1
|
Toghiani J, Fallah N, Nasernejad B, Mahboubi A, Taherzadeh MJ, Afsham N. Production of protein-rich fungal biomass from pistachio dehulling waste using edible Neurospora intermedia. Sci Rep 2025; 15:5873. [PMID: 39966440 PMCID: PMC11836291 DOI: 10.1038/s41598-024-81941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/02/2024] [Indexed: 02/20/2025] Open
Abstract
Pistachio dehulling waste, known as Pistachio byproduct mixture (PBM), is a valuable resource that is often overlooked. An effective sustainable approach involves utilizing this agricultural waste through a fermentation process using edible filamentous fungi, demonstrating potential applications in nutrition and animal feed. The focus of this study was on converting PBM extract obtained from a hot water extraction pre-treatment into a protein-rich fungal biomass of Neurospora intermedia. The optimal conditions for growth were achieved at 72 h, pH 5.5, and 30 °C which are achieved by one-factor-at-a-time approach (OFAT), resulting in 6.7 g/L of dried fungal biomass, with a protein content of 20.4%. The conversion efficiency, expressed as grams of fungal biomass per gram of initial Total COD, was 0.37 g/g, highlighting the significant potential of PBM extract with high COD levels and low sugar content for fermentation processes. Additionally, an investigation was carried out to assess the impact of inoculation method, culture adaptation, COD/N ratio, and pH control on fungal biomass growth during cultivation. The results of optimal conditions with response of fungal biomass growth showed production of 0.44, 0.45, and 0.49 g of fungal biomass per gram of initial total COD, with protein contents of 20.2%, 27.1%, and 18.6%, respectively, leading to improved fungal biomass yield. The resulting protein-rich fungal biomass with a focus on the biorefinery platform to complete the value-added cycle, holds promise for applications in various sectors including food, animal feed, biochemical, and biomaterial industries.
Collapse
Affiliation(s)
- Javad Toghiani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran.
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90, Borås, Sweden
| | | | - Neda Afsham
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| |
Collapse
|
2
|
Anokhina TO, Esikova TZ, Polivtseva VN, Suzina NE, Solyanikova IP. Biodegradation of Phenol at High Initial Concentration by Rhodococcus opacus 3D Strain: Biochemical and Genetic Aspects. Microorganisms 2025; 13:205. [PMID: 39858973 PMCID: PMC11767800 DOI: 10.3390/microorganisms13010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant. One of the cheapest and most effective ways to combat phenol pollution is biological purification. However, the inability of bacteria to decompose high concentrations of phenol is a significant limitation. Due to the uncoupling of oxidative phosphorylation, phenol concentrations above 1 g/L are toxic and inhibit cell growth. This article presents data on the biodegradative potential of Rhodococcus opacus strain 3D. This strain is capable of decomposing a wide range of toxicants, including phenol. In the present study, cell growth with phenol, growth after rest, growth of immobilized cells before and after rest, phase contrast, and scanning microscopy of immobilized cells on fiber were studied in detail. The free-living and immobilized cells can decompose phenol concentrations up to 1.5 g/L and 2.5 g/L, respectively. The decomposition of the toxicant was catalyzed by the enzymes catechol 1,2-dioxygenase and cis,cis-muconate cycloisomerase. The role of protocatechuate 3,4-dioxygenase in biodegradative processes is discussed. In this work, it is shown that the immobilized cells can be stored for a long time (up to 2 years) without significant loss of their degradation activity. An assessment of the induction of genes potentially involved in this process was taken. Based on our investigation, we can conclude that this strain can be considered an effective destructor that is capable of degrading phenol at high concentrations, increases its biodegradative potential during immobilization, and retains this ability for a long storage time. Therefore, the strain can be used in biotechnology for the purification of aqueous samples at high concentrations from phenolic contamination.
Collapse
Affiliation(s)
- Tatiana O. Anokhina
- Laboratory of Plasmid Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia; (T.O.A.); (T.Z.E.)
| | - Tatiana Z. Esikova
- Laboratory of Plasmid Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia; (T.O.A.); (T.Z.E.)
| | - Valentina N. Polivtseva
- Laboratory of Cytology of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia; (V.N.P.); (N.E.S.)
| | - Nataliya E. Suzina
- Laboratory of Cytology of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia; (V.N.P.); (N.E.S.)
| | - Inna P. Solyanikova
- Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia
- Regional Microbiological Center, Institute of Pharmacy, Chemistry and Biology, Belgorod National Research University, 308015 Belgorod, Russia
| |
Collapse
|
3
|
Sui X, Guo L, Bao Z, Xian M, Zhao G. Efflux Pumps and Porins Enhance Bacterial Tolerance to Phenolic Compounds by Inhibiting Hydroxyl Radical Generation. Microorganisms 2025; 13:202. [PMID: 39858970 PMCID: PMC11767505 DOI: 10.3390/microorganisms13010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Phenolic compounds are industrially versatile chemicals that have been successfully produced in microbial cell factories. Unfortunately, most phenolic compounds are highly toxic to cells in specific cellular environments or above a particular concentration because they form a complex with iron and promote hydroxyl radical production in Fenton reactions, resulting in the ferroptosis of cells. Here, we demonstrated that overexpression of efflux pumps and porins, including porins LamB and OmpN, and efflux pumps EmrAB, MdtABC, and SrpB, can enhance Escherichia coli phloroglucinol (PG) tolerance by inhibiting the generation of hydroxyl radicals. In addition, LamB and OmpN overexpression improved the bioproduction of PG. Furthermore, efflux pumps and porins can enhance bacterial tolerance to various phenolic compounds, including phenol, catechol, resorcinol, pyrogallol, and 2-naphthol. LamB and MdtABC confer a generalized tolerance to phenols. However, EmrAB, OmpN, and SrpB showed inconsistent effects of bacterial tolerance to different phenolic compounds. Our results will theoretically support the construction of phenolic compound-tolerant bacteria strains, which should be more efficient in the biosynthesis of phenols.
Collapse
Affiliation(s)
- Xinyue Sui
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Likun Guo
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zixian Bao
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
Afridi MN, Zafar Z, Khan IA, Ali I, Bacha AUR, Maitlo HA, Qasim M, Nawaz M, Qi F, Sillanpää M, Lee KH, Asif MB. Advances in MXene-based technologies for the remediation of toxic phenols: A comprehensive review. Adv Colloid Interface Sci 2024; 332:103250. [PMID: 39047647 DOI: 10.1016/j.cis.2024.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The pressing global issue of organic pollutants, particularly phenolic compounds derived primarily from industrial wastes, poses a significant threat to the environment. Although progress has been made in the development of low-cost materials for phenolic compound removal, their effectiveness remains limited. Thus, there is an urgent need for novel technologies to comprehensively address this issue. In this context, MXenes, known for their exceptional physicochemical properties, have emerged as highly promising candidates for the remediation of phenolic pollutants. This review aims to provide a comprehensive and critical evaluation of MXene-based technologies for the removal of phenolic pollutants, focusing on the following key aspects: (1) The classification and categorization of phenolic pollutants, highlighting their adverse environmental impacts, and emphasizing the crucial need for their removal. (2) An in-depth discussion on the synthesis methods and properties of MXene-based composites, emphasizing their suitability for environmental remediation. (3) A detailed analysis of MXene-based adsorption, catalysis, photocatalysis, and hybrid processes, showcasing current advancements in MXene modification and functionalization to enhance removal efficiency. (4) A thorough examination of the removal mechanisms and stability of MXene-based technologies, elucidating their operating conditions and stability in pollutant removal scenarios. (5) Finally, this review concludes by outlining future challenges and opportunities for MXene-based technologies in water treatment, facilitating their potential applications. This comprehensive review provides valuable insights and innovative ideas for the development of versatile MXene-based technologies tailored to combat water pollution effectively.
Collapse
Affiliation(s)
- Muhammad Naveed Afridi
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Zulakha Zafar
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Imtiaz Afzal Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Imran Ali
- Department of Environmental Sciences, Sindh Madressatul Islam University, Aiwan-e-Tijarat Road, Karachi 74000, Pakistan
| | - Aziz-Ur-Rahim Bacha
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Hubdar Ali Maitlo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Qasim
- Department of Civil Engineering, The University of Lahore, 1Km, Defense Road, Lahore, Punjab, Pakistan
| | - Muhammad Nawaz
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein, South Africa; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand, India; Adnan Kassar School of Business, Lebanese American University, Beirut, Lebanon
| | - Kang Hoon Lee
- Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon, Republic of Korea.
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
5
|
Wang Z, Zhang H, Zhang D, Wang Y, Han Y, Xue X, Jiang Y. Biodegradation of phenol-contaminated soil and plant growth promotion by Myroides xuanwuensis H13. Microbiol Spectr 2024; 12:e0026624. [PMID: 38916316 PMCID: PMC11302282 DOI: 10.1128/spectrum.00266-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Physicochemical methods for remediating phenol-contaminated soils are costly and inefficient, making biodegradation an environmentally friendly alternative approach. This study aims to screen for potential phenol-degrading bacteria and to verify the removal capacities of a selected strain in a bioaugmentation experiment at the greenhouse level using Brassica chinensis L. (Chinese cabbage) as the model plant and phenol-contaminated soil. In parallel, pot experiments were conducted using a collaborative approach based on this model system. We found that Myroides xuanwuensis strain H13 showed a high degradation capability, with a 97.67% efficiency in degrading 100 mg/L phenol. Under shaking flask conditions, H13 facilitated the solubilization of tricalcium phosphate and potassium feldspar powder. Pot experiments suggested a phenol removal percentage of 89.22% and enhanced availability of soil phosphorus and potassium for plants with H13 inoculation. In this case, the abundance of soil microbes and the activity of soil enzymes significantly increased as well. Furthermore, both photosynthesis and the antioxidant system in Chinese cabbage were enhanced following H13 inoculation, resulting in its increased yield and quality. Partial least squares path modeling revealed that H13 can primarily affect plant root growth, with a secondary impact on photosynthesis. These findings highlight the potential of biodegradation from phenol-degrading bacteria as a promising strategy for efficient phenol removal from soil while promoting plant growth and health.IMPORTANCEThis study is significant for environmental remediation and agriculture by its exploration of a more environmentally friendly and cost-effective bio-strategy in treating phenol-contaminated soil. These findings have essential implications for environmental remediation efforts and sustainable agriculture. By utilizing the biodegradation capabilities of Myroides xuanwuensis strain H13, it is possible to remove phenol contaminants from the soil efficiently, reducing their negative effects. Furthermore, the enhanced growth and health of the Chinese cabbage plants indicate the potential of this approach to promote sustainable crop production.
Collapse
Affiliation(s)
- Zhonghua Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) of the Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Huihong Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Dengxiao Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Yi Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Yanlai Han
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Almhjell PJ, Johnston KE, Porter NJ, Kennemur JL, Bhethanabotla VC, Ducharme J, Arnold FH. The β-subunit of tryptophan synthase is a latent tyrosine synthase. Nat Chem Biol 2024; 20:1086-1093. [PMID: 38744987 PMCID: PMC11288773 DOI: 10.1038/s41589-024-01619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Aromatic amino acids and their derivatives are diverse primary and secondary metabolites with critical roles in protein synthesis, cell structure and integrity, defense and signaling. All de novo aromatic amino acid production relies on a set of ancient and highly conserved chemistries. Here we introduce a new enzymatic transformation for L-tyrosine synthesis by demonstrating that the β-subunit of tryptophan synthase-which natively couples indole and L-serine to form L-tryptophan-can act as a latent 'tyrosine synthase'. A single substitution of a near-universally conserved catalytic residue unlocks activity toward simple phenol analogs and yields exclusive para carbon-carbon bond formation to furnish L-tyrosines. Structural and mechanistic studies show how a new active-site water molecule orients phenols for a nonnative mechanism of alkylation, with additional directed evolution resulting in a net >30,000-fold rate enhancement. This new biocatalyst can be used to efficiently prepare valuable L-tyrosine analogs at gram scales and provides the missing chemistry for a conceptually different pathway to L-tyrosine.
Collapse
Affiliation(s)
- Patrick J Almhjell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Kadina E Johnston
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Merck & Co., Inc, South San Francisco, CA, USA
| | - Nicholas J Porter
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Codexis, Inc., Redwood City, CA, USA
| | - Jennifer L Kennemur
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Vignesh C Bhethanabotla
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Julie Ducharme
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Quebec Government Office, Los Angeles, CA, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Husain NAC, Jamaluddin H, Jonet MA. Functional and structural characterization of a thermostable flavin reductase from Geobacillus mahadii Geo-05. Int J Biol Macromol 2024; 275:133721. [PMID: 38986972 DOI: 10.1016/j.ijbiomac.2024.133721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/25/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Flavin reductases play a vital role in catalyzing the reduction of flavin through NADH or NADPH oxidation. The gene encoding flavin reductase from the thermophilic bacterium Geobacillus mahadii Geo-05 (GMHpaC) was cloned, overexpressed in Escherichia coli BL21 (DE3) pLysS, and purified to homogeneity. The purified recombinant GMHpaC (Class II) contains chromogenic cofactors, evidenced by maximal absorbance peaks at 370 nm and 460 nm. GMHpaC stands out as the most thermostable and pH-tolerant flavin reductase reported to date, retaining up to 95 % catalytic activity after incubation at 70 °C for 30 min and maintaining over 80 % activity within a pH range of 2-12 for 30 min. Furthermore, GMHpaC's catalytic activity increases by 52 % with FMN as a co-factor compared to FAD and riboflavin. GMHpaC, coupled with 4-hydroxyphenylacetate-3-monooxygenase (GMHpaB) from G. mahadii Geo-05, enhances the hydroxylation of 4-hydroxyphenylacetate (HPA) by 85 %. The modeled structure of GMHpaC reveals relatively conserved flavin and NADH binding sites. Modeling and docking studies shed light on structural features and amino acid substitutions that determine GMHpaC's co-factor specificity. The remarkable thermostability, high catalytic activity, and general stability exhibited by GMHpaC position it as a promising enzyme candidate for various industrial applications.
Collapse
Affiliation(s)
- Nor Asyikin Che Husain
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Structural Biology & Functional Omics, Malaysian Genome and Vaccine Institute, 43000 Kajang, Selangor, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Mohd Anuar Jonet
- Structural Biology & Functional Omics, Malaysian Genome and Vaccine Institute, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
8
|
Sasi R, Vasu ST. Batch-mode degradation of high-strength phenolic pollutants by Pseudomonas aeruginosa strain STV1713 immobilized on single and hybrid matrices. Biodegradation 2024; 35:423-438. [PMID: 38310579 DOI: 10.1007/s10532-023-10067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Controlled environments are pivotal in all bioconversion processes, influencing the efficacy of biocatalysts. In this study, we designed a batch bioreactor system with a packed immobilization column and a decontamination chamber to enhance phenol and 2,4-dichlorophenol degradation using the hyper-tolerant bacterium Pseudomonas aeruginosa STV1713. When free cells were employed to degrade phenol and 2,4-DCP at a concentration of 1000 mg/L, the cells completely removed the pollutants within 28 h and 66 h, respectively. Simultaneous reductions in chemical oxygen demand and biological oxygen demand were observed (phenol: 30.21 mg/L/h and 16.92 mg/L/h, respectively; 2,4-dichlorophenol: 12.85 mg/L/h and 7.21 mg/L/h, respectively). After assessing the degradation capabilities, the bacterium was immobilized on various matrices (sodium alginate, alginate-chitosan-alginate and polyvinyl alcohol-alginate) to enhance pollutant removal. Hybrid immobilized cells exhibited greater tolerance and degradation capabilities than those immobilized in a single matrix. Among them, polyvinyl alcohol-alginate immobilized cells displayed the highest degradation capacities (up to 2000 mg/L for phenol and 2500 mg/L for 2,4-dichlorophenol). Morphological analysis of the immobilized cells revealed enhanced cell preservation in hybrid matrices. Furthermore, the elucidation of the metabolic pathway through the catechol dioxygenase enzyme assay indicated higher activity of the catechol 1,2-dioxygenase enzyme, suggesting that the bacterium employed an ortho-degradation mechanism for pollutant removal. Additionally, enzyme zymography confirmed the presence of catechol 1,2-dioxygenase, with the molecular weight of the enzyme determined as 245 kDa.
Collapse
Affiliation(s)
- Reshmi Sasi
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Suchithra Tharamel Vasu
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India.
| |
Collapse
|
9
|
Zang M, Ma ZH, Xu YL, Long XF. Taxonomic identification, phenol biodegradation and soil remediation of the strain Rhodococcus sacchari sp. nov. Z13 T. Arch Microbiol 2024; 206:313. [PMID: 38900186 DOI: 10.1007/s00203-024-04048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Phenols are highly toxic chemicals that are extensively used in industry and produce large amounts of emissions. Notably, phenols released into the soil are highly persistent, causing long-term harm to human health and the environment. In this study, a gram-positive, aerobic, and rod-shaped bacterial strain, Z13T, with efficient phenol degradation ability, was isolated from the soil of sugarcane fields. Based on the physiological properties and genomic features, strain Z13T is considered as a novel species of the genus Rhodococcus, for which the name Rhodococcus sacchari sp. nov. is proposed. The type strain is Z13T (= CCTCC AB 2022327T = JCM 35797T). This strain can use phenol as its sole carbon source. Z13T was able to completely degrade 1200 mg/L phenol within 20 h; the maximum specific growth rate was μmax = 0.93174 h-1, and the maximum specific degradation rate was qmax = 0.47405 h-1. Based on whole-genome sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, strain Z13T contains a series of phenol degradation genes, including dmpP, CatA, dmpB, pcaG, and pcaH, and can metabolize aromatic compounds. Moreover, the potential of strain Z13T for soil remediation was investigated by introducing Z13T into simulated phenol-contaminated soil, and the soil microbial diversity was analyzed. The results showed that 100% of the phenol in the soil was removed within 7.5 d. Furthermore, microbial diversity analysis revealed an increase in the relative species richness of Oceanobacillus, Chungangia, and Bacillus.
Collapse
Affiliation(s)
- Meng Zang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
| | - Zhen-Hua Ma
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
| | - Yu-Lei Xu
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
| | - Xiu-Feng Long
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China.
- Guangxi Key Laboratory of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China.
| |
Collapse
|
10
|
Sun S, Wang S, Yin Y, Yang Y, Wang Y, Zhang J, Wang W. Competitive mechanism of salt-tolerance/degradation-performance of organic pollutant in bacteria: Na +/H + antiporters contribute to salt-stress resistance but impact phenol degradation. WATER RESEARCH 2024; 255:121448. [PMID: 38503180 DOI: 10.1016/j.watres.2024.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Phenolic-laden wastewater is typically characterized by its high toxicity and high salinity, imposing serious limits on the application of bioremediation. Although a few halotolerant microorganisms have been reported to degrade phenol, their removal efficiency on high concentrations of phenol remains unsatisfactory. What's more, the deep interaction molecular mechanism of salt-tolerance/phenol-degradation performance has not been clearly revealed. Here, a halotolerant strain Aeribacillus pallidus W-12 employed a meta-pathway to efficiently degrade high concentration of phenol even under high salinity conditions. Investigation of salt-tolerance strategy indicated that four Na+/H+ antiporters, which are widely distributed in bacteria, synergistically endowed the strain with excellent salt adaptability. All these antiporters differentially but positively responded to salinity changes and induction of phenol, forming a synergistic transport effect on salt ions and phenol. In-depth analysis revealed a competitive relationship between salt tolerance and degradation performance, which significantly impaired the degradation efficiency at relatively high salinity. The efficient degradation performance of W-12 under different phenol concentrations and salinity conditions indicated its bioremediation potential for multiple types of phenolic wastewater. Collectively, the competitive mechanism of salt tolerance and degradation performance enlightens a new strategy of introducing or re-constructing Na+/H+ antiporters to further improve bioremediation efficiency of hypersaline organic wastewater.
Collapse
Affiliation(s)
- Shenmei Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Shuo Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Yalin Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Yue Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, PR China
| | - Jingjing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|
11
|
Li H, Meng F, Leng Y, Li A. Emergency response to ecological protection in maritime phenol spills: Emergency monitor, ecological risk assessment, and reduction. MARINE POLLUTION BULLETIN 2024; 200:116073. [PMID: 38325202 DOI: 10.1016/j.marpolbul.2024.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Recently, hundreds of maritime accidental spills of hazardous chemicals have raised public concerns, especially for phenol due to its potential of spills and highly toxicity. Therefore, for marine ecological protection, this article prepared specific strategies of emergency response to phenol spills. Through the identification for phenol behavior at sea, migration prediction, emergency monitor, as well as their new methods were reviewed. Further, ecological risk assessment and seawater quality criteria were conducted by using a species sensitivity distribution (SSD) approach, wherein, risk quotient (RQ) indicated phenol of simulated marine spills posed a high risk (RQ > 1) in 30 days. The method with eco-friendliness and high-efficiency for phenol reduction was constructed by combination of dredging equipment such as pneumatic dredgers (Airlift) and bioremediation, where marine microorganisms that degraded phenol were summarized, as well as future research needs. This study provided a guidance for emergency response and policy development of phenol spills.
Collapse
Affiliation(s)
- Haiping Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yu Leng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
12
|
Sui X, Wang J, Zhao Z, Liu B, Liu M, Liu M, Shi C, Feng X, Fu Y, Shi D, Li S, Qi Q, Xian M, Zhao G. Phenolic compounds induce ferroptosis-like death by promoting hydroxyl radical generation in the Fenton reaction. Commun Biol 2024; 7:199. [PMID: 38368473 PMCID: PMC10874397 DOI: 10.1038/s42003-024-05903-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
Phenolic compounds are industrially versatile chemicals, also the most ubiquitous pollutants. Recently, biosynthesis and biodegradation of phenols has attracted increasing attention, while phenols' toxicity is a major issue. Here, we evolved phloroglucinol-tolerant Escherichia coli strains via adaptive evolution, and three mutations (ΔsodB, ΔclpX and fetAB overexpression) prove of great assistance in the tolerance improvement. We discover that phloroglucinol complexes with iron and promotes the generation of hydroxyl radicals in Fenton reaction, which leads to reducing power depletion, lipid peroxidation, and ferroptosis-like cell death of E. coli. Besides phloroglucinol, various phenols can trigger ferroptosis-like death in diverse organisms, from bacteria to mammalian cells. Furthermore, repressing this ferroptosis-like death improves phloroglucinol production and phenol degradation by corresponding strains respectively, showing great application potential in microbial degradation or production of desired phenolic compounds, and phloroglucinol-induced ferroptosis suppresses tumor growth in mice, indicating phloroglucinol as a promising drug for cancer treatment.
Collapse
Affiliation(s)
- Xinyue Sui
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jichao Wang
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqiang Zhao
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Miaomiao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Min Liu
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Cong Shi
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xinjun Feng
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yingxin Fu
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology and Institute of Microbial Technology, Shandong University, Qingdao, China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
13
|
Kumokita R, Bamba T, Yasueda H, Tsukida A, Nakagawa K, Kitagawa T, Yoshioka T, Matsuyama H, Yamamoto Y, Maruyama S, Hayashi T, Kondo A, Hasunuma T. High-level phenol bioproduction by engineered Pichia pastoris in glycerol fed-batch fermentation using an efficient pertraction system. BIORESOURCE TECHNOLOGY 2024; 393:130144. [PMID: 38042432 DOI: 10.1016/j.biortech.2023.130144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
This study aimed to establish a high-level phenol bioproduction system from glycerol through metabolic engineering of the yeast Pichia pastoris (Komagataella phaffii). Introducing tyrosine phenol-lyase to P. pastoris led to a production of 59 mg/L of phenol in flask culture. By employing a strain of P. pastoris that overproduces tyrosine-a precursor to phenol-we achieved a phenol production of 1052 mg/L in glycerol fed-batch fermentation. However, phenol concentrations exceeding 1000 mg/L inhibited P. pastoris growth. A phenol pertraction system utilizing a hollow fiber membrane contactor and tributyrin as the organic solvent was developed to reduce phenol concentration in the culture medium. Integrating this system with glycerol fed-batch fermentation resulted in a 214 % increase in phenol titer (3304 mg/L) compared to glycerol fed-batch fermentation alone. These approaches offer a significant framework for the microbial production of chemicals and materials that are highly toxic to microorganisms.
Collapse
Affiliation(s)
- Ryota Kumokita
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hisashi Yasueda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, 305-8550, Japan
| | - Ayato Tsukida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Keizo Nakagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Tooru Kitagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yasuhito Yamamoto
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Satoshi Maruyama
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Takahiro Hayashi
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
14
|
Hadi M, Bashardoust P, Solaimany Aminabad M, Nazmara S, Rezvani Ghalhari M, Mesdaghinia A, Hemmati Borji S. Exposure assessment of nitrate and phenol derivatives in Tehran's water distribution system. JOURNAL OF WATER AND HEALTH 2024; 22:147-168. [PMID: 38295078 PMCID: wh_2023_133 DOI: 10.2166/wh.2023.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The presence of organic and inorganic contaminants in drinking water is a global concern. Nitrate and phenol derivatives are examples of pollutants that could be of anthropogenic origin. They are associated with numerous health risks, underscoring the importance of monitoring their presence in drinking water. This study aimed to measure nitrate and phenol derivatives, including 2,4-Dichlorophenol (2,4-DCP), Pentachlorophenol (PCP), 2,4,5-Trichlorophenol (2,4,5-TCP), 2-Chlorophenol (2-CP), 4-Chlorophenol (4-CP), and phenol, in Tehran's water distribution system (WDS). The pollutants in Tehran's WDS were significantly and positively correlated with precipitation. The Hazard Quotient (HQ) and the Excess Lifetime Cancer Risk (ELCR) of the detected pollutants were estimated. The results showed that the regional mean of nitrate and PCP in Tehran's WDS were 35.58±8.71mg L-1 and 76.14±16.93 ng L-1 lower than the guideline values of 50 mg L-1 and 1000 ng L-1, respectively. Some districts exhibited nitrate concentration exceeding the allowable limit by a factor of 1.2 to 2.3. Consequently, the nitrate intake in some districts constituted approximately 50% of the reference dose. While PCP as a phenol derivative with more health concerns was identified in Tehran's WDS, the likelihood of its health effects was determined to be negligible.
Collapse
Affiliation(s)
- Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran E-mail: ;
| | - Parnia Bashardoust
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Solaimany Aminabad
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Nazmara
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Hemmati Borji
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Sasi R, Tharamel Vasu S. Revealing the degradation mechanisms of the hyper-tolerant bacterium Pseudomonas aeruginosa STV1713 under high phenol and 2,4-DCP-induced stress conditions through RNA-seq analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5625-5640. [PMID: 38123774 DOI: 10.1007/s11356-023-31500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
The ability of bacteria to efficiently remove phenolic pollutants depends on their genetic makeup and environmental conditions. This study examined a novel strain, Pseudomonas aeruginosa STV1713, for degrading higher concentrations of phenol and 2,4-dichlorophenol. After optimization, a combination of degradation parameters, such as pH (7.0), temperature (32.5 °C), and ammonium nitrate concentration (0.7 g/L), was found to reduce degradation time while promoting cell growth. Under these optimal conditions, the bacterium effectively degraded up to 2000 mg/L of phenol and 1400 mg/L of 2,4-dichlorophenol, while maximum tolerance was observed till 2100 mg/L and 1500 mg/L, respectively. Metabolic profiling identified crucial metabolites in the ortho-degradation pathway during pollutant removal. Additionally, transcriptome analysis revealed that P. aeruginosa STV1713 utilizes different branches of the beta ketoadipate pathway for phenol and 2,4-DCP removal. Moreover, under high pollutant stress, the bacterium survived through differential gene expression in ribosome biogenesis, chemotaxis, membrane transport, and other pathways.
Collapse
Affiliation(s)
- Reshmi Sasi
- School of Biotechnology, National Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| | - Suchithra Tharamel Vasu
- School of Biotechnology, National Institute of Technology Calicut, Kozhikode, Kerala, India, 673601.
| |
Collapse
|
16
|
Dai S, Harnisch F, Morejón MC, Keller NS, Korth B, Vogt C. Microbial electricity-driven anaerobic phenol degradation in bioelectrochemical systems. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100307. [PMID: 37593528 PMCID: PMC10432169 DOI: 10.1016/j.ese.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 08/19/2023]
Abstract
Microbial electrochemical technologies have been extensively employed for phenol removal. Yet, previous research has yielded inconsistent results, leaving uncertainties regarding the feasibility of phenol degradation under strictly anaerobic conditions using anodes as sole terminal electron acceptors. In this study, we employed high-performance liquid chromatography and gas chromatography-mass spectrometry to investigate the anaerobic phenol degradation pathway. Our findings provide robust evidence for the purely anaerobic degradation of phenol, as we identified benzoic acid, 4-hydroxybenzoic acid, glutaric acid, and other metabolites of this pathway. Notably, no typical intermediates of the aerobic phenol degradation pathway were detected. One-chamber reactors (+0.4 V vs. SHE) exhibited a phenol removal rate of 3.5 ± 0.2 mg L-1 d-1, while two-chamber reactors showed 3.6 ± 0.1 and 2.6 ± 0.9 mg L-1 d-1 at anode potentials of +0.4 and + 0.2 V, respectively. Our results also suggest that the reactor configuration certainly influenced the microbial community, presumably leading to different ratios of phenol consumers and microorganisms feeding on degradation products.
Collapse
Affiliation(s)
- Shixiang Dai
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Micjel Chávez Morejón
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Nina Sophie Keller
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Benjamin Korth
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| |
Collapse
|
17
|
Salter C, Westrick JA, Chaganti SR, Birbeck JA, Peraino NJ, Weisener CG. Elucidating microbial mechanisms of microcystin-LR degradation in Lake Erie beach sand through metabolomics and metatranscriptomics. WATER RESEARCH 2023; 247:120816. [PMID: 37952399 DOI: 10.1016/j.watres.2023.120816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
As one of five Laurentian Great Lakes, Lake Erie ranks among the top freshwater drinking sources and ecosystems globally. Historical and current agriculture mismanagement and climate change sustains the environmental landscape for late summer cyanobacterial harmful algal blooms, and consequently, cyanotoxins such as microcystin (MC). Microcystin microbial degradation is a promising mitigation strategy, however the mechanisms controlling the breakdown of MCs in Lake Erie are not well understood. Pelee Island, Ontario, Canada is located in the western basin of Lake Erie and the bacterial community in the sand has demonstrated the capacity of metabolizing the toxin. Through a multi-omic approach, the metabolic, functional and taxonomical signatures of the Pelee Island microbial community during MC-LR degradation was investigated over a 48-hour period to comprehensively study the degradation mechanism. Cleavage of bonds surrounding nitrogen atoms and the upregulation of nitrogen deamination (dadA, alanine dehydrogenase, leucine dehydrogenase) and assimilation genes (glnA, gltB) suggests a targeted isolation of nitrogen by the microbial community for energy production. Methylotrophic pathways RuMP and H4MPT control assimilation and dissimilation of carbon, respectively and differential abundance of Methylophilales indicates an interconnected role through electron exchange of denitrification and methylotrophic pathways. The detected metabolites did not resolve a clear breakdown pathway, but rather the diversity of products in combination with taxonomic and functional results supports that a variety of strategies are applied, such as epoxidation, hydroxylation, and aromatic degradation. Annual repeated exposure to the toxin may have allowed the community to adaptatively establish a novel pathway through functional plasticity and horizontal gene transfer. The culmination of these results reveals the complexity of the Pelee Island sand community and supports a dynamic and cooperative metabolism between microbial species to achieve MC degradation.
Collapse
Affiliation(s)
- Chelsea Salter
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
| | - Judy A Westrick
- Lumigen Instrument Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, United States
| | - Johnna A Birbeck
- Lumigen Instrument Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Nicholas J Peraino
- Lumigen Instrument Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Christopher G Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
18
|
Garraud J, Plihon H, Capiaux H, Le Guern C, Mench M, Lebeau T. Drivers to improve metal(loid) phytoextraction with a focus on microbial degradation of dissolved organic matter in soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:63-81. [PMID: 37303191 DOI: 10.1080/15226514.2023.2221740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioaugmentation of soils can increase the mobilization of metal(loid)s from the soil-bearing phases. However, once desorbed, these metal(loid)s are mostly complexed to the dissolved organic matter (DOM) in the soil solution, which can restrict their availability to plants (roots mainly taking up the free forms) and then the phytoextraction performances. Firstly the main drivers influencing phytoextraction are reminded, then the review focuses on the DOM role. After having reminding the origin, the chemical structure and the lability of DOM, the pool of stable DOM (the most abundant in the soil) most involved in the complexation of metal(loid)s is addressed in particular by focusing on carboxylic and/or phenolic groups and factors controlling metal(loid) complexation with DOM. Finally, this review addresses the ability of microorganisms to degrade metal(loid)-DOM complexes as an additional lever for increasing the pool of free metal(loid) ions, and then phytoextraction performances, and details the origin of microorganisms and how they are selected. The development of innovative processes including the use of these DOM-degrading microorganisms is proposed in perspectives.
Collapse
Affiliation(s)
- Justine Garraud
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - Hélène Plihon
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - Hervé Capiaux
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | | | | | - Thierry Lebeau
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| |
Collapse
|
19
|
Harzallah B, Grama SB, Bousseboua H, Jouanneau Y, Yang J, Li J. Isolation and characterization of Indigenous Bacilli strains from an oil refinery wastewater with potential applications for phenol/cresol bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117322. [PMID: 36724594 DOI: 10.1016/j.jenvman.2023.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Phenolic compounds are frequently occurring in wastewaters from various industrial processes at high concentrations, imposing prominent risk to aquatic biosphere and human health. Bioremediation has been proven to be an effective approach to remove these compounds, and hunting for functional organisms is still of primary importance to develop efficient processes. In this study, we report several newly isolated bacillus strains with superior performances in metabolizing phenols, one of which showed paramount efficiencies to metabolize phenol at concentrations up to 1200 mg L-1 and could simultaneously degrade a wide range of other phenolic compounds. The genes encoding for phenol hydroxylase (PH) and catechol-2,3-dioxygenase (C23O) have been detected and characterized, evidencing that phenol degradation occurs via the meta pathway. The GC level of the PH gene was found to be much higher than that of genes from other Bacilli but was quite close to that of the genes from Rhodococcus, and the induction of both enzymes by phenols was confirmed by RT-PCR experiments. We intend to believe this novel strain might be promising to serve as preferred organisms for developing more robust and efficient bioremediation processes of degrading phenolic compounds due to its validated performance.
Collapse
Affiliation(s)
- Besma Harzallah
- CEA, DRF, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38054, France; CNRS, UMR 5249, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38054, France; Université Grenoble Alpes, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38000, France; Université des Frères Mentouri, Laboratoire de Génie Microbiologique et Applications, Constantine 25117, Algeria
| | - Samir B Grama
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, University of Oum El Bouaghi, Oum El Bouaghi 04000, Algeria.
| | - Hacène Bousseboua
- Ecole Nationale Supérieure de Biotechnologies, Constantine 25000, Algeria
| | - Yves Jouanneau
- CEA, DRF, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38054, France; CNRS, UMR 5249, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38054, France; Université Grenoble Alpes, Laboratoire de Chimie et Biologie des Métaux, Grenoble F-38000, France
| | - Jixiang Yang
- Chongqing Institute of Green and Intelligence Technology, Chinese Academy of Science, Chongqing 400714, China
| | - Jian Li
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China.
| |
Collapse
|
20
|
Sun S, Wan X, Bian Y, Wang S, Zhang J, Wang W. Biologically evolved dual-pathway catalytic pattern indicating an efficient bioremediation strategy for phenol removal. CHEMICAL ENGINEERING JOURNAL 2023; 454:140195. [DOI: 10.1016/j.cej.2022.140195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
|
21
|
Elarabi NI, Halema AA, Abdelhadi AA, Henawy AR, Samir O, Abdelhaleem HAR. Draft genome of Raoultella planticola, a high lead resistance bacterium from industrial wastewater. AMB Express 2023; 13:14. [PMID: 36715862 PMCID: PMC9885416 DOI: 10.1186/s13568-023-01519-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Isolation of heavy metals-resistant bacteria from their original habitat is a crucial step in bioremediation. Six lead (Pb) resistant bacterial strains were isolated and identified utilizing 16S rRNA to be Enterobacter ludwigii FACU 4, Shigella flexneri FACU, Microbacterium paraoxydans FACU, Klebsiella pneumoniae subsp. pneumonia FACU, Raoultella planticola FACU 3 and Staphylococcus xylosus FACU. It was determined that all these strains had their Minimum inhibitory concentration (MIC) to be 2500 ppm except R. planticola FACU 3 has a higher maximum tolerance concentration (MTC) up to 2700 ppm. We evaluated the survival of all six strains on lead stress, the efficiency of biosorption and lead uptake. It was found that R. planticola FACU 3 is the highest MTC and S. xylosus FACU was the lowest MTC in this evaluation. Therefore, transmission electron microscopy (TEM) confirmed the difference between the morphological responses of these two strains to lead stress. These findings led to explore more about the genome of R. planticola FACU 3 using illumine Miseq technology. Draft genome sequence analysis revealed the genome size of 5,648,460 bp and G + C content 55.8% and identified 5526 CDS, 75 tRNA and 4 rRNA. Sequencing technology facilitated the identification of about 47 genes related to resistance to many heavy metals including lead, arsenic, zinc, mercury, nickel, silver and chromium of R. planticola FACU 3 strain. Moreover, genome sequencing identified plant growth-promoting genes (PGPGs) including indole acetic acid (IAA) production, phosphate solubilization, phenazine production, trehalose metabolism and 4-hydroxybenzoate production genes and a lot of antibiotic-resistant genes.
Collapse
Affiliation(s)
- Nagwa I. Elarabi
- grid.7776.10000 0004 0639 9286Genetics Department; Faculty of Agriculture, Cairo University, Giza, 12613 Egypt
| | - Asmaa A. Halema
- grid.7776.10000 0004 0639 9286Genetics Department; Faculty of Agriculture, Cairo University, Giza, 12613 Egypt ,grid.423564.20000 0001 2165 2866National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| | - Abdelhadi A. Abdelhadi
- grid.7776.10000 0004 0639 9286Genetics Department; Faculty of Agriculture, Cairo University, Giza, 12613 Egypt ,grid.423564.20000 0001 2165 2866National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| | - Ahmed R. Henawy
- grid.7776.10000 0004 0639 9286Department of Microbiology; Faculty of Agriculture, Cairo University, Giza, 12613 Egypt
| | - Omar Samir
- grid.428154.e0000 0004 0474 308XGenomic Research Program, Children’s Cancer Hospital, Cairo, Egypt
| | - Heba A. R. Abdelhaleem
- grid.440875.a0000 0004 1765 2064Biotechnology College, Misr University for Science and Technology (MUST), 6(th) October City, Egypt
| |
Collapse
|
22
|
Muñoz-Palazon B, Gorrasi S, Rosa-Masegosa A, Pasqualetti M, Braconcini M, Fenice M. Treatment of High-Polyphenol-Content Waters Using Biotechnological Approaches: The Latest Update. Molecules 2022; 28:314. [PMID: 36615508 PMCID: PMC9822302 DOI: 10.3390/molecules28010314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Polyphenols and their intermediate metabolites are natural compounds that are spread worldwide. Polyphenols are antioxidant agents beneficial for human health, but exposure to some of these compounds can be harmful to humans and the environment. A number of industries produce and discharge polyphenols in water effluents. These emissions pose serious environmental issues, causing the pollution of surface or groundwater (which are used to provide drinking water) or harming wildlife in the receiving ecosystems. The treatment of high-polyphenol-content waters is mandatory for many industries. Nowadays, biotechnological approaches are gaining relevance for their low footprint, high efficiency, low cost, and versatility in pollutant removal. Biotreatments exploit the diversity of microbial metabolisms in relation to the different characteristics of the polluted water, modifying the design and the operational conditions of the technologies. Microbial metabolic features have been used for full or partial polyphenol degradation since several decades ago. Nowadays, the comprehensive use of biotreatments combined with physical-chemical treatments has enhanced the removal rates to provide safe and high-quality effluents. In this review, the evolution of the biotechnological processes for treating high-polyphenol-content water is described. A particular emphasis is given to providing a general concept, indicating which bioprocess might be adopted considering the water composition and the economic/environmental requirements. The use of effective technologies for environmental phenol removal could help in reducing/avoiding the detrimental effects of these chemicals. In addition, some of them could be employed for the recovery of beneficial ones.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain
| | - Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Aurora Rosa-Masegosa
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain
| | - Marcella Pasqualetti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Laboratory of Ecology of Marine Fungi, CoNISMa, Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Martina Braconcini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Laboratory of Applied Marine Microbiology, CoNISMa, Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
23
|
Singh S, Bharadwaj T, Verma D, Dutta K. Valorization of phenol contaminated wastewater for lipid production by Rhodosporidium toruloides 9564 T. CHEMOSPHERE 2022; 308:136269. [PMID: 36057352 DOI: 10.1016/j.chemosphere.2022.136269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/28/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Phenol is one of the most common hazardous organic compound presents in several industrial effluents which directly affects the aquatic environment. The present study envisaged the phenol biodegradation and simultaneous lipid production along with its underlying mechanism by oleaginous yeast Rhodosporidium toruloides 9564T. Experiments were designed using simulated wastewater by varying phenol concentration in the range of 0.25-1.5 g/L and inoculum size of 1, 5, and 10% with and without glucose. The oleaginous yeast was found to completely degrade up to 0.75 g/L phenol with lipid accumulation of 26.3%. Phenol at > 0.5 g/L severely inhibited the growth of R. toruloides 9564T at 1% and 5% inoculum size. Phenol toxicity up to 0.75 g/L can be overcome by increasing inoculum size to 10%. The maximum specific growth rate (μmax) and phenol degradation rate (qmax) were found to be 0.0717 h-1 and 0.01523 h-1, respectively. The enzymatic pathway study suggested that R. toruloides 9564T follows an ortho cleavage pathway for phenol degradation and lipid accumulation. Phytotoxicty and cytotoxicity tests for treated and untreated samples clearly demonstrated a decline in toxicity of the treated wastewater. R. toruloides brought about an important paradigm shift toward a circular economy in which industrial wastewater is considered a valuable resource for bioenergy production.
Collapse
Affiliation(s)
- Sangeeta Singh
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Tanmay Bharadwaj
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
24
|
Ha CA, Nguyen DT, Nguyen T. Green Fabrication of Heterostructured CoTiO 3/TiO 2 Nanocatalysts for Efficient Photocatalytic Degradation of Cinnamic Acid. ACS OMEGA 2022; 7:40163-40175. [PMID: 36385849 PMCID: PMC9648161 DOI: 10.1021/acsomega.2c04999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this work, CoTiO3/TiO2 (CTO/Ti) heterostructures were prepared by a hydrothermal procedure in a neutral medium using perovskite CoTiO3 and tetraisopropyl titanate. Characteristics of the synthesized catalysts were analyzed by various techniques including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy, Brunauer-Emmett-Teller adsorption-desorption, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and point of zero charges. The activity in the photodegradation of cinnamic acid (CA) under UV-A irradiation of the CTO/Ti heterostructure was investigated and compared with individual materials TiO2 (Ti-w) and CoTiO3 (CTO). The investigation showed that the heterostructured CoTiO3/TiO2 catalyst with optimal composition (5% CTO) exhibited much higher photocatalytic activity for degradation of cinnamic acid than individual CoTiO3 and TiO2. Under the optimal conditions (C cat = 0.75 g/L, Q air = 0.3 L/min, and pH = 3.8) the 90 min conversion of cinnamic acid reached 80.9% on 5CTO/Ti, much higher than those of CTO (4.6%) and Ti-w (75.2%). It was found that the enhancement in activity for the CA removal of the CTO/Ti heterostructure was due to the construction of a heterojunction structure between TiO2(Ti-w) and CoTiO3 that resulted in an increase in the specific surface area and porosity, reduction of the band gap energy, and higher efficient separation of charge carriers on the surface to prevent recombination. Alternatively, a comparison of the recyclability of 5CTO/Ti and Ti-w was made for CA degradation. The results showed a decrease in the CA conversion by 38% on 5CTO/Ti and 48% on Ti-w after six reaction cycles.
Collapse
Affiliation(s)
- Cam Anh Ha
- Ho
Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City700000, Vietnam
| | - Dien Trung Nguyen
- Institute
of Chemical Technology − Vietnam Academy of Science and Technology, 01A TL29 Street, Thanh Loc Ward,
District 12, Ho Chi Minh City701000, Vietnam
- School
of Education, Can Tho University, Can Tho City900000, Vietnam
| | - Tri Nguyen
- Institute
of Chemical Technology − Vietnam Academy of Science and Technology, 01A TL29 Street, Thanh Loc Ward,
District 12, Ho Chi Minh City701000, Vietnam
- Ho
Chi Minh City Open University, 97 Vo Van Tan Str., District 3, Ho Chi Minh
City700000, Vietnam
| |
Collapse
|
25
|
Medić AB, Karadžić IM. Pseudomonas in environmental bioremediation of hydrocarbons and phenolic compounds- key catabolic degradation enzymes and new analytical platforms for comprehensive investigation. World J Microbiol Biotechnol 2022; 38:165. [PMID: 35861883 DOI: 10.1007/s11274-022-03349-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Pollution of the environment with petroleum hydrocarbons and phenolic compounds is one of the biggest problems in the age of industrialization and high technology. Species of the genus Pseudomonas, present in almost all hydrocarbon-contaminated areas, play a particular role in biodegradation of these xenobiotics, as the genus has the potential to decompose various hydrocarbons and phenolic compounds, using them as its only source of carbon. Plasticity of carbon metabolism is one of the adaptive strategies used by Pseudomonas to survive exposure to toxic organic compounds, so a good knowledge of its mechanisms of degradation enables the development of new strategies for the treatment of pollutants in the environment. The capacity of microorganisms to metabolize aromatic compounds has contributed to the evolutionally conserved oxygenases. Regardless of the differences in structure and complexity between mono- and polycyclic aromatic hydrocarbons, all these compounds are thermodynamically stable and chemically inert, so for their decomposition, ring activation by oxygenases is crucial. Genus Pseudomonas uses several upper and lower metabolic pathways to transform and degrade hydrocarbons, phenolic compounds, and petroleum hydrocarbons. Data obtained from newly developed omics analytical platforms have enormous potential not only to facilitate our understanding of processes at the molecular level but also enable us to instigate and monitor complex biodegradations by Pseudomonas. Biotechnological application of aromatic metabolic pathways in Pseudomonas to bioremediation of environments polluted with crude oil, biovalorization of lignin for production of bioplastics, biofuel, and bio-based chemicals, as well as Pseudomonas-assisted phytoremediation are also considered.
Collapse
Affiliation(s)
- Ana B Medić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia.
| | - Ivanka M Karadžić
- University of Belgrade, Faculty of Medicine, Department of Chemistry, Belgrade, Serbia
| |
Collapse
|
26
|
Vaitiekūnaitė D, Bružaitė I, Snitka V. Endophytes from blueberry (Vaccinium sp.) fruit: Characterization of yeast and bacteria via label-free surface-enhanced Raman spectroscopy (SERS). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121158. [PMID: 35334429 DOI: 10.1016/j.saa.2022.121158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Blueberries (Vaccinium sp.) are consumed all around the globe, however, their endophytic community has not been thoroughly researched, specifically their fruit endophytes. We aimed to isolate and analyze easily cultivable blueberry fruit endophytes to help in future research, concerning probiotic microorganisms. Twelve strains were isolated in this pilot study, genetically homologous with Staphylococcus hominis, Staphylococcus cohnii, Salmonella enterica, Leuconostoc mesenteroides, and [Candida] santamariae. To determine the molecular composition of these isolates we used label-free surface-enhanced Raman spectroscopy (SERS). To our knowledge, this is the first time that SERS spectra for L. mesenteroides and C. santamariae are presented, as well as the first report of Candida yeast, isolated specifically from blueberry fruits. Our findings suggest that the differences in tested yeast and bacteria SERS spectra and subsequent differentiation are facilitated by minor shifts in spectral peak positions as well as their intensities. Moreover, we used principal component and discriminant function analyses to differentiate chemotypes within our isolate group, proving the sensitivity of the technique and its usefulness to recognize different strains in plant-associated microbe samples, which will aid to streamline future studies in biofertilizers and biocontrol agents.
Collapse
Affiliation(s)
- Dorotėja Vaitiekūnaitė
- Lithuanian Research Centre for Agriculture and Forestry, Laboratory of Forest Plant Biotechnology, Institute of Forestry, Liepu st. 1, LT-53101 Girionys, Lithuania.
| | - Ingrida Bružaitė
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Sauletekio av. 11, LT-10223 Vilnius, Lithuania.
| | - Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu str. 65, LT-51369 Kaunas, Lithuania.
| |
Collapse
|
27
|
Wu P, Zhang Z, Luo Y, Bai Y, Fan J. Bioremediation of phenolic pollutants by algae - current status and challenges. BIORESOURCE TECHNOLOGY 2022; 350:126930. [PMID: 35247559 DOI: 10.1016/j.biortech.2022.126930] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Industrial production processes, especially petroleum processing, will produce high concentration phenolic wastewater. Traditional wastewater treatment technology is costly and may lead to secondary pollution. In order to avoid the adverse effects of incompletely treated phenolics, more advanced methods are required. Algae bioremediate phenolics through green pathways such as adsorption, bioaccumulation, biodegradation, and photodegradation. At the same time, the natural carbon fixation capacity of algae and its potential to produce high-value products make algal wastewater treatment technology economically feasible. This paper reviews the environmental impact of several types of phenolic pollutants in wastewater and different strategies to improve bioremediation efficiency. This paper focuses on the progress of algae removing phenols by different mechanisms and the potential of algae biomass for further biofuel production. This technology holds great promise, but more research on practical wastewater treatment at an industrial scale is needed in the future.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhaofei Zhang
- Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yeling Luo
- Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
28
|
Zhao C, Xue L, Shi H, Chen W, Zhong Y, Zhang Y, Zhou Y, Huang K. Simultaneous degradation of p-nitrophenol and reduction of Cr(VI) in one step using microwave atmospheric pressure plasma. WATER RESEARCH 2022; 212:118124. [PMID: 35121417 DOI: 10.1016/j.watres.2022.118124] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Different physicochemical properties between Cr(VI) and phenolic compounds pose serious challenges for the effective treatment of co-contamination. This study developed an electrodeless high-flow microwave atmospheric plasma jet for the single-step simultaneous degradation of p-nitrophenol (PNP) and reduction of Cr(VI). Following a 15 min treatment with microwave atmospheric pressure plasma, the removal efficiency of Cr(VI) and PNP reached 97.5% and 93.6%, respectively, whereas that of total organic carbon reached 30.2%. Adding PNP to the solution significantly improved Cr(VI) reduction, whereas PNP degradation increased slightly with Cr(VI). The results indicate that the PNP intermediates significantly affected Cr(VI) reduction. Additionally, long-lived H2O2 and short-lived ·H aided the reduction of Cr(VI) during plasma treatment. The addition of hydroxyl scavengers during treatment implied that ·OH was largely responsible for PNP oxidation. High-performance liquid chromatography-mass spectroscopy (HPLC-MS) revealed that PNP intermediates, including p-nitrocatechol and 5-nitrobenzene-1,2,3-triol, function as Cr(VI) reductants. On the basis of the examined intermediate products, the potential PNP degradation pathway was investigated. The factors that could influence simultaneous dehgradation and reduction, including solution pH, gas velocity, and distance between the plasma outlet and the water surface were researched. Low pH supports Cr(VI) reduction, and the promotion of PNP for Cr(VI) reduction applies to all pH values. The degradation of PNP is insensitive to pH values with or without Cr(VI). The optimal gas velocity for PNP degradation and Cr(VI) reduction was revealed to be 6 L/min. The simultaneous removal of PNP and Cr(VI) benefits from a shorter distance between the plasma outlet and the water's surface.
Collapse
Affiliation(s)
- Chaoxia Zhao
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xue
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Hongxiao Shi
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Wenqi Chen
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Yu Zhong
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Yi Zhang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China.
| | - Yanping Zhou
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Kama Huang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
29
|
Application of Nanodiamonds in Modelled Bioremediation of Phenol Pollution in River Sediments. Processes (Basel) 2022. [DOI: 10.3390/pr10030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pollution of aquatic ecosystems is a big problem that has its impact on river sediments. In recent decades, an effective solution to this problem has been the application of bioremediation technologies. Nanoremediation is an innovative part of these technologies. We still know little about the efficiency of nanoparticles, especially nanodiamonds, in modelled conditions. The aim of the present study is to investigate the effect of nanodiamonds on the key parameters of modelled bioremediation of river sediments that are polluted with phenol, as well their effect on the structures and functions of microbial communities. An important indicative mechanism that was used is the application of fluorescent in situ hybridization for sediment microbial communities. The results of this study revealed the positive role of nanodiamonds that is associated with their intoxication with high concentrations of phenol. Readaptation was also found, in which the xenobiotic biodegradation potential evolved by increasing the relative proportions of non-culturable bacteria, namely Acinetobacter (at the 144th hour) and Pseudomonas (at the 214th hour). The results can help to find an effective solution to the question of how information from such precise molecular methods and the application of nanodiamonds can be translated into the accessible language of management and bioremediation technologies.
Collapse
|
30
|
Zhang Y, Zheng Y, Zhang Q, Sun J, Wang S, An L, Liu L. Catalytic Membrane Cathode Integrated in a Proton Exchange Membrane-free Microbial Fuel Cell for Coking Wastewater Treatment. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
The Partial Contribution of Constructed Wetland Components (Roots, Gravel, Microorganisms) in the Removal of Phenols: A Mini Review. WATER 2022. [DOI: 10.3390/w14040626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Constructed wetlands (CW) have attracted growing interest in wastewater treatment research in the last 20 years, and have been investigated intensively worldwide. Many of the basic processes occurring in CWs have been qualitatively established; however, much quantitative knowledge is still lacking. In this mini review, the proportionate contributions of the different system components to removal of contaminants are examined. The main objective of this mini review is to provide a more in-depth assessment of the interactions between the porous bed, plants, and microorganisms during the removal of organic contaminants from the water in a subsurface flow CW system. In addition, a unique technique to study the partial contribution to the total removal of contaminants in a CW is described. Future studies in this field will expand our knowledge of any synergistic or antagonistic interactions between the components and facilitate improved CW construction and operation. Here, phenol will be used as a model industrial organic contaminant to illustrate our current understanding of the contributions of the different components to total removal. I will also discuss the various factors influencing the efficacy of bacteria, whether planktonic or as biofilm (on porous bed or plant roots), in subsurface flow CWs.
Collapse
|
32
|
Shiekh KA, Liangpanth M, Luesuwan S, Kraisitthisirintr R, Ngiwngam K, Rawdkuen S, Rachtanapun P, Karbowiak T, Tongdeesoontorn W. Preparation and Characterization of Bioactive Chitosan Film Loaded with Cashew ( Anacardium occidentale) Leaf Extract. Polymers (Basel) 2022; 14:540. [PMID: 35160528 PMCID: PMC8840661 DOI: 10.3390/polym14030540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chitosan is a biopolymer known for its rapid biodegradability and film-forming properties. This research aimed to synthesize and characterize chitosan films loaded with cashew leaf extract (CLE) obtained from immature and mature cashew leaves via aqueous and 70% ethanolic extraction methods. Freeze-dried CLE samples were dissolved in 50% dimethyl sulfoxide for in vitro analysis and chitosan film preparation. The total phenolic content of mature cashew leaves extracted in ethanol (MECLE) showed higher free radicle scavenging activity by a 2,2-diphenyl-1-picrylhydrazyl assay than the other extracts (p < 0.05). MECLE displayed a lower minimal inhibitory concentration, minimum fungal concentration, and higher zone of inhibition against Aspergillus niger compared to the other treatments (p < 0.05). Film-forming solutions were prepared using 2% chitosan, 2% chitosan with 5% mature cashew leaves extracted in deionized water (MACLE) (w/v), and 2% chitosan with 5% MECLE (w/v), respectively, to cast films. Of these, 2% chitosan (CH) with 5% MECLE (CH-MECLE-5) displayed the highest thickness and water vapor transmission rate, water vapor permeability, and oxygen transmission rate when compared to other film samples (p < 0.05). The CH-MECLE-5 film showed the highest inhibition zone of A. niger compared to the control and treated films (p < 0.05). The lightness (L*) of the CH-MECLE-5 film decreased with increment in b* values, which represented the yellow color of the film. In addition, two-photon microscopy revealed a uniform distribution via the auto-fluorescent 3D structure of MECLE in the CH-MECLE-5 film. Therefore, chitosan combined with 5% MECLE may be a potential bioactive and eco-friendly packaging film.
Collapse
Affiliation(s)
- Khursheed Ahmad Shiekh
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
- Research Group of Innovative Food Packaging and Biomaterials Unit, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
| | - Mooksupang Liangpanth
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
| | - Siriporn Luesuwan
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
- Scientific and Technological Instruments Center, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
| | - Rinlanee Kraisitthisirintr
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
- Research Group of Innovative Food Packaging and Biomaterials Unit, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
| | - Kittaporn Ngiwngam
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
| | - Saroat Rawdkuen
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
- Research Group of Innovative Food Packaging and Biomaterials Unit, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thomas Karbowiak
- UMR PAM-Food and Wine Science and Technology, Agro-Sup Dijon, Université de Bourgogne France-Comte, Esplanade Erasme, F-21000 Dijon, France;
| | - Wirongrong Tongdeesoontorn
- School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand; (K.A.S.); (M.L.); (S.L.); (R.K.); (K.N.); (S.R.)
- Research Group of Innovative Food Packaging and Biomaterials Unit, Mae Fah Luang University, 333 Moo 1 Tasud, Chiang Rai 57100, Thailand
| |
Collapse
|
33
|
Radziff SBM, Ahmad SA, Shaharuddin NA, Merican F, Kok YY, Zulkharnain A, Gomez-Fuentes C, Wong CY. Potential Application of Algae in Biodegradation of Phenol: A Review and Bibliometric Study. PLANTS (BASEL, SWITZERLAND) 2021; 10:2677. [PMID: 34961148 PMCID: PMC8709323 DOI: 10.3390/plants10122677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
One of the most severe environmental issues affecting the sustainable growth of human society is water pollution. Phenolic compounds are toxic, hazardous and carcinogenic to humans and animals even at low concentrations. Thus, it is compulsory to remove the compounds from polluted wastewater before being discharged into the ecosystem. Biotechnology has been coping with environmental problems using a broad spectrum of microorganisms and biocatalysts to establish innovative techniques for biodegradation. Biological treatment is preferable as it is cost-effective in removing organic pollutants, including phenol. The advantages and the enzymes involved in the metabolic degradation of phenol render the efficiency of microalgae in the degradation process. The focus of this review is to explore the trends in publication (within the year of 2000-2020) through bibliometric analysis and the mechanisms involved in algae phenol degradation. Current studies and publications on the use of algae in bioremediation have been observed to expand due to environmental problems and the versatility of microalgae. VOSviewer and SciMAT software were used in this review to further analyse the links and interaction of the selected keywords. It was noted that publication is advancing, with China, Spain and the United States dominating the studies with total publications of 36, 28 and 22, respectively. Hence, this review will provide an insight into the trends and potential use of algae in degradation.
Collapse
Affiliation(s)
- Syahirah Batrisyia Mohamed Radziff
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Gelugor 11800, Penang, Malaysia;
| | - Yih-Yih Kok
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama-shi 337-8570, Saitama, Japan;
| | - Claudio Gomez-Fuentes
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile
| | - Chiew-Yen Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia;
| |
Collapse
|
34
|
Bhattacharya S, Das A, Krishnan K, Patil NA, Sadique J. Co-substrate-mediated utilization of high concentration of phenol by Aspergillus niger FP7 and reduction of its phytotoxicity on Vigna radiata L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64030-64038. [PMID: 33890222 DOI: 10.1007/s11356-021-13947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Phenol and its derivatives behave as mutagens, teratogens and carcinogens inducing adverse physiological effects and are considered environmental hazards. The present study focuses on high concentration phenol utilization by Aspergillus niger FP7 under various physicochemical parameters. The soil remediation potential of the culture for reducing phenol toxicity against Vigna radiata L. seed germination was also evaluated along with the extent of phenol utilization using high-performance liquid chromatography. Aspergillus niger FP7 showed phenol tolerance up to 1000 mg/l, beyond which there was a sharp reduction in phenol utilization. Supplementation of the mineral salt medium with glucose and peptone and application of a 100 rpm agitation rate enhanced phenol utilization (up to 88.3%). Phenol utilization efficiency decreased (up to 29.6%) when cadmium and mercury salts were present, but the same improved (59.4-75.5%) by the incorporation of cobalt, copper and zinc salts. Vigna radiata L. seeds sown in the non-augmented soil revealed a 3.27% germination index, and with fungal augmentation, the germination index improved (97.3%). The non-augmented soil demonstrated 3.1% phenol utilization, while for the augmented soil, the utilization was 79.3%. Based on the phytotoxicity study and chromatographic analysis, it could be inferred that Aspergillus niger FP7 significantly enhanced phenol utilization in soil. In the future, Aspergillus niger FP7 could be of potential use in bioremediation of sites polluted with high concentrations of phenol.
Collapse
Affiliation(s)
- Sourav Bhattacharya
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, Karnataka, 560011, India.
| | - Arijit Das
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, Karnataka, 560011, India
| | - Kavitha Krishnan
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, Karnataka, 560011, India
| | - Nischita A Patil
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, Karnataka, 560011, India
| | - Jaffar Sadique
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, Karnataka, 560011, India
| |
Collapse
|
35
|
|
36
|
Biological treatment of coke plant effluents: from a microbiological perspective. Biol Futur 2021; 71:359-370. [PMID: 34554459 DOI: 10.1007/s42977-020-00028-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
During coke production, large volume of effluent is generated, which has a very complex chemical composition and contains several toxic and carcinogenic substances, mainly aromatic compounds, cyanide, thiocyanate and ammonium. The composition of these high-strength effluents is very diverse and depends on the quality of coals used and the operating and technological parameters of coke ovens. In general, after initial physicochemical treatment, biological purification steps are applied in activated sludge bioreactors. This review summarizes the current knowledge on the anaerobic and aerobic transformation processes and describes key microorganisms, such as phenol- and thiocyanate-degrading, floc-forming, nitrifying and denitrifying bacteria, which contribute to the removal of pollutants from coke plant effluents. Providing the theoretical basis for technical issues (in this case the microbiology of coke plant effluent treatment) aids the optimization of existing technologies and the design of new management techniques.
Collapse
|
37
|
Zhao T, Hu K, Li J, Zhu Y, Liu A, Yao K, Liu S. Current insights into the microbial degradation for pyrethroids: strain safety, biochemical pathway, and genetic engineering. CHEMOSPHERE 2021; 279:130542. [PMID: 33866100 DOI: 10.1016/j.chemosphere.2021.130542] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/09/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
As a biologically inspired insecticide, pyrethroids (PYRs) exert evident toxic side effects on non-target organisms. PYRs and their general toxic intermediate 3-phenoxybenzoic acid (3-PBA) have shown high detection rates/levels in human beings recently, for which diet was identified as the major exposure route. Microbial mineralization has emerged as a versatile strategy in addressing such escalating concern. Herein, PYRs and 3-PBA biodegradation with regards to strain safety, application and surfactant were summarized. Numerous PYRs-degrading microbes have been reported yet with a minority focused on 3-PBA. Most isolates were from contaminated sites while several microbial food cultures (MFCs) have been investigated. MFCs such as Bacillus spp. and Aspergillus spp. that dominate in PYRs-degrading microbial pools are applicable candidates for agricultural by-products detoxification during the postharvest process. Subsequently, we discussed committed degradation steps, wherein hydrolase responsible for PYRs ester linkage cleavage and oxygenase for 3-PBA diphenyl ether bond rupture play vital roles. Finally, comprehensive information of the key enzyme genes is outlined along with methodologies concerning gene cloning. Cytochrome P450 monooxygenases (CYP) is competent for diphenyl ether scission. Newly-developed omics has become a feasible gene and enzyme mining technology. To achieve PYRs mineralization in feed and food commodities, the screening of MFCs rich in related enzymes and the construction of MFCs-derived genetically modified microbes (GMMs) exhibit great potential considering the safety issues.
Collapse
Affiliation(s)
- Tianye Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yuanting Zhu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kai Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
38
|
Havenga M, Wingfield BD, Wingfield MJ, Dreyer LL, Roets F, Aylward J. Genetic response to nitrogen starvation in the aggressive Eucalyptus foliar pathogen Teratosphaeria destructans. Curr Genet 2021; 67:981-990. [PMID: 34432124 DOI: 10.1007/s00294-021-01208-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/20/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022]
Abstract
Teratosphaeria destructans is one of the most aggressive foliar pathogens of Eucalyptus. The biological factors underpinning T. destructans infections, which include shoot and leaf blight on young trees, have never been interrogated. Thus, the means by which the pathogen modifies its host environment to overcome host defences remain unknown. By applying transcriptome sequencing, the aim of this study was to compare gene expression in a South African isolate of T. destructans grown on nitrogen-deficient and complete media. This made it possible to identify upregulated genes in a nitrogen-starved environment, often linked to the pathogenicity of the fungus. The results support the hypothesis that nitrogen starvation in T. destructans likely mirrors an in planta genetic response. This is because 45% of genes that were highly upregulated under nitrogen starvation have previously been reported to be associated with infection in other pathogen systems. These included several CAZymes, fungal effector proteins, peptidases, kinases, toxins, lipases and proteins associated with detoxification of toxic compounds. Twenty-five secondary metabolites were identified and expressed in both nitrogen-deficient and complete conditions. Additionally, the most highly expressed genes in both growth conditions had pathogenicity-related functions. This study highlights the large number of expressed genes associated with pathogenicity and overcoming plant defences. As such, the generated baseline knowledge regarding pathogenicity and aggressiveness in T. destructans is a valuable reference for future in planta work.
Collapse
Affiliation(s)
- Minette Havenga
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa. .,Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa.
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Léanne L Dreyer
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.,Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
39
|
Gulsunoglu-Konuskan Z, Karbancioglu-Guler F, Kilic-Akyilmaz M. Development of a bioprocess for production of ellagic acid from chestnut (Castanea sativa Mill.) waste by fermentation with Aspergillus spp. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Candan Eryılmaz, Ayten Genç. Review of Treatment Technologies for the Removal of Phenol from Wastewaters. J WATER CHEM TECHNO+ 2021. [DOI: 10.3103/s1063455x21020065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Melo MM, Dos Reis KC, Pires JF, das Neves TT, Schwan RF, Silva CF. Bio-hydrolysis of used soybean oil: environmental-friendly technology using microbial consortium. Biodegradation 2021; 32:551-562. [PMID: 34046776 DOI: 10.1007/s10532-021-09951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 05/15/2021] [Indexed: 11/29/2022]
Abstract
In this work, strains of Bacillus subtilis were inoculated in consortium with Rhodotorula mucilaginosa into spent soy oil as aiming to biological treatment and low-cost reuse. The microorganisms were previously isolated and selected for the lipolytic capacity of the alperujo residue generated during the processing of olive oil. For fermentation, bioassays containing Rhodotorula mucilaginosa isolated from alperujo and Candida rugosa CCMA 00371, both co-inoculated with Bacillus subtilis CCMA 0085 in medium containing (% w/v) 0.075 glucose and 0.375 (NH4)3 PO4 in 75 mL of water and 75 mL of spent soy oil. Despite the low biomass productivity, it has favorable characteristics to be used in animal feed supplementation. Spent soy oil was used as a carbon source proven by Bartha respirometer. The strains of R. mucilaginosa UFLA RAS 144 and B. subtilis CCMA 0085 are promising inoculants for oil degradation and can be applied in a waste treatment system.
Collapse
Affiliation(s)
- Marcela Magalhães Melo
- Department of Biology, Federal University of Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | - Kelly Cristina Dos Reis
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, CE, 60455-900, Brazil
| | - Josiane Ferreira Pires
- Department of Biology, Federal University of Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | | | - Rosane Freitas Schwan
- Department of Biology, Federal University of Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | | |
Collapse
|
42
|
Balbín-Suárez A, Jacquiod S, Rohr AD, Liu B, Flachowsky H, Winkelmann T, Beerhues L, Nesme J, J Sørensen S, Vetterlein D, Smalla K. Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis. FEMS Microbiol Ecol 2021; 97:6136273. [PMID: 33587112 DOI: 10.1093/femsec/fiab031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/12/2021] [Indexed: 01/19/2023] Open
Abstract
A soil column split-root experiment was designed to investigate the ability of apple replant disease (ARD)-causing agents to spread in soil. 'M26' apple rootstocks grew into a top layer of Control soil, followed by a barrier-free split-soil layer (Control soil/ARD soil). We observed a severely reduced root growth, concomitant with enhanced gene expression of phytoalexin biosynthetic genes and phytoalexin content in roots from ARD soil, indicating a pronounced local plant defense response. Amplicon sequencing (bacteria, archaea, fungi) revealed local shifts in diversity and composition of microorganisms in the rhizoplane of roots from ARD soil. An enrichment of operational taxonomic units affiliated to potential ARD fungal pathogens (Ilyonectria and Nectria sp.) and bacteria frequently associated with ARD (Streptomyces, Variovorax) was noted. In conclusion, our integrated study supports the idea of ARD being local and not spreading into surrounding soil, as only the roots in ARD soil were affected in terms of growth, phytoalexin biosynthetic gene expression, phytoalexin production and altered microbiome structure. This study further reinforces the microbiological nature of ARD, being likely triggered by a disturbed soil microbiome enriched with low mobility of the ARD-causing agents that induce a strong plant defense and rhizoplane microbiome dysbiosis, concurring with root damage.
Collapse
Affiliation(s)
- Alicia Balbín-Suárez
- Julius Kühn-Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Samuel Jacquiod
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Annmarie-Deetja Rohr
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Benye Liu
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Traud Winkelmann
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Bygning 1, 2100 Copenhagen, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Bygning 1, 2100 Copenhagen, Denmark
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany.,Soil Science, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle/Saale, Germany
| | - Kornelia Smalla
- Julius Kühn-Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
43
|
Wang Z, Ren D, Zhao Y, Huang C, Zhang S, Zhang X, Kang C, Deng Z, Guo H. Remediation and improvement of 2,4-dichlorophenol contaminated soil by biochar-immobilized laccase. ENVIRONMENTAL TECHNOLOGY 2021; 42:1679-1692. [PMID: 31591947 DOI: 10.1080/09593330.2019.1677782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
In this paper, laccase was immobilized with the adsorption-crosslinking method in which biochar was used as the carrier and glutaraldehyde was used as the crosslinking agent. Firstly, the optimal immobilization conditions and optimal operating conditions were investigated, and then the stability of both free laccase and immobilized laccase was compared. Finally, the 2,4-dichlorophenol contaminated soil was remedied with both free laccase and immobilized laccase, and the improvement on the remediation of the contaminated soil by immobilized laccase was analysed through the ecological evaluation. The results showed that in the optimal immobilization condition, the biochar with a particle size of 30 mesh should be selected, and glutaraldehyde with a volume fraction of 4% and 20 mL of laccase solution should be added to complete the 6-hour adsorption operation and 4-hour crosslinking operation. The stability of immobilized laccase was better than that of free laccase, and the thermal deactivation kinetic equation for the free laccase was lnA = -0.7657t + 0.4344 and the thermal deactivation kinetic equation for the immobilized laccase was lnA = -0.1048t + 0.0608, respectively. The degradation ability of immobilized laccase for 2-4 dichlorophenol was better than that of free laccase. The degradation rate of 2,4-dichlorophenol was 44.4% in the free laccase group and 64.6% in the immobilized laccase group. The ecological evaluation showed that the biochar-immobilized laccase had a positive effect on the soil ecological environment in the remediation process of the soil and can improve the remediation of the contaminated soil to some extent.
Collapse
Affiliation(s)
- Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Yusheng Zhao
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Chaofan Huang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Chen Kang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Zhiqun Deng
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Huiwen Guo
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
44
|
Telesiński A, Kiepas-Kokot A. Five-Year Enhanced Natural Attenuation of Historically Coal-Tar-Contaminated Soil: Analysis of Polycyclic Aromatic Hydrocarbon and Phenol Contents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052265. [PMID: 33668855 PMCID: PMC7967680 DOI: 10.3390/ijerph18052265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
The objective of this study was to assess the soil pollution on an industrial wasteland, where coal-tar was processed in the period between 1880 and 1997, and subsequent to assess the decline in the content of phenols and polycyclic aromatic hydrocarbons (PAHs) during enhanced natural attenuation. The soil of the investigated area was formed from a layer of uncompacted fill. Twelve sampling points were established in the investigated area for collecting soil samples. A study conducted in 2015 did not reveal any increase in the content of heavy metals, monoaromatic hydrocarbons (BTEX), and cyanides. However, the content of PAHs and phenols was higher than the content permitted by Polish norms in force until 2016. In the case of PAHs, it was observed for individual compounds and their total contents. Among the various methods, enhanced natural attenuation was chosen for the remediation of investigated area. Repeated analyses of the contents of phenols and PAHs were conducted in 2020. The results of the analyses showed that enhanced natural attenuation has led to efficient degradation of the simplest substances—phenol and naphthalene. The content of these compounds in 2020 was not elevated compared to the standards for industrial wastelands. The three- and four-ring hydrocarbons were degraded at a lower intensity. Based on the mean decrease in content after 5-year enhanced natural attenuation, the compounds can be arranged in the following order: phenols > naphthalene > phenanthrene > fluoranthene > benzo(a)anthracene > chrysene > anthracene.
Collapse
Affiliation(s)
- Arkadiusz Telesiński
- Department of Bioengineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego Str. 17, 71-434 Szczecin, Poland
- Correspondence:
| | - Anna Kiepas-Kokot
- Department of Environmental Management, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Słowackiego Str. 17, 71-434 Szczecin, Poland;
| |
Collapse
|
45
|
El-Gendy NS, Nassar HN. Phycoremediation of phenol-polluted petro-industrial effluents and its techno-economic values as a win-win process for a green environment, sustainable energy and bioproducts. J Appl Microbiol 2021; 131:1621-1638. [PMID: 33386652 DOI: 10.1111/jam.14989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
The discharge of the toxic phenol-polluted petro-industrial effluents (PPPIE) has severe environmental negative impacts, thus it is mandatory to be treated before its discharge. The objective of this review was to discuss the sustainable application of microalgae in phenols degradation, with a special emphasis on the enzymes involved in this bioprocess and the factors affecting the success of PPPIE phycoremediation. Moreover, it confers the microalgae bioenergetic strategies to degrade different forms of phenols in PPPIE. It also points out the advantages of the latest application of bacteria, fungi and microalgae as microbial consortia in phenols biodegradation. Briefly, phycoremediation of PPPIE consumes carbon dioxide emitted from petro-industries for; valorization of the polluted water to be reused and production of algal biomass which can act as a source of energy for such integrated bioprocess. Besides, the harvested algal biomass can feasibly produce; third-generation biofuels, biorefineries, bioplastics, fish and animal feed, food supplements, natural dyes, antioxidants and many other valuable products. Consequently, this review precisely confirms that the phycoremediation of PPPIE is a win-win process for a green environment and a sustainable future. Thus, to achieve the three pillars of sustainability; social, environmental and economic; it is recommendable to integrate PPPIE treatment with algal cultivation. This integrated process would overcome the problem of greenhouse gas emissions, global warming and climate change, solve the problem of water-scarce, and protect the environment from the harmful negative impacts of PPPIE.
Collapse
Affiliation(s)
- N Sh El-Gendy
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt.,Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| | - H N Nassar
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt.,Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| |
Collapse
|
46
|
Shi Y, Ye Z, Hu P, Wei D, Gao Q, Zhao Z, Xiao J, Liao M, Cao H. Removal of prothioconazole using screened microorganisms and identification of biodegradation products via UPLC-QqTOF-MS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111203. [PMID: 32866888 DOI: 10.1016/j.ecoenv.2020.111203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Degradation of the prothioconazole by three strains of microorganisms isolated from activated sludge obtained from a pesticide factory was assessed, and an ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QqTOF-MS) method for the determination of prothioconazole and its metabolites was established. The optimal conditions for the degradation of prothioconazole were determined by single factor optimization experiments. A degradation rate of 93.32% is achieved when the prothioconazole is co-cultured with the strain W313 at a cultivation time of 60 h, a cultivation temperature of 30 °C, a pH of 6.33, a prothioconazole concentration of 50 mg L-1, a microorganism volume of 10%, and a dextrose volume of 4%. The three effective microorganism strains were identified by morphological and molecular biology to be Candida tropicalis, Enterobacter cloacae, and Pseudomonas aeruginosa. UPLC-QqTOF-MS analysis allowed the identification of 62 different prothioconazole degradation products produced by the strain cultures, with prothioconazole-desthio, prothioconazole-dechloropropyl, and oxidizing prothioconazole being the main products. In addition, degradation products from different strains and conditions were compared. The results of scatter plot (S-Plot) analysis indicated that C9H7NO, C10H17N7, and C12H13ClN2O were only detected in the products incubated with Enterobacter cloacae. Thus, this study demonstrates that Enterobacter cloacae and Pseudomonas aeruginosa possesses high potential for bioremediation of prothioconazole-contaminated environments.
Collapse
Affiliation(s)
- Yanhong Shi
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, PR China; Provincial Key Laboratory for Agri-Food Safety, Hefei, 230036, Hefei, 230036, PR China
| | - Zhuang Ye
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Peng Hu
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Dong Wei
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, PR China
| | - Quan Gao
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, PR China
| | - Zhenyu Zhao
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, PR China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, PR China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
47
|
Minari GD, Saran LM, Lima Constancio MT, Correia da Silva R, Rosalen DL, José de Melo W, Carareto Alves LM. Bioremediation potential of new cadmium, chromium, and nickel-resistant bacteria isolated from tropical agricultural soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111038. [PMID: 32739674 DOI: 10.1016/j.ecoenv.2020.111038] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 05/26/2023]
Abstract
Soil management using fertilizers can modify soil chemical, biochemical and biological properties, including the concentration of trace-elements as cadmium (Cd), chromium (Cd) and nickel (Ni). Bacterial isolates from Cd, Cr, and Ni-contaminated soil were evaluated for some characteristics for their use in bioremediation. Isolates (592) were obtained from soil samples (19) of three areas used in three maize cultivation systems: no-tillage and conventional tillage with the application of mineral fertilizers; minimum tillage with the application of sewage sludge. Four isolates were resistant to Cr3+ (3.06 mmol dm-3) and Cd2+ (2.92 mmol dm-3). One isolate was resistant to the three metals at 0.95 mmol dm-3. All isolates developed in a medium of Cd2+, Cr3+ and Ni2+ at 0.5 mmol dm-3, and removed Cd2+ (17-33%) and Cr6+ (60-70%). They were identified by sequencing of the gene 16S rRNA, as bacteria of the genera Paenibacillus, Burkholderia, Ensifer, and two Cupriavidus. One of the Cupriavidus isolate was able to remove 60% of Cr6+ from the culture medium and showed high indole acetic acid production capacity. We evaluated it in a microbe-plant system that could potentially be deployed in bioremediation by removing toxic metals from contaminated soil.
Collapse
Affiliation(s)
- Guilherme Deomedesse Minari
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Technology, Jaboticabal, Brazil
| | - Luciana Maria Saran
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Technology, Jaboticabal, Brazil.
| | - Milena Tavares Lima Constancio
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Technology, Jaboticabal, Brazil
| | - Rafael Correia da Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Technology, Jaboticabal, Brazil
| | - David Luciano Rosalen
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Rural Engineering, Jaboticabal, Brazil
| | - Wanderley José de Melo
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Technology, Jaboticabal, Brazil; Brasil University, Descalvado, Brazil
| | - Lúcia Maria Carareto Alves
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Technology, Jaboticabal, Brazil
| |
Collapse
|
48
|
Elmansour TE, Mandi L, Ahmali A, Elghadraoui A, Aziz F, Hejjaj A, Del Bubba M, Ouazzani N. Effect of polyphenols on activated sludge biomass during the treatment of highly diluted olive mill wastewaters: biomass dynamics and purifying performances. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1416-1429. [PMID: 33079720 DOI: 10.2166/wst.2020.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study aims to investigate the feasibility of treating olive mill waste water (OMWW) by activated sludge pilot (AS) after its high dilution (1%) by urban waste water (UWW) and to study the effect of polyphenol compounds on the biomass during the treatment. Specific oxygen uptake rate (SOUR), mixed liquor volatile suspended solids (MLVSS), chemical oxygen demand (COD) and total polyphenols, were followed up over 100 days. In spite of the polyphenols' high concentration (up to 128 mg·L-1), successful biomass growth of 7.12 g MLVSS.L -1 and activity were achieved. Most of the bacteria (Pseudomonas sp., Klebsiella oxytoca, Citrobacter fereundii, Escherichia coli and Staphylococcus sp.) and fungi (Trichoderma sp., Rhizopus sp., Aspergillus niger, Penicillium sp., Fusarium sp., Alternaria) identified in the aerobic basin during the stabilization stage were known to be resistant to OMWW and showed effective adaptation of the biomass to polyphenols in high concentration. COD and polyphenols were highly eliminated (90%, 92% respectively). The sludge volume index in the pilot settling tank was almost constant at around 120 mL.g -1. This suggests the possibility of managing OMWW by simple injection at a given percentage in already functioning conventional AS treating UWW.
Collapse
Affiliation(s)
- T E Elmansour
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco E-mail: ; Laboratory of Water, biodiversity and Climate change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - L Mandi
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco E-mail: ; Laboratory of Water, biodiversity and Climate change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - A Ahmali
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco E-mail: ; Laboratory of Water, biodiversity and Climate change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - A Elghadraoui
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco E-mail: ; Laboratory of Water, biodiversity and Climate change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - F Aziz
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco E-mail: ; Laboratory of Water, biodiversity and Climate change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco; Faculty Polydisciplinary of Safi, University Cadi Ayyad, Marrakech, Morocco
| | - A Hejjaj
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco E-mail:
| | - M Del Bubba
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - N Ouazzani
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco E-mail: ; Laboratory of Water, biodiversity and Climate change, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
49
|
Filipowicz N, Momotko M, Boczkaj G, Cieśliński H. Determination of phenol biodegradation pathways in three psychrotolerant yeasts, Candida subhashii A01 1, Candida oregonensis B02 1 and Schizoblastosporion starkeyi-henricii L01 2, isolated from Rucianka peatland. Enzyme Microb Technol 2020; 141:109663. [PMID: 33051016 PMCID: PMC7474889 DOI: 10.1016/j.enzmictec.2020.109663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/02/2023]
Abstract
In this study, three psychrotolerant phenol-degrading yeast strains Candida subhashii (strain A011), Candida oregonenis (strain B021) and Schizoblastosporion starkeyi-henricii (strain L012) isolated from Rucianka peatland were examined to determine which alternative metabolic pathway for phenol biodegradation is used by these microorganisms. All yeast strains were cultivated in minimal salt medium supplemented with phenol at 500, 750 and 1000 mg l-1 concentration with two ways of conducting phenol biodegradation experiments: with and without the starving step of yeast cells. For studied yeast strains, no catechol 2,3-dioxygenase activities were detected by enzymatic assay and no products of catechol meta-cleavage in yeast cultures supernatants (GC-MS analysis), were detected. The detection of catechol 1,2-dioxygenase activity and the presence of cis,cis-muconic acid in the analyzed samples revealed that all studied psychrotolerant yeast strains were able to metabolize phenol via the ortho-cleavage pathway. Therefore, they may be tested in terms of their use to develop biotechnology for the production of cis,cis-muconic acid, a substrate used in the production of plastics (PET) and other valuable goods.
Collapse
Affiliation(s)
- Natalia Filipowicz
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Malwina Momotko
- Department of Process Engineering and Chemical Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Hubert Cieśliński
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
50
|
Gopal K, Al deeb I, Raaov M, Suah F, Samad N, Yahaya N, Lim V, Zain N. Supramolecular solvent combined with dispersive solid phase extraction based magnetic silicone surfactant activated charcoal adsorbent for extraction of phenolic compounds from industrial wastewater. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|