1
|
Karanikas N, Foster C, Beltran Hernandez A, Harvey A, Targal O, Horswill N. Conventional and Alternative Aviation Fuels: Occupational Exposure and Health Effects. ACS CHEMICAL HEALTH & SAFETY 2021. [DOI: 10.1021/acs.chas.0c00120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nektarios Karanikas
- School of Public Health & Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia
| | - Cherry Foster
- School of Public Health & Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia
| | - Adolfo Beltran Hernandez
- School of Public Health & Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia
| | - Alice Harvey
- School of Public Health & Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia
| | - Ozan Targal
- School of Public Health & Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia
| | - Nathan Horswill
- School of Public Health & Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia
| |
Collapse
|
2
|
Kianmehr M, Hajavi J, Gazeri J. Assessment of DNA damage in blood lymphocytes of bakery workers by comet assay. Toxicol Ind Health 2017; 33:726-735. [PMID: 28862089 DOI: 10.1177/0748233717712408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The comet assay is widely used in screening and identification of genotoxic effects of different substances on people in either their working or living environment. Exposure to fuel smoke leads to DNA damage and ultimately different types of cancer. Using a comet assay, the present study aimed to assess peripheral blood lymphocyte DNA damage in people working in bakeries using natural gas, kerosene, diesel, or firewood for fuel compared to those in the control group. The subjects of this study were 55 people in total who were divided into four experimental groups, each of which comprised of 11 members (based on the type of fuel used), and one control group comprised of 11 members. Using CometScore, the subjects' peripheral blood lymphocytes were examined for DNA damage. All bakers, that is, experimental subjects, showed significantly greater peripheral blood lymphocyte DNA damage compared to the individuals in the control group. There was greater peripheral blood lymphocyte DNA damage in bakers who had been using firewood for fuel compared to those using other types of fuel to such an extent that tail moments (µm) for firewood-burning bakers was 4.40 ± 1.98 versus 1.35 ± 0.84 for natural gas, 1.85 ± 1.33 for diesel, and 2.19 ± 2.20 for kerosene. The results indicated that burning firewood is the greatest inducer of peripheral blood lymphocytes DNA damage in bakers. Nonetheless, there was no significant difference in peripheral blood lymphocyte DNA damage among diesel and kerosene burning bakers.
Collapse
Affiliation(s)
- Mojtaba Kianmehr
- 1 Department of Medical Physics, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Jafar Hajavi
- 2 Department of Basic Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.,3 Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Gazeri
- 4 Department of Humanities, University of Gonabad, Gonabad, Iran
| |
Collapse
|
3
|
Krieg EF, Mathias PI, Toennis CA, Clark JC, Marlow KL, B’Hymer C, Singh NP, Gibson RL, Butler MA. Detection of DNA damage in workers exposed to JP-8 jet fuel. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:218-27. [DOI: 10.1016/j.mrgentox.2012.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 11/26/2022]
|
4
|
Erdem O, Sayal A, Eken A, Akay C, Aydın A. Evaluation of genotoxic and oxidative effects in workers exposed to jet propulsion fuel. Int Arch Occup Environ Health 2011; 85:353-61. [DOI: 10.1007/s00420-011-0676-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 06/22/2011] [Indexed: 11/30/2022]
|
5
|
Hilgaertner JW, He X, Camacho D, Badowski M, Witten M, Harris DT. The influence of hydrocarbon composition and exposure conditions on jet fuel-induced immunotoxicity. Toxicol Ind Health 2011; 27:887-98. [PMID: 21402657 DOI: 10.1177/0748233711399319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic jet fuel exposure could be detrimental to the health and well-being of exposed personnel, adversely affect their work performance and predispose these individuals to increased incidences of infectious disease, cancer and autoimmune disorders. Short-term (7 day) JP-8 jet fuel exposure has been shown to cause lung injury and immune dysfunction. Physiological alterations can be influenced not only by jet fuel exposure concentration (absolute amount), but also are dependent on the type of exposure (aerosol versus vapor) and the composition of the jet fuel (hydrocarbon composition). In the current study, these variables were examined with relation to effects of jet fuel exposure on immune function. It was discovered that real-time, in-line monitoring of jet fuel exposure resulted in aerosol exposure concentrations that were approximately one-eighth the concentration of previously reported exposure systems. Further, the effects of a synthetic jet fuel designed to eliminate polycyclic aromatic hydrocarbons were also examined. Both of these changes in exposure reduced but did not eliminate the deleterious effects on the immune system of exposed mice.
Collapse
Affiliation(s)
- Jianhua W Hilgaertner
- Department of Immunobiology, Medical Research Building, The University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
6
|
Kligerman AD, Prihoda TJ, Ullrich SE. Micronucleus studies in the peripheral blood and bone marrow of mice treated with jet fuels, JP-8 and Jet-A. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 608:82-7. [PMID: 16815737 DOI: 10.1016/j.mrgentox.2006.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 05/15/2006] [Accepted: 05/19/2006] [Indexed: 11/20/2022]
Abstract
The potential adverse effects of dermal and inhalation exposure of jet fuels are important for health hazard evaluation in humans. The genotoxic potential of jet fuels, JP-8 and Jet-A, was investigated in an animal model. Mice were treated dermally with either a single or multiple applications of these jet fuels. Peripheral blood and bone marrow smears were prepared to examine the incidence of micronuclei (MN) in polychromatic erythrocytes (PCEs). In all experiments, using several different exposure regimens, no statistically significant increase in the incidence of MN was observed in the bone marrow and/or peripheral blood of mice treated with JP-8 or Jet-A when compared with those of untreated control animals. The data in mice treated with a single dose of JP-8 or Jet-A did not confirm the small but statistically significant increase in micronuclei reported in our previous study.
Collapse
|
7
|
Cavallo D, Ursini CL, Carelli G, Iavicoli I, Ciervo A, Perniconi B, Rondinone B, Gismondi M, Iavicoli S. Occupational exposure in airport personnel: characterization and evaluation of genotoxic and oxidative effects. Toxicology 2006; 223:26-35. [PMID: 16621217 DOI: 10.1016/j.tox.2006.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 02/27/2006] [Accepted: 03/02/2006] [Indexed: 11/16/2022]
Abstract
Airport personnel can be exposed to several polycyclic aromatic hydrocarbons (PAHs) from jet fuel vapours, jet fuel combustion products and diesel exhaust. The aim of this study was to characterize the exposure and to evaluate genotoxic and oxidative effects in airport personnel (n=41) in comparison with a selected control group (n=31). Environmental monitoring of exposure was carried out analysing 23 PAHs on air samples collected from airport apron, airport building and terminal/office area during 5 working days. The urinary 1-hydroxy-pyrene (1-OHP) following 5 working days, was used as biomarker of exposure. Genotoxic effects and early direct-oxidative DNA damage were evaluated by micronucleus (MN) and Fpg-modified comet assay on lymphocytes and exfoliated buccal cells, and by chromosomal aberrations (CA) and sister chromatid exchange (SCE) analyses. For comet assay, tail moment (the product of comet relative tail intensity and length) values from Fpg-enzyme treated cells (TMenz) and from untreated cells (TM) were used as parameters of oxidative and direct DNA damage, respectively. We found 27,703 microg/m(3) total PAHs in airport apron, 17,275 microg/m(3) in airport building and 9,494 microg/m(3) in terminal/office area. Urinary OH-pyrene did not show differences between exposed and controls. The exposed group showed a higher mean value of SCE frequency in respect to controls (4.6 versus 3.8) and an increase (1.3-fold) of total structural CA in particular breaks (up to 2.0-fold) and fragments (0.32% versus 0.00%), whereas there were no differences of MN frequency in both cellular types. Comet assay evidenced in the exposed group a higher value in respect to controls of mean TM and TMenz in both exfoliated buccal cells (TM 118.87 versus 68.20, p=0.001; TMenz 146.11 versus 78.32, p<0.001) and lymphocytes (TM 43.01 versus 36.01, p=0.136; TMenz 55.86 versus 43.98, p=0.003). An oxidative DNA damage was found, for exfoliated buccal cells in the 9.7% and for lymphocytes in the 14.6% of exposed in respect to the absence in controls. Our findings furnish a useful contribution to the characterization of civil airport exposure and suggest the use of comet assay on exfoliated buccal cells to assess the occupational exposure to mixtures of inhalable pollutants at low doses since these cells represent the target tissue for this exposure and are obtained by non-invasive procedure.
Collapse
Affiliation(s)
- Delia Cavallo
- Department of Occupational Medicine, ISPESL-National Institute for Occupational Safety and Prevention, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Moneypenny CG, Shao J, Song Y, Gallagher EP. MLL rearrangements are induced by low doses of etoposide in human fetal hematopoietic stem cells. Carcinogenesis 2005; 27:874-81. [PMID: 16377807 DOI: 10.1093/carcin/bgi322] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During fetal development, the liver serves as the primary hematopoietic organ in which hematopoietic stem cells (HSC) comprise a large proportion of hepatic cell populations. Because HSC are capable of initiating long-term hematopoiesis, injury to these cells during pregnancy may play a role in the development of hematopoietic disorders manifested after birth. Of interest is the role of genetic injury to fetal HSC in the etiology of the infant acute leukemias, which are characterized by chromosomal rearrangements in the 11q23 region involving the mixed lineage leukemia (MLL) gene. These gene fusions also occur in leukemias in adults following chemotherapy with etoposide and other inhibitors of DNA topoisomerase II. We used etoposide as a model compound to determine the sensitivity of human fetal HSC to DNA damage and to determine whether we could induce MLL rearrangements in cultured human fetal HSC. Exposure of HSC to etoposide resulted in a dose-dependent loss of viability, with effects observed at low nanomolar concentrations. DNA strand breaks were observed on exposure to 140 nM etoposide, and higher etoposide concentrations stimulated an increase in early lymphoid populations and elicited G2/M cell cycle arrest. Immunophenotyping of MLL translocations revealed a significant increase in positive flow cytometry events at low etoposide concentrations and were consistent with MLL recombination. MLL translocations were confirmed using fluorescent in situ hybridization. In vitro inhibition of DNA topoisomerase II was observed at >or=25 microM etoposide, but was not evident at lower etoposide concentrations associated with DNA damage. Our data indicate that low acute doses of etoposide can cause DNA strand breaks and chromosomal rearrangements involving MLL in human fetal HSC. Ultimately, such injury may have ramifications with regards to transplacental exposures to environmental chemicals linked to the etiology of infant acute leukemias.
Collapse
Affiliation(s)
- Craig G Moneypenny
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | | | | | | |
Collapse
|
9
|
Larabee JL, Hocker JR, Lerner MR, Lightfoot SA, Cheung JY, Brackett DJ, Gallucci RM, Hanas JS. Stress induced in heart and other tissues by rat dermal exposure to JP-8 fuel. Cell Biol Toxicol 2005; 21:233-46. [PMID: 16323059 DOI: 10.1007/s10565-005-0007-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 08/23/2005] [Indexed: 12/01/2022]
Abstract
Limited information is available regarding the development of systemic organ stress by dermal exposure to JP-8 fuel. In this study, the systemic stress potential of this fuel is evaluated in a rat model subjected to dermal applications of JP-8 for 7 days at 300 microl per day. Tissue histology indicated that JP-8 induces morphological alterations that suggest that tissue stress in the heart is more substantial than stress in the kidney and liver. Immunoblot analysis of tissues revealed increased levels of the inducible heat shock protein 70 (HSP70) in the heart, kidney, and liver after this dermal JP-8 exposure. This exposure also leads to increased levels of heme oxygenase-1 (HO-1/HSP3) in the liver. Additionally during this exposure, a negative regulator of inflammation, IkappaBalpha (inhibitor of NF-kappaB), was increased in the liver, slightly increased in the kidney, and not increased in the heart. Two regions of the rat brain were also examined and HSP70 and IkappaBalpha were increased in the cerebellum but not significantly increased in the cortex. This study indicates dermal JP-8 exposure causes systemic alterations that are associated with cytoprotective activities (e.g., in the liver) as well as potentially toxic mechanisms (heart and kidney).
Collapse
Affiliation(s)
- J L Larabee
- Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Williams RD, Boros LG, Kolanko CJ, Jackman SM, Eggers TR. Chromosomal aberrations in human lymphocytes exposed to the anticholinesterase pesticide isofenphos with mechanisms of leukemogenesis. Leuk Res 2004; 28:947-58. [PMID: 15234572 DOI: 10.1016/j.leukres.2003.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 12/15/2003] [Indexed: 11/24/2022]
Abstract
Human lymphocytes were exposed to the leukemogenic pesticide isofenphos (IFP) to investigate its effects on chromosomal DNA and cholinergic homeostasis using cholinesterase activity as a marker. Isolated peripheral lymphocytes were administered concentrations of IFP ranging from 0.1 ng/ml to 10 microg/ml. The absence (Group 1) and presence (Group 2) of DNA repair inhibitors 4 mM hydroxyurea (HU), 40 microM cytosine arabinoside (ARA-C) and an NADPH regenerating system (NRS) (Group 3) were analyzed at 1, 6 and 24 h by single cell gel electrophoresis using the comet assay. Significant damage to DNA directly from IFP at 1 h by remarkably low concentrations was observed in Group 1, escalating in Group 2 with DNA repair inhibition, while Group 3 disruptions were highest due to the presence of the NRS P-450 microsomal fraction conducive to producing reactive IFP-oxon and N-desalkyl metabolites. The extent of DNA aberrations increased further in parallel within the groups at 6 and 24 h. Male and female chemical sensitivities were similar on average (P < 0.01). Cholinesterase activity measured in a satellite group was inhibited with 0.1 microg/ml IFP by 69, 62, and 48% at 1, 6, and 24 h, respectively, indicating gradual induction of compensatory synthesis. Restoration of cholinergic homeostasis may be exceptionally impaired at higher IFP concentrations from acetyl-CoA depletion [Leuk. Res. 25 (2001) 883]. In summary, these studies reveal that exposure to the organophosphate pesticide isofenphos induces human DNA mutation beyond endogenous repair capacity and disrupts cholinergic nuclear signaling affectively constructing the mutator phenotype of leukemogenesis.
Collapse
Affiliation(s)
- Robert D Williams
- CFE Toxicology, LLC, P.O. Box 275, Lewis Center, OH 43035-0275, USA.
| | | | | | | | | |
Collapse
|
11
|
Vijayalaxmi V, Kligerman AD, Prihoda TJ, Ullrich SE. Cytogenetic studies in mice treated with the jet fuels, Jet-A and JP-8. Cytogenet Genome Res 2004; 104:371-5. [PMID: 15162067 DOI: 10.1159/000077518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2003] [Accepted: 12/03/2003] [Indexed: 11/19/2022] Open
Abstract
The genotoxic potential of the jet fuels, Jet-A and JP-8, were examined in mice treated on the skin with a single dose of 240 mg/mouse. Peripheral blood smears were prepared at the start of the experiment (t = 0), and at 24, 48 and 72 h following treatment with jet fuels. Femoral bone marrow smears were made when all animals were sacrificed at 72 h. In both tissues, the extent of genotoxicity was determined from the incidence of micronuclei (MN) in polychromatic erythrocytes. The frequency of MN in the peripheral blood of mice treated with Jet-A and JP-8 increased over time and reached statistical significance at 72 h, as compared with concurrent control animals. The incidence of MN was also higher in bone marrow cells of mice exposed to Jet-A and JP-8 as compared with controls. Thus, at the dose tested, a small but significant genotoxic effect of jet fuels was observed in the blood and bone marrow cells of mice treated on the skin.
Collapse
Affiliation(s)
- V Vijayalaxmi
- Department of Radiation Oncology, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | | | | | | |
Collapse
|
12
|
Steinmaus C, Lu M, Todd RL, Smith AH. Probability estimates for the unique childhood leukemia cluster in Fallon, Nevada, and risks near other U.S. Military aviation facilities. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:766-71. [PMID: 15121523 PMCID: PMC1241974 DOI: 10.1289/ehp.6592] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A unique cluster of childhood leukemia has recently occurred around the city of Fallon in Churchill County, Nevada. From 1999 to 2001, 11 cases were diagnosed in this county of 23,982 people. Exposures related to a nearby naval air station such as jet fuel or an infectious agent carried by naval aviators have been hypothesized as potential causes. The possibility that the cluster could be attributed to chance was also considered. We used data from the Surveillance, Epidemiology, and End Results Program (SEER) to examine the likelihood that chance could explain this cluster. We also used SEER and California Cancer Registry data to evaluate rates of childhood leukemia in other U.S. counties with military aviation facilities. The age-standardized rate ratio (RR) in Churchill County was 12.0 [95% confidence interval (CI), 6.0-21.4; p = 4.3 times symbol 10(-9)]. A cluster of this magnitude would be expected to occur in the United States by chance about once every 22,000 years. The age-standardized RR for the five cases diagnosed after the cluster was first reported was 11.2 (95% CI, 3.6-26.3). In contrast, the incidence rate was not increased in all other U.S. counties with military aviation bases (RR = 1.04; 95% CI, 0.97-1.12) or in the subset of rural counties with military aviation bases (RR = 0.72; 95% CI, 0.48-1.08). These findings suggest that the Churchill County cluster was unlikely due to chance, but no general increase in childhood leukemia was found in other U.S. counties with military aviation bases.
Collapse
Affiliation(s)
- Craig Steinmaus
- Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, California 94760-7360, USA.
| | | | | | | |
Collapse
|
13
|
Rogers JV, Siegel GL, Pollard DL, Rooney AD, McDougal JN. The cytotoxicity of volatile JP-8 jet fuel components in keratinocytes. Toxicology 2004; 197:113-21. [PMID: 15003322 DOI: 10.1016/j.tox.2003.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2003] [Accepted: 12/10/2003] [Indexed: 11/23/2022]
Abstract
In vitro models are being used to evaluate the toxic and irritating effects of JP-8, a kerosene-based jet fuel. JP-8 components are volatile, which makes in vitro studies difficult to evaluate dose-response relationships due to changes in chemical dosimetry caused by evaporation from the exposure medium. An in vitro approach testing volatile chemical toxicity that we have recently developed was used to evaluate the toxicity of the JP-8 components m-xylene, 1-methylnaphthalene (1-MN), and n-nonane in keratinocytes. Partition coefficients were measured and used to estimate the chemical concentration in the keratinocytes. The EC50 for m-xylene and 1-MN decreased significantly (P < or = 0.05) at 1, 2, and 4h. For n-nonane, no significant decreases in the EC50 values were observed over time; marginal cytotoxicity of n-nonane in keratinocytes was observed at 1h. Within 4h, about 75-90% of each volatile chemical was observed to be lost from the exposure medium when tissues were exposed in unsealed 24-well plates. This decrease resulted in significantly higher medium chemical concentrations needed to obtain EC50 values when compared to tissues exposed in sealed vials. This study demonstrates that chemical evaporation during in vitro exposures can significantly affect toxicological endpoint measurements. Ultimately, relating target cell chemical concentration to cellular responses in vitro could be used in determining an equivalent external dose using a biologically-based mathematical model.
Collapse
Affiliation(s)
- James V Rogers
- Geo-Centers, Inc., 2856 G. Street, Wright-Patterson AFB, OH 45433, USA
| | | | | | | | | |
Collapse
|