1
|
Tekneci Sİ, Üstündağ A, Duydu Y. Optimization of concentrations and exposure durations of commonly used positive controls in the in vitro alkaline comet assay. Toxicol Res (Camb) 2024; 13:tfae195. [PMID: 39659849 PMCID: PMC11630343 DOI: 10.1093/toxres/tfae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/15/2024] [Indexed: 12/12/2024] Open
Abstract
Endogenous and exogenous factors cause DNA damage through chemical changes in the genomic DNA structure. The comet assay is a versatile, rapid, and sensitive method for evaluating DNA integrity at the individual cell level. It is used in human biomonitoring studies, the identification of DNA lesions, and the measurement of DNA repair capacity. Despite its widespread application, variations between studies remain problematic, often due to the lack of a common protocol and appropriate test controls. Using positive controls is essential to assess inter-experimental variability and ensure reliable results. Hydrogen peroxide (H2O2) is the most commonly used positive control, while potassium bromate (KBrO₃), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-ethyl-N-nitrosourea (ENU), and etoposide are used less frequently. However, differences in concentrations and exposure durations prevent the confirmation of test method efficacy. This study investigates the dose-response relationship for H2O2, KBrO3, MMS, EMS, ENU and etoposide in the comet assay for 30 and 60-minute exposure durations in 3T3 cell lines. Accordingly recommended concentrations and exposure durations were found to be 50 μM 30 minutes (H2O2); 500 μM 60 min. (MMS); 10 μM 30 min. (Etoposide); 0.2 mM 30 min. and 2 mM 60 min. (EMS); 2 mM 30 min. (ENU); 500 μM 30 min. and 50 μM 60 min. (KBrO3). Our findings will contribute to reducing inter-laboratory variability by offering guidance on selecting doses and exposure durations for positive controls in the in vitro alkaline comet assay.
Collapse
Affiliation(s)
- Seda İpek Tekneci
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06560, Ankara, Türkiye
- Ankara University, Graduate School of Health Sciences, 06110, Ankara, Türkiye
| | - Aylin Üstündağ
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06560, Ankara, Türkiye
| | - Yalçın Duydu
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06560, Ankara, Türkiye
| |
Collapse
|
2
|
Azqueta A, Stopper H, Zegura B, Dusinska M, Møller P. Do cytotoxicity and cell death cause false positive results in the in vitro comet assay? MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503520. [PMID: 36031332 DOI: 10.1016/j.mrgentox.2022.503520] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
The comet assay is used to measure DNA damage induced by chemical and physical agents. High concentrations of test agents may cause cytotoxicity or cell death, which may give rise to false positive results in the comet assay. Systematic studies on genotoxins and cytotoxins (i.e. non-genotoxic poisons) have attempted to establish a threshold of cytotoxicity or cell death by which DNA damage results measured by the comet assay could be regarded as a false positive result. Thresholds of cytotoxicity/cell death range from 20% to 50% in various publications. Curiously, a survey of the latest literature on comet assay results from cell culture studies suggests that one-third of publications did not assess cytotoxicity or cell death. We recommend that it should be mandatory to include results from at least one type of assay on cytotoxicity, cell death or cell proliferation in publications on comet assay results. A combination of cytotoxicity (or cell death) and proliferation (or colony forming efficiency assay) is preferable in actively proliferating cells because it covers more mechanisms of action. Applying a general threshold of cytotoxicity/cell death to all types of agents may not be applicable; however, 25% compared to the concurrent negative control seems to be a good starting value to avoid false positive comet assay results. Further research is needed to establish a threshold value to distinguish between true and potentially false positive genotoxic effects detected by the comet assay.
Collapse
Affiliation(s)
- Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Bojana Zegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen, Denmark
| |
Collapse
|
3
|
Aydin D, Yuksel B. Lessening the toxic effect of the methylisothiazolinone via vermicompost tea on Pisum sativum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50443-50453. [PMID: 35233668 DOI: 10.1007/s11356-022-19396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Biocides, which are found in nature as persistent pollutants, pose a great danger to the ecosystem. Methylisothiazolinone (MIT), a widely used biocide, reaches plants by mixing with water and soil. Vermicompost tea (VCT), which strengthens the plant defence mechanism and increases its growth and development, is a liquid fertiliser consisting of the cooperation of worms with microbes. In the present study, after applying 0.4 g/L (EC50/2), 0.8 g/L (EC50), and 1.6 g/L (EC50 × 2) MIT concentrations without and with VCT on forage pea (Pisum sativum), root lengths, mitotic index data, chromosome and nuclei abnormalities, and DNA damage level were determined. When VCT applied and non-applied groups were compared, it was found that, especially in the VCT applied group, they cope with the stress conditions created by MIT. In addition, positive effects were observed in root lengths, mitotic index data, and amount of cell nuclei abnormalities. In line with other study results, VCT reduces cellular damage by regulating the normal life cycle disrupted in the cell due to mutagens using the curative-regulatory feature.
Collapse
Affiliation(s)
- Duygu Aydin
- Department of Biology, Faculty of Literature and Science, Kocaeli University, 41380, Kocaeli, Turkey.
| | - Burcu Yuksel
- Medical Lab. Tech, Vocational School of Kocaeli Health Services, Kocaeli University, 41380, Kocaeli, Turkey
| |
Collapse
|
4
|
Oesch F, Fruth D, Hengstler JG, Fabian E, Berger FI, Landsiedel R. Enigmatic mechanism of the N-vinylpyrrolidone hepatocarcinogenicity in the rat. Arch Toxicol 2021; 95:3717-3744. [PMID: 34595563 PMCID: PMC8536644 DOI: 10.1007/s00204-021-03151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022]
Abstract
N-vinyl pyrrolidone (NVP) is produced up to several thousand tons per year as starting material for the production of polymers to be used in pharmaceutics, cosmetics and food technology. Upon inhalation NVP was carcinogenic in the rat, liver tumor formation is starting already at the rather low concentration of 5 ppm. Hence, differentiation whether NVP is a genotoxic carcinogen (presumed to generally have no dose threshold for the carcinogenic activity) or a non-genotoxic carcinogen (with a potentially definable threshold) is highly important. In the present study, therefore, the existing genotoxicity investigations on NVP (all showing consistently negative results) were extended and complemented with investigations on possible alternative mechanisms, which also all proved negative. All tests were performed in the same species (rat) using the same route of exposure (inhalation) and the same doses of NVP (5, 10 and 20 ppm) as had been used in the positive carcinogenicity test. Specifically, the tests included an ex vivo Comet assay (so far not available) and an ex vivo micronucleus test (in contrast to the already available micronucleus test in mice here in the same species and by the same route of application as in the bioassay which had shown the carcinogenicity), tests on oxidative stress (non-protein-bound sulfhydryls and glutathione recycling test), mechanisms mediated by hepatic receptors, the activation of which had been shown earlier to lead to carcinogenicity in some instances (Ah receptor, CAR, PXR, PPARα). No indications were obtained for any of the investigated mechanisms to be responsible for or to contribute to the observed carcinogenicity of NVP. The most important of these exclusions is genotoxicity. Thus, NVP can rightfully be regarded and treated as a non-genotoxic carcinogen and threshold approaches to the assessment of this chemical are supported. However, the mechanism underlying the carcinogenicity of NVP in rats remains unclear.
Collapse
Affiliation(s)
- Franz Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions GmbH&CoKG, Rheinblick 21, 55263, Ingelheim, Germany.,Institute of Toxicology, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Daniela Fruth
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany.,Knoell Germany GmbH, Eastsite XII, Konrad-Zuse-Ring 25, 68163, Mannheim, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), University of Dortmund, Dortmund, Germany
| | - Eric Fabian
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Franz Ingo Berger
- Regulatory Toxicology Chemicals, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany.
| |
Collapse
|
5
|
Blaszczyk A, Matysiak S, Kula J, Szostakiewicz K, Karkusiewicz Z. Cytotoxic and genotoxic effects of (R)- and (S)-ricinoleic acid derivatives. Chirality 2020; 32:998-1007. [PMID: 32250002 DOI: 10.1002/chir.23226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023]
Abstract
(R)-ricinoleic acid is the main component of castor oil from Ricinus communis L. Due to the presence of the hydroxyl group in homoallylic position and asymmetrically substituted carbon atom, it may undergo a number of chemical and biochemical transformations resulting in the products with some specific bioactivities. Conversion of (R)-ricinoleic acid into its (S)-enantiomer enables synthesis of both (R)- and (S)-ricinoleic acid derivatives and comparison of their biological activities. In the present research, (R)- and (S)-ricinoleic acid amides synthesized from methyl ricinoleates and ethanolamine or pyrrolidine as well as acetate derivatives of ethanolamine amides were studied to demonstrate their biological activities using HT29 cancer cells. Double staining of cells with fluorochromes (Hoechst 33258/propidium iodide) as well as 2,'7'-dichlorodihydrofluorescein (DCF) and comet assays were performed. Both the tested amides and acetates caused DNA damage and induced apoptotic and necrotic cell death. In the case of (R)- and (S)-enantiomers of one of the tested acetates, significant difference in the ability to induce DNA damage was observed, which showed the impact of the stereogenic center on the activities of these compounds.
Collapse
Affiliation(s)
- Alina Blaszczyk
- Laboratory of Cytogenetics, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sylwia Matysiak
- Faculty of Biotechnology and Food Sciences, Institute of General Food Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jozef Kula
- Faculty of Biotechnology and Food Sciences, Institute of General Food Chemistry, Lodz University of Technology, Lodz, Poland
| | - Katarzyna Szostakiewicz
- Laboratory of Cytogenetics, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Zaneta Karkusiewicz
- Laboratory of Cytogenetics, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Mottola F, Iovine C, Santonastaso M, Romeo ML, Pacifico S, Cobellis L, Rocco L. NPs-TiO 2 and Lincomycin Coexposure Induces DNA Damage in Cultured Human Amniotic Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1511. [PMID: 31652841 PMCID: PMC6915627 DOI: 10.3390/nano9111511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Titanium dioxide nanoparticles (NPs-TiO2 or TiO2-NPs) have been employed in many commercial products such as medicines, foods and cosmetics. TiO2-NPs are able to carry antibiotics to target cells enhancing the antimicrobial efficiency; so that these nanoparticles are generally used in antibiotic capsules, like lincomycin, added as a dye. Lincomycin is usually used to treat pregnancy bacterial vaginosis and its combination with TiO2-NPs arises questions on the potential effects on fetus health. This study investigated the potential impact of TiO2-NPs and lincomycin co-exposure on human amniocytes in vitro. Cytotoxicity was evaluated with trypan blue vitality test, while genotoxic damage was performed by Comet Test, Diffusion Assay and RAPD-PCR for 48 and 72 exposure hours. Lincomycin exposure produced no genotoxic effects on amniotic cells, instead, the TiO2-NPs exposure induced genotoxicity. TiO2-NPs and lincomycin co-exposure caused significant increase of DNA fragmentation, apoptosis and DNA damage in amniocytes starting from 48 exposure hours. These results contribute to monitor the use of TiO2-NPs combined with drugs in medical application. The potential impact of antibiotics with TiO2-NPs during pregnancy could be associated with adverse effects on embryo DNA. The use of nanomaterials in drugs formulation should be strictly controlled in order to minimize risks.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Marianna Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Maria Luisa Romeo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Luigi Cobellis
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
- Sant' Anna e San Sebastiano Hospital, 81100 Caserta, Italy.
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
7
|
Ghosh I, Mukherjee A, Mukherjee A. Nanoscale zerovalent iron particles induce differential cytotoxicity, genotoxicity, oxidative stress and hemolytic responses in human lymphocytes and erythrocytes in vitro. J Appl Toxicol 2019; 39:1623-1639. [PMID: 31355497 DOI: 10.1002/jat.3843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
The growing usage of nanoscale zerovalent iron particles (nZVI) in the remediation of soil, ground/surface water has elicited large-scale environmental release triggering human exposure. The size of nanomaterials is a key regulator of toxicity. However, the effect of a variable size of nZVI on genotoxicity is unexplored in human cells. To the best of our knowledge, in this study, the cytotoxic, genotoxic and hemolytic potential of nZVI-1 (15 nm) and nZVI-2 (50 nm) at concentrations of 5, 10 and 20 μg/mL was evaluated for the first time in human lymphocytes and erythrocytes treated for 3 hours. In erythrocytes, spherocytosis and echinocytosis occurred upon exposure to nZVI-1 and nZVI-2, respectively, leading to hemolysis. Lymphocytes treated with 20 μg/mL nZVI-2 and 10 μg/mL nZVI-1, incurred maximum DNA damage, although nZVI-2 induced higher cyto-genotoxicity than nZVI-1. This can be attributed to higher Fe ion dissolution and time/concentration-dependent colloidal destabilization (lower zeta potential) of nZVI-2. Although nZVI-1 showed higher uptake, its lower genotoxicity can be due to lesser Fe content, Fe ion dissolution and superior colloidal stability (higher zeta potential) compared with nZVI-2. Substantial accumulation of Ca2+ , superoxide anions, hydroxyl radicals and H2 O2 leading to mitochondrial impairment and altered antioxidant enzyme activity was noted at the same concentrations. Pre-treatment with N-acetyl-cysteine modulated these parameters indicating the indirect action of reactive oxygen species in nZVI-induced DNA damage. The morphology of diffused nuclei implied the possible onset of apoptotic cell death. These results validate the synergistic role of size, ion dissolution, colloidal stability and reactive oxygen species on cyto-genotoxicity of nZVI and unlock further prospects in its environmental nano-safety evaluation.
Collapse
Affiliation(s)
- Ilika Ghosh
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advance Study, Department of Botany, University of Calcutta, Kolkata, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advance Study, Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
8
|
Santos SW, Cachot J, Gourves PY, Clérandeau C, Morin B, Gonzalez P. Sub-lethal effects of waterborne copper in early developmental stages of rainbow trout (Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:778-788. [PMID: 30593991 DOI: 10.1016/j.ecoenv.2018.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
The aim of this work was to study the impact of copper during a sub-chronic exposure to environmental concentrations in the early life stages of rainbow trout (Oncorhynchus mykiss). Eyed-stage embryos of rainbow trout, at 265 °D, were exposed in semi-static conditions to sub-lethal concentrations of CuSO4 up to the larval stage (528 °D) under laboratory-controlled conditions. During 3 weeks, they were exposed to the environmentally-realistic concentration of 2 µg/L Cu and to a 10-fold higher concentration, 20 µg/L Cu. Several biological (survival, hatching success, malformation, growth) and behavioral (swimming activity) and molecular endpoints (genotoxicity and gene transcription) were studied. Exposure to 20 µg/L Cu had an inhibitory effect on hatching and increased half-hatched embryos (25%). At the end of the exposure, no significant differences were observed in growth of the larvae exposed to the highest Cu concentration. However, larvae exposed to 2 µg/L Cu exhibited increased growth in comparison with non-exposed larvae. The percentage of malformed larvae was significantly higher for both copper conditions, with skeletal malformations being the most observed. Expression of several genes was evaluated in whole larvae using quantitative real-time PCR. Genes involved in detoxification (gst, mt1 and mt2) and in cell cycle arrest (p53) were significantly repressed in both copper conditions when compared to control. In addition, potential genotoxic effects on larvae were investigated by the comet assay on blood cells, but this test did not demonstrate any significant DNA damage on larvae exposed to copper. This study confirms the adverse effects of copper on early life stages of rainbow trout even at the lowest environmentally relevant tested concentration.
Collapse
Affiliation(s)
- Shannon Weeks Santos
- UMR CNRS 5805 EPOC, University of Bordeaux, Avenue des Facultés, 33405 Talence Cedex, France
| | - Jérôme Cachot
- UMR CNRS 5805 EPOC, University of Bordeaux, Avenue des Facultés, 33405 Talence Cedex, France
| | - Pierre-Yves Gourves
- UMR CNRS 5805 EPOC, University of Bordeaux, Place du Dr B. Peyneau, 33120 Arcachon, France
| | - Christelle Clérandeau
- UMR CNRS 5805 EPOC, University of Bordeaux, Avenue des Facultés, 33405 Talence Cedex, France
| | - Bénédicte Morin
- UMR CNRS 5805 EPOC, University of Bordeaux, Avenue des Facultés, 33405 Talence Cedex, France
| | - Patrice Gonzalez
- UMR CNRS 5805 EPOC, University of Bordeaux, Place du Dr B. Peyneau, 33120 Arcachon, France.
| |
Collapse
|
9
|
Yang Y, Liu W, Wang J, Zhang Y, Xu W, Tao L. The different effects of natural pyrethrins and beta-cypermethrin on human hepatocyte QSG7701 cells by ROS-mediated oxidative damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24230-24240. [PMID: 29948706 DOI: 10.1007/s11356-018-2503-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
With the widespread use of natural pyrethrins and pyrethroids to defend pest insects, people had the sustained interest in the potential risk to environment and human health. However, the research about natural pyrethrins and beta-cypermethrin induction of cytotoxicity is still seldom. This study is about the cytotoxic effects of these on human non-target cells in vitro. The cytotoxic effect of natural pyrethrins and beta-cypermethrin on QSG7701 cells were researched by using various bioassays in vitro. The results suggested that with the natural pyrethrin concentration increased, the viability of QSG7701 cells were inhibited increasingly, and the IC50 value as calculated was approximately 42.54 and 18.68 μg/mL after the cells were treated 24 and 48 h. The proliferative potential of QSG7701 cells treated with 40 μg/mL natural pyrethrins 6 and 12 h was decreased by 67.44 and 94.74%, dramatic enhancement ROS, collapse of mitochondrial membrane potential, DNA exhibit severity of impairment, and chromatin DNA condensation. However, beta-cypermethrin has lower toxicity than natural pyrethrins. The IC50 values of beta-cypermethrin were all > 80 μg/mL, and the colony formation expression was decreased by 15.26 and 19.09%, which implied that natural pyrethrins are more significantly cytotoxic and potentially genotoxic to human hepatocyte cells.
Collapse
Affiliation(s)
- Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjing Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Wang
- Medicine Hospital Imaging Center, Wei fang traditional Chinese hospital, Shandong, 261000, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
10
|
Zhanataev AK, Anisina EA, Chayka ZV, Miroshkina IA, Durnev AD. The phenomenon of atypical DNA comets. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1990519x17040113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Sestili P, Calcabrini C, Diaz AR, Fimognari C, Stocchi V. The Fast-Halo Assay for the Detection of DNA Damage. Methods Mol Biol 2017; 1644:75-93. [PMID: 28710754 DOI: 10.1007/978-1-4939-7187-9_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The need for express screening of the DNA damaging potential of chemicals has progressively increased over the past 20 years due to the wide number of new synthetic molecules to be evaluated, as well as the adoption of more stringent chemical regulations such as the EU REACH and risk reduction politics. In this regard, DNA diffusion assays such as the microelectrophoretic comet assay paved the way for rapid genotoxicity testing. A more significant simplification and speeding up of the experimental processes was achieved with the fast halo assay (FHA) described in the present chapter. FHA operates at the single cell level and relies on radial dispersion of the fragments of damaged DNA from intact nuclear DNA. The fragmented DNA is separated by diffusion in an alkaline solvent and is stained, visualized, and finally quantified using computer-assisted image analysis programs. This permits the rapid assessment of the extent of DNA breakage caused by different types of DNA lesions. FHA has proven to be sensitive, reliable, and flexible. This is currently one of the simplest, cheapest, and quickest assays for studying DNA damage and repair in living cells. It does not need expensive reagents or electrophoretic equipment and requires only 40 min to prepare samples for computer-based quantification. This technique can be particularly useful in rapid genotoxicity assessments and in high-throughput genotoxicity screenings.
Collapse
Affiliation(s)
- Piero Sestili
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Saffi, 2, 61029, Urbino, Italy.
| | - Cinzia Calcabrini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Saffi, 2, 61029, Urbino, Italy
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum - Università di Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Anna Rita Diaz
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Saffi, 2, 61029, Urbino, Italy
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum - Università di Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Vilberto Stocchi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Saffi, 2, 61029, Urbino, Italy
| |
Collapse
|
12
|
Leite ADL, Santiago JF, Levy FM, Maria AG, Fernandes MDS, Salvadori DMF, Ribeiro DA, Buzalaf MAR. Absence of DNA damage in multiple organs (blood, liver, kidney, thyroid gland and urinary bladder) after acute fluoride exposure in rats. Hum Exp Toxicol 2016; 26:435-40. [PMID: 17623768 DOI: 10.1177/0960327107076288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluoride has been widely used in dentistry as a caries prophylactic agent. However, there has been some speculation that excess fluoride could cause an impact on genome integrity. In the current study, the potential DNA damage associated with exposure to fluoride was assessed in cells of blood, liver, kidney, thyroid gland and urinary bladder by the single cell gel (comet) assay. Male Wistar rats aging 75 days were distributed into seven groups: Groups 1 (control), 2, 3, 4, 5, 6 and 7 received 0 (deionized water), 10, 20, 40, 60, 80 and 100 mgF/Kg body weight from sodium fluoride (NaF), respectively, by gastrogavage. These groups were killed at 2 h after the administration of the fluoride doses. The level of DNA strand breaks did not increase in all organs evaluated and at all doses of NaF tested, as depicted by the mean tail moment. Taken together, our results suggest that oral exposure to NaF did not result in systemic genotoxic effect in multiple organs related to fluoride toxicity. Since DNA damage is an important step in events leading to carcinogenesis, this study represents a relevant contribution to the correct evaluation of the potential health risk associated with chemical exposure. Human & Experimental Toxicology ( 2007) 26, 435—440
Collapse
Affiliation(s)
- Aline de Lima Leite
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, USP, 17012-901 Bauru, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Guérard M, Marchand C, Plappert-Helbig U. Influence of experimental conditions on data variability in the liver comet assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:114-121. [PMID: 24346955 DOI: 10.1002/em.21835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
The in vivo comet assay has increasingly been used for regulatory genotoxicity testing in recent years. While it has been demonstrated that the experimental execution of the assay, for example, electrophoresis or scoring, can have a strong impact on the results; little is known on how initial steps, that is, from tissue sampling during necropsy up to slide preparation, can influence the comet assay results. Therefore, we investigated which of the multitude of steps in processing the liver for the comet assay are most critical. All together eight parameters were assessed by using liver samples of untreated animals. In addition, two of those parameters (temperature and storage time of liver before embedding into agarose) were further investigated in animals given a single oral dose of ethyl methanesulfonate at dose levels of 50, 100, and 200 mg/kg, 3 hr prior to necropsy. The results showed that sample cooling emerged as the predominant influence factor, whereas variations in other elements of the procedure (e.g., size of the liver piece sampled, time needed to process the liver tissue post-mortem, agarose temperature, or time of lysis) seem to be of little relevance. Storing of liver samples of up to 6 hr under cooled conditions did not cause an increase in tail intensity. In contrast, storing the tissue at room temperature, resulted in a considerable time-dependent increase in comet parameters.
Collapse
Affiliation(s)
- M Guérard
- pRED, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | |
Collapse
|
14
|
Sestili P, Fimognari C. Alkaline nuclear dispersion assays for the determination of DNA damage at the single cell level. Methods Mol Biol 2014; 1094:49-70. [PMID: 24162979 DOI: 10.1007/978-1-62703-706-8_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Over the past three decades the development of methods for visualizing at the cell level the extent of DNA breakage significantly contributed to genotoxicity testing: their availability greatly improved the knowledge in the field of genetic toxicology. These procedures are based on the separation and visualization of DNA fragments resulting from cleavage of nuclear DNA. The separation process can be obtained either electrically (comet assay, linear migration of DNA fragments) or chemically (alkaline dispersion assays, radial diffusion of DNA fragments). Once separated and stained, intact and fragmented DNA can be observed with fluorescence or light microscope. Appropriate computer-assisted image analysis allows quantitative determination of the extent of DNA breakage. These procedures have been proven to be sensitive, flexible, and reliable, and, as compared to former methods, they are simpler, are less time and money consuming, and have the unique capability of detecting DNA damage at the single cell level. This last feature has the additional advantage of allowing the identification of cellular subpopulations characterized by different sensitivity to the damaging agent. The fast halo assay (FHA) is currently the simplest and quickest nuclear dispersion assay; recent modifications of FHA have further improved the assay and pave the way to a full exploitation of its analytical potential. In this chapter the development, procedures, applications, and limits of these dispersion assays, with a particular focus on FHA, will be illustrated.
Collapse
Affiliation(s)
- Piero Sestili
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | | |
Collapse
|
15
|
Kido HW, Ribeiro DA, de Oliveira P, Parizotto NA, Camilo CC, Fortulan CA, Marcantonio E, da Silva VHP, Renno ACM. Biocompatibility of a porous alumina ceramic scaffold coated with hydroxyapatite and bioglass. J Biomed Mater Res A 2013; 102:2072-8. [PMID: 23894045 DOI: 10.1002/jbm.a.34877] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/21/2013] [Accepted: 07/12/2013] [Indexed: 11/08/2022]
Abstract
This study aimed to evaluate the osteointegration and genotoxic potential of a bioactive scaffold, composed of alumina and coated with hydroxyapatite and bioglass, after their implantation in tibias of rats. For this purpose, Wistar rats underwent surgery to induce a tibial bone defect, which was filled with the bioactive scaffolds. Histology analysis (descriptive and morphometry) of the bone tissue and the single-cell gel assay (comet) in multiple organs (blood, liver, and kidney) were used to reach this aim after a period of 30, 60, 90, and 180 days of material implantation. The main findings showed that the incorporation of hydroxyapatite and bioglass in the alumina scaffolds produced a suitable environment for bone ingrowth in the tibial defects and did not demonstrate any genotoxicity in the organs evaluated in all experimental periods. These results clearly indicate that the bioactive scaffolds used in this study present osteogenic potential and still exhibit local and systemic biocompatibility. These findings are promising once they convey important information about the behavior of this novel biomaterial in biological system and highlight its possible clinical application.
Collapse
Affiliation(s)
- Hueliton Wilian Kido
- Department of Physiotherapy, Post-Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lorenzo Y, Costa S, Collins AR, Azqueta A. The comet assay, DNA damage, DNA repair and cytotoxicity: hedgehogs are not always dead. Mutagenesis 2013; 28:427-32. [PMID: 23630247 DOI: 10.1093/mutage/get018] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA damage is commonly measured at the level of individual cells using the so-called comet assay (single-cell gel electrophoresis). As the frequency of DNA breaks increases, so does the fraction of the DNA extending towards the anode, forming the comet tail. Comets with almost all DNA in the tail are often referred to as 'hedgehog' comets and are widely assumed to represent apoptotic cells. We review the literature and present theoretical and empirical arguments against this interpretation. The level of DNA damage in these comets is far less than the massive fragmentation that occurs in apoptosis. 'Hedgehog' comets are formed after moderate exposure of cells to, for example, H2O2, but if the cells are incubated for a short period, 'hedgehogs' are no longer seen. We confirm that this is not because DNA has degraded further and been lost from the gel, but because the DNA is repaired. The comet assay may detect the earliest stages of apoptosis, but as it proceeds, comets disappear in a smear of unattached DNA. It is clear that 'hedgehogs' can correspond to one level on a continuum of genotoxic damage, are not diagnostic of apoptosis and should not be regarded as an indicator of cytotoxicity.
Collapse
Affiliation(s)
- Yolanda Lorenzo
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
17
|
Recommendations for safety testing with the in vivo comet assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:142-156. [DOI: 10.1016/j.mrgentox.2012.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 01/08/2023]
|
18
|
Barjhoux I, Baudrimont M, Morin B, Landi L, Gonzalez P, Cachot J. Effects of copper and cadmium spiked-sediments on embryonic development of Japanese medaka (Oryzias latipes). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 79:272-282. [PMID: 22296881 DOI: 10.1016/j.ecoenv.2012.01.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 05/24/2023]
Abstract
Because of their high capacity to accumulate contaminants such as persistent organic pollutants and heavy metals, aquatic sediments are considered as a long-term source of contamination for aquatic organisms. In compliance with the increasing interest both for sediment quality evaluation and the use of fish early life stage (ELS) toxicity assays, we proposed an embryo-larval test to evaluate embryotoxicity and genotoxicity of sediment-bound contaminants. Pre-blastula stage medaka (Oryzias latipes) embryos were exposed by static sediment contact to two model heavy metals (cadmium and copper) at environmental concentrations during the whole 10-day embryonic development. Lethal and sub-lethal effects were recorded in both embryos and larvae for 20 days post fertilisation (dpf) using several global toxicity and phenotypic endpoints. The comet assay was also performed on medaka prolarvae to evaluate genotoxic effects of the tested chemicals. Environmental concentrations of cadmium (Cd) and copper (Cu) did not affect embryo and larval survival. However, both heavy metals significantly induced morphological abnormalities, particularly spinal and cardiovascular deformities. Cd but not Cu induced tachycardia. Both heavy metals induced a significant increase in DNA damage at all tested concentrations. Resulting LOEC values for Cd and Cu corresponded to 1.9 and 8.5 μg/g d.w. sediment, respectively. Although metal bioavailability is probably lower for naturally contaminated sediments, the relatively low toxicity thresholds for both Cd and Cu raise the question of possible risk for fish embryos developing in direct contact to sediments. This study demonstrates the applicability, sensitivity and relevance of the Japanese medaka embryo-larval assay (MELA) to evaluate sediment hazardous potency at environmental concentrations of heavy metals.
Collapse
Affiliation(s)
- Iris Barjhoux
- Univ. Bordeaux, EPOC/LPTC, UMR 5805, F-33400 Talence, France
| | | | - Bénédicte Morin
- Univ. Bordeaux, EPOC/LPTC, UMR 5805, F-33400 Talence, France
| | - Laure Landi
- Univ. Bordeaux, EPOC/LPTC, UMR 5805, F-33400 Talence, France
| | | | - Jérôme Cachot
- Univ. Bordeaux, EPOC/LPTC, UMR 5805, F-33400 Talence, France.
| |
Collapse
|
19
|
Speit G, Rothfuss A. The comet assay: a sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol 2012; 920:79-90. [PMID: 22941597 DOI: 10.1007/978-1-61779-998-3_6] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The comet assay (single-cell gel electrophoresis) is a simple and sensitive method for studying DNA damage and repair. In this microgel electrophoresis technique, a small number of cells suspended in a thin agarose gel on a microscope slide is lysed, electrophoresed, and stained with a fluorescent DNA-binding dye. Cells with increased DNA damage display increased migration of chromosomal DNA from the nucleus towards the anode, which resembles the shape of a comet. The assay has manifold applications in fundamental research for DNA damage and repair, in genotoxicity testing of novel chemicals and pharmaceuticals, environmental biomonitoring, and human population monitoring. This chapter describes a standard protocol of the alkaline comet assay and points to some useful modifications.
Collapse
Affiliation(s)
- Günter Speit
- Institut für Humangenetik, Universität Ulm, Ulm, Germany.
| | | |
Collapse
|
20
|
Detection of DNA damage in yolk-sac larvae of the Japanese Medaka, Oryzias latipes, by the comet assay. Anal Bioanal Chem 2011; 399:2235-42. [DOI: 10.1007/s00216-010-4602-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/19/2010] [Accepted: 12/13/2010] [Indexed: 11/27/2022]
|
21
|
A strategy to study genotoxicity: application to aquatic toxins, limits and solutions. Anal Bioanal Chem 2010; 397:1715-22. [DOI: 10.1007/s00216-010-3699-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/24/2010] [Accepted: 03/29/2010] [Indexed: 11/25/2022]
|
22
|
Pereira CSA, Guilherme SIAG, Barroso CMM, Verschaeve L, Pacheco MGG, Mendo SALV. Evaluation of DNA damage induced by environmental exposure to mercury in Liza aurata using the comet assay. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 58:112-122. [PMID: 19458991 DOI: 10.1007/s00244-009-9330-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 04/27/2009] [Indexed: 05/27/2023]
Abstract
Mercury (Hg) is one of the major aquatic contaminants even though emissions have been reduced over the years. Despite the relative abundance of investigations carried out on Hg toxicity, there is a scarcity of studies on its DNA damaging effects in fish under realistic exposure conditions. This study assessed the Hg genotoxicity in Golden grey mullets (Liza aurata) at Laranjo basin, a particularly contaminated area of Ria de Aveiro (Portugal) well known for its Hg contamination gradient. (1) Fish were seasonally caught at Laranjo basin and at a reference site (S. Jacinto), and (2) animals from the reference site were transplanted and caged (at bottom and surface), for 3 days, in two different locations within Laranjo basin. Using the comet assay, blood was analyzed for genetic damage and apoptotic cell frequency. The seasonal survey showed greater DNA damage in the Hg-contaminated area for all sampling seasons excluding winter. The temporal variation pattern of DNA lesions was: summer approximately autumn > winter > spring. Fish caged at Laranjo also exhibited greater DNA damage than those caged at the reference site, highlighting the importance of gill uptake on the toxicity of this metal. No increased susceptibility to apoptosis was detected in either wild or caged fish, indicating that mercury damages DNA of blood cells by a nonapoptotic mechanism. Both L. aurata and the comet assay proved to be sensitive and suitable for genotoxicity biomonitoring in mercury-contaminated coastal systems.
Collapse
Affiliation(s)
- Carla Sofia Alves Pereira
- CESAM & Department of Biology, University of Aveiro, Campus universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
23
|
Vasquez MZ. Combining the in vivo comet and micronucleus assays: a practical approach to genotoxicity testing and data interpretation. Mutagenesis 2009; 25:187-99. [PMID: 19969526 PMCID: PMC2825345 DOI: 10.1093/mutage/gep060] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite regulatory directives requiring the reduction of animal use in safety testing, recent modifications to genotoxicity testing guidelines now propose the use of two in vivo genotoxicity assays as a follow-up to an in vitro positive (International Conference on Harmonization Consensus Draft Guidance S2[R1] released March, 2008). To address both goals, the in vivo comet and micronucleus (MN) assays can be successfully combined into one informative study. Combining these two assays with such differences in sensitivity, endpoints measured and the type of data generated significantly improves upon the current standard capabilities for detecting genotoxicity without requiring additional animals. But to take full advantage of the benefits of incorporating the comet assay in safety testing, these same differences must be recognized and considered. Developed from over 15 years experience using the in vivo comet and MN assays in genotoxicity testing of chemicals and pharmaceuticals, this paper presents guidelines for the appropriate experimental design, dose selection and data interpretation for combined in vivo comet/MN assay studies. To illustrate the approach, data from combined assay studies are presented and discussed.
Collapse
|
24
|
Affiliation(s)
- Elizabeth D. Wagner
- Department of Crop Sciences College of Agricultural Consumer and Environmental Sciences University of Illinois at Urbana-Champaign 366 NSRC MC-635, 1101 West Peabody Drive Urbana IL 61801 USA
| | - Michael J. Plewa
- Department of Crop Sciences College of Agricultural Consumer and Environmental Sciences University of Illinois at Urbana-Champaign 366 NSRC MC-635, 1101 West Peabody Drive Urbana IL 61801 USA
| |
Collapse
|
25
|
Epigallocatechin-3-gallate reduces DNA damage induced by benzo[a]pyrene diol epoxide and cigarette smoke condensate in human mucosa tissue cultures. Eur J Cancer Prev 2009; 18:230-5. [PMID: 19491610 DOI: 10.1097/cej.0b013e32831bc3a0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although epidemiological studies indicate cancer preventive effects of diets rich in fruit and vegetables, large clinical intervention studies conducted to evaluate dietary supplementation with micronutrients, mostly vitamins, showed disappointing results in large parts. In contrast, there is encouraging epidemiologic data indicating great chemopreventive potential of a large group of phytochemicals, namely polyphenols. This study shows the DNA protective effect epigallocatechin-3-gallate, a tea catechin, and one of the best-studied substances within this group, on carcinogen-induced DNA fragmentation in upper aerodigestive tract cells. Cell cultures from fresh oropharyngeal mucosa biopsies were preincubated with epigallocatechin-3-gallate in different concentrations before DNA damage was introduced with the metabolically activated carcinogen benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide or cigarette smoke condensate. Effects on resulting DNA fragmentation were measured using the alkaline single-cell microgel electrophoresis (comet assay). Epigallocatechin-3-gallate significantly reduced benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced DNA damage by up to 51% (P<0.001). Fragmentation induced by cigarette smoke condensate could be lowered by 47% (P<0.001). Data suggest a cancer preventive potential of epigallocatechin-3-gallate as demonstrated on a subcellular level. An additional mechanism of tea catechin action is revealed by using a primary mucosa culture model.
Collapse
|
26
|
Abstract
The detection of breaks in mammalian cell DNA and the measurement of their repair represent primary endpoints for genotoxicity testing. Over the past three decades many techniques sensitive to the presence of DNA breaks have been developed: their availability significantly increased the knowledge in the area of genetic toxicology. In general, these techniques have evolved to become more sensitive and flexible as well as less complicated. The fast-halo assay (FHA) is a very recent method to detect DNA-strand breakage induced either by various genotoxic agents or secondary to apoptotic DNA cleavage, and to study the repair of primary DNA breaks at the single-cell level. In FHA, damaged DNA is separated from intact one by means of solvent gradient, stained with ethidium bromide and visualized under a fluorescence microscope. The level of DNA breaks is then determined with an image analysis software. FHA is as sensitive, reliable, and flexible as the well-established comet assay, but it has the advantage of being, as compared to any other existing method, the most rapid and less expensive one. Taken collectively, these unique features render FHA the ideal method to perform a large number of genotoxicity tests on mammalian cells in a particularly cost-effective and time-saving manner.
Collapse
Affiliation(s)
- Piero Sestili
- Istituto di Ricerca sull'Attività Motoria, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
27
|
“Risk assessment of oral cancer in patients with pre-cancerous states of the oral cavity using micronucleus test and challenge assay” [Saran R, Tiwari RK, Reddy PP, Ahuja YR. Oral Oncol 2008;44:354–60]. Oral Oncol 2008; 44:716-7. [DOI: 10.1016/j.oraloncology.2007.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 12/11/2007] [Accepted: 12/11/2007] [Indexed: 11/22/2022]
|
28
|
Da Silva GN, De Camargo EA, Salvadori DMF, Ribeiro DA. Genetic damage in human peripheral lymphocytes exposed to antimicrobial endodontic agents. ACTA ACUST UNITED AC 2007; 104:e58-61. [PMID: 17560139 DOI: 10.1016/j.tripleo.2007.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Formocresol, paramonochlorophenol, or calcium hydroxide have been widely used in dental practice to eradicate bacteria and consequently to produce root canal disinfection. Taking into consideration strong evidence for a relationship between DNA damage and carcinogenesis, the purpose of the present study was to evaluate the genotoxic effects of antimicrobial endodontic compounds in human peripheral lymphocytes by single-cell gel (comet) assay. This technique detects DNA strand breaks in individual cells. STUDY DESIGN A total of 10 microL of the tested substance solution (formocreso1, paramonochlorofeno1, and calcium hydroxide at 100-microg/mL concentration) was added to human peripheral lymphocytes from 10 volunteers for 1 hour at 37 degrees C. The negative control group was treated with vehicle control (PBS) for 1 hour at 37 degrees C, as well. For the positive control group, lymphocytes were exposed to hydrogen peroxide at 100 microM during 5 minutes on ice. RESULTS No DNA breakage was detected after a treatment of peripheral lymphocytes by formocresol, paramonochlorophenol, or calcium hydroxide at 100 microg/mL. CONCLUSIONS In summary, our results indicate that exposure to formocresol, paramonochlorophenol, or calcium hydroxide may not be a factor that increases the level of DNA lesions in human peripheral lymphocytes as detected by single-cell gel (comet) assay.
Collapse
Affiliation(s)
- Glenda N Da Silva
- Department of Pathology, Botucatu Medical School, Sao Paulo State University, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
29
|
Nesslany F, Zennouche N, Simar-Meintières S, Talahari I, Nkili-Mboui EN, Marzin D. In vivo Comet assay on isolated kidney cells to distinguish genotoxic carcinogens from epigenetic carcinogens or cytotoxic compounds. Mutat Res 2007; 630:28-41. [PMID: 17507283 DOI: 10.1016/j.mrgentox.2007.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 12/18/2006] [Accepted: 02/25/2007] [Indexed: 02/02/2023]
Abstract
The objective of this study was to determine the ability of the alkaline in vivo Comet assay (pH>13) to distinguish genotoxic carcinogens from epigenetic carcinogens when performed on freshly isolated kidney cells and to determine the possible interference of cytotoxicity by assessing DNA damage induced by renal genotoxic, epigenetic or toxic compounds after enzymatic isolation of kidney cells from OFA Sprague-Dawley male rats. The ability of the Comet assay to distinguish (1) genotoxicity versus cytotoxicity and (2) genotoxic versus non-genotoxic (epigenetic) carcinogens, was thus investigated by studying five known genotoxic renal carcinogens acting through diverse mechanisms of action, i.e. streptozotocin, aristolochic acids, 2-nitroanisole, potassium bromate and cisplatin, two rodent renal epigenetic carcinogens: d-limonene and ciclosporine and two nephrotoxic compounds: streptomycin and indomethacin. Animals were treated once with the test compound by the appropriate route of administration and genotoxic effects were measured at the two sampling times of 3-6 and 22-26h after treatment. Regarding the tissue processing, the limited background level of DNA migration observed in the negative control groups throughout all experiments demonstrated that the enzymatic isolation method implemented in the current study is appropriate. On the other hand, streptozotocin, 20mg/kg, used as positive reference control concurrently to each assay, caused a clear increase in the mean Olive Tail Moment median value, which allows validating the current methodology. Under these experimental conditions, the in vivo rodent Comet assay demonstrated good sensitivity and good specificity: all the five renal genotoxic carcinogens were clearly detected in at least one expression period either directly or indirectly, as in the case of cisplatin: for this cross-linking agent, the significant decrease in DNA migration observed under standard electrophoresis conditions was clearly amplified when the duration of electrophoresis was increased up to 40min. In contrast, epigenetic and nephrotoxic compounds failed to induce any signifcant increase in DNA migration. In conclusion, the in vivo rodent Comet assay performed on isolated kidney cells could be used as a tool to investigate the genotoxic potential of a test compound if neoplasic/preneoplasic changes occur after subchronic or chronic treatments, in order to determine the role of genotoxicity in tumor induction. Moreover, the epigenetic carcinogens and cytotoxic compounds displayed clearly negative responses in this study. These results allow excluding a DNA direct-acting mechanism of action and can thus suggest that a threshold exists. Therefore, the current in vivo rodent Comet assay could contribute to elucidate an epigenetic mechanism and thus, to undertake a risk assessment associated with human use, depending on the exposure level.
Collapse
Affiliation(s)
- Fabrice Nesslany
- Laboratoire de Toxicologie Génétique - Institut Pasteur de Lille, 1, rue du Professeur Calmette, 59019 Lille, Cedex, France
| | | | | | | | | | | |
Collapse
|
30
|
Grassi TF, Camargo EA, Salvadori DMF, Marques MEA, Ribeiro DA. DNA damage in multiple organs after exposure to chlorhexidine in Wistar rats. Int J Hyg Environ Health 2007; 210:163-7. [PMID: 17084670 DOI: 10.1016/j.ijheh.2006.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 09/14/2006] [Accepted: 09/17/2006] [Indexed: 11/20/2022]
Abstract
Since chlorhexidine is effective against microorganisms, it is widely recommended in dentistry. However, studies have provided evidence that chlorhexidine is toxic for a variety of cell types. In order to identify potential genotoxins in different cell types, the purpose of this study was to investigate whether chlorhexidine digluconate is able to cause, in terms of DNA damage, alterations in leukocytes, liver, kidney and urinary bladder by the single cell gel (comet) assay. Ten male Wistar rats were divided into two groups: a negative control and the experimental group treated with 3ml of 0.12% chlorhexidine digluconate by gavage once a day for 8 days. Statistically significant increases of DNA damage was observed in leukocytes and kidney cells of the chlorhexidine digluconate treated group as depicted by the mean tail moment. Taken together, the data indicate that leukocytes and kidney cells are potential targets for primary DNA damage following oral exposure to chlorhexidine digluconate as detected by single cell gel (comet) assay.
Collapse
Affiliation(s)
- Tony F Grassi
- Departamento de Patologia, Faculdade de Medicina de Botucatu-UNESP, 18618-000 Botucatu-SP, Brazil
| | | | | | | | | |
Collapse
|
31
|
Sestili P, Martinelli C, Stocchi V. The fast halo assay: an improved method to quantify genomic DNA strand breakage at the single-cell level. Mutat Res 2006; 607:205-14. [PMID: 16766222 DOI: 10.1016/j.mrgentox.2006.04.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/13/2006] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
The present study describes the improvement of a technique, the alkaline-halo assay (AHA), for the assessment of DNA single-strand breakage at the single-cell level. AHA involves a series of sequential steps in which cells are embedded in melted agarose and spread onto microscope slides, incubated in a high-salt alkaline lysis solution, then in a hypotonic alkaline solution and, finally, stained with ethidium bromide (EB). Under these conditions, single-stranded DNA fragments diffuse radially from the nuclear cage and generate a fluorescent image that resembles a halo concentric to the nuclear remnants: the area of the halo is a direct function of the extent of DNA strand scission. These phenomena can be conveniently monitored with a fluorescence microscope and quantified by image-processing analysis. The behaviour of single-stranded DNA fragments under the conditions of the modified assay, called fast halo assay (FHA), is essentially the same as in AHA. The modifications consist in the simplification of the lysis, denaturation and staining procedures, and allow, as compared with AHA, the preparation of samples within 15 min, with a two-third reduction in total processing time, using only two reagents to promote DNA extraction and staining: NaOH and EB. A variation of the FHA operating at non-denaturing conditions to discriminate apoptotic cells from non-apoptotic cells bearing DNA single-strand breaks is also illustrated. To benchmark FHA sensitivity and reliability, the DNA single-strand breaks (SSBs) resulting either from exposure of cultured mammalian cells to different DNA-damaging agents or from secondary apoptotic DNA cleavage, have been quantified and results compared with the outcomes of reference techniques run in parallel, namely AHA, comet assay and Hoechst 33342 staining. The results indicate that FHA has the same reliability and sensitivity of the reference assays, but presents the additional advantages of being inexpensive, more rapid and strikingly simple.
Collapse
Affiliation(s)
- Piero Sestili
- Istituto di Ricerca sull'Attività Motoria, Via Sasso 75/G, Università degli Studi di Urbino "Carlo Bo", 61029 Urbino, Italy.
| | | | | |
Collapse
|
32
|
Braz MG, Camargo EA, Salvadori DMF, Marques MEA, Ribeiro DA. Evaluation of genetic damage in human peripheral lymphocytes exposed to mineral trioxide aggregate and Portland cements. J Oral Rehabil 2006; 33:234-9. [PMID: 16512891 DOI: 10.1111/j.1365-2842.2005.01559.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
summary Mineral trioxide aggregate (MTA) and Portland cement are being used in dentistry as root-end-filling material for periapical surgery and for the sealing of communications between the root canal system and the surrounding tissues. However, genotoxicity tests for complete risk assessment of these compounds have not been conducted up to now. In the present study, the genotoxic effects of MTA and Portland cements were evaluated in peripheral lymphocytes from 10 volunteers by the alkaline single cell gel (comet) assay. The results pointed out that the single cell gel (comet) assay failed to detect the presence of DNA damage after a treatment of peripheral lymphocytes by MTA and Portland cements for concentrations up to 1000 mug mL(-1). In summary, our results indicate that exposure to MTA or Portland cements may not be a factor that increases the level of DNA lesions in human peripheral lymphocytes as detected by single cell gel (comet) assay.
Collapse
Affiliation(s)
- M G Braz
- Departamento de Patologia, Núcleo de Avaliação Toxicogenética e Cancerígena, TOXICAN, Faculdade de Medicina de Botucatu, UNESP, SP, Brazil
| | | | | | | | | |
Collapse
|
33
|
Morley N, Rapp A, Dittmar H, Salter L, Gould D, Greulich KO, Curnow A. UVA-induced apoptosis studied by the new apo/necro-Comet-assay which distinguishes viable, apoptotic and necrotic cells. Mutagenesis 2006; 21:105-14. [PMID: 16500949 DOI: 10.1093/mutage/gel004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An adaptation of the Comet-assay was developed which enables the discrimination of viable, apoptotic and necrotic single cells by use of the common Annexin-V staining and a dye exclusion test on the cells already embedded in agarose gel on glass slides. Membrane integrity (Ethidium-Homodimer exclusion), cellular esterase activity (Calcein blue-AM) as well as translocation of phosphadidyl-serine (Annexin-V) were analysed using these stains. The advantage of the 'apo/necro-Comet-assay' is that the viability status of individual cells can be determined and correlated with the DNA fragmentation pattern (comet) formed by the same cells. Hence, DNA damage can be assessed and correlated with viable cells or cells undergoing early, mid- or late stage apoptosis or necrosis as identified by the staining pattern. The staining was verified using heat and etoposide-induced apoptosis. This technique, among others, was used to study whether apoptotic fragmentation interferes with repair kinetics measured with the comet assay following UVA exposure (doses up to 1,280 kJ/m(2)) in the cultured human keratinocytes (HaCaT). Therefore, a time course of apoptotic events (phosphatidyl translocation and TUNEL fragmentation) was established and correlated to the DNA fragmentation in the comet-assay. Apoptotic cells were detected more than 8 h later. The combined three-colour staining method with the comet assay showed that there was no significant interference of DNA repair by apoptotic fragmentation processes since DNA repair was almost completed before the onset of apoptotic fragmentation. The apo/necro-Comet-assay reduces the general problem of false-positive results in genotoxicity tests using the Comet-assay.
Collapse
Affiliation(s)
- N Morley
- Royal Cornwall Hospital NHS Trust, Sunrise Centre, Royal Cornwall Hospital, Treliske, Truro, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Brink A, Schulz B, Kobras K, Lutz WK, Stopper H. Time-dependent effects of sodium arsenite on DNA breakage and apoptosis observed in the comet assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 603:121-8. [PMID: 16384727 DOI: 10.1016/j.mrgentox.2005.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 09/20/2005] [Accepted: 10/27/2005] [Indexed: 12/01/2022]
Abstract
To assess genotoxic effects of sodium arsenite (NaAsO2) the single-cell gel electrophoresis (comet assay) had been conducted in various studies indicating genotoxicity. However, DNA fragmentation due to NaAsO2-induced apoptosis may constitute a bias in the interpretation of the results. Apoptotic cells can show typically large and diffuse comets, which are usually excluded during genotoxicity analysis. It is controversial whether there is a time-window in which the apoptotic process generates comets that would falsely be interpreted to be the result of genotoxic DNA damage. Therefore, we evaluated frequency histograms for single-cell measures of tail DNA (% DNA in comet tail) in 30-min intervals after incubation of mouse lymphoma L5178Y cells with sodium arsenite (NaAsO2). In parallel, we evaluated apoptosis by measuring annexin V-positive cells with flow cytometry, and visualized apoptotic cells on slides by Hoechst bisbenzimide 33258 staining. The first observed effect at 30 min after treatment was an increase in annexin V-positive cells. At about 60 min the number of cells with moderate DNA migration increased in the comet-assay analysis. After 90 min, an increase in the number of cells with high levels of DNA migration was observed, which resulted in a bimodal distribution of cells with moderate and high levels of DNA migration. Hoechst-stained apoptotic cells could only be observed at later times (> or = 120 min). This means that the treatment would have been considered to be genotoxic if analysed at 120 min even if the cells with high levels of DNA migration would have been excluded. The occurrence of annexin V-positive cells preceded the appearance of cells with moderate levels of DNA migration. We hypothesize that these cells were early apoptotic cells and not indicative of genotoxic damage. We conclude that DNA-damaging effects of NaAsO2 cannot adequately be interpreted if the comet assay is not accompanied by separate analysis of early endpoints for induction of apoptosis.
Collapse
Affiliation(s)
- Andreas Brink
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, D-97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
35
|
Gustavino B, Buschini A, Monfrinotti M, Rizzoni M, Tancioni L, Poli P, Rossi C. Modulating effects of humic acids on genotoxicity induced by water disinfectants in Cyprinus carpio. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 587:103-13. [PMID: 16202643 DOI: 10.1016/j.mrgentox.2005.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 08/03/2005] [Accepted: 08/08/2005] [Indexed: 11/18/2022]
Abstract
The use of chlorinated disinfectants during drinking-water production has been shown to generate halogenated compounds as a result of interactions of humic acids with chlorine. Such chlorinated by-products have been shown to induce genotoxic effects and consumption of chlorinated drinking-water has been correlated with increased risk for cancer induction in human populations. The aim of this work was to test the potential genotoxic effects on circulating erythrocytes of the fish Cyprinus carpio exposed in vivo to well-waters disinfected with sodium hypochlorite (NaClO), chlorine dioxide (ClO2) or peracetic acid (CH3COO2H, PAA), in the absence or presence of standard humic acids (HA). The effects were measured by use of the micronucleus (MN) and the single-cell gel electrophoresis (Comet) assays at different sampling times after a 3-day exposure period. The exposure to chlorine disinfectants without the addition of HA produced a clear toxic effect. Significant cytogenetic damage (i.e. MN induction) was detected in fish populations exposed to both NaClO and ClO2 with humic acids. In the Comet assay, a significant decrease of DNA migration was observed in erythrocytes of specimens after exposure to NaClO-disinfected water without HA. No effects were observed in any other experimental condition.
Collapse
Affiliation(s)
- Bianca Gustavino
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Maffei F, Buschini A, Rossi C, Poli P, Forti GC, Hrelia P. Use of the Comet test and micronucleus assay on human white blood cells for in vitro assessment of genotoxicity induced by different drinking water disinfection protocols. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 46:116-25. [PMID: 15887212 DOI: 10.1002/em.20139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Surface water disinfection can lead to the formation of mutagenic/carcinogenic by-products derived from reactions with naturally occurring inorganic compounds. We investigated the feasibility and potential usefulness of an integrated approach to genotoxicity analysis of drinking water. The approach employed the Comet and micronucleus (MN) assays to evaluate the DNA and chromosomal damage produced by water extracts in human blood cells. Surface water samples from Lago Trasimeno (Italy) were collected in different seasons (July 2000, October 2000, February 2001, and June 2001), and samples were disinfected with sodium hypochloride (NaClO), chlorine dioxide (ClO(2)), or peracetic acid (PAA). Extracts of untreated and treated water were incubated with primary human leukocytes. The Comet assay revealed both strong seasonal variations and differences between samples processed by the three disinfection protocols. The three disinfectants increased the genotoxicity of the water collected in July 2000 and October 2000, with PAA producing the greatest amount of DNA damage. Extracts of raw water collected in February 2001 produced so much DNA damage that the relative genotoxic potentials of the three disinfectants could not be evaluated. No increase in MN frequency was detected in any of the samples. The multi-endpoint MN assay indicated, however, that our study samples (especially the sample collected in the February 2001) were cytotoxic. We conclude that this integrated approach to genotoxicity assessment may be useful both for the quality control of raw drinking water and to help compare the potential health risks associated with alternative disinfection processes.
Collapse
|
37
|
Hook SE, Lee RF. Genotoxicant induced DNA damage and repair in early and late developmental stages of the grass shrimp Paleomonetes pugio embryo as measured by the comet assay. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 66:1-14. [PMID: 14687975 DOI: 10.1016/j.aquatox.2003.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, data are presented which link frequency of DNA strand breaks and repair capability to developmental stage. Stages 4 and 7 embryos of the grass shrimp (Palaemonetes pugio) were exposed to various concentrations of benzo[alpha]pyrene (BalphaP), Cr(VI) and hydrogen peroxide. Following exposure, responses were measured as changes in hatching rates and DNA strand breaks (using the comet assay). The comet assay was modified by treatment of isolated nuclei with endonucleases which cleave DNA at oxidative lesions in DNA prior to electrophoresis. DNA repair was followed by transfer of toxicant exposed embryos to clean water and periodic determination of strand breaks. DNA strand breaks were higher in stage 7 embryos than in stage 4 embryos after exposure to the same concentration of different genotoxicants. However, when samples were treated with endonucleases to measure oxidative lesions, the total amount of DNA damage between stages 4 and 7 were similar. After toxicant exposure and transfer to clean water, DNA strand breaks in stage 7 embryos returned to background levels more rapidly than in stage 4 embryos. Similarly, samples treated with endonucleases during DNA repair studies showed that oxidative lesions were repaired more rapidly in stage 7 than in stage 4. These findings suggest that because of rapid DNA repair in late embryo stages that early embryo stages are more likely to have developmental effects after genotoxicant exposure.
Collapse
Affiliation(s)
- Sharon E Hook
- Skidaway Institute of Oceanography, Savannah, GA 31411, USA.
| | | |
Collapse
|
38
|
Poli P, de Mello MA, Buschini A, de Castro VLSS, Restivo FM, Rossi C, Zucchi TMAD. Evaluation of the genotoxicity induced by the fungicide fenarimol in mammalian and plant cells by use of the single-cell gel electrophoresis assay. Mutat Res 2003; 540:57-66. [PMID: 12972058 DOI: 10.1016/s1383-5718(03)00165-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fenarimol, a systemic pyrimidine carbinol fungicide, is considered to be not genotoxic or weakly genotoxic, although the available toxicological data are controversial and incomplete. Our results obtained in vitro with leukocytes of two different rodent species (rat and mouse) show that fenarimol affects DNA, as detected by the single-cell gel electrophoresis (SCGE, Comet) assay. This fungicide is able to induce DNA damage in a dose-related manner, with significant effectiveness at 36 nM, but without significant interspecies differences. Simultaneous exposure of rat leukocytes to fenarimol (36-290 nM) and a model genotoxic compound (50 microg/ml bleomycin) produced a supra-additive cytotoxic and genotoxic effect. This supports previous findings suggesting possible co-toxic, co-mutagenic, cancer-promoting and co-carcinogenic potential of fenarimol, and modification of the effects of other xenobiotics found to be influenced by this agrotoxic chemical, with consequent different toxicological events. The potential for DNA strand breaks to act as a biomarker of genetic toxicity in plants in vivo was also considered, in view of the fact that higher plants represent reliable sensors in an ecosystem. Significant DNA breakage was observed in the nuclei of Impatiens balsamina leaves after in vivo treatment with fenarimol (145 nM, 1h). More than 50% of the cells showed such DNA damage.
Collapse
Affiliation(s)
- P Poli
- Dipartimento di Genetica Antropologia Evoluzione, Università degli Studi di Parma, Parco Area delle Scienze11/a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|