Ishitobi A, Hiyama K, Kubotani F. Moment Analysis Method for Measurement of Reaction Equilibrium and Rate Constants by Using High-Performance Liquid Chromatography. Anal Chem 2024; 96:4553-4561. [PMID: 38457369 DOI: 10.1021/acs.analchem.3c05387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The moment analysis method was developed for the determination of association equilibrium constant (KA) and association (ka) and dissociation (kd) rate constants of intermolecular interactions between solute and ligand molecules. They are accurately determined by using moment equations from elution peak profiles because they are measured by using high-performance liquid chromatography (HPLC) under preferable conditions that neither immobilization nor chemical modification (i.e., fluorescence labeling) of solute and ligand molecules is required. To demonstrate the effectiveness of the method, it was applied to the inclusion complex formation system between dibenzo-18-crown-6 (DB18C6) and alkaline earth metal cations, i.e., Mg2+, Ca2+, and Sr2+, as a concrete example. Because the diameter of the three metal cations is smaller than that of the inner cavity of DB18C6, the values of KA, ka, and kd were analytically determined by assuming the stoichiometry of 1:1 between DB18C6 and the metal cation. They reflected the influence of the difference in the size between the inner cavity of DB18C6 and the metal cations on the inclusion complex formation. It seems that the moment analysis method based on HPLC separation is effective for the multifaceted analysis of chemical reactions because some characteristics of the method are different from those of other conventional methods. It must contribute to the dissemination of an opportunity for the study of chemical reactions to many researchers because of the versatility of HPLC.
Collapse
Affiliation(s)
- Kanji Miyabe
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Amane Ishitobi
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Kanoko Hiyama
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Fuzuki Kubotani
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
8
|
Uppal GK, Poolsup S, Zaripov E, Gu Y, Berezovski MV. Comparative analysis of aptamers binding to SARS-CoV-2 N protein using capillary electrophoresis and bio-layer interferometry. Anal Bioanal Chem 2024; 416:1697-1705. [PMID: 38305861 DOI: 10.1007/s00216-024-05174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Aptamers are increasingly employed in SARS-CoV-2 theragnostics in recent years. Characterization of aptamers, testing affinity and kinetic parameters (e.g., equilibrium dissociation constant (KD), kon, and koff), can be done by several methods and influenced by many factors. This study aims to characterize the binding of aptamers to SARS-CoV-2 nucleocapsid (N) protein using capillary electrophoresis (CE) and bio-layer interferometry (BLI). These two analytical methods differ by how the aptamer binds to its target protein once the aptamer, as a capture ligand, is partitioned in solution (CE) or immobilized on the biosensor (BLI). With CE, the KD values of the N-binding aptamers (tNSP1, tNSP2, and tNSP3) were determined to be 18 ± 4 nM, 45 ± 11 nM, and 32 ± 7 nM, respectively, while the KD measurements by BLI yielded 4.8 ± 0.6, 4.5 ± 0.5, and 2.9 ± 0.3 nM, respectively. CE results showed a higher KD across all aptamers tested. The differences in the steric hindrance and confirmational structures of the aptamers immobilized on the BLI biosensors versus those suspended in the CE sample solution affect the molecular interactions between aptamers and the target proteins. Moreover, the buffer composition including pH and ionic strength can influence the stability of aptamer structures, or aptamer-protein complexes. All these variables affect the binding and calculated KD. In this sense, a KD value alone is not sufficient to make comparisons between aptamers; instead, the entire experimental setup should also be considered. This is particularly important when implementing aptamers in different bioanalytical systems.
Collapse
Affiliation(s)
- Gurcharan K Uppal
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Suttinee Poolsup
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Yuxuan Gu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
9
|
Yang G, Liu W, Zhao Y, Jiang G, Zhu C, Qu F. Induction of binding sites for RecA aptamers by differentiated-competition capillary Electrophoresis-SELEX. Talanta 2024; 267:125213. [PMID: 37757693 DOI: 10.1016/j.talanta.2023.125213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
The binding site-oriented SELEX strategy is an effective way to promote the functional evolution of aptamers. Here we report a novel aptamer screening strategy (Differentiated-competition Capillary Electrophoresis-SELEX), which enables candidate aptamers to be directionally induced to bind to different active sites of RecA. In this strategy, we introduce two competing binding factors into the "binding - dissociation" dynamic equilibrium system of RecA and ssDNA libraries. Due to the completely different binding mechanism of the competitive factor and the ssDNA library, it exerts different interference on the binding of RecA and the ssDNA library, which directed the binding site of aptamer candidates during the SELEX process. Multifunctional aptamers with high affinity and specificity were found to inhibit RecA activity by binding to different active sites. In conclusion, the SELEX method developed in our current study have identified a variety of biologically functional aptamers with relatively well-defined binding sites that regulate RecA protein activity, which has potential applications and future prospects for accurate screening of biological functional aptamers.
Collapse
Affiliation(s)
- Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenjing Liu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yi Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Guangyu Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
10
|
Deng L, Fu Q, Zhang Y, Shui F, Tang J, Wu J, Zeng J. Study of molecular interactions by nonequilibrium capillary electrophoresis of equilibrium mixtures: Originations, developments, and applications. Electrophoresis 2023; 44:1664-1673. [PMID: 37621032 DOI: 10.1002/elps.202300166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Molecular interactions play a vital role in regulating various physiological and biochemical processes in vivo. Kinetic capillary electrophoresis (KCE) is an analytical platform that offers significant advantages in studying the thermodynamic and kinetic parameters of molecular interactions. It enables the simultaneous analysis of these parameters within an interaction pattern and facilitates the screening of binding ligands with predetermined kinetic parameters. Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) was the first proposed KCE method, and it has found widespread use in studying molecular interactions involving proteins/aptamers, proteins/small molecules, and peptides/small molecules. The successful applications of NECEEM have demonstrated its promising potential for further development and broader application. However, there has been a dearth of recent reviews on NECEEM. To address this gap, our study provides a comprehensive description of NECEEM, encompassing its origins, development, and applications from 2015 to 2022. The primary focus of the applications section is on aptamer selection and screening of small-molecule ligands. Furthermore, we discuss important considerations in NECEEM experimental design, such as buffer suitability, detector selection, and protein adsorption. By offering this thorough review, we aim to contribute to the understanding, advancement, and wider utilization of NECEEM as a valuable tool for studying molecular interactions and facilitating the identification of potential ligands and targets.
Collapse
Affiliation(s)
- Li Deng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yujie Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Fan Shui
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jia Tang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
- School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| |
Collapse
|
11
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
12
|
Knežević L, Zanda E, Bura-Nakić E, Filella M, Sladkov V. Vanadium(IV) and vanadium(V) complexation by succinic acid studied by affinity capillary electrophoresis. Simultaneous injection of two analytes in equilibrium studies. J Chromatogr A 2023; 1695:463941. [PMID: 37019062 DOI: 10.1016/j.chroma.2023.463941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
The interaction of V(IV) and V(V) with succinic acid was investigated by affinity capillary electrophoresis (ACE) in aqueous acid solutions at pH values 1.5, 2.0 and 2.4, and different ligand concentrations. V(IV) and V(V) form protonated complexes with succinic acid ligand at this pH range. The logarithms of the stability constants, measured at 0.1 mol L-1 (NaClO4/HClO4) ionic strength and 25 °C, are logβ111=7.4 ± 0.2 and logβ122=14.1 ± 0.5 for V(IV), and logβ111=7.3 ± 0.1 for V(V), respectively. The stability constant values, extrapolated to zero ionic strength with the Davies equation, are logβ°111=8.3 ± 0.2 and logβ°122=15.6 ± 0.5 for V(IV) and logβ°111=7.9 ± 0.1 for V(V). The application of ACE to the simultaneous equilibria of V(IV) and V(V) (injection of two analytes) was also attempted. When the results were compared with those obtained when introducing only one analyte in the capillary, using the traditional version of the method, similar stability constants and precision are obtained. The possibility of studying two analytes simultaneously decreases the time needed for the determination of the constants; this feature is especially valuable when working with hazardous materials or when only small quantities of ligand are available.
Collapse
|
13
|
Sharmeen S, Kyei I, Hatch A, Hage DS. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: A review. Electrophoresis 2022; 43:2302-2323. [PMID: 36250426 PMCID: PMC10098505 DOI: 10.1002/elps.202200191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug-protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.
Collapse
Affiliation(s)
- Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Arden Hatch
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
14
|
Miyabe K. Moment theory of affinity capillary electrophoresis for analysis of reaction kinetics of intermolecular interactions. J Chromatogr A 2022; 1684:463557. [DOI: 10.1016/j.chroma.2022.463557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022]
|
15
|
TAKAYANAGI T. Development of Novel Analysis and Characterization Methods Utilizing Reaction Dynamics in a Separation Capillary. CHROMATOGRAPHY 2022. [DOI: 10.15583/jpchrom.2021.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Toshio TAKAYANAGI
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| |
Collapse
|
16
|
Miyabe K, Arai A, Ishizuka M. Moment Theory of Chromatography for the Analysis of Reaction Kinetics of Intermolecular Interactions. Anal Chem 2021; 93:10365-10371. [PMID: 34258992 DOI: 10.1021/acs.analchem.1c02111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Moment theory was applied to the kinetic study of intermolecular interactions. The association equilibrium constant (KA) and association (ka) and dissociation (kd) rate constants of chemical reactions were analytically determined on the basis of the moment theory from elution peak profiles measured by high-performance liquid chromatography (HPLC). The HPLC data were measured under the conditions that neither immobilization nor fluorescence labeling of solute and ligand molecules is required. These are the advantages of the moment analysis method for determining accurate values of KA, ka, and kd. Moment equations were developed on the basis of the Einstein equation for diffusion, the random walk model, and the general rate model of chromatography. The moment analysis method was applied to the inclusion complex formation system between dibenzo-18-crown-6 or dibenzo-15-crown-5 and alkali metal cations. It was demonstrated that the values of KA, ka, and kd can be determined on the assumption that the stoichiometry between crown ethers and cations is 1:1 or 2:1. The influence of the difference in the size between the inner cavity of crown ethers and cations on the association and dissociation of the inclusion complex was considered. The moment analysis method using HPLC is effective for analyzing intermolecular interactions from various perspectives because it is based on the separation technique and has different characteristics from other methods such as spectroscopy. The results of this study contribute to the dissemination of an opportunity for studying intermolecular interactions from equilibrium and kinetic points of view to many researchers because HPLC is widespread.
Collapse
Affiliation(s)
- Kanji Miyabe
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Ayaka Arai
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Mana Ishizuka
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
17
|
Guo X, Chen GH. Capillary electrophoresis-based methodology for screening of oligonucleotide aptamers. Biomed Chromatogr 2021; 35:e5109. [PMID: 33660332 DOI: 10.1002/bmc.5109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/28/2023]
Abstract
As a new molecular recognition element, oligonucleotide aptamer not only has higher affinity and specificity to target molecules, but also has the advantages of wide recognition range, in vitro synthesis and chemical stability compared with conventional antibodies. Since a kind of screening method termed systematic evolution of ligands by exponential enrichment (SELEX) was reported, scientists have extensively researched the methodology of how to highly and efficiently screen out aptamers from a library consisting of a large number of random oligonucleotides. Certainly capillary electrophoresis-based screening methodologies, including nonequilibrium capillary electrophoresis of equilibrium mixtures, equilibrium capillary electrophoresis of equilibrium mixtures, non-SELEX, ideal-filter capillary electrophoresis, capillary transient isotachophoresis, etc., are revolutionary. Compared with conventional SELEX, these capillary electrophoresis-based methodologies show incomparable advantages such as the single-round screening of aptamers and increased successful screening rate. Methodology studies on the screening process of aptamers are comprehensively reviewed.
Collapse
Affiliation(s)
- Xin Guo
- College of Food and Bioengineering, Jiangsu University, Zhenjiang, China.,Periodicals Agency of Jiangsu University, Zhenjiang, China
| | - Guan-Hua Chen
- College of Food and Bioengineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Le ATH, Krylova SM, Beloborodov SS, Wang TY, Hili R, Johnson PE, Li F, Veedu RN, Belyanskaya S, Krylov SN. How to Develop and Prove High-Efficiency Selection of Ligands from Oligonucleotide Libraries: A Universal Framework for Aptamers and DNA-Encoded Small-Molecule Ligands. Anal Chem 2021; 93:5343-5354. [PMID: 33764056 DOI: 10.1021/acs.analchem.1c00601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Screening molecular libraries for ligands capable of binding proteins is widely used for hit identification in the early drug discovery process. Oligonucleotide libraries provide a very high diversity of compounds, while the combination of the polymerase chain reaction and DNA sequencing allow the identification of ligands in low copy numbers selected from such libraries. Ligand selection from oligonucleotide libraries requires mixing the library with the target followed by the physical separation of the ligand-target complexes from the unbound library. Cumulatively, the low abundance of ligands in the library and the low efficiency of available separation methods necessitate multiple consecutive rounds of partitioning. Multiple rounds of inefficient partitioning make the selection process ineffective and prone to failures. There are continuing efforts to develop a separation method capable of reliably generating a pure pool of ligands in a single round of partitioning; however, none of the proposed methods for single-round selection have been universally adopted. Our analysis revealed that the developers' efforts are disconnected from each other and hindered by the lack of quantitative criteria of selection quality assessment. Here, we present a formalism that describes single-round selection mathematically and provides parameters for quantitative characterization of selection quality. We use this formalism to define a universal strategy for development and validation of single-round selection methods. Finally, we analyze the existing partitioning methods, the published single-round selection reports, and some pertinent practical considerations through the prism of this formalism. This formalism is not an experimental protocol but a framework for correct development of experimental protocols. While single-round selection is not a goal by itself and may not always suffice selection of good-quality ligands, our work will help developers of highly efficient selection approaches to consolidate their efforts under an umbrella of universal quantitative criteria of method development and assessment.
Collapse
Affiliation(s)
- An T H Le
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Svetlana M Krylova
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Stanislav S Beloborodov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Tong Y Wang
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ryan Hili
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Philip E Johnson
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Feng Li
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University and Perron Institute for Neurological and Translational Science, Perth 6150, Australia
| | | | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
19
|
Miyabe K. Moment Equations for Kinetic Study of Intermolecular Interaction by Size Exclusion Chromatography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kanji Miyabe
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
20
|
Wang Y, Adeoye DI, Ogunkunle EO, Wei IA, Filla RT, Roper MG. Affinity Capillary Electrophoresis: A Critical Review of the Literature from 2018 to 2020. Anal Chem 2020; 93:295-310. [DOI: 10.1021/acs.analchem.0c04526] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Damilola I. Adeoye
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Emmanuel O. Ogunkunle
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - I-An Wei
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Robert T. Filla
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
21
|
Mourdoukoutas AP, Grist SM, Herr AE. Rapid electrotransfer probing for improved detection sensitivity in in-gel immunoassays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4638-4648. [PMID: 33030469 PMCID: PMC7552878 DOI: 10.1039/d0ay01203c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein electrotransfer in conventional western blotting facilitates detection of size-separated proteins by diffusive immunoprobing, as analytes are transferred from a small-pore sizing gel to a blotting membrane for detection. This additional transfer step can, however, impair detection sensitivity through protein losses and confound protein localization. To overcome challenges associated with protein transfer, in-gel immunoassays immobilize target proteins to the hydrogel matrix for subsequent in-gel immunoprobing. Yet, detection sensitivity in diffusive immunoprobing of hydrogels is determined by the gel pore size relative to the probe size, and in-gel immunoprobing results in (i) reduced in-gel probe concentration compared to surrounding free-solution, and (ii) slow in-gel probe transfer compared to immunocomplex dissociation. Here, we demonstrate electrotransfer probing for effective and rapid immunoprobing of in-gel immunoassays. Critically, probe (rather than target protein) is electrotransferred from an inert, large-pore 'loading gel' to a small-pore protein sizing gel. Electric field is used as a tuneable parameter for electromigration velocity, providing electrotransfer probing with a fundamental advantage over diffusive probing. Using electrotransfer probing, we observe 6.5 ± 0.1× greater probe concentration loaded in-gel in ∼82× time reduction, and 2.7 ± 0.4× less probe concentration remaining in-gel after unloading in ∼180× time reduction (compared to diffusive probing). We then apply electrotransfer probing to detect OVA immobilized in-gel and achieve 4.1 ± 3.4× greater signal-to-noise ratio and 30× reduction in total immunoprobing duration compared to diffusive probing. We demonstrate electrotransfer probing as a substantially faster immunoprobing method for improved detection sensitivity of protein sizing in-gel immunoassays.
Collapse
Affiliation(s)
- Andoni P Mourdoukoutas
- The UC Berkeley/UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
22
|
Sázelová P, Koval D, Severa L, Teplý F, Vigh G, Kašička V. Determination of binding constants of multiple charged cyclodextrin complexes by ACE using uncorrected and ionic strength corrected actual mobilities of the species involved. Electrophoresis 2020; 41:523-535. [DOI: 10.1002/elps.201900352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2019] [Accepted: 11/21/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Petra Sázelová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czechia
| | - Dušan Koval
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czechia
| | - Lukáš Severa
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czechia
| | - Filip Teplý
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czechia
| | - Gyula Vigh
- Texas A&M UniversityDepartment Chemistry College Station TX USA
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
23
|
Moment analysis of peak broadening in affinity capillary electrophoresis and electrokinetic chromatography. J Chromatogr A 2020; 1609:460451. [DOI: 10.1016/j.chroma.2019.460451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 11/22/2022]
|
24
|
Iftekhar S, Ovbude ST, Hage DS. Kinetic Analysis by Affinity Chromatography. Front Chem 2019; 7:673. [PMID: 31681727 PMCID: PMC6813734 DOI: 10.3389/fchem.2019.00673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Important information on chemical processes in living systems can be obtained by the rates at which these biological interactions occur. This review will discuss several techniques based on traditional and high-performance affinity chromatography that may be used to examine the kinetics of biological reactions. These methods include band-broadening measurements, techniques for peak fitting, split-peak analysis, peak decay studies, and ultrafast affinity extraction. The general principles and theory of each method, as applied to the determination of rate constants, will be discussed. The applications of each approach, along with its advantages and limitations, will also be considered.
Collapse
Affiliation(s)
| | | | - David S. Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
25
|
Šolínová V, Žáková L, Jiráček J, Kašička V. Pressure assisted partial filling affinity capillary electrophoresis employed for determination of binding constants of human insulin hexamer complexes with serotonin, dopamine, arginine, and phenol. Anal Chim Acta 2019; 1052:170-178. [DOI: 10.1016/j.aca.2018.11.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 11/30/2022]
|
26
|
Screening of Oligonucleotide Aptamers and Application in Detection of Pesticide and Veterinary Drug Residues. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61153-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Nevídalová H, Michalcová L, Glatz Z. Capillary electrophoresis-based approaches for the study of affinity interactions combined with various sensitive and nontraditional detection techniques. Electrophoresis 2019; 40:625-642. [PMID: 30600537 DOI: 10.1002/elps.201800367] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
Nearly all processes in living organisms are controlled and regulated by the synergy of many biomolecule interactions involving proteins, peptides, nucleic acids, nucleotides, saccharides, and small molecular weight ligands. There is growing interest in understanding them, not only for the purposes of interactomics as an essential part of system biology, but also in their further elucidation in disease pathology, diagnostics, and treatment. The necessity of detailed investigation of these interactions leads to the requirement of laboratory methods characterized by high efficiency and sensitivity. As a result, many instrumental approaches differing in their fundamental principles have been developed, including those based on capillary electrophoresis. Although capillary electrophoresis offers numerous advantages for such studies, it still has one serious limitation, its poor concentration sensitivity with the most commonly used detection method-ultraviolet-visible spectrometry. However, coupling capillary electrophoresis with a more sensitive detector fulfils the above-mentioned requirement. In this review, capillary electrophoresis combined with fluorescence, mass spectrometry, and several nontraditional detection techniques in affinity interaction studies are summarized and discussed, together with the possibility of conducting these measurements in microchip format.
Collapse
Affiliation(s)
- Hana Nevídalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
28
|
Miyabe K. Moment analysis for mass transfer kinetics at the interface of spherical molecular aggregates. J Chromatogr A 2018; 1572:172-178. [PMID: 30172357 DOI: 10.1016/j.chroma.2018.08.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 11/17/2022]
Abstract
New moment equations were developed on the basis of the principle of relativity for explaining some characteristics of elution peaks measured by electrokinetic chromatography (EKC) using spherical molecular aggregates. Basic equations representing mass balance and mass transfer kinetics in EKC system in a Galilean coordinate system S were transformed to those in another coordinate system S', which imaginarily moved with respect to S. Moment equations for EKC peaks in S' in the time domain were derived from the analytical solution of the modified basic equations in the Laplace domain. Moment equations for EKC peaks in S were derived from those in S' by the inverse Galilean transformation. The moment equations were used to the re-analysis of EKC data previously measured. The values of permeation rate constants of thymol at the interface of sodium dodecylsulfate micelles were fairly in agreement with those determined in a previous study. The moment equations were also used to the numerical simulation of elution peaks in EKC systems. The influence of some experimental parameters on elution peak profiles was quantitatively analyzed. The moment equations are useful for determining the rate constants of interfacial solute permeation from elution peak profiles measured by EKC.
Collapse
Affiliation(s)
- Kanji Miyabe
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.
| |
Collapse
|
29
|
Determination of thermodynamic binding constants by affinity capillary electrophoresis. Talanta 2018; 192:448-454. [PMID: 30348416 DOI: 10.1016/j.talanta.2018.09.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 11/24/2022]
Abstract
A strategy to study thermodynamic binding constants by affinity capillary electrophoresis (ACE) is presented. In order to simplify mathematical treatment, analogy with acid-base dissociation equilibrium is proposed: instead of ligand concentration [X], negative logarithm of ligand concentration (or activity), pX = -log[X], is used. On this base, and taking into account ionic activities, a general procedure for obtaining thermodynamic binding constants is proposed. In addition, the method provides electrophoretic mobilities of the free analyte and analyte-ligand complex, even when binding constants are low and thus, the complexed analyte fraction is also low. This is useful as a base to rationally analyze a diversity of situations, i.e., different mathematical dependencies are obtained when analytes and ligands with different charges are combined. Practical considerations are given for carrying out a full experimental design. Enantiomeric ACE separation based on the use of chiral selectors is addressed. 2-hydroxypropyl-β-cyclodextrin was chosen as a model ligand, and both enantiomeric forms of four pharmaceutical drugs (propranolol, pindolol, oxprenolol and homatropine methylbromide) were considered as model analytes. Practical aspects are detailed and thermodynamic binding constants as well as free and complexed analytes mobilities are determined.
Collapse
|
30
|
Miyabe K. Moment analysis for reaction kinetics of intermolecular interactions. Electrophoresis 2018; 39:3032-3039. [PMID: 30156042 DOI: 10.1002/elps.201800218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/23/2018] [Accepted: 08/19/2018] [Indexed: 01/05/2023]
Abstract
Moment equations were developed on the basis of the principle of relativity for analyzing elution peak profiles measured by ACE to analytically determine the association (ka ) and dissociation (kd ) rate constants of intermolecular interactions. Basic equations representing the mass balance, mass transfer rate, and reaction kinetics in ACE system in a Galilean coordinate system S were transformed to those in another coordinate system S', which imaginarily moved with respect to S. Moment equations for ACE peaks in S' in the time domain were derived from the analytical solution of the modified basic equations in the Laplace domain. Moment equations for ACE peaks in S were derived from those in S' by the inverse Galilean transformation. The moment equations were used for analyzing some ACE data previously published to determine ka and kd values. It was demonstrated that the moment equations were effective for extracting the information about affinity kinetics of intermolecular interactions from the elution peak profiles measured by ACE. The moment equations were also used to discuss the influence of mass transfer and reaction kinetics on ACE peak profiles. Some results of the numerical calculations are also indicated in Supporting Information.
Collapse
Affiliation(s)
- Kanji Miyabe
- Department of Chemistry, Faculty of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| |
Collapse
|
31
|
Suzuki N, Kinoshita M, Miyabe K. Kinetic Study of Chiral Intermolecular Interactions by Moment Analysis Based on Affinity Capillary Electrophoresis. Anal Chem 2018; 90:11048-11053. [DOI: 10.1021/acs.analchem.8b02823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nozomu Suzuki
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Mariko Kinoshita
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Kanji Miyabe
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
32
|
Nejdl L, Moravanska A, Smerkova K, Mravec F, Krizkova S, Pomorski A, Krężel A, Macka M, Adam V, Vaculovicova M. Short-sweep capillary electrophoresis with a selective zinc fluorescence imaging reagent FluoZin-3 for determination of free and metalothionein-2a-bound Zn2+ ions. Anal Chim Acta 2018. [DOI: 10.1016/j.aca.2018.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
|
34
|
Moser AC, Trenhaile S, Frankenberg K. Studies of antibody-antigen interactions by capillary electrophoresis: A review. Methods 2018; 146:66-75. [DOI: 10.1016/j.ymeth.2018.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 11/25/2022] Open
|
35
|
Zeidman Kalman T, Khalandovsky R, Tenenbaum Gonikman E, Bercovici M. Monitoring Dissociation Kinetics during Electrophoretic Focusing to Enable High-Specificity Nucleic Acid Detection. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tal Zeidman Kalman
- Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Rebecca Khalandovsky
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Elena Tenenbaum Gonikman
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Moran Bercovici
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
- Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| |
Collapse
|
36
|
Sotnikov DV, Zherdev AV, Dzantiev BB. Mathematical Modeling of Bioassays. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523069 DOI: 10.1134/s0006297917130119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The high affinity and specificity of biological receptors determine the demand for and the intensive development of analytical systems based on use of these receptors. Therefore, theoretical concepts of the mechanisms of these systems, quantitative parameters of their reactions, and relationships between their characteristics and ligand-receptor interactions have become extremely important. Many mathematical models describing different bioassay formats have been proposed. However, there is almost no information on the comparative characteristics of these models, their assumptions, and predictive insights. In this review we suggested a set of criteria to classify various bioassays and reviewed classical and contemporary publications on these bioassays with special emphasis on immunochemical analysis systems as the most common and in-demand techniques. The possibilities of analytical and numerical modeling are discussed, as well as estimations of the minimum concentrations that may be detected in bioassays and recommendations for the choice of assay conditions.
Collapse
Affiliation(s)
- D V Sotnikov
- Bach Institute of Biochemistry, Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
37
|
Zeidman Kalman T, Khalandovsky R, Tenenbaum Gonikman E, Bercovici M. Monitoring Dissociation Kinetics during Electrophoretic Focusing to Enable High-Specificity Nucleic Acid Detection. Angew Chem Int Ed Engl 2018; 57:3343-3348. [DOI: 10.1002/anie.201711673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/31/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Tal Zeidman Kalman
- Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Rebecca Khalandovsky
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Elena Tenenbaum Gonikman
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Moran Bercovici
- Faculty of Mechanical Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
- Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| |
Collapse
|
38
|
Sladkov V, Bessonov AA, Roques J, Charushnikova IA, Fedosseev AM. Complexation of An(vi) with succinic acid in aqueous acid solutions: uranyl vs. plutonyl. NEW J CHEM 2018. [DOI: 10.1039/c7nj04061j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to stronger electrostatic interaction in a uranyl–succinate system, complex species of U(vi) with succinate are more stable than the ones of Pu(vi).
Collapse
Affiliation(s)
- V. Sladkov
- Institut de Physique Nucléaire
- IN2P3-CNRS
- Université Paris-Sud
- Université Paris-Saclay
- F-91406 Orsay Cedex
| | - A. A. Bessonov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences (IPCE RAS)
- 199071 Moscow
- Russia
| | - J. Roques
- Institut de Physique Nucléaire
- IN2P3-CNRS
- Université Paris-Sud
- Université Paris-Saclay
- F-91406 Orsay Cedex
| | - I. A. Charushnikova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences (IPCE RAS)
- 199071 Moscow
- Russia
| | - A. M. Fedosseev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences (IPCE RAS)
- 199071 Moscow
- Russia
| |
Collapse
|
39
|
Miyabe K, Suzuki N. Moment Analysis Theory for Size Exclusion Capillary Electrochromatography with Chemical Reaction of Intermolecular Interaction. ANAL SCI 2017; 33:1147-1154. [PMID: 28993589 DOI: 10.2116/analsci.33.1147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
New moment equations were developed for size exclusion capillary electrochromatography (SECEC), in which intermolecular chemical reactions simultaneously took place. They explain how the first absolute and second central moments of elution peaks are correlated with some fundamental equilibrium and kinetic parameters of mass transfer and chemical reaction in SECEC column. In order to demonstrate the effectiveness of the moment equations, they were used to predict chromatographic behavior under hypothetical SECEC conditions. It was quantitatively studied how the association and dissociation rate constants of intermolecular interaction affected the position and spreading of elution peaks. It was indicated that both the intermolecular reaction kinetics and axial dispersion of solute molecules in a capillary column had a predominant contribution to the band broadening.
Collapse
Affiliation(s)
- Kanji Miyabe
- Department of Chemistry, Faculty of Science, Rikkyo University
| | - Nozomu Suzuki
- Department of Chemistry, Faculty of Science, Rikkyo University
| |
Collapse
|
40
|
Suzuki N, Miyabe K. Evaluation of Migration Time and Variance for Accurate Kinetic Studies Based on Affinity Capillary Electrophoresis. Anal Chem 2017; 89:10487-10495. [DOI: 10.1021/acs.analchem.7b02598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nozomu Suzuki
- Department of Chemistry,
College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Kanji Miyabe
- Department of Chemistry,
College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
41
|
Aptamers as Valuable Molecular Tools in Neurosciences. J Neurosci 2017; 37:2517-2523. [PMID: 28275062 DOI: 10.1523/jneurosci.1969-16.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/18/2017] [Accepted: 01/30/2017] [Indexed: 01/19/2023] Open
Abstract
Aptamers are short nucleic acids that interact with a variety of targets with high affinity and specificity. They have been shown to inhibit biological functions of cognate target proteins, and they are identifiable by an in vitro selection process, also termed SELEX (Systematic Evolution of Ligands by EXponential enrichment). Being nucleic acids, aptamers can be synthesized chemically or enzymatically. The latter renders RNA aptamers compatible with the cell's own transcription machinery and, thus, expressable inside cells. The synthesis of aptamers by chemical approaches opens up the possibility of producing aptamers on a large scale and enables a straightforward access to introduce modifications in a site-specific manner (e.g., fluorophores or photo-labile groups). These characteristics make aptamers broadly applicable (e.g., as an analytical, diagnostic, or separation tool). In this TechSight, we provide a brief overview on aptamer technology and the potential of aptamers as valuable research tools in neurosciences.
Collapse
|
42
|
Crevillén AG, de Frutos M, Diez-Masa JC. On-chip single column transient isotachophoresis with free zone electrophoresis for preconcentration and separation of α-lactalbumin and β-lactoglobulin. Microchem J 2017. [DOI: 10.1016/j.microc.2017.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Norris V, Krylov SN, Agarwal PK, White GJ. Synthetic, Switchable Enzymes. J Mol Microbiol Biotechnol 2017; 27:117-127. [PMID: 28448969 DOI: 10.1159/000464443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The construction of switchable, radiation-controlled, aptameric enzymes - "swenzymes" - is, in principle, feasible. We propose a strategy to make such catalysts from 2 (or more) aptamers each selected to bind specifically to one of the substrates in, for example, a 2-substrate reaction. Construction of a combinatorial library of candidate swenzymes entails selecting a set of a million aptamers that bind one substrate and a second set of a million aptamers that bind the second substrate; the aptamers in these sets are then linked pairwise by a linker, thus bringing together the substrates. In the presence of the substrates, some linked aptamer pairs catalyze the reaction when exposed to external energy in the form of a specific frequency of low-intensity, nonionizing electromagnetic or acoustic radiation. Such swenzymes are detected via a separate product-capturing aptamer that changes conformation on capturing the product; this altered conformation allows it (1) to bind to every potential swenzyme in its vicinity (thereby giving a higher probability of capture to the swenzymes that generate the product) and (2) to bind to a sequence on a magnetic bead (thereby permitting purification of the swenzyme plus product-capturing aptamer by precipitation). Attempts to implement the swenzyme strategy may help elucidate fundamental problems in enzyme catalysis.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, EA 4312, Department of Biology, University of Rouen, Mont Saint Aignan, France
| | | | | | | |
Collapse
|
44
|
Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis. Sci Rep 2016; 6:39774. [PMID: 28008969 PMCID: PMC5180089 DOI: 10.1038/srep39774] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022] Open
Abstract
High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality – the binding affinity – is quantified through the dissociation constant (KD) of each recombinant antibody and the target antigen. To characterize the KD of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The KD for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization.
Collapse
|
45
|
Miyabe K, Suzuki N, Shimazaki Y. Determination of Association and Dissociation Rate Constants in an Inclusion Complex System between Thymol and Sulfated-β-cyclodextrin by Moment Analysis - Affinity Capillary Electrophoresis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Miyabe K, Suzuki N. Kinetic Study of Solute Permeation across Surfactant Micelle/Bulk Solvent Interface by Moment Analysis - Chromatographic Capillary Electrophoresis (MA-CCE). BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Ouyang W, Ko SH, Wu D, Wang AY, Barone PW, Hancock WS, Han J. Microfluidic Platform for Assessment of Therapeutic Proteins Using Molecular Charge Modulation Enhanced Electrokinetic Concentration Assays. Anal Chem 2016; 88:9669-9677. [PMID: 27624735 DOI: 10.1021/acs.analchem.6b02517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Therapeutic proteins (TPs) are critical in modern medicine, yet shortage of TPs in disaster situations and remote areas remains a worldwide challenge. Manufacturing and real-time release of TPs on demand at the point-of-care is considered the key to this issue, which requires reliable and rapid analytics techniques for quality assurance. Herein we report a microfluidic platform that could be implemented in-line and at the point-of-care for real-time decision-making about the quality of a TP. The in vivo efficacy and duration of efficacy of TPs were assessed by the equilibrium and kinetics of TP and TP receptor (TPR) binding, using electrokinetic concentration (EC) and molecular charge modulation (MCM). EC can simultaneously concentrate and separate bound and unbound species in an assay based on electrical mobility, allowing for the quantification of binding. MCM enables the application of EC to arbitrary TPs by enhancing the mobility differences between TPs, TPRs, and TP-TPR complexes. This technology is homogeneous and overcomes many practical challenges of conventional heterogeneous assays. We developed various formats of assays for equilibrium and kinetic analysis and rapid determination of degradation of TPs, obtaining results comparable to state-of-the-art technologies with significantly less time (<1 h) and simpler setup. Finally, we demonstrated that the results of MCM-EC based assays correlated well with those from mass spectrometry and cell-based assay, which are the industrial standards for quality testing of TPs.
Collapse
Affiliation(s)
| | | | - Di Wu
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Annie Yu Wang
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | | | - William S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | | |
Collapse
|
48
|
Miyabe K, Suzuki N. Moment Analysis Theory for Kinetic Study of Intermolecular Interaction by Affinity Capillary Electrophoresis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Miyabe K, Takahashi R, Shimazaki Y. Kinetic Study of Interaction between Solute Molecule and Surfactant Micelle. ANAL SCI 2016; 31:1019-25. [PMID: 26460366 DOI: 10.2116/analsci.31.1019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We developed moment analysis of affinity kinetics by chromatographic capillary electrophoresis (MKCCE) method for the kinetic study of intermolecular interactions. Association and dissociation rate constants of the interaction in a micellar electrokinetic chromatography (MEKC) system between thymol and sodium dodecylsulfate micelle were determined by the MKCCE method. It is a method based on the moment theory for the kinetic study of intermolecular interactions under the conditions that neither immobilization nor chemical modification of molecules is required. In CCE mode, experimental conditions are controlled so that the migration of solute-micelle complex is stopped and only solute molecules migrate in a capillary. Mass transfer behavior of solute molecules in the CCE system is analogous to that in a chromatographic system. However, because it was difficult in practice to really perform CE experiments under the CCE conditions, CE data were measured with changing experimental conditions, i.e., applied pressure, under the conditions that the migration velocity of solute-micelle complex was around zero. The rate constants could be analytically determined from the CE data. In the MKCCE method, it is not necessary to fit elution curves numerically calculated to those experimentally measured for the determination of the rate constants. Regarding the interaction between thymol and SDS micelles, association equilibrium constant and association and dissociation rate constants were determined as 6.35 × 10(3) dm(3) mol(-1), 5.6 × 10(4) dm(3) mol(-1) s(-1), and 8.7 s(-1), respectively. It was demonstrated that the MKCCE method was effective for the kinetic study of intermolecular interactions.
Collapse
Affiliation(s)
- Kanji Miyabe
- Department of Chemistry, Faculty of Science, Rikkyo University
| | | | | |
Collapse
|
50
|
Kinetic simulation of complex decomposition as a tool for the ion chromatographic determination of elemental speciation of less inert metal ions. J Chromatogr A 2016; 1429:189-97. [DOI: 10.1016/j.chroma.2015.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 11/17/2022]
|