1
|
Menz J, Götz ME, Gündel U, Gürtler R, Herrmann K, Hessel-Pras S, Kneuer C, Kolrep F, Nitzsche D, Pabel U, Sachse B, Schmeisser S, Schumacher DM, Schwerdtle T, Tralau T, Zellmer S, Schäfer B. Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose-response data. Arch Toxicol 2023; 97:2303-2328. [PMID: 37402810 PMCID: PMC10404208 DOI: 10.1007/s00204-023-03553-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Genotoxicity data are mainly interpreted in a qualitative way, which typically results in a binary classification of chemical entities. For more than a decade, there has been a discussion about the need for a paradigm shift in this regard. Here, we review current opportunities, challenges and perspectives for a more quantitative approach to genotoxicity assessment. Currently discussed opportunities mainly include the determination of a reference point (e.g., a benchmark dose) from genetic toxicity dose-response data, followed by calculation of a margin of exposure (MOE) or derivation of a health-based guidance value (HBGV). In addition to new opportunities, major challenges emerge with the quantitative interpretation of genotoxicity data. These are mainly rooted in the limited capability of standard in vivo genotoxicity testing methods to detect different types of genetic damage in multiple target tissues and the unknown quantitative relationships between measurable genotoxic effects and the probability of experiencing an adverse health outcome. In addition, with respect to DNA-reactive mutagens, the question arises whether the widely accepted assumption of a non-threshold dose-response relationship is at all compatible with the derivation of a HBGV. Therefore, at present, any quantitative genotoxicity assessment approach remains to be evaluated case-by-case. The quantitative interpretation of in vivo genotoxicity data for prioritization purposes, e.g., in connection with the MOE approach, could be seen as a promising opportunity for routine application. However, additional research is needed to assess whether it is possible to define a genotoxicity-derived MOE that can be considered indicative of a low level of concern. To further advance quantitative genotoxicity assessment, priority should be given to the development of new experimental methods to provide a deeper mechanistic understanding and a more comprehensive basis for the analysis of dose-response relationships.
Collapse
Affiliation(s)
- Jakob Menz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Mario E Götz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Gündel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Rainer Gürtler
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Kristin Herrmann
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Franziska Kolrep
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Dana Nitzsche
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Pabel
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Benjamin Sachse
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Schmeisser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - David M Schumacher
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tanja Schwerdtle
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Zellmer
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Bernd Schäfer
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Chepelev N, Long AS, Beal M, Barton‐Maclaren T, Johnson G, Dearfield KL, Roberts DJ, van Benthem J, White P. Establishing a quantitative framework for regulatory interpretation of genetic toxicity dose-response data: Margin of exposure case study of 48 compounds with both in vivo mutagenicity and carcinogenicity dose-response data. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:4-15. [PMID: 36345771 PMCID: PMC10107494 DOI: 10.1002/em.22517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 11/01/2022] [Indexed: 05/03/2023]
Abstract
Quantitative relationships between carcinogenic potency and mutagenic potency have been previously examined using a benchmark dose (BMD)-based approach. We extended those analyses by using human exposure data for 48 compounds to calculate carcinogenicity-derived and genotoxicity-derived margin of exposure values (MOEs) that can be used to prioritize substances for risk management. MOEs for 16 of the 48 compounds were below 10,000, and consequently highlighted for regulatory concern. Of these, 15 were highlighted using genotoxicity-derived (micronucleus [MN] dose-response data) MOEs. A total of 13 compounds were highlighted using carcinogenicity-derived MOEs; 12 compounds were overlapping. MOEs were also calculated using transgenic rodent (TGR) mutagenicity data. For 10 of the 12 compounds examined using TGR data, the results similarly revealed that mutagenicity-derived MOEs yield regulatory decisions that correspond with those based on carcinogenicity-derived MOEs. The effect of benchmark response (BMR) on MOE determination was also examined. Reinterpretation of the analyses using a BMR of 50% indicated that four out of 15 compounds prioritized using MN-derived MOEs based on a default BMR of 5% would have been missed. The results indicate that regulatory decisions based on in vivo genotoxicity dose-response data would be consistent with those based on carcinogenicity dose-response data; in some cases, genotoxicity-based decisions would be more conservative. Going forward, and in the absence of carcinogenicity data, in vivo genotoxicity assays (MN and TGR) can be used to effectively prioritize substances for regulatory action. Routine use of the MOE approach necessitates the availability of reliable human exposure estimates, and consensus regarding appropriate BMRs for genotoxicity endpoints.
Collapse
Affiliation(s)
- Nikolai Chepelev
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
| | - Alexandra S. Long
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Marc Beal
- Existing Substances Risk Assessment BureauHealth CanadaOttawaOntarioCanada
| | | | - George Johnson
- Swansea University Medical SchoolSwansea UniversitySwanseaUK
| | | | | | - Jan van Benthem
- National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Paul White
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
| |
Collapse
|
3
|
Sugiyama KI, Masumura K. [New trend in genotoxicity research taking into account genome instability]. Nihon Yakurigaku Zasshi 2022; 157:265-270. [PMID: 35781458 DOI: 10.1254/fpj.22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since mutagenicity which can induce permanent transmissible changes in the structure of the genetic material is one of the major causes of cancer, research for genotoxicity including mutagenicity has focused on cancer hazard identification. Thus, it has been assumed that there was no threshold in mutagenesis. On the other hand, tumor development induced by not only non-genotoxic carcinogen but also genotoxic carcinogens will likely show a practical threshold. Therefore, statistical evaluation can provide value of the benchmark dose lower confidence limit (BMDL) calculated by approaches for the determination of genetic toxicity point of departure (PoD). In addition, disruption of epigenetic regulation which affect transcription through alteration of chromatin structure is considered to be important in future genotoxicity research. Taking into account benchmark dose or epigenetics will help improve assessment of genotoxicity, which offer promising insight into understanding genomic instability. Overall, this review presents current trends for future assessments of genotoxicity.
Collapse
Affiliation(s)
- Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Kenichi Masumura
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
| |
Collapse
|
4
|
Wills JW, Halkes-Wellstead E, Summers HD, Rees P, Johnson GE. Empirical Comparison of Genotoxic Potency Estimations: The In Vitro DNA-Damage ToxTracker Endpoints versus the In Vivo Micronucleus Assay. Mutagenesis 2021; 36:311-320. [PMID: 34111295 PMCID: PMC8391785 DOI: 10.1093/mutage/geab020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/09/2021] [Indexed: 11/30/2022] Open
Abstract
Genetic toxicology is an essential component of compound safety assessment. In the face of a barrage of new compounds, higher throughput, less ethically divisive in vitro approaches capable of effective, human-relevant hazard identification and prioritisation are increasingly important. One such approach is the ToxTracker assay, which utilises murine stem cell lines equipped with green fluorescent protein (GFP)-reporter gene constructs that each inform on distinct aspects of cellular perturbation. Encouragingly, ToxTracker has shown improved sensitivity and specificity for the detection of known in vivo genotoxicants when compared to existing ‘standard battery’ in vitro tests. At the current time however, quantitative genotoxic potency correlations between ToxTracker and well-recognised in vivo tests are not yet available. Here we use dose–response data from the three DNA-damage-focused ToxTracker endpoints and from the in vivo micronucleus assay to carry out quantitative, genotoxic potency estimations for a range of aromatic amine and alkylating agents using the benchmark dose (BMD) approach. This strategy, using both the exponential and the Hill BMD model families, was found to produce robust, visually intuitive and similarly ordered genotoxic potency rankings for 17 compounds across the BSCL2-GFP, RTKN-GFP and BTG2-GFP ToxTracker endpoints. Eleven compounds were similarly assessed using data from the in vivo micronucleus assay. Cross-systems genotoxic potency correlations for the eight matched compounds demonstrated in vitro–in vivo correlation, albeit with marked scatter across compounds. No evidence for distinct differences in the sensitivity of the three ToxTracker endpoints was found. The presented analyses show that quantitative potency determinations from in vitro data enable more than just qualitative screening and hazard identification in genetic toxicology.
Collapse
Affiliation(s)
- John W Wills
- Biominerals Research, Cambridge University Department of Veterinary Medicine, Cambridge, UK.,Centre for Nanohealth, Swansea University College of Engineering, Swansea, UK
| | | | - Huw D Summers
- Centre for Nanohealth, Swansea University College of Engineering, Swansea, UK
| | - Paul Rees
- Centre for Nanohealth, Swansea University College of Engineering, Swansea, UK.,Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Swansea, UK
| |
Collapse
|
5
|
Wheeldon RP, Dertinger SD, Bryce SM, Bemis JC, Johnson GE. The use of benchmark dose uncertainty measurements for robust comparative potency analyses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:203-215. [PMID: 33428310 DOI: 10.1002/em.22422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The Benchmark Dose (BMD) method is the favored approach for quantitative dose-response analysis where uncertainty measurements are delineated between the upper (BMDU) and lower (BMDL) confidence bounds, or confidence intervals (CIs). Little has been published on the accurate interpretation of uncertainty measurements for potency comparative analyses between different test conditions. We highlight this by revisiting a previously published comparative in vitro genotoxicity dataset for human lymphoblastoid TK6 cells that were exposed to each of 10 clastogens in the presence and absence (+/-) of low concentration (0.25%) S9, and scored for p53, γH2AX and Relative Nuclei Count (RNC) responses at two timepoints (Tian et al., 2020). The researchers utilized BMD point estimates in potency comparative analysis between S9 treatment conditions. Here we highlight a shortcoming that the use of BMD point estimates can mischaracterize potency differences between systems. We reanalyzed the dose responses by BMD modeling using PROAST v69.1. We used the resulting BMDL and BMDU metrics to calculate "S9 potency ratio confidence intervals" that compare the relative potency of compounds +/- S9 as more statistically robust metrics for comparative potency measurements compared to BMD point estimate ratios. We performed unsupervised hierarchical clustering that identified four S9-dependent groupings: high and low-level potentiation, no effect, and diminution. This work demonstrates the importance of using BMD uncertainty measurements in potency comparative analyses between test conditions. Irrespective of the source of the data, we propose a stepwise approach when performing BMD modeling in comparative potency analyses between test conditions.
Collapse
Affiliation(s)
- Ryan P Wheeldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | | | | | | | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
6
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
7
|
Pham LL, Borghoff SJ, Thompson CM. Comparison of threshold of toxicological concern (TTC) values to oral reference dose (RfD) values. Regul Toxicol Pharmacol 2020; 113:104651. [DOI: 10.1016/j.yrtph.2020.104651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
|
8
|
Examining the in vivo pulmonary toxicity of engineered metal oxide nanomaterials using a genetic algorithm-based dose-response-recovery clustering model. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.comtox.2019.100113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Guo X, Mei N. Benchmark Dose Modeling of In Vitro Genotoxicity Data: a Reanalysis. Toxicol Res 2018; 34:303-310. [PMID: 30370005 PMCID: PMC6195882 DOI: 10.5487/tr.2018.34.4.303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 01/22/2023] Open
Abstract
The methods of applied genetic toxicology are changing from qualitative hazard identification to quantitative risk assessment. Recently, quantitative analysis with point of departure (PoD) metrics and benchmark dose (BMD) modeling have been applied to in vitro genotoxicity data. Two software packages are commonly used for BMD analysis. In previous studies, we performed quantitative dose-response analysis by using the PROAST software to quantitatively evaluate the mutagenicity of four piperidine nitroxides with various substituent groups on the 4-position of the piperidine ring and six cigarette whole smoke solutions (WSSs) prepared by bubbling machine-generated whole smoke. In the present study, we reanalyzed the obtained genotoxicity data by using the EPA's BMD software (BMDS) to evaluate the inter-platform quantitative agreement of the estimates of genotoxic potency. We calculated the BMDs for 10%, 50%, and 100% (i.e., a two-fold increase), and 200% increases over the concurrent vehicle controls to achieve better discrimination of the dose-responses, along with their BMDLs (the lower 95% confidence interval of the BMD) and BMDUs (the upper 95% confidence interval of the BMD). The BMD values and rankings estimated in this study by using the EPA's BMDS were reasonably similar to those calculated in our previous studies by using PROAST. These results indicated that both software packages were suitable for dose-response analysis using the mouse lymphoma assay and that the BMD modeling results from these software packages produced comparable rank orders of the mutagenic potency.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
10
|
Long AS, Wills JW, Krolak D, Guo M, Dertinger SD, Arlt VM, White PA. Benchmark dose analyses of multiple genetic toxicity endpoints permit robust, cross-tissue comparisons of MutaMouse responses to orally delivered benzo[a]pyrene. Arch Toxicol 2018; 92:967-982. [PMID: 29177888 PMCID: PMC5818629 DOI: 10.1007/s00204-017-2099-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022]
Abstract
Genetic damage is a key event in tumorigenesis, and chemically induced genotoxic effects are a human health concern. Although genetic toxicity data have historically been interpreted using a qualitative screen-and-bin approach, there is increasing interest in quantitative analysis of genetic toxicity dose-response data. We demonstrate an emerging use of the benchmark dose (BMD)-approach for empirically ranking cross-tissue sensitivity. Using a model environmental carcinogen, we quantitatively examined responses for four genetic damage endpoints over an extended dose range, and conducted cross-tissue sensitivity rankings using BMD100 values and their 90% confidence intervals (CIs). MutaMouse specimens were orally exposed to 11 doses of benzo[a]pyrene. DNA adduct frequency and lacZ mutant frequency (MF) were measured in up to 8 tissues, and Pig-a MF and micronuclei (MN) were assessed in immature (RETs) and mature red blood cells (RBCs). The cross-tissue BMD pattern for lacZ MF is similar to that observed for DNA adducts, and is consistent with an oral route-of-exposure and differences in tissue-specific metabolism and proliferation. The lacZ MF BMDs were significantly correlated with the tissue-matched adduct BMDs, demonstrating a consistent adduct conversion rate across tissues. The BMD CIs, for both the Pig-a and the MN endpoints, overlapped for RETs and RBCs, suggesting comparable utility of both cell populations for protracted exposures. Examination of endpoint-specific response maxima illustrates the difficulty of comparing BMD values for a fixed benchmark response across endpoints. Overall, the BMD-approach permitted robust comparisons of responses across tissues/endpoints, which is valuable to our mechanistic understanding of how benzo[a]pyrene induces genetic damage.
Collapse
Affiliation(s)
- Alexandra S Long
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Tunney's Pasture, A/L 0803A, Ottawa, ON, K1A 0K9, Canada.
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | - John W Wills
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Tunney's Pasture, A/L 0803A, Ottawa, ON, K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Dorothy Krolak
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Tunney's Pasture, A/L 0803A, Ottawa, ON, K1A 0K9, Canada
| | - Matthew Guo
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Tunney's Pasture, A/L 0803A, Ottawa, ON, K1A 0K9, Canada
| | | | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Paul A White
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Tunney's Pasture, A/L 0803A, Ottawa, ON, K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Long AS, Lemieux CL, Gagné R, Lambert IB, White PA. Genetic Toxicity of Complex Mixtures of Polycyclic Aromatic Hydrocarbons: Evaluating Dose-Additivity in a Transgenic Mouse Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8138-8148. [PMID: 28587452 DOI: 10.1021/acs.est.7b00985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study evaluates the risk assessment approach currently employed for polycyclic aromatic hydrocarbon (PAH)-contaminated media, wherein carcinogenic hazards are evaluated using a dose-addition model that employs potency equivalency factors (PEFs) for targeted carcinogenic PAHs. Here, MutaMouse mice were subchronically exposed to PAH mixtures (p.o.), and mutagenic potency (MP) values were determined for five tissues. Predicted dose-additive mixture MPs were generated by summing the products of the concentrations and MPs of the individual targeted PAHs; values were compared to the experimental MPs of the mixtures to evaluate dose-additivity. Additionally, the PEF-determined BaP-equivalent concentrations were compared to those determined using a bioassay-derived method (BDM) (i.e., an additivity-independent approach). In bone marrow, mixture mutagenicity was less than dose-additive and the PEF-method provided higher estimates of BaP-equivalents than the BDM. Conversely, mixture mutagenicity in site-of-contact tissues (e.g., small intestine) was generally more than dose-additive and the PEF-method provided lower estimates of BaP-equivalents than the BDM. Overall, this study demonstrates that dose-additive predictions of mixture mutagenic potency based on the concentrations and potencies of a small number of targeted PAHs results in values that are surprisingly close to those determined experimentally, providing support for the dose-additive assumption employed for human health risk assessment of PAH mixtures.
Collapse
Affiliation(s)
- Alexandra S Long
- Department of Biology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario K1A 0K9, Canada
| | - Christine L Lemieux
- New Substances Assessment and Control Bureau, Health Canada , Ottawa, Ontario K1A 0K9, Canada
| | - Rémi Gagné
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario K1A 0K9, Canada
| | - Iain B Lambert
- Department of Biology, Carleton University , Ottawa, Ontario K1S 5B6, Canada
| | - Paul A White
- Department of Biology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario K1A 0K9, Canada
| |
Collapse
|
12
|
Vijg J, Dong X, Zhang L. A high-fidelity method for genomic sequencing of single somatic cells reveals a very high mutational burden. Exp Biol Med (Maywood) 2017; 242:1318-1324. [PMID: 28737476 PMCID: PMC5529006 DOI: 10.1177/1535370217717696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Postzygotic mutations in somatic cells lead to genome mosaicism and can be the cause of cancer, possibly other human diseases and aging. Somatic mutations are difficult to detect in bulk tissue samples. Here, we review the available assays for measuring somatic mutations, with a focus on recent single-cell, whole genome sequencing methods. Impact statement Somatic mutations cause cancer, possibly other diseases and aging. Yet, very little is known about the frequency of such mutations in vivo, their distribution across the genome, and their possible functional consequences other than cancer. Even in cancer, we do not know the heterogeneity of mutations within a tumor and if seemingly normal cells in its surroundings already have elevated mutation frequencies. Here, we review a new, whole genome amplification system that allows accurate quantification and characterization of single-cell mutational landscapes in human cells and tissues in relation to disease.
Collapse
Affiliation(s)
- Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Michael F. Price Center, Bronx, NY 10461, USA
| | - Xiao Dong
- Department of Genetics, Albert Einstein College of Medicine, Michael F. Price Center, Bronx, NY 10461, USA
| | - Lei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Michael F. Price Center, Bronx, NY 10461, USA
| |
Collapse
|
13
|
Galloway SM. International regulatory requirements for genotoxicity testing for pharmaceuticals used in human medicine, and their impurities and metabolites. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:296-324. [PMID: 28299826 DOI: 10.1002/em.22077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The process of developing international (ICH) guidelines is described, and the main guidelines reviewed are the ICH S2(R1) guideline that includes the genotoxicity test battery for human pharmaceuticals, and the ICH M7 guideline for assessing and limiting potentially mutagenic impurities and degradation products in drugs. Key aspects of the guidelines are reviewed in the context of drug development, for example the incorporation of genotoxicity assessment into non-clinical toxicity studies, and ways to develop and assess weight of evidence. In both guidelines, the existence of "thresholds" or non-linear dose responses for genotoxicity plays a part in the strategies. Differences in ICH S2(R1) protocol recommendations from OECD guidelines are highlighted and rationales explained. The use of genotoxicity data during clinical development and in assessment of carcinogenic potential is also described. There are no international guidelines on assessment of potentially genotoxic metabolites, but some approaches to safety assessment are discussed for these. Environ. Mol. Mutagen. 58:296-324, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
14
|
Tweats DJ, Johnson GE, Scandale I, Whitwell J, Evans DB. Genotoxicity of flubendazole and its metabolites in vitro and the impact of a new formulation on in vivo aneugenicity. Mutagenesis 2016; 31:309-21. [PMID: 26443851 PMCID: PMC4840262 DOI: 10.1093/mutage/gev070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The anti-parasitic benzimidazole flubendazole has been used for many years to treat intestinal infections in humans and animals. Previous genotoxicity studies have shown that the compound is not a bacterial mutagen and a bone marrow micronucleus test, using a formulation that limited systemic absorption, was negative. The purpose of this study is to explore the genotoxicity of flubendazole and its main metabolites in in vitro micronucleus studies and to test a new oral formulation that improves systemic absorption in an in vivo micronucleus test. The isolated metabolites were also screened using the Ames test for bacterial mutagenicity. It was found that flubendazole, like other chemically related benzimidazoles used in anti-parasitic therapies, is a potent aneugen in vitro The hydrolysed metabolite of flubendazole is negative in these tests, but the reduced metabolite (R- and S-forms) shows both aneugenic and clastogenic activity. However, in vitro micronucleus tests of flubendazole in the presence of rat liver S9 gave almost identical signals for aneugenicity as they did in the absence of S9, suggesting that any clastogenicity from the reduced metabolite is not sufficient to change the overall profile. Like flubendazole itself, both metabolites are negative in the Ames test. Analysis of dose-response curves from the in vitro tests, using recently developed point of departure approaches, demonstrate that the aneugenic potency of flubendazole is very similar to related anti-parasitic benzimidazoles, including albendazole, which is used in mass drug administration programmes to combat endemic filarial diseases. The in vivo micronucleus test of the new formulation of flubendazole also showed evidence of induced aneugenicity. Analysis of the in vivo data allowed a reference dose for aneugenicity to be established which can be compared with therapeutic exposures of flubendazole when this has been established. Analysis of the plasma from the animals used in the in vivo micronucleus test showed that there is increased exposure to flubendazole compared with previously tested formulations, as well as significant formation of the non-genotoxic hydrolysed metabolite of flubendazole and small levels of the reduced metabolite. In conclusion, this study shows that flubendazole is a potent aneugen in vitro with similar potency to chemically related benzimidazoles currently used as anti-parasitic therapies. The reduced metabolite also has aneugenic properties as well as clastogenic properties. Treatment with a new formulation of flubendazole that allows increased systemic exposure, compared with previously used formulations, also results in detectable aneugenicity in vivo. Based on the lack of carcinogenicity of this class of benzimidazoles and the intended short-term dosing, it is unlikely that flubendazole treatment will pose a carcinogenic risk to patients.
Collapse
Affiliation(s)
| | | | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Chemin Louis-Dunant 15, 1202 Genève, Switzerland and
| | | | - Dean B Evans
- Drugs for Neglected Diseases Initiative, Chemin Louis-Dunant 15, 1202 Genève, Switzerland and
| |
Collapse
|
15
|
Johnson GE, Yamamoto M, Suzuki Y, Adachi H, Kyoya T, Takasawa H, Horibata K, Tsutsumi E, Wada K, Kikuzuki R, Yoshida I, Kimoto T, Maeda A, Narumi K. Measuring reproducibility of dose response data for the Pig-a assay using covariate benchmark dose analysis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:135-139. [PMID: 27931807 DOI: 10.1016/j.mrgentox.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
Abstract
The reproducibility of the in vivo Pig-a gene mutation test system was assessed across 13 different Japanese laboratories. In each laboratory rats were exposed to the same dosing regimen of N-nitroso-N-ethylurea (ENU), and red blood cells (RBCs) and reticulocytes (RETs) were collected for mutant phenotypic analysis using flow cytometry. Mutant frequency dose response data were analysed using the PROAST benchmark dose (BMD) statistical package. Laboratory was used as a covariate during the analysis to allow all dose responses to be analysed at the same time, with conserved shape parameters. This approach has recently been shown to increase the precision of the BMD analysis, as well as providing a measure of equipotency. This measure of equipotency was used here to demonstrate a reasonable level of interlaboratory reproducibility. Increased reproducibility could have been achieved by increasing the number of cells scored, as this would reduce the number of zero values within the mutant frequency data. Overall, the interlaboratory trial was successful, and these findings support the transferability of the in vivo Pig-a gene mutation assay.
Collapse
Affiliation(s)
- George E Johnson
- Swansea University Medical School, Swansea University, SA2 8PP, United Kingdom.
| | - Mika Yamamoto
- Drug Development Toxicology, Drug Safety Research Laboratories, Drug Discovery Research Division, Astellas Pharma Inc., 2-1-6, Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Yuta Suzuki
- Gotemba Laboratory, BoZo Research Center Inc., Gotemba-shi, Shizuoka 412-0039, Japan
| | - Hideki Adachi
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-0022, Japan
| | - Takahiro Kyoya
- Toxicology Laboratory, Life Science Research Institute, Kumiai Chemical Industry, Co., Ltd., 3360 Kamo, Kikugawa-shi, Shizuoka 439-0031, Japan
| | - Hironao Takasawa
- Safety Assessment Department, Nonclinical Research Center, Drug Development Service Segment, LSI Medience Corporation, 14-1 Sunayama, Kamisu-shi, Ibaraki 314-0255, Japan
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Eri Tsutsumi
- Quality Assurance Division, Safety Science Institute, Suntory Business Expert Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Kunio Wada
- Toxicology Division, The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Ryuta Kikuzuki
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-cho, Kita-ku, Saitama-shi 331-9530, Japan
| | - Ikuma Yoshida
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takafumi Kimoto
- Pharmaceutical Development Research Laboratories, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Akihisa Maeda
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Kazunori Narumi
- Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
16
|
Thompson CM, Bichteler A, Rager JE, Suh M, Proctor DM, Haws LC, Harris MA. Comparison of in vivo genotoxic and carcinogenic potency to augment mode of action analysis: Case study with hexavalent chromium. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 800-801:28-34. [DOI: 10.1016/j.mrgentox.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 01/13/2023]
|
17
|
Papa M, Ceretti E, Viola GCV, Feretti D, Zerbini I, Mazzoleni G, Steimberg N, Pedrazzani R, Bertanza G. The assessment of WWTP performance: Towards a jigsaw puzzle evaluation? CHEMOSPHERE 2016; 145:291-300. [PMID: 26688267 DOI: 10.1016/j.chemosphere.2015.11.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/14/2015] [Accepted: 11/16/2015] [Indexed: 05/09/2023]
Abstract
A chemical and bio-analytical protocol is proposed as a holistic monitoring framework for the assessment of WWTPs (Wastewater Treatment Plants) performance. This combination of tests consists of: i) an analysis of emerging contaminants, to be added to the established physico-chemical parameters in order to understand the causes of (new) pollution phenomena and ii) some of the bio-analytical tools most widely applied in the field of wastewater research, which provide information on groups of chemicals with a common mode of toxic action (baseline toxicity, estrogenicity and mutagenicity/genotoxicity, selected as the most representative for human health). The negative effects of the discharge can thus be highlighted directly and used to assess the global environmental impact of WWTPs. As a validation, this multi-tiered approach was applied to a full-scale WWTP (150,000 p.e.), where different measurements were carried out: EDCs (Endocrine Disrupting Compounds) detection; algal growth inhibition, bioluminescence inhibition and acute toxicity test (for baseline toxicity); an E-Screen-like assay (for estrogenic activity); Ames, Allium cepa and Comet tests (for mutagenic/genotoxic activity). As a result, the WWTP showed good performance for all these issues, displaying its ability to enhance effluent quality, except for residual mutagenic behaviour, probably due to the by-products generated by the tertiary ozonation.
Collapse
Affiliation(s)
- Matteo Papa
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, I-25123, Brescia, Italy.
| | - Elisabetta Ceretti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123, Brescia, Italy
| | - Gaia Claudia Viviana Viola
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123, Brescia, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123, Brescia, Italy; Brescia University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health" (MISTRAL), Italy
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123, Brescia, Italy
| | - Giovanna Mazzoleni
- Department of Clinical & Experimental Sciences, University of Brescia, Viale Europa 11, I-25123, Brescia, Italy; Brescia University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health" (MISTRAL), Italy
| | - Nathalie Steimberg
- Department of Clinical & Experimental Sciences, University of Brescia, Viale Europa 11, I-25123, Brescia, Italy
| | - Roberta Pedrazzani
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, I-25123, Brescia, Italy; Brescia University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health" (MISTRAL), Italy
| | - Giorgio Bertanza
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, I-25123, Brescia, Italy; Brescia University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health" (MISTRAL), Italy
| |
Collapse
|
18
|
Wills JW, Johnson GE, Doak SH, Soeteman-Hernández LG, Slob W, White PA. Empirical analysis of BMD metrics in genetic toxicology part I: in vitro analyses to provide robust potency rankings and support MOA determinations. Mutagenesis 2015; 31:255-63. [PMID: 26687511 DOI: 10.1093/mutage/gev085] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic toxicity testing has traditionally been used for hazard identification, with dichotomous classification of test results serving to identify genotoxic agents. However, the utility of genotoxicity data can be augmented by employing dose-response analysis and point of departure determination. Via interpolation from a fitted dose-response model, the benchmark dose (BMD) approach estimates the dose that elicits a specified (small) effect size. BMD metrics and their confidence intervals can be used for compound potency ranking within an endpoint, as well as potency comparisons across other factors such as cell line or exposure duration. A recently developed computational method, the BMD covariate approach, permits combined analysis of multiple dose-response data sets that are differentiated by covariates such as compound, cell type or exposure regime. The approach provides increased BMD precision for effective potency rankings across compounds and other covariates that pertain to a hypothesised mode of action (MOA). To illustrate these applications, the covariate approach was applied to the analysis of published in vitro micronucleus frequency dose-response data for ionising radiations, a set of aneugens, two mutagenic azo compounds and a topoisomerase II inhibitor. The ionising radiation results show that the precision of BMD estimates can be improved by employing the covariate method. The aneugen analysis provided potency groupings based on the BMD confidence intervals, and analyses of azo compound data from cells lines with differing metabolic capacity confirmed the influence of endogenous metabolism on genotoxic potency. This work, which is the first of a two-part series, shows that BMD-derived potency rankings can be employed to support MOA evaluations as well as facilitate read across to expedite chemical evaluations and regulatory decision-making. The follow-up (Part II) employs the combined covariate approach to analyse in vivo genetic toxicity dose-response data focussing on how improvements in BMD precision can impact the reduction and refinement of animal use in toxicological research.
Collapse
Affiliation(s)
- John W Wills
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Swansea, UK and
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea, UK and
| | | | - Wout Slob
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada,
| |
Collapse
|
19
|
Garcia-Käufer M, Gartiser S, Hafner C, Schiwy S, Keiter S, Gründemann C, Hollert H. Genotoxic and teratogenic effect of freshwater sediment samples from the Rhine and Elbe River (Germany) in zebrafish embryo using a multi-endpoint testing strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16341-16357. [PMID: 25471716 DOI: 10.1007/s11356-014-3894-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
The embryotoxic potential of three model sediment samples with a distinct and well-characterized pollutant burden from the main German river basins Rhine and Elbe was investigated. The Fish Embryo Contact Test (FECT) in zebrafish (Danio rerio) was applied and submitted to further development to allow for a comprehensive risk assessment of such complex environmental samples. As particulate pollutants are constructive constituents of sediments, they underlay episodic source-sink dynamics, becoming available to benthic organisms. As bioavailability of xenobiotics is a crucial factor for ecotoxicological hazard, we focused on the direct particle-exposure pathway, evaluating throughput-capable endpoints and considering toxicokinetics. Fish embryo and larvae were exposed toward reconstituted (freeze-dried) sediment samples on a microcosm-scale experimental approach. A range of different developmental embryonic stages were considered to gain knowledge of potential correlations with metabolic competence during the early embryogenesis. Morphological, physiological, and molecular endpoints were investigated to elucidate induced adverse effects, placing particular emphasis on genomic instability, assessed by the in vivo comet assay. Flow cytometry was used to investigate the extent of induced cell death, since cytotoxicity can lead to confounding effects. The implementation of relative toxicity indices further provides inter-comparability between samples and related studies. All of the investigated sediments represent a significant ecotoxicological hazard by disrupting embryogenesis in zebrafish. Beside the induction of acute toxicity, morphological and physiological embryotoxic effects could be identified in a concentration-response manner. Increased DNA strand break frequency was detected after sediment contact in characteristic non-monotonic dose-response behavior due to overlapping cytotoxic effects. The embryonic zebrafish toxicity model along with the in vivo comet assay and molecular biomarker analysis should prospectively be considered to assess the ecotoxicological potential of sediments allowing for a comprehensive hazard ranking. In order to elucidate mode of action, novel techniques such as flow cytometry have been adopted and proved to be valuable tools for advanced risk assessment and management.
Collapse
Affiliation(s)
- M Garcia-Käufer
- Hydrotox GmbH, Bötzingerstr. 109, 79098, Freiburg, Germany.
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBT-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- Center for Complementary Medicine, Department of Environmental Health Sciences, University Medical Centre Freiburg, Breisacherstr. 115b, 79106, Freiburg, Germany.
- Department of Environmental Health Sciences, University Medical Centre Freiburg, Breisacherstr. 115b, 79106, Freiburg, Germany.
| | - S Gartiser
- Hydrotox GmbH, Bötzingerstr. 109, 79098, Freiburg, Germany
| | - C Hafner
- Hydrotox GmbH, Bötzingerstr. 109, 79098, Freiburg, Germany
| | - S Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBT-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - S Keiter
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBT-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 70182, Örebro, Sweden
| | - C Gründemann
- Center for Complementary Medicine, Department of Environmental Health Sciences, University Medical Centre Freiburg, Breisacherstr. 115b, 79106, Freiburg, Germany
| | - H Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBT-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- School of Environment, Nanjing University, Nanjing, China
- Key Laboratory of Yangtze River Environment of Education Ministry of China, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- College of Resources and Environmental Science, Chongqing University, Chongqing, China
| |
Collapse
|
20
|
Soeteman-Hernández LG, Fellows MD, Johnson GE, Slob W. Correlation of In Vivo Versus In Vitro Benchmark Doses (BMDs) Derived From Micronucleus Test Data: A Proof of Concept Study. Toxicol Sci 2015; 148:355-67. [PMID: 26443842 PMCID: PMC4659532 DOI: 10.1093/toxsci/kfv189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we explored the applicability of using in vitro micronucleus (MN) data from human lymphoblastoid TK6 cells to derive in vivo genotoxicity potency information. Nineteen chemicals covering a broad spectrum of genotoxic modes of action were tested in an in vitro MN test using TK6 cells using the same study protocol. Several of these chemicals were considered to need metabolic activation, and these were administered in the presence of S9. The Benchmark dose (BMD) approach was applied using the dose-response modeling program PROAST to estimate the genotoxic potency from the in vitro data. The resulting in vitro BMDs were compared with previously derived BMDs from in vivo MN and carcinogenicity studies. A proportional correlation was observed between the BMDs from the in vitro MN and the BMDs from the in vivo MN assays. Further, a clear correlation was found between the BMDs from in vitro MN and the associated BMDs for malignant tumors. Although these results are based on only 19 compounds, they show that genotoxicity potencies estimated from in vitro tests may result in useful information regarding in vivo genotoxic potency, as well as expected cancer potency. Extension of the number of compounds and further investigation of metabolic activation (S9) and of other toxicokinetic factors would be needed to validate our initial conclusions. However, this initial work suggests that this approach could be used for in vitro to in vivo extrapolations which would support the reduction of animals used in research (3Rs: replacement, reduction, and refinement).
Collapse
Affiliation(s)
| | - Mick D Fellows
- AstraZeneca, R&D Alderley Park, Macclesfield, Cheshire SK10 4TF, United Kingdom; and
| | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Swansea University, SA2 8PP Wales, United Kingdom
| | - Wout Slob
- *National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
21
|
Moffat I, Chepelev N, Labib S, Bourdon-Lacombe J, Kuo B, Buick JK, Lemieux F, Williams A, Halappanavar S, Malik A, Luijten M, Aubrecht J, Hyduke DR, Fornace AJ, Swartz CD, Recio L, Yauk CL. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Crit Rev Toxicol 2015; 45:1-43. [PMID: 25605026 DOI: 10.3109/10408444.2014.973934] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work.
Collapse
Affiliation(s)
- Ivy Moffat
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Nikolai Chepelev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie Bourdon-Lacombe
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - France Lemieux
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amal Malik
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Daniel R Hyduke
- Biological Engineering Department, Utah State University, Logan, UT, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Carol D Swartz
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
22
|
Soeteman-Hernández LG, Johnson GE, Slob W. Estimating the carcinogenic potency of chemicals from the in vivo micronucleus test. Mutagenesis 2015; 31:347-58. [PMID: 26163673 DOI: 10.1093/mutage/gev043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated the applicability of using in vivo mouse micronucleus (MN) data to derive cancer potency information. We also present a new statistical methodology for correlating estimated potencies between in vivo MN tests and cancer studies, which could similarly be used for other systems (e.g. in vitro vs. in vivo genotoxicity tests). The dose-response modelling program PROAST was used to calculate benchmark doses (BMDs) for estimating the genotoxic and carcinogenic potency for 48 compounds in mice; most of the data were retrieved from the National Toxicology Program (NTP) database, while some additional data were retrieved from the Carcinogenic Potency Database and published studies. BMD05s (doses with 5% increase in MN frequency) were derived from MN data, and BMD10s (doses with 10% extra cancer risk) were derived from carcinogenicity data, along with their respective lower (BMDL) and upper (BMDU) confidence bounds. A clear correlation between the in vivo MN BMD05s and the cancer BMD10s was observed when the lowest BMD05 from the in vivo MN was plotted against the lowest BMD10 from the carcinogenicity data for each individual compound. By making a further selection of BMDs related to more or less equally severe cancer lesions, the correlation was considerably improved. Getting a general scientific consensus on how we can quantitatively compare different tumour lesion types and investigating the impact of MN study duration are needed to refine this correlation analysis. Nevertheless, our results suggest that a BMD derived from genotoxicity data might provide a prediction of the tumour potency (BMD10) with an uncertainty range spanning roughly a factor of 100.
Collapse
Affiliation(s)
| | - George E Johnson
- Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP Wales, UK
| | - Wout Slob
- Centre for Nutrition, Prevention and Care, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| |
Collapse
|
23
|
Bemis JC, Wills JW, Bryce SM, Torous DK, Dertinger SD, Slob W. Comparison of in vitro and in vivo clastogenic potency based on benchmark dose analysis of flow cytometric micronucleus data. Mutagenesis 2015; 31:277-85. [PMID: 26049158 DOI: 10.1093/mutage/gev041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The application of flow cytometry as a scoring platform for both in vivo and in vitro micronucleus (MN) studies has enabled the efficient generation of high quality datasets suitable for comprehensive assessment of dose-response. Using this information, it is possible to obtain precise estimates of the clastogenic potency of chemicals. We illustrate this by estimating the in vivo and the in vitro potencies of seven model clastogenic agents (melphalan, chlorambucil, thiotepa, 1,3-propane sultone, hydroxyurea, azathioprine and methyl methanesulfonate) by deriving BMDs using freely available BMD software (PROAST). After exposing male rats for 3 days with up to nine dose levels of each individual chemical, peripheral blood samples were collected on Day 4. These chemicals were also evaluated for in vitro MN induction by treating TK6 cells with up to 20 concentrations in quadruplicate. In vitro MN frequencies were determined via flow cytometry using a 96-well plate autosampler. The estimated in vitro and in vivo BMDs were found to correlate to each other. The correlation showed considerable scatter, as may be expected given the complexity of the whole animal model versus the simplicity of the cell culture system. Even so, the existence of the correlation suggests that information on the clastogenic potency of a compound can be derived from either whole animal studies or cell culture-based models of chromosomal damage. We also show that the choice of the benchmark response, i.e. the effect size associated with the BMD, is not essential in establishing the correlation between both systems. Our results support the concept that datasets derived from comprehensive genotoxicity studies can provide quantitative dose-response metrics. Such investigational studies, when supported by additional data, might then contribute directly to product safety investigations, regulatory decision-making and human risk assessment.
Collapse
Affiliation(s)
| | - John W Wills
- Environmental Health Sciences and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada and
| | | | | | | | - Wout Slob
- National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
24
|
IWGT report on quantitative approaches to genotoxicity risk assessment I. Methods and metrics for defining exposure–response relationships and points of departure (PoDs). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:55-65. [DOI: 10.1016/j.mrgentox.2014.09.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 11/22/2022]
|
25
|
MacGregor JT, Frötschl R, White PA, Crump KS, Eastmond DA, Fukushima S, Guérard M, Hayashi M, Soeteman-Hernández LG, Johnson GE, Kasamatsu T, Levy DD, Morita T, Müller L, Schoeny R, Schuler MJ, Thybaud V. IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:66-78. [PMID: 25953401 DOI: 10.1016/j.mrgentox.2014.10.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 11/26/2022]
Abstract
This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clastogenic damage for agents thought to act via a genotoxic mechanism, but that the correlation is limited due to an inadequate number of cases in which mutation and cancer can be compared at a sufficient number of doses in the same target tissues of the same species and strain exposed under directly comparable routes and experimental protocols.
Collapse
Affiliation(s)
| | - Roland Frötschl
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | | | | | | | | | - Melanie Guérard
- F. Hoffmann-La Roche Ltd., Pharmaceutical Science and Early Development Innovation Center, Basel, Switzerland
| | - Makoto Hayashi
- Public Interest Incorporated Foundation BioSafety Research Center, Iwata, Shizuoka, Japan
| | | | - George E Johnson
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK
| | | | - Dan D Levy
- U.S. Food and Drug Administration, College Park, MD, USA
| | | | - Lutz Müller
- F. Hoffmann-La Roche Ltd., Pharmaceutical Science and Early Development Innovation Center, Basel, Switzerland
| | - Rita Schoeny
- U.S. Environmental Protection Agency, Washington, DC, USA
| | | | | |
Collapse
|
26
|
Hazard assessment of nitrosamine and nitramine by-products of amine-based CCS: Alternative approaches. Regul Toxicol Pharmacol 2015; 71:601-23. [DOI: 10.1016/j.yrtph.2014.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/10/2014] [Accepted: 08/06/2014] [Indexed: 11/21/2022]
|
27
|
Lemieux CL, Long AS, Lambert IB, Lundstedt S, Tysklind M, White PA. Cancer risk assessment of polycyclic aromatic hydrocarbon contaminated soils determined using bioassay-derived levels of benzo[a]pyrene equivalents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1797-1805. [PMID: 25549114 DOI: 10.1021/es504466b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Here we evaluate the excess lifetime cancer risk (ELCR) posed by 10 PAH-contaminated soils using (i) the currently advocated, targeted chemical-specific approach that assumes dose additivity for carcinogenic PAHs and (ii) a bioassay-based approach that employs the in vitro mutagenic activity of the soil fractions to determine levels of benzo[a]pyrene equivalents and, by extension, ELCR. Mutagenic activity results are presented in our companion paper.1 The results show that ELCR values for the PAH-containing fractions, determined using the chemical-specific approach, are generally (i.e., 8 out of 10) greater than those calculated using the bioassay-based approach; most are less than 5-fold greater. Only two chemical-specific ELCR estimates are less than their corresponding bioassay-derived values; differences are less than 10%. The bioassay-based approach, which permits estimation of ELCR without a priori knowledge of mixture composition, proved to be a useful tool to evaluate the chemical-specific approach. The results suggest that ELCR estimates for complex PAH mixtures determined using a targeted, chemical-specific approach are reasonable, albeit conservative. Calculated risk estimates still depend on contentious PEFs and cancer slope factors. Follow-up in vivo mutagenicity assessments will be required to validate the results and their relevance for human health risk assessment of PAH-contaminated soils.
Collapse
Affiliation(s)
- Christine L Lemieux
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada , 50 Colombine Driveway, Tunney's Pasture 0803A, Ottawa, Ontario, Canada , K1A 0K9
| | | | | | | | | | | |
Collapse
|
28
|
Johnson GE, Slob W, Doak SH, Fellows MD, Gollapudi BB, Heflich RH, Rees BJ, Soeteman-Hernández LG, Verma JR, Wills JW, Jenkins GJS, White PA. New approaches to advance the use of genetic toxicology analyses for human health risk assessment. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00118d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetic toxicology testing has a crucial role in the safety assessment of substances of societal value by reducing human exposure to potential somatic and germ cell mutagens.
Collapse
Affiliation(s)
- George E. Johnson
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - Wout Slob
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - Shareen H. Doak
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | | | | | - Robert H. Heflich
- National Centre for Toxicological Research
- U.S. Food and Drug Administration
- Jefferson
- USA
| | - Ben J. Rees
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - Lya G. Soeteman-Hernández
- Center for Health Protection
- National Institute for Public Health and the Environment (RIVM)
- Bilthoven
- Netherlands
| | - Jatin R. Verma
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - John W. Wills
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | | | - Paul A. White
- Environmental Health Sciences and Research Bureau
- Healthy Environments and Consumer Safety Branch
- Health Canada
- Ottawa
- Canada
| |
Collapse
|
29
|
Kang SH, Kwon JY, Lee JK, Seo YR. Recent advances in in vivo genotoxicity testing: prediction of carcinogenic potential using comet and micronucleus assay in animal models. J Cancer Prev 2014; 18:277-88. [PMID: 25337557 PMCID: PMC4189446 DOI: 10.15430/jcp.2013.18.4.277] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022] Open
Abstract
Genotoxic events have been known as crucial step in the initiation of cancer. To assess the risk of cancer, genotoxicity assays, including comet, micronucleus (MN), chromosomal aberration, bacterial reverse, and sister chromatid exchange assay, can be performed. Compared with in vitro genotoxicity assay, in vivo genotoxicity assay has been used to verify in vitro assay result and definitely provide biological significance for certain organs or cell types. The comet assay can detect DNA strand breaks as markers of genotoxicity. Methods of the in vivo comet assay have been established by Japanese Center for the Validation of Alternative Methods (JaCVAM) validation studies depending on tissue and sample types. The MN can be initiated by segregation error and lagging acentric chromosome fragment. Methods of the in vivo MN assay have been established by Organization for Economic Co-operation and Development (OECD) test guidelines and many studies. Combining the in vivo comet and MN assay has been regarded as useful methodology for evaluating genetic damage, and it has been used in the assessment of potential carcinogenicity by complementarily presenting two distinct endpoints of the in vivo genotoxicity individual test. Few studies have investigated the quantitative relation between in vivo genotoxicity results and carcinogenicity. Extensive studies emphasizes that positive correlation is detectable. This review summarizes the results of the in vivo comet and MN assays that have investigated the genotoxicity of carcinogens as classified by the International Agency for Research on Cancer (IARC) carcinogenicity database. As a result, these genotoxicity data may provide meaningful information for the assessment of potential carcinogenicity and for implementation in the prevention of cancer.
Collapse
Affiliation(s)
- Seung Hun Kang
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University, Seoul
| | - Jee Young Kwon
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University, Seoul
| | - Jong Kwon Lee
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation (NIFDS), Korea Food and Drug Administration (KFDA), Cheongwon, Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University, Seoul
| |
Collapse
|
30
|
Buist H, Bausch-Goldbohm R, Devito S, Venhorst J, Stierum R, Kroese E. WITHDRAWN: Hazard assessment of nitrosamine and nitramine by-products of amine-based CCS: An alternative approach. Regul Toxicol Pharmacol 2014; 70:392. [DOI: 10.1016/j.yrtph.2014.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 11/25/2022]
|
31
|
Johnson GE, Soeteman-Hernández LG, Gollapudi BB, Bodger OG, Dearfield KL, Heflich RH, Hixon JG, Lovell DP, MacGregor JT, Pottenger LH, Thompson CM, Abraham L, Thybaud V, Tanir JY, Zeiger E, van Benthem J, White PA. Derivation of point of departure (PoD) estimates in genetic toxicology studies and their potential applications in risk assessment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:609-23. [PMID: 24801602 PMCID: PMC6710644 DOI: 10.1002/em.21870] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 05/13/2023]
Abstract
Genetic toxicology data have traditionally been employed for qualitative, rather than quantitative evaluations of hazard. As a continuation of our earlier report that analyzed ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS) dose-response data (Gollapudi et al., 2013), here we present analyses of 1-ethyl-1-nitrosourea (ENU) and 1-methyl-1-nitrosourea (MNU) dose-response data and additional approaches for the determination of genetic toxicity point-of-departure (PoD) metrics. We previously described methods to determine the no-observed-genotoxic-effect-level (NOGEL), the breakpoint-dose (BPD; previously named Td), and the benchmark dose (BMD10 ) for genetic toxicity endpoints. In this study we employed those methods, along with a new approach, to determine the non-linear slope-transition-dose (STD), and alternative methods to determine the BPD and BMD, for the analyses of nine ENU and 22 MNU datasets across a range of in vitro and in vivo endpoints. The NOGEL, BMDL10 and BMDL1SD PoD metrics could be readily calculated for most gene mutation and chromosomal damage studies; however, BPDs and STDs could not always be derived due to data limitations and constraints of the underlying statistical methods. The BMDL10 values were often lower than the other PoDs, and the distribution of BMDL10 values produced the lowest median PoD. Our observations indicate that, among the methods investigated in this study, the BMD approach is the preferred PoD for quantitatively describing genetic toxicology data. Once genetic toxicology PoDs are calculated via this approach, they can be used to derive reference doses and margin of exposure values that may be useful for evaluating human risk and regulatory decision making.
Collapse
Affiliation(s)
- G E Johnson
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Interindividual variation in response to xenobiotic exposure established in precision-cut human liver slices. Toxicology 2014; 323:61-9. [DOI: 10.1016/j.tox.2014.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 02/01/2023]
|
33
|
Dertinger SD, Phonethepswath S, Avlasevich SL, Torous DK, Mereness J, Cottom J, Bemis JC, Macgregor JT. Pig-a gene mutation and micronucleated reticulocyte induction in rats exposed to tumorigenic doses of the leukemogenic agents chlorambucil, thiotepa, melphalan, and 1,3-propane sultone. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:299-308. [PMID: 24449360 DOI: 10.1002/em.21846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
To evaluate whether blood-based genotoxicity endpoints can provide temporal and dose-response data within the low-dose carcinogenic range that could contribute to carcinogenic mode of action (MoA) assessments, we evaluated the sensitivity of flow cytometry-based micronucleus and Pig-a gene mutation assays at and below tumorigenic dose rate 50 (TD50) levels. The incidence of micronucleated reticulocytes (MN-RET) was used to evaluate chromosomal damage, and the frequency of CD59-negative reticulocytes (RET(CD59-) ) and erythrocytes (RBC(CD59-) ) served as phenotypic reporters of mutation at the X-linked Pig-a gene. Several leukemogenic agents with a presumed genotoxic MoA were studied. Specifically, male Sprague Dawley rats were treated via oral gavage for 28 days with chlorambucil, thiotepa, melphalan, and 1,3-propane sultone at doses corresponding to 0.33x, 1x, and 3x TD50, as well as at the maximum tolerated dose. Frequencies of MN-RET were determined at Days 4 and 29, and RET(CD59-) and RBC(CD59-) data were collected pretreatment as well as Days 15/16, 29, and 56/57. Dose-related increases were observed for each endpoint, and time to maximal effect was consistently: MN-RET < RET(CD59-) < RBC(CD59-) . For each of the chemicals studied, the genotoxic events occurred long before tumors or preneoplastic lesions would be expected. Furthermore, in the case of Pig-a gene mutation, the responses were observed at or below the TD50 dose for three out of the four chemicals studied. These data illustrate the potential for quantitative blood-based analyses to provide dose-response and temporality information that relates genetic damage to cancer induction.
Collapse
|
34
|
Tang L, Guérard M, Zeller A. Quantitative assessment of the dose-response of alkylating agents in DNA repair proficient and deficient ames tester strains. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:15-23. [PMID: 24273186 DOI: 10.1002/em.21825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 06/02/2023]
Abstract
Mutagenic and clastogenic effects of some DNA damaging agents such as methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) have been demonstrated to exhibit a nonlinear or even "thresholded" dose-response in vitro and in vivo. DNA repair seems to be mainly responsible for these thresholds. To this end, we assessed several mutagenic alkylators in the Ames test with four different strains of Salmonella typhimurium: the alkyl transferases proficient strain TA1535 (Ogt+/Ada+), as well as the alkyl transferases deficient strains YG7100 (Ogt+/Ada-), YG7104 (Ogt-/Ada+) and YG7108 (Ogt-/Ada-). The known genotoxins EMS, MMS, temozolomide (TMZ), ethylnitrosourea (ENU) and methylnitrosourea (MNU) were tested in as many as 22 concentration levels. Dose-response curves were statistically fitted by the PROAST benchmark dose model and the Lutz-Lutz "hockeystick" model. These dose-response curves suggest efficient DNA-repair for lesions inflicted by all agents in strain TA1535. In the absence of Ogt, Ada is predominantly repairing methylations but not ethylations. It is concluded that the capacity of alkyl-transferases to successfully repair DNA lesions up to certain dose levels contributes to genotoxicity thresholds.
Collapse
Affiliation(s)
- Leilei Tang
- pRED, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | |
Collapse
|
35
|
Soeteman-Hernández LG, Bos PMJ, Talhout R. Tobacco smoke-related health effects induced by 1,3-butadiene and strategies for risk reduction. Toxicol Sci 2013; 136:566-80. [PMID: 24014643 PMCID: PMC3858188 DOI: 10.1093/toxsci/kft194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/26/2013] [Indexed: 11/29/2022] Open
Abstract
1,3-Butadiene (BD) is a smoke component selected by the World Health Organization (WHO) study group on Tobacco Product Regulation (TobReg) for mandated lowering. We examined the tobacco smoke-related health effects induced by BD and possible health impacts of risk reduction strategies. BD levels in mainstream smoke (MSS) from international and Canadian cigarettes and environmental tobacco smoke (ETS) were derived from scientific journals and international government reports. Dose-response analyses from toxicity studies from government reports were evaluated and the most sensitive cancer and noncancer endpoints were selected. The risks were evaluated by taking the ratio (margin of exposure, MOE) from the most sensitive toxicity endpoint and appropriate exposure estimates for BD in MSS and ETS. BD is a good choice for lowering given that MSS and ETS were at levels for cancer (leukemia) and noncancer (ovarian atrophy) risks, and the risks can be significantly lowered when lowering the BD concentrations in smoke. Several risk reduction strategies were analyzed including a maximum level of 125% of the median BD value per milligram nicotine obtained from international brands as recommended by the WHO TobReg, tobacco substitute sheets, dual and triple carbon filters, and polymer-derived carbon. The use of tobacco substitute sheet with a polymer-derived carbon filter resulted in the most significant change in risk for cancer and noncancer effects. Our results demonstrate that MOE analysis might be a practical way to assess the impact of risk reduction strategies on human health in the future.
Collapse
Affiliation(s)
| | - Peter M. J. Bos
- †Centre for Substance and Product Safety, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | |
Collapse
|
36
|
Hernández LG, van Benthem J, Johnson GE. A mode-of-action approach for the identification of genotoxic carcinogens. PLoS One 2013; 8:e64532. [PMID: 23675539 PMCID: PMC3652818 DOI: 10.1371/journal.pone.0064532] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/16/2013] [Indexed: 11/23/2022] Open
Abstract
Distinguishing between clastogens and aneugens is vital in cancer risk assessment because the default assumption is that clastogens and aneugens have linear and non-linear dose-response curves, respectively. Any observed non-linearity must be supported by mode of action (MOA) analyses where biological mechanisms are linked with dose-response evaluations. For aneugens, the MOA has been well characterised as disruptors of mitotic machinery where chromosome loss via micronuclei (MN) formation is an accepted endpoint used in risk assessment. In this study we performed the cytokinesis-block micronucleus assay and immunofluorescence mitotic machinery visualisation in human lymphoblastoid (AHH-1) and Chinese Hamster fibroblast (V79) cell lines after treatment with the aneugen 17-β-oestradiol (E2). Results were compared to previously published data on bisphenol-A (BPA) and Rotenone data. Two concentration-response approaches (the threshold-[Td] and benchmark-dose [BMD] approaches) were applied to derive a point of departure (POD) for in vitro MN induction. BMDs were also derived from the most sensitive carcinogenic endpoint. Ranking comparisons of the PODs from the in vitro MN and the carcinogenicity studies demonstrated a link between these two endpoints for BPA, E2 and Rotenone. This analysis was extended to include 5 additional aneugens, 5 clastogens and 3 mutagens and further concentration and dose-response correlations were observed between PODs from the in vitro MN and carcinogenicity. This approach is promising and may be further extended to other genotoxic carcinogens, where MOA and quantitative information from the in vitro MN studies could be used in a quantitative manner to further inform cancer risk assessment.
Collapse
Affiliation(s)
- Lya G. Hernández
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jan van Benthem
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - George E. Johnson
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Gollapudi BB, Johnson GE, Hernandez LG, Pottenger LH, Dearfield KL, Jeffrey AM, Julien E, Kim JH, Lovell DP, Macgregor JT, Moore MM, van Benthem J, White PA, Zeiger E, Thybaud V. Quantitative approaches for assessing dose-response relationships in genetic toxicology studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:8-18. [PMID: 22987251 DOI: 10.1002/em.21727] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
Genetic toxicology studies are required for the safety assessment of chemicals. Data from these studies have historically been interpreted in a qualitative, dichotomous "yes" or "no" manner without analysis of dose-response relationships. This article is based upon the work of an international multi-sector group that examined how quantitative dose-response relationships for in vitro and in vivo genetic toxicology data might be used to improve human risk assessment. The group examined three quantitative approaches for analyzing dose-response curves and deriving point-of-departure (POD) metrics (i.e., the no-observed-genotoxic-effect-level (NOGEL), the threshold effect level (Td), and the benchmark dose (BMD)), using data for the induction of micronuclei and gene mutations by methyl methanesulfonate or ethyl methanesulfonate in vitro and in vivo. These results suggest that the POD descriptors obtained using the different approaches are within the same order of magnitude, with more variability observed for the in vivo assays. The different approaches were found to be complementary as each has advantages and limitations. The results further indicate that the lower confidence limit of a benchmark response rate of 10% (BMDL(10) ) could be considered a satisfactory POD when analyzing genotoxicity data using the BMD approach. The models described permit the identification of POD values that could be combined with mode of action analysis to determine whether exposure(s) below a particular level constitutes a significant human risk. Subsequent analyses will expand the number of substances and endpoints investigated, and continue to evaluate the utility of quantitative approaches for analysis of genetic toxicity dose-response data.
Collapse
|
38
|
van der Laan JW, DeGeorge JJ, Sistare F, Moggs J. Toward More Scientific Relevance in Carcinogenicity Testing. GLOBAL APPROACH IN SAFETY TESTING 2013. [DOI: 10.1007/978-1-4614-5950-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Existe-t-il une dose seuil pour les effets génotoxiques ? ARCH MAL PROF ENVIRO 2012. [DOI: 10.1016/j.admp.2012.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Attia SM. Molecular cytogenetic evaluation of the mechanism of genotoxic potential of amsacrine and nocodazole in mouse bone marrow cells. J Appl Toxicol 2011; 33:426-33. [DOI: 10.1002/jat.1753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/10/2011] [Accepted: 09/10/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Sabry M. Attia
- Department of Pharmacology, College of Pharmacy; King Saud University; PO Box 11451; Riyadh; Saudi Arabia
| |
Collapse
|