1
|
Vera-Vives AM, Michelberger T, Morosinotto T, Perin G. Assessment of photosynthetic activity in dense microalgae cultures using oxygen production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108510. [PMID: 38471244 DOI: 10.1016/j.plaphy.2024.108510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Microalgae are photosynthetic microorganisms playing a pivotal role in primary production in aquatic ecosystems, sustaining the entry of carbon in the biosphere. Microalgae have also been recognized as sustainable source of biomass to complement crops. For this objective they are cultivated in photobioreactors or ponds at high cell density to maximize biomass productivity and lower the cost of downstream processes. Photosynthesis depends on light availability, that is often not constant over time. In nature, sunlight fluctuates over diurnal cycles and weather conditions. In high-density microalgae cultures of photobioreactors outdoors, on top of natural variations, microalgae are subjected to further complexity in light exposure. Because of the high-density cells experience self-shading effects that heavily limit light availability in most of the mass culture volume. This limitation strongly affects biomass productivity of industrial microalgae cultivation plants with important implications on economic feasibility. Understanding how photosynthesis responds to cell density is informative to assess functionality in the inhomogeneous light environment of industrial photobioreactors. In this work we exploited a high-sensitivity Clark electrode to measure microalgae photosynthesis and compare cultures with different densities, using Nannochloropsis as model organism. We observed that cell density has a substantial impact on photosynthetic activity, and demonstrated the reduction of the cell's light-absorption capacity by genetic modification is a valuable strategy to increase photosynthetic functionality on a chlorophyll-basis of dense microalgae cultures.
Collapse
Affiliation(s)
| | - Tim Michelberger
- Department of Biology, University of Padova, 35131, Padova, Italy
| | | | - Giorgio Perin
- Department of Biology, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
2
|
Ortiz Tena F, Bickel V, Steinweg C, Posten C. Continuous microalgae cultivation for wastewater treatment - Development of a process strategy during day and night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169082. [PMID: 38056654 DOI: 10.1016/j.scitotenv.2023.169082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Conventional wastewater treatment (WWT) is not able to recycle nutrients from the wastewater (WW) directly. Microalgae integrate the valuable nutrients nitrogen and phosphorus within their biomass very efficiently, making them predestined for an application in WWT. Nevertheless, microalgae-based processes are driven by natural sunlight as energy source, making a continuous process mode during day and night difficult. The aim of this study was therefore to investigate metabolic activities of the continuously cultivated microalgae Chlorella vulgaris at light and dark periods (16 h,8 h) with focus on nutrient uptake during night from a synthetic WW. Varying the dilution rate D (D = 0.0-1.0 d-1 in 0.1 d-1-steps) causes different limitations for algae growth. Nutrient limitations at low D's cause maximum accumulation of intracellular storage components (sum of carbohydrates and lipids) of ~70 % of dry biomass, starch is converted to lipids at the absence of light. From middle to high D's, the growth rate is determined by light limitation, reducing the intracellular storage components to ~20 % of dry biomass. Complete nutrient uptake is measurable up to D = 0.5 d-1, marking the maximum operating point for wastewater purification. At that point, cells are characterised by high protein (up to 57%DBM) and pigment (up to 6.9%DBM) quotas. During the night, the build-up of proteins at the degradation of intracellular storage components is furthermore visible. Applying the concept of active biomass (cells without storage components), a constant cellular protein (~68%ABM) and nitrogen quota (11.94%ABM) was revealed. A nitrogen spiking experiment clearly showed nitrogen uptake and proliferation during the night period. Based on the experimental data, a window of operation for a continuous WWT process was designed, allowing the hypothesis that continuous WWT using microalgae during day and night operation is possible without the supplementation of artificial light. This revealed the system's capacity to treat WW throughout 24 h applying cell recycling and storage of carbohydrate-rich biomass. At the end of the night, protein-rich biomass is available for further valorisation.
Collapse
Affiliation(s)
- Franziska Ortiz Tena
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Bioprocess Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| | - Victoria Bickel
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Bioprocess Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Christian Steinweg
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Bioprocess Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Clemens Posten
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Bioprocess Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Rossi S, Carecci D, Marazzi F, Di Benedetto F, Mezzanotte V, Parati K, Alberti D, Geraci I, Ficara E. Integrating microalgae growth in biomethane plants: Process design, modelling, and cost evaluation. Heliyon 2024; 10:e23240. [PMID: 38163195 PMCID: PMC10755323 DOI: 10.1016/j.heliyon.2023.e23240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The integration of microalgae cultivation in anaerobic digestion (AD) plants can take advantage of relevant nutrients (ammonium and ortho-phosphate) and CO2 loads. The proposed scheme of microalgae integration in existing biogas plants aims at producing approximately 250 t·y-1 of microalgal biomass, targeting the biostimulants market that is currently under rapid expansion. A full-scale biorefinery was designed to treat 50 kt·y-1 of raw liquid digestate from AD and 0.45 kt·y-1 of CO2 from biogas upgrading, and 0.40 kt·y-1 of sugar-rich solid by-products from a local confectionery industry. An innovative three-stage cultivation process was designed, modelled, and verified, including: i) microalgae inoculation in tubular PBRs to select the desired algal strains, ii) microalgae cultivation in raceway ponds under greenhouses, and iii) heterotrophic microalgae cultivation in fermenters. A detailed economic assessment of the proposed biorefinery allowed to compute a biomass production cost of 2.8 ± 0.3 €·kg DW-1, that is compatible with current downstream process costs to produce biostimulants, suggesting that the proposed nutrient recovery route is feasible from the technical and economic perspective. Based on the case study analysis, a discussion of process, bioproducts and policy barriers that currently hinder the development of microalgae-based biorefineries is presented.
Collapse
Affiliation(s)
- Simone Rossi
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Davide Carecci
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Francesca Marazzi
- University of Milano – Bicocca, DISAT – Department of Earth and Environmental Sciences, 1, P.zza della Scienza, 20126 Milano, Italy
| | - Francesca Di Benedetto
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Valeria Mezzanotte
- University of Milano – Bicocca, DISAT – Department of Earth and Environmental Sciences, 1, P.zza della Scienza, 20126 Milano, Italy
| | - Katia Parati
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Aquaculture division, 26027 Rivolta d’Adda, Italy
| | | | | | - Elena Ficara
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| |
Collapse
|
4
|
Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds. BIOLOGY 2022; 11:biology11081146. [PMID: 36009773 PMCID: PMC9405046 DOI: 10.3390/biology11081146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Microalgae-based biorefineries allow the simultaneous production of microalgae biomass enriched in a particular macromolecule and high-added and low-value products if a proper selection of the microalgae species and the cultivation conditions are adequate for the purpose. This review discusses the challenges and future trends related to microalgae-based biorefineries stressing the multi-product approach and the use of raw wastewater or pretreated wastewater to improve the cost-benefit ratio of biomass and products. Emphasis is given to the production of biomass enriched in carbohydrates. Microalgae-bioactive compounds as potential therapeutical and health promoters are also discussed. Future and novel trends following the circular economy strategy are also discussed. Abstract Microalgae have demonstrated a large potential in biotechnology as a source of various macromolecules (proteins, carbohydrates, and lipids) and high-added value products (pigments, poly-unsaturated fatty acids, peptides, exo-polysaccharides, etc.). The production of biomass at a large scale becomes more economically feasible when it is part of a biorefinery designed within the circular economy concept. Thus, the aim of this critical review is to highlight and discuss challenges and future trends related to the multi-product microalgae-based biorefineries, including both phototrophic and mixotrophic cultures treating wastewater and the recovery of biomass as a source of valuable macromolecules and high-added and low-value products (biofertilizers and biostimulants). The therapeutic properties of some microalgae-bioactive compounds are also discussed. Novel trends such as the screening of species for antimicrobial compounds, the production of bioplastics using wastewater, the circular economy strategy, and the need for more Life Cycle Assessment studies (LCA) are suggested as some of the future research lines.
Collapse
|
5
|
Ibañez MV, Leonardi RJ, Krujatz F, Heinrich JM. The Assessment of the Real-Time Radiative Properties and Productivity of Limnospira platensis in Tubular Photobioreactors. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071014. [PMID: 35888102 PMCID: PMC9320848 DOI: 10.3390/life12071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
The development of tools to predict the photobioreactors' (PBRs) productivity is a significant concern in biotechnology. To this end, it is required to know the light availability inside the cultivation unit and combine this information with a suitable kinetic expression that links the distribution of radiant energy with the cell growth rate. In a previous study, we presented and validated a methodology for assessing the radiative properties necessary to address the light distribution inside a PBR for varying illuminating conditions through the cultivation process of a phototrophic microorganism. Here, we sought to utilise this information to construct a predictive tool to estimate the productivity of an autotrophic bioprocess carried out in a 100 [L] tubular photobioreactor (TPBR). Firstly, the time-dependent optical properties over ten batch cultures of L. platensis were calculated. Secondly, the local volumetric rate of photon absorption was assessed based on a physical model of the interaction of the radiant energy with the suspended biomass, together with a Monte Carlo simulation algorithm. Lastly, a kinetic expression valid for low illumination conditions has been utilised to reproduce all the cultures' experimentally obtained dry weight biomass concentration values. Taken together, time-dependent radiative properties and the kinetic model produced a valuable tool for the study and scaling up of TPBRs.
Collapse
Affiliation(s)
- Manuel Vicente Ibañez
- Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Ciudad Universitaria (Paraje El Pozo), Santa Fe 3000, Argentina; (R.J.L.); (J.M.H.)
- Correspondence:
| | - Rodrigo Jorge Leonardi
- Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Ciudad Universitaria (Paraje El Pozo), Santa Fe 3000, Argentina; (R.J.L.); (J.M.H.)
| | - Felix Krujatz
- Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01069 Dresden, Germany;
- Biotopa gGmbH—Center for Applied Aquaculture & Bioeconomy, Bautzner Landstraße 45, 01454 Radeberg, Germany
- Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, 02763 Zittau, Germany
| | - Josué Miguel Heinrich
- Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Ciudad Universitaria (Paraje El Pozo), Santa Fe 3000, Argentina; (R.J.L.); (J.M.H.)
| |
Collapse
|
6
|
Modeling and Simulation of Photobioreactors with Computational Fluid Dynamics—A Comprehensive Review. ENERGIES 2022. [DOI: 10.3390/en15113966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Computational Fluid Dynamics (CFD) have been frequently applied to model the growth conditions in photobioreactors, which are affected in a complex way by multiple, interacting physical processes. We review common photobioreactor types and discuss the processes occurring therein as well as how these processes have been considered in previous CFD models. The analysis reveals that CFD models of photobioreactors do often not consider state-of-the-art modeling approaches. As a comprehensive photobioreactor model consists of several sub-models, we review the most relevant models for the simulation of fluid flows, light propagation, heat and mass transfer and growth kinetics as well as state-of-the-art models for turbulence and interphase forces, revealing their strength and deficiencies. In addition, we review the population balance equation, breakage and coalescence models and discretization methods since the predicted bubble size distribution critically depends on them. This comprehensive overview of the available models provides a unique toolbox for generating CFD models of photobioreactors. Directions future research should take are also discussed, mainly consisting of an extensive experimental validation of the single models for specific photobioreactor geometries, as well as more complete and sophisticated integrated models by virtue of the constant increase of the computational capacity.
Collapse
|
7
|
Steuer R. Fast-growing phototrophic microorganisms and the productivity of phototrophic cultures (revision). Biotechnol Bioeng 2022; 119:2261-2267. [PMID: 35475579 DOI: 10.1002/bit.28123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
Fast-growing cyanobacterial and microalgal strains are considered to be a promising resource to overcome current productivity barriers of phototrophic cultivation. The purpose of this communication, however, is to argue that a high maximal growth rate itself is not a sufficient or necessary property for high phototrophic productivity. Rather, the light-limited specific growth rate of a phototrophic microorganism is a product of several factors, including the rate of light absorption, the photosynthetic efficiency and the maximal biomass yield per mol photons. It is suggested that, in addition to the maximal growth rate, reports on fast-growing strains should also assess photosynthetic efficiency and maximal biomass yield as predictors of culture productivity. The arguments within the communication are underpinned by a theoretical analysis of a light-limited chemostat, compared to its heterotrophic counterpart. It is shown that for the light-limited chemostat maximal productivity occurs at low dilution rates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ralf Steuer
- Humboldt-University of Berlin, Institute for Biology, Theoretical Biology (ITB), Invalidenstr. 110, 10115, Berlin, Germany
| |
Collapse
|
8
|
Ruiz-Molina N, Parsons J, Schroeder S, Posten C, Reski R, Decker EL. Process Engineering of Biopharmaceutical Production in Moss Bioreactors via Model-Based Description and Evaluation of Phytohormone Impact. Front Bioeng Biotechnol 2022; 10:837965. [PMID: 35252145 PMCID: PMC8891706 DOI: 10.3389/fbioe.2022.837965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
The moss Physcomitrella is an interesting production host for recombinant biopharmaceuticals. Here we produced MFHR1, a synthetic complement regulator which has been proposed for the treatment of diseases associated to the complement system as part of human innate immunity. We studied the impact of different operation modes for the production process in 5 L stirred-tank photobioreactors. The total amount of recombinant protein was doubled by using fed-batch or batch compared to semi-continuous operation, although the maximum specific productivity (mg MFHR1/g FW) increased just by 35%. We proposed an unstructured kinetic model which fits accurately with the experimental data in batch and semi-continuous operation under autotrophic conditions with 2% CO2 enrichment. The model is able to predict recombinant protein production, nitrate uptake and biomass growth, which is useful for process control and optimization. We investigated strategies to further increase MFHR1 production. While mixotrophic and heterotrophic conditions decreased the MFHR1-specific productivity compared to autotrophic conditions, addition of the phytohormone auxin (NAA, 10 µM) to the medium enhanced it by 470% in shaken flasks and up to 230% and 260%, in batch and fed-batch bioreactors, respectively. Supporting this finding, the auxin-synthesis inhibitor L-kynurenine (100 µM) decreased MFHR1 production significantly by 110% and 580% at day 7 and 18, respectively. Expression analysis revealed that the MFHR1 transgene, driven by the Physcomitrella actin5 (PpAct5) promoter, was upregulated 16 h after NAA addition and remained enhanced over the whole process, whereas the auxin-responsive gene PpIAA1A was upregulated within the first 2 hours, indicating that the effect of auxin on PpAct5 promoter-driven expression is indirect. Furthermore, the day of NAA supplementation was crucial, leading to an up to 8-fold increase of MFHR1-specific productivity (0.82 mg MFHR1/g fresh weight, 150 mg accumulated over 7 days) compared to the productivity reported previously. Our findings are likely to be applicable to other plant-based expression systems to increase biopharmaceutical production and yields.
Collapse
Affiliation(s)
- Natalia Ruiz-Molina
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sina Schroeder
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Clemens Posten
- Institute of Process Engineering in Life Sciences III Bioprocess Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- *Correspondence: Eva L. Decker,
| |
Collapse
|
9
|
Tanvir RU, Zhang J, Canter T, Chen D, Lu J, Hu Z. Harnessing Solar Energy using Phototrophic Microorganisms: A Sustainable Pathway to Bioenergy, Biomaterials, and Environmental Solutions. RENEWABLE & SUSTAINABLE ENERGY REVIEWS 2021; 146:1-111181. [PMID: 34526853 PMCID: PMC8437043 DOI: 10.1016/j.rser.2021.111181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phototrophic microorganisms (microbial phototrophs) use light as an energy source to carry out various metabolic processes producing biomaterials and bioenergy and supporting their own growth. Among them, microalgae and cyanobacteria have been utilized extensively for bioenergy, biomaterials, and environmental applications. Their superior photosynthetic efficiency, lipid content, and shorter cultivation time compared to terrestrial biomass make them more suitable for efficient production of bioenergy and biomaterials. Other phototrophic microorganisms, especially anoxygenic phototrophs, demonstrated the ability to survive and flourish while producing renewable energy and high-value products under harsh environmental conditions. This review presents a comprehensive overview of microbial phototrophs on their (i) production of bioenergy and biomaterials, (ii) emerging and innovative applications for environmental conservation, mitigation, and remediation, and (iii) physical, genetic, and metabolic pathways to improve light harvesting and biomass/biofuel/biomaterial production. Both physical (e.g., incremental irradiation) and genetic approaches (e.g., truncated antenna) are implemented to increase the light-harvesting efficiency. Increases in biomass yield and metabolic products are possible through the manipulation of metabolic pathways and selection of a proper strain under optimal cultivation conditions and downstream processing, including harvesting, extraction, and purification. Finally, the current barriers in harnessing solar energy using phototrophic microorganisms are presented, and future research perspectives are discussed, such as integrating phototrophic microorganisms with emerging technologies.
Collapse
Affiliation(s)
- Rahamat Ullah Tanvir
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Timothy Canter
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Dick Chen
- Dual Enrollment Program, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency (EPA), Cincinnati, Ohio, 45268, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
10
|
Improvements in Conventional Modeling Practices for Effective Simulation and Understanding of Microalgal Growth in Photobioreactors: an Experimental Study. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Freudenberg RA, Baier T, Einhaus A, Wobbe L, Kruse O. High cell density cultivation enables efficient and sustainable recombinant polyamine production in the microalga Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2021; 323:124542. [PMID: 33385626 DOI: 10.1016/j.biortech.2020.124542] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 05/27/2023]
Abstract
Modern chemical industry calls for new resource-efficient and sustainable value chains for production of key base chemicals such as polyamines. The green microalga Chlamydomonas reinhardtii offers great potential as an innovative green-cell factory by combining fast and inexpensive, phototrophic growth with mature genetic engineering. Here, overexpression of recombinant lysine decarboxylases in C. reinhardtii enabled the robust accumulation of the non-native polyamine cadaverine, which serves as building block for bio-polyamides. The issue of low cell densities, limiting most microalgal cultivation processes was resolved by systematically optimizing cultivation parameters. A new, easy-to-apply and fully phototrophic medium enables high cell density cultivations of C. reinhardtii with a 6-fold increase in biomass and cell count (20 g/L biomass dry weight, ~2·108 cells/mL). Application of high cell density cultivations in established photobioreactors resulted in a 10-fold increase of cadaverine yields, with up to 0.24 g/L after 9 days and maximal productivity of 0.1 g/L/d.
Collapse
Affiliation(s)
- Robert A Freudenberg
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Lutz Wobbe
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany.
| |
Collapse
|
12
|
Weise T, Grewe C, Pfaff M. Experimental and Model-Based Analysis to Optimize Microalgal Biomass Productivity in a Pilot-Scale Tubular Photobioreactor. Front Bioeng Biotechnol 2020; 8:453. [PMID: 32528939 PMCID: PMC7247861 DOI: 10.3389/fbioe.2020.00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
A dynamic coarse-grained model of microalgal growth considering light availability and temperature under discontinuous bioprocess operation was parameterized using experimental data from 15 batch cultivations of Nannochloropsis granulata in a pilot-scale tubular photobioreactor. The methodology applied consists of a consecutive two-step model parameter estimation using pooled, clustered and reorganized data to obtain initial estimates and multi-experiment fitting to obtain the final estimates, which are: maximum specific growth rate μmax = 1.56 d−1, specific photon half-saturation constant KS,ph = 1.89 molphgX-1d-1, specific photon maintenance coefficient mph = 0.346 molphgX-1d-1 and the cardinal temperatures Tmin = 2.3°C, Topt = 27.93°C and Tmax = 32.59°C. Biomass productivity prediction proved highly accurate, expressed by the mean absolute percent error MAPE = 7.2%. Model-based numerical optimization of biomass productivity for repeated discontinuous operation with respect to the process parameters cultivation cycle time, inoculation biomass concentration and temperature yielded productivity gains of up to 35%. This optimization points to best performance under continuous operation. The approach successfully applied here to small pilot-scale confirms an earlier one to lab-scale, indicating its transferability to larger scale tubular photobioreactors.
Collapse
Affiliation(s)
- Tobias Weise
- Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Jena, Germany.,Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany.,BioControl Jena GmbH, Jena, Germany
| | | | - Michael Pfaff
- Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Jena, Germany
| |
Collapse
|