1
|
Toxicology and carcinogenesis studies of an isomeric mixture of tris(chloropropyl) phosphate administered in feed to Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice. NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORT SERIES 2023:NTP-TR-602. [PMID: 37368980 PMCID: PMC11163308 DOI: 10.22427/ntp-tr-602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Tris(chloropropyl) phosphate (TCPP) is used as a flame retardant in textiles, furniture foam, and other related products. In addition, it is manufactured for use in construction materials, electronic products, paints, coatings, and adhesives. Several flame retardants, including structurally similar organohalogen compounds, have been removed from products in commerce due to toxicity concerns, and TCPP has been proposed as a replacement flame retardant for use in these products. An anticipated increase in use of TCPP has generated concerns for increased human exposure through oral, dermal, and inhalation routes; however, publicly available toxicity data are scarce. The U.S. Consumer Product Safety Commission therefore requested that the National Toxicology Program (NTP) form a research program on TCPP to conduct subchronic and chronic exposure studies in rats and mice for hazard identification and characterization information. Because TCPP is commercially available as an isomeric mixture, the NTP studies tested a commercial TCPP product containing four isomers commonly found in other commercial mixtures of TCPP: tris(1-chloro-2-propyl) phosphate (TCIPP; CASRN 13674-84-5), bis(2-chloro-1-methylethyl) 2-chloropropyl phosphate (CASRN 76025-08-6), bis(2-chloropropyl) 2-chloroisopropyl phosphate (CASRN 76649-15-5), and tris(2-chloropropyl) phosphate (CASRN 6145-73-9). Following procurement of TCPP, the percent purity of the four isomers was determined prior to conducting hazard characterization studies. (Abstract Abridged).
Collapse
|
2
|
Gollapudi BB. Genotoxicity evaluation of orally administered styrene monomer in mice using comet, micronucleus, and Pig-a endpoints. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023. [PMID: 37042435 DOI: 10.1002/em.22540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Male B6C3F1 mice were administered styrene monomer by oral gavage for 29 consecutive days at dose levels of 0, 75, 150, or 300 mg/kg/day. The highest dose level represented the maximum tolerated dose based on findings in a 28-day dose range-finding study, in which the bioavailability of orally administered styrene was also confirmed. The positive control group received ethyl nitrosourea (ENU; 51.7 mg/kg/day) on Study Days 1-3 and ethyl methanesulfonate (EMS; 150 mg/kg/day) on Study Days 27-29 by oral gavage. Approximately 3 h following the final dose, blood was collected to assess erythrocyte Pig-a mutant and micronucleus frequencies. DNA strand breakage was assessed in glandular stomach, duodenum, kidney, liver, and lung tissues using the alkaline comet assay. The %tail DNA for stomach, liver, lung, and kidney in the comet assay among the styrene-treated groups was neither significantly different from the respective vehicle controls nor was there any dose-related increasing trend in any of the tissues; results for duodenum were interpreted to be inconclusive because of technical issues. The Pig-a and micronucleus frequencies among styrene-treated groups also did not show significant increases relative to the vehicle controls and there was also no evidence for a dose-related increasing trend. Thus, orally administered styrene did not induce DNA damage, mutagenesis, or clastogenesis/aneugenesis in these Organization of Economic Co-operation and Development test guideline-compliant genotoxicity studies. Data from these studies can contribute to the overall assessment of genotoxic hazard and risk posed to humans potentially exposed to styrene.
Collapse
|
3
|
Toxicity studies of acetoin and 2,3-pentanedione administered by inhalation to Wistar Han [Crl:WI(Han)] rats and B6C3F1/N mice. TOXICITY REPORT SERIES 2023:NTP-TOX-98. [PMID: 36999846 PMCID: PMC10201376 DOI: 10.22427/ntp-tox-98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Acetoin and 2,3-pentanedione are highly volatile components of artificial butter flavoring (ABF). Concerns over the inhalation toxicity of these compounds originate from the association between occupational exposures to ABF and adverse fibrotic lung effects, specifically obliterative bronchiolitis (OB) in the distal airways. 2,3-Pentanedione has been used as a replacement for 2,3-butanedione (diacetyl) in some ABF due to concerns about the respiratory toxicity of 2,3-butanedione. However, 2,3-pentanedione is structurally similar to 2,3-butanedione and has been shown to exhibit potency similar to 2,3-butanedione regarding airway toxicity following acute inhalation (whole-body) exposure. This report describes a series of studies to evaluate the 2-week inhalation toxicity of acetoin and the 3-month inhalation toxicity of acetoin and 2,3-pentanedione. (Abstract Abridged).
Collapse
|
4
|
Toxicity studies of sodium metavanadate and vanadyl sulfate administered in drinking water to Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice. TOXICITY REPORT SERIES 2023:NTP-TOX-106. [PMID: 36749982 PMCID: PMC10201387 DOI: 10.22427/ntp-tox-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Oral human exposure to vanadium may occur due to its presence in food and drinking water and its use in dietary supplements. The most prevalent oxidation states of vanadium in food and drinking water have been characterized as tetravalent and pentavalent. Vanadyl sulfate and sodium metavanadate were selected as representative tetravalent (V4+) and pentavalent (V5+) test articles for these studies, respectively. To assess the potential for oral toxicity of vanadium compounds with differing oxidation states under similar test conditions, the 3-month National Toxicology Program (NTP) toxicity studies of sodium metavanadate and vanadyl sulfate were conducted in male and female Sprague Dawley (Hsd:Sprague Dawley SD) rats (including perinatal exposure) and in B6C3F1/N mice. Drinking water concentrations for sodium metavanadate (0, 31.3, 62.5, 125, 250, and 500 mg/L) and vanadyl sulfate (0, 21.0, 41.9, 83.8, 168, and 335 mg/L) were selected on the basis of previously published 14-day drinking water studies conducted as part of the NTP vanadium research program. (Abstract Abridged).
Collapse
|
5
|
Møller P, Bankoglu EE, Stopper H, Giovannelli L, Ladeira C, Koppen G, Gajski G, Collins A, Valdiglesias V, Laffon B, Boutet-Robinet E, Perdry H, Del Bo' C, Langie SAS, Dusinska M, Azqueta A. Collection and storage of human white blood cells for analysis of DNA damage and repair activity using the comet assay in molecular epidemiology studies. Mutagenesis 2021; 36:193-212. [PMID: 33755160 DOI: 10.1093/mutage/geab012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 01/08/2023] Open
Abstract
DNA damage and repair activity are often assessed in blood samples from humans in different types of molecular epidemiology studies. However, it is not always feasible to analyse the samples on the day of collection without any type of storage. For instance, certain studies use repeated sampling of cells from the same subject or samples from different subjects collected at different time-points, and it is desirable to analyse all these samples in the same comet assay experiment. In addition, flawless comet assay analyses on frozen samples open up the possibility of using this technique on biobank material. In this article we discuss the use of cryopreserved peripheral blood mononuclear cells (PBMCs), buffy coat (BC) and whole blood (WB) for analysis of DNA damage and repair using the comet assay. The published literature and the authors' experiences indicate that various types of blood samples can be cryopreserved with only a minor effect on the basal level of DNA damage. There is evidence to suggest that WB and PBMCs can be cryopreserved for several years without much effect on the level of DNA damage. However, care should be taken when cryopreserving WB and BCs. It is possible to use either fresh or frozen samples of blood cells, but results from fresh and frozen cells should not be used in the same dataset. The article outlines detailed protocols for the cryopreservation of PBMCs, BCs and WB samples.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
| | - Lisa Giovannelli
- Department NEUROFARBA, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde (ESTeSL), Instituto Politécnico de Lisboa, Avenida D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal.,NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal.,Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Portugal
| | | | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Andrew Collins
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Vanessa Valdiglesias
- Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, 15071, A Coruña, Spain.,Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain.,Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Universidade da Coruña, Campus Elviña s/n, 15071, A Coruña, Spain
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Hervé Perdry
- Université Paris-Saclay, UVSQ, Inserm, CESP, 94807, Villejuif, France
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Sabine A S Langie
- School of Nutrition and Translational Research in Metabolism, Department of Pharmacology and Toxicology, University of Maastricht, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - Maria Dusinska
- Environmental Chemistry Department, Health Effects Laboratory, NILU - Norwegian Institute for Air Research, 2027 Kjeller, Norway
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, C/Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
6
|
Toxicity studies of trimethylsilyldiazomethane administered by nose-only inhalation to Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice. TOXICITY REPORT SERIES 2021:NTP-TOX-101. [PMID: 33819212 PMCID: PMC8126982 DOI: 10.22427/ntp-tox-101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Trimethylsilyldiazomethane (TMSD) is a methylating reagent widely used in organic chemistry. TMSD is structurally related to the compound diazomethane, which is a known lethal respiratory toxicant in humans and in animal models. TMSD is less reactive (with lower explosive potential) than diazomethane and is considered a safer, less toxic alternative. Few toxicity data are available to support this claim, however, and TMSD is readily available commercially from chemical suppliers. Concern over the inhalation toxicity of TMSD originates from reports of the death of two chemists resulting from lung injury and acute respiratory distress syndrome following exposure to TMSD in the workplace. Other concerns include the known inhalation toxicity of diazomethane and the absence of inhalation toxicity data for TMSD. The National Toxicology Program (NTP) conducted this study to evaluate the acute inhalation toxicity of TMSD in vivo.(Abstract Abridged).
Collapse
|
7
|
Gollapudi BB, Williams AL, Bus JS. A review of the genotoxicity of the industrial chemical cumene. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108364. [PMID: 34083043 DOI: 10.1016/j.mrrev.2021.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 12/01/2022]
Abstract
The purpose of this review is to evaluate the literature on the genotoxicity of cumene (CAS # 98-82-8) and to assess the role of mutagenicity, if any, in the mode of action for cumene-induced rodent tumors. The studies reviewed included microbial mutagenicity, DNA damage/ repair, cytogenetic effects, and gene mutations. In reviewing these studies, attention was paid to their conformance to applicable OECD test guidelines which are considered as internationally recognized standards for performing these assays. Cumene was not a bacterial mutagen and did not induce Hprt mutations in CHO cell cultures. In the primary rat hepatocyte cultures, cumene induced unscheduled DNA synthesis in one study but this response could not be reproduced in an independent study using a similar protocol. In a study that is not fully compliant to the current OECD guideline, no increase in chromosomal aberrations was observed in CHO cells treated with cumene. The weight of the evidence (WoE) from multiple in vivo studies indicates that cumene is not a clastogen or aneugen. The weak positive response in an in vivo comet assay in the rat liver and mouse lung tissues is of questionable significance due to several study deficiencies. The genotoxicity profile of cumene does not match that of a classic DNA-reactive molecule and the available data does not support a conclusion that cumene is an in vivo mutagen. As such, mutagenicity does not appear to be an early key event in cumene-induced rodent tumors and alternate hypothesized non-mutagenic modes-of-action are presented. Further data are necessary to rule in or rule out a particular MoA.
Collapse
Affiliation(s)
- B Bhaskar Gollapudi
- Exponent, Inc., Center for Health Sciences, 1800 Diagonal Road, Suite 500, Alexandria, VA, 22314, United States.
| | - Amy L Williams
- Exponent, Inc., Center for Health Sciences, 1800 Diagonal Road, Suite 500, Alexandria, VA, 22314, United States
| | - James S Bus
- Exponent, Inc., Center for Health Sciences, 1800 Diagonal Road, Suite 500, Alexandria, VA, 22314, United States
| |
Collapse
|
8
|
Smith‐Roe SL, Wyde ME, Stout MD, Winters JW, Hobbs CA, Shepard KG, Green AS, Kissling GE, Shockley KR, Tice RR, Bucher JR, Witt KL. Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:276-290. [PMID: 31633839 PMCID: PMC7027901 DOI: 10.1002/em.22343] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/04/2019] [Accepted: 10/16/2019] [Indexed: 05/03/2023]
Abstract
The National Toxicology Program tested two common radiofrequency radiation (RFR) modulations emitted by cellular telephones in a 2-year rodent cancer bioassay that included interim assessments of additional animals for genotoxicity endpoints. Male and female Hsd:Sprague Dawley SD rats and B6C3F1/N mice were exposed from Gestation day 5 or Postnatal day 35, respectively, to code division multiple access (CDMA) or global system for mobile modulations over 18 hr/day, at 10-min intervals, in reverberation chambers at specific absorption rates of 1.5, 3, or 6 W/kg (rats, 900 MHz) or 2.5, 5, or 10 W/kg (mice, 1,900 MHz). After 19 (rats) or 14 (mice) weeks of exposure, animals were examined for evidence of RFR-associated genotoxicity using two different measures. Using the alkaline (pH > 13) comet assay, DNA damage was assessed in cells from three brain regions, liver cells, and peripheral blood leukocytes; using the micronucleus assay, chromosomal damage was assessed in immature and mature peripheral blood erythrocytes. Results of the comet assay showed significant increases in DNA damage in the frontal cortex of male mice (both modulations), leukocytes of female mice (CDMA only), and hippocampus of male rats (CDMA only). Increases in DNA damage judged to be equivocal were observed in several other tissues of rats and mice. No significant increases in micronucleated red blood cells were observed in rats or mice. In conclusion, these results suggest that exposure to RFR is associated with an increase in DNA damage. Environ. Mol. Mutagen. 61:276-290, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephanie L. Smith‐Roe
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Michael E. Wyde
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Matthew D. Stout
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - John W. Winters
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Cheryl A. Hobbs
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Kim G. Shepard
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Amanda S. Green
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Grace E. Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Keith R. Shockley
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Raymond R. Tice
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - John R. Bucher
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Kristine L. Witt
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| |
Collapse
|
9
|
Applying the comet assay to fresh vs frozen animal solid tissues: A technical approach. Food Chem Toxicol 2019; 132:110671. [DOI: 10.1016/j.fct.2019.110671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022]
|
10
|
Milić M, Ožvald I, Vinković Vrček I, Vučić Lovrenčić M, Oreščanin V, Bonassi S, Del Castillo ER. Alkaline comet assay results on fresh and one-year frozen whole blood in small volume without cryo-protection in a group of people with different health status. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 843:3-10. [PMID: 31421735 DOI: 10.1016/j.mrgentox.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
Using alkaline comet assay, DNA damage tail length (TL) and tail intensity (TI) parameters were compared between fresh whole blood and 1-year frozen small volume whole blood in EDTA at -80 °C without cryo-preservation. The studied group consisted of 25 volunteers with different health conditions who served as their own controls for frozen blood results. Without the purification step after thawing, the results and the usefulness of this protocol for future/retrospective (including re-analysations of putative outliers) studies were analysed. Medical surveillance and blood sampling were done at Merkur University Hospital Zagreb. No significant differences between fresh and frozen blood samples in terms of the mean TL values (mean ± SD: 29.03 ± 12.26 vs. 25.36 ± 6.97, respectively) and the mean TI values (9.19 ± 10.37 vs. 10.17 ± 8.55, respectively), and highly damaged cell percentage were determined among 25 volunteers. Median TI frozen samples values of entire group were within the allowed 10-11% (8.24). At the individual levels, no correlation between fresh and frozen whole blood samples was observed in 11 volunteers who suffered from diabetes mellitus type 2. Strong correlation between fresh/frozen samples was seen for TL (r = 0.64, p < 0.015) and TI (r = 0.71, p < 0.005) in nondiabetic subgroup. Overall, the results demonstrated the usefulness of the 1-year frozen blood without induction of heavily damaged DNA. Due to the different DNA damage behaviour connected with different health conditions, future studies should involve more volunteers, oxidative DNA damage comet assay measurements, the inclusion of a washing step after thawing and inclusion of disease/antioxidant biomarkers.
Collapse
Affiliation(s)
- Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000, Zagreb, Croatia.
| | - Ivan Ožvald
- Special Hospital For Extended Treatment of Duga Resa, Josefa Jeruzalema 7, 47250, Duga Resa, Croatia.
| | - Ivana Vinković Vrček
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000, Zagreb, Croatia.
| | - Marijana Vučić Lovrenčić
- Department of Laboratory Medicine, Merkur University Hospital, Zajčeva 19, 10000, Zagreb, Croatia.
| | | | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, 00166, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166, Rome, Italy.
| | - Emilio Rojas Del Castillo
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico, Mexico.
| |
Collapse
|
11
|
Kirkland D, Levy DD, LeBaron MJ, Aardema MJ, Beevers C, Bhalli J, Douglas GR, Escobar PA, Farabaugh CS, Guerard M, Johnson GE, Kulkarni R, Le Curieux F, Long AS, Lott J, Lovell DP, Luijten M, Marchetti F, Nicolette JJ, Pfuhler S, Roberts DJ, Stankowski LF, Thybaud V, Weiner SK, Williams A, Witt KL, Young R. A comparison of transgenic rodent mutation and in vivo comet assay responses for 91 chemicals. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 839:21-35. [PMID: 30744809 PMCID: PMC6697155 DOI: 10.1016/j.mrgentox.2019.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
Abstract
A database of 91 chemicals with published data from both transgenic rodent mutation (TGR) and rodent comet assays has been compiled. The objective was to compare the sensitivity of the two assays for detecting genotoxicity. Critical aspects of study design and results were tabulated for each dataset. There were fewer datasets from rats than mice, particularly for the TGR assay, and therefore, results from both species were combined for further analysis. TGR and comet responses were compared in liver and bone marrow (the most commonly studied tissues), and in stomach and colon evaluated either separately or in combination with other GI tract segments. Overall positive, negative, or equivocal test results were assessed for each chemical across the tissues examined in the TGR and comet assays using two approaches: 1) overall calls based on weight of evidence (WoE) and expert judgement, and 2) curation of the data based on a priori acceptability criteria prior to deriving final tissue specific calls. Since the database contains a high prevalence of positive results, overall agreement between the assays was determined using statistics adjusted for prevalence (using AC1 and PABAK). These coefficients showed fair or moderate to good agreement for liver and the GI tract (predominantly stomach and colon data) using WoE, reduced agreement for stomach and colon evaluated separately using data curation, and poor or no agreement for bone marrow using both the WoE and data curation approaches. Confidence in these results is higher for liver than for the other tissues, for which there were less data. Our analysis finds that comet and TGR generally identify the same compounds (mainly potent mutagens) as genotoxic in liver, stomach and colon, but not in bone marrow. However, the current database content precluded drawing assay concordance conclusions for weak mutagens and non-DNA reactive chemicals.
Collapse
Affiliation(s)
| | - Dan D Levy
- US Food and Drug Administration Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Matthew J LeBaron
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, Midland, MI, USA
| | - Marilyn J Aardema
- Marilyn Aardema Consulting LLC, 5315 Oakbrook Dr., Fairfield, OH 45014, USA
| | | | - Javed Bhalli
- MilliporeSigma, BioReliance Toxicology Testing Services, Rockville, MD, USA
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| | | | | | - Melanie Guerard
- Roche Innovation Center Basel, pRed, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Rohan Kulkarni
- MilliporeSigma, BioReliance Toxicology Testing Services, Rockville, MD, USA
| | | | - Alexandra S Long
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| | - Jasmin Lott
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - David P Lovell
- St George's Medical School, University of London, London, UK
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| | | | - Stefan Pfuhler
- Procter & Gamble, Global Product Stewardship, Mason, OH 45040, USA
| | | | | | | | - Sandy K Weiner
- Janssen Research & Development, Spring House, PA 19477, USA
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| | - Kristine L Witt
- National Institute of Environmental Health Sciences/Division of the National Toxicology Program, Research Triangle Park, NC, USA
| | - Robert Young
- MilliporeSigma, BioReliance Toxicology Testing Services, Rockville, MD, USA
| |
Collapse
|
12
|
Hobbs CA, Koyanagi M, Swartz C, Davis J, Maronpot R, Recio L, Hayashi SM. Genotoxicity evaluation of the naturally-derived food colorant, gardenia blue, and its precursor, genipin. Food Chem Toxicol 2018; 118:695-708. [DOI: 10.1016/j.fct.2018.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 11/16/2022]
|
13
|
Hobbs CA, Koyanagi M, Swartz C, Davis J, Kasamoto S, Maronpot R, Recio L, Hayashi SM. Comprehensive evaluation of the flavonol anti-oxidants, alpha-glycosyl isoquercitrin and isoquercitrin, for genotoxic potential. Food Chem Toxicol 2018; 113:218-227. [PMID: 29317330 DOI: 10.1016/j.fct.2017.12.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/13/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
Quercetin and its glycosides possess potential benefits to human health. Several flavonols are available to consumers as dietary supplements, promoted as anti-oxidants; however, incorporation of natural quercetin glycosides into food and beverage products has been limited by poor miscibility in water. Enzymatic conjugation of multiple glucose moieties to isoquercitrin to produce alpha-glycosyl isoquercitrin (AGIQ) enhances solubility and bioavailability. AGIQ is used in Japan as a food additive and has been granted generally recognized as safe (GRAS) status. However, although substantial genotoxicity data exist for quercetin, there is very little available data for AGIQ and isoquercitrin. To support expanded global marketing of food products containing AGIQ, comprehensive testing of genotoxic potential of AGIQ and isoquercitrin was conducted according to current regulatory test guidelines. Both chemicals tested positive in bacterial reverse mutation assays, and exposure to isoquercitrin resulted in chromosomal aberrations in CHO-WBL cells. All other in vitro mammalian micronucleus and chromosomal aberration assays, micronucleus and comet assays in male and female B6C3F1 mice and Sprague Dawley rats, and Muta™ Mouse mutation assays evaluating multiple potential target tissues, were negative for both chemicals. These results supplement existing toxicity data to further support the safe use of AGIQ in food and beverage products.
Collapse
Affiliation(s)
- Cheryl A Hobbs
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA.
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Carol Swartz
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Jeffrey Davis
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Sawako Kasamoto
- Public Interest Incorporated Foundation Biosafety Research Center (BSRC), 582-2, Shioshinden, Iwata-shi, Shizuoka 437-1213, Japan
| | - Robert Maronpot
- Maronpot Consulting LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
| | - Leslie Recio
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| |
Collapse
|
14
|
Iglesias T, Irache J, Butinar M, Turk B, López de Cerain A, Azqueta A. Genotoxic evaluation of poly(anhydride) nanoparticles in the gastrointestinal tract of mice. Int J Pharm 2017; 530:187-194. [DOI: 10.1016/j.ijpharm.2017.07.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 01/03/2023]
|
15
|
Kolarević S, Aborgiba M, Kračun-Kolarević M, Kostić J, Simonović P, Simić V, Milošković A, Reischer G, Farnleitner A, Gačić Z, Milačič R, Zuliani T, Vidmar J, Pergal M, Piria M, Paunović M, Vuković-Gačić B. Evaluation of Genotoxic Pressure along the Sava River. PLoS One 2016; 11:e0162450. [PMID: 27631093 PMCID: PMC5025182 DOI: 10.1371/journal.pone.0162450] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
In this study we have performed a comprehensive genotoxicological survey along the 900 rkm of the Sava River. In total, 12 sites were chosen in compliance with the goals of GLOBAQUA project dealing with the effects of multiple stressors on biodiversity and functioning of aquatic ecosystems. The genotoxic potential was assessed using a complex battery of bioassays performed in prokaryotes and aquatic eukaryotes (freshwater fish). Battery comprised evaluation of mutagenicity by SOS/umuC test in Salmonella typhimurium TA1535/pSK1002. The level of DNA damage as a biomarker of exposure (comet assay) and biomarker of effect (micronucleus assay) and the level of oxidative stress as well (Fpg—modified comet assay) was studied in blood cells of bleak and spirlin (Alburnus alburnus/Alburnoides bipunctatus respectively). Result indicated differential sensitivity of applied bioassays in detection of genotoxic pressure. The standard and Fpg—modified comet assay showed higher potential in differentiation of the sites based on genotoxic potential in comparison with micronucleus assay and SOS/umuC test. Our data represent snapshot of the current status of the river which indicates the presence of genotoxic potential along the river which can be traced to the deterioration of quality of the Sava River by communal and industrial wastewaters. The major highlight of the study is that we have provided complex set of data obtained from a single source (homogeneity of analyses for all samples).
Collapse
Affiliation(s)
- Stoimir Kolarević
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Belgrade, Serbia
- * E-mail:
| | - Mustafa Aborgiba
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Belgrade, Serbia
| | | | - Jovana Kostić
- University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Predrag Simonović
- University of Belgrade, Faculty of Biology, Institute of Zoology, Belgrade, Serbia
| | - Vladica Simić
- University of Kragujevac, Faculty of Science, Kragujevac, Serbia
| | | | - Georg Reischer
- TU Wien, Institute for Chemical Engineering, Research Group Environmental Microbiology and Molecular Ecology, Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Andreas Farnleitner
- TU Wien, Institute for Chemical Engineering, Research Group Environmental Microbiology and Molecular Ecology, Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Zoran Gačić
- University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Radmila Milačič
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tea Zuliani
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janja Vidmar
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Marija Pergal
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Belgrade, Serbia
| | - Marina Piria
- University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
| | - Momir Paunović
- University of Belgrade, Institute for Biological Research ¨Siniša Stanković¨, Belgrade, Serbia
| | - Branka Vuković-Gačić
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Belgrade, Serbia
| |
Collapse
|
16
|
Pu X, Wang Z, Klaunig JE. Cryopreservation of human blood for alkaline and Fpg-modified comet assay. Toxicol Mech Methods 2016; 26:196-201. [DOI: 10.3109/15376516.2016.1144126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Maronpot RR, Hobbs CA, Davis J, Swartz C, Boyle M, Koyanagi M, Hayashi SM. Genetic and rat toxicity studies of cyclodextrin glucanotransferase. Toxicol Rep 2016; 3:381-392. [PMID: 28959560 PMCID: PMC5615836 DOI: 10.1016/j.toxrep.2016.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/15/2022] Open
Abstract
Bacterial cyclodextrin glucanotransferase (CGTase) is used to produce a water soluble form of glycosylated isoquercitrin. Genotoxicity battery on CGTase and sodium sulfate negative for mutations and DNA damage. No evidence of systemic toxicity in 90-day rat toxicity study of CGTase.
Introduction Microbiologically derived cyclodextrin glucanotransferase (CGTase) is used commercially as a processing agent in manufacture of food, pharmaceuticals, and cosmetics. Its toxic potential was evaluated in anticipation of use in the production of alpha-glycosyl isoquercitrin, a water-soluble form of quercetin. Methods Following OECD guidelines, CGTase, produced by Bacillus pseudalcaliphilus DK-1139, was evaluated in a genotoxicity battery consisting of a bacterial reverse mutation assay, an in vitro micronucleus (MN) assay and MN and comet assays using B6C3F1 male and female mice. These same genotoxicity assays were also conducted for sodium sulfate, a contaminant of CGTase preparation. In a 90-day Sprague Dawley rat toxicity study, CGTase was administered by gavage in water at daily doses of 0, 250, 500, and 1000 mg/kg/day. Results CGTase did not induce mutations with or without metabolic activation in the bacterial reverse mutation assay. Formation of micronuclei was not induced in either in vitro or in vivo MN assays with or without metabolic activation. No induction of DNA damage was detected in male or female mouse liver, stomach, or duodenum in the comet assay. Sodium sulfate also tested negative in these same genotoxicity assays. In the 90-day repeated dose rat study there were no treatment-related adverse clinical or pathological findings. Conclusion The genotoxicity assays and repeated dose toxicity study support the safe use of CGTase in production of alpha-glycosyl isoquercitrin.
Collapse
Affiliation(s)
- Robert R. Maronpot
- Maronpot Consulting LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
- Corresponding author.
| | - Cheryl A. Hobbs
- Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Jeffrey Davis
- Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Carol Swartz
- Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Molly Boyle
- Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Mihoko Koyanagi
- Global Scientific & Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Shim-mo Hayashi
- Global Scientific & Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| |
Collapse
|
18
|
Abstract
The ovary of neonatal nonhuman primates contains the highest number of immature oocytes,
but its cryopreservation has not yet been sufficiently investigated in all life stages. In
the current study, we investigated cryodamage after vitrification/warming of neonatal
ovaries from a nonhuman primate, the common marmoset (Callithrix
jacchus). A Cryotop was used for cryopreservation of whole ovaries. The
morphology of the vitrified/warmed ovaries was found to be equivalent to that of fresh
ovaries. No significant difference in the number of oocytes retaining normal morphology
per unit area in histological sections was found between the two groups. In an analysis of
dispersed cells from the ovaries, however, the cell viability of the vitrified/warmed
group tended to be decreased. The results of a comet assay showed no significant
differences in DNA damage. These results show that cryopreservation of neonatal marmoset
ovaries using vitrification may be useful as a storage system for whole ovaries.
Collapse
Affiliation(s)
- Hideyuki H Motohashi
- Department of Neurophysiology, National Institute of Neuroscience (NIN), National Center for Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | | |
Collapse
|
19
|
Roberts DJ, McKeon M, Xu Y, Stankowski LF. Comparison of integrated genotoxicity endpoints in rats after acute and subchronic oral doses of 4-nitroquinoline-1-oxide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:17-27. [PMID: 26407646 PMCID: PMC7362388 DOI: 10.1002/em.21981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/17/2015] [Indexed: 05/16/2023]
Abstract
During interlaboratory validation trials for the Pig-a gene mutation assay we assessed the genotoxicity of 4-nitroquinoline-1-oxide (4NQO) across endpoints in multiple tissues: induction of Pig-a mutant red blood cells (RBCs) and reticulocytes (RETs); micronucleated RETs (MN RETs); and DNA damage in blood and liver via the alkaline Comet assay (%tail intensity [TI]). In a previous subchronic toxicity study with 28 daily doses, biologically meaningful increases were observed only for Pig-a mutant RBCs/RETs while marginal increases in the frequency of MN RET were observed, and other clastogenic endpoints were negative. Follow up acute studies were performed using the same cumulative doses (0, 35, 70, 105, and 140 mg/kg) administered in a bolus, or split over three equal daily doses, with samples collected up to 1 month after the last dose. Both of the acute dosing regimens produced similar results, in that endpoints were either positive or negative, regardless of 1 or 3 daily doses, but the three consecutive daily dose regimen yielded more potent responses in TI (in liver and blood) and Pig-a mutant frequencies. In these acute studies the same cumulative doses of 4NQO induced positive responses in clastogenic endpoints that were negative or inconclusive using a subchronic study design. Additionally, a positive control group using combination doses of cyclophosphamide and ethyl methanesulfonate was employed to assess assay validity and potentially identify a future positive control treatment for integrated genetic toxicity studies.
Collapse
Affiliation(s)
- Daniel J Roberts
- Bristol-Myers Squibb, New Brunswick, NJ, USA
- Joint Graduate Program of Toxicology, Rutgers, NJ, USA
| | | | - Yong Xu
- BioReliance Corporation, Rockville, MD, USA
| | | |
Collapse
|
20
|
Furtado-Filho OV, Borba JB, Maraschin T, Souza LM, Henriques JAP, Moreira JCF, Saffi J. Effects of chronic exposure to 950 MHz ultra-high-frequency electromagnetic radiation on reactive oxygen species metabolism in the right and left cerebral cortex of young rats of different ages. Int J Radiat Biol 2015; 91:891-7. [DOI: 10.3109/09553002.2015.1083629] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Orlando V. Furtado-Filho
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Military School of Porto Alegre, Brazilian Army, Porto Alegre, Brazil
| | - Juliana B. Borba
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Tatiana Maraschin
- Toxicological Genetics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Larissa M. Souza
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - João A. P. Henriques
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - José C. F. Moreira
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jenifer Saffi
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
21
|
Hobbs CA, Swartz C, Maronpot R, Davis J, Recio L, Koyanagi M, Hayashi SM. Genotoxicity evaluation of the flavonoid, myricitrin, and its aglycone, myricetin. Food Chem Toxicol 2015; 83:283-92. [PMID: 26142838 DOI: 10.1016/j.fct.2015.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/04/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Myricitrin, a flavonoid extracted from the fruit, leaves, and bark of Chinese bayberry (Myrica rubra SIEBOLD), is currently used as a flavor modifier in snack foods, dairy products, and beverages in Japan. Myricitrin is converted to myricetin by intestinal microflora; myricetin also occurs ubiquitously in plants and is consumed in fruits, vegetables, and beverages. The genotoxic potential of myricitrin and myricetin was evaluated in anticipation of worldwide marketing of food products containing myricitrin. In a bacterial reverse mutation assay, myricetin tested positive for frameshift mutations under metabolic activation conditions whereas myricitrin tested negative for mutagenic potential. Both myricitrin and myricetin induced micronuclei formation in human TK6 lymphoblastoid cells under conditions lacking metabolic activation; however, the negative response observed in the presence of metabolic activation suggests that rat liver S9 homogenate may detoxify reactive metabolites of these chemicals in mammalian cells. In 3-day combined micronucleus/Comet assays using male and female B6C3F1 mice, no induction of micronuclei was observed in peripheral blood, or conclusive evidence of damage detected in the liver, glandular stomach, or duodenum following exposure to myricitrin or myricetin. Our studies did not reveal evidence of genotoxic potential of myricitrin in vivo, supporting its safe use in food and beverages.
Collapse
Affiliation(s)
- Cheryl A Hobbs
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA.
| | - Carol Swartz
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Robert Maronpot
- Maronpot Consulting LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
| | - Jeffrey Davis
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Leslie Recio
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Shim-mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| |
Collapse
|
22
|
Kraynak A, Barnum J, Cunningham C, Ng A, Ykoruk B, Bennet B, Stoffregen D, Merschman M, Freeland E, Galloway S. Alkaline comet assay in liver and stomach, and micronucleus assay in bone marrow, from rats treated with 2-acetylaminofluorene, azidothymidine, cisplatin, or isobutyraldehyde. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015. [DOI: 10.1016/j.mrgentox.2015.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Critical issues with the in vivo comet assay: A report of the comet assay working group in the 6th International Workshop on Genotoxicity Testing (IWGT). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:6-12. [DOI: 10.1016/j.mrgentox.2014.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 02/06/2023]
|
24
|
Zhenchao J, Yuting Z, Jiuming Y, Yedan L, Yang S, Jinyao C, Lishi Z. Safety assessment of dietary bamboo charcoal powder: A 90-day subchronic oral toxicity and mutagenicity studies. Food Chem Toxicol 2015; 75:50-7. [DOI: 10.1016/j.fct.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/15/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
|
25
|
Brunborg G, Jackson P, Shaposhnikov S, Dahl H, Azqueta A, Collins AR, Gutzkow KB. High throughput sample processing and automated scoring. Front Genet 2014; 5:373. [PMID: 25389434 PMCID: PMC4211552 DOI: 10.3389/fgene.2014.00373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023] Open
Abstract
The comet assay is a sensitive and versatile method for assessing DNA damage in cells. In the traditional version of the assay, there are many manual steps involved and few samples can be treated in one experiment. High throughput (HT) modifications have been developed during recent years, and they are reviewed and discussed. These modifications include accelerated scoring of comets; other important elements that have been studied and adapted to HT are cultivation and manipulation of cells or tissues before and after exposure, and freezing of treated samples until comet analysis and scoring. HT methods save time and money but they are useful also for other reasons: large-scale experiments may be performed which are otherwise not practicable (e.g., analysis of many organs from exposed animals, and human biomonitoring studies), and automation gives more uniform sample treatment and less dependence on operator performance. The HT modifications now available vary largely in their versatility, capacity, complexity, and costs. The bottleneck for further increase of throughput appears to be the scoring.
Collapse
Affiliation(s)
- Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public HealthOslo, Norway
| | - Petra Jackson
- National Research Centre for the Working EnvironmentCopenhagen, Denmark
| | - Sergey Shaposhnikov
- Department of Nutrition, University of OsloOslo, Norway
- NorGenoTech AS, SkreiaNorway
| | - Hildegunn Dahl
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public HealthOslo, Norway
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of NavarraPamplona, Spain
| | | | - Kristine B. Gutzkow
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public HealthOslo, Norway
| |
Collapse
|
26
|
Pant K, Springer S, Bruce S, Lawlor T, Hewitt N, Aardema MJ. Vehicle and positive control values from the in vivo rodent comet assay and biomonitoring studies using human lymphocytes: historical database and influence of technical aspects. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:633-42. [PMID: 24957907 DOI: 10.1002/em.21881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/06/2014] [Indexed: 05/27/2023]
Abstract
There is increased interest in the in vivo comet assay in rodents as a follow-up approach for determining the biological relevance of chemicals that are genotoxic in in vitro assays. This is partly because, unlike other assays, DNA damage can be assessed in this assay in virtually any tissue. Since background levels of DNA damage can vary with the species, tissue, and cell processing method, a robust historical control database covering multiple tissues is essential. We describe extensive vehicle and positive control data for multiple tissues from rats and mice. In addition, we report historical data from control and genotoxin-treated human blood. Technical issues impacting comet results are described, including the method of cell preparation and freezing. Cell preparation by scraping (stomach and other GI tract organs) resulted in higher % tail DNA than mincing (liver, spleen, kidney etc) or direct collection (blood or bone marrow). Treatment with the positive control genotoxicant, ethyl methanesulfonate (EMS) in rats and methyl methanesulfonate in mice, resulted in statistically significant increases in % tail DNA. Background DNA damage was not markedly increased when cell suspensions were stored frozen prior to preparing slides, and the outcome of the assay was unchanged (EMS was always positive). In conclusion, historical data from our laboratory for the in vivo comet assay for multiple tissues from rats and mice, as well as human blood show very good reproducibility. These data and recommendations provided are aimed at contributing to the design and proper interpretation of results from comet assays.
Collapse
Affiliation(s)
- Kamala Pant
- BioReliance Corporation, Rockville, Maryland
| | | | | | | | | | | |
Collapse
|
27
|
Sharma A, Mortensen A, Schmidt B, Frandsen H, Hadrup N, Larsen E, Binderup ML. In-vivo study of genotoxic and inflammatory effects of the organo-modified Montmorillonite Cloisite® 30B. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 770:66-71. [DOI: 10.1016/j.mrgentox.2014.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/07/2014] [Accepted: 04/04/2014] [Indexed: 11/29/2022]
|
28
|
Jackson P, Pedersen LM, Kyjovska ZO, Jacobsen NR, Saber AT, Hougaard KS, Vogel U, Wallin H. Validation of freezing tissues and cells for analysis of DNA strand break levels by comet assay. Mutagenesis 2013; 28:699-707. [PMID: 24136994 PMCID: PMC3804896 DOI: 10.1093/mutage/get049] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The comet analysis of DNA strand break levels in tissues and cells has become a common method of screening for genotoxicity. The large majority of published studies have used fresh tissues and cells processed immediately after collection. However, we have used frozen tissues and cells for more than 10 years, and we believe that freezing samples improve efficiency of the method. We compared DNA strand break levels measured in fresh and frozen bronchoalveolar cells, and lung and liver tissues from mice exposed to the known mutagen methyl methanesulphonate (0, 25, 75, 112.5mg/kg). We used a high-throughput comet protocol with fully automated scoring of DNA strand break levels. The overall results from fresh and frozen samples were in agreement [R2 = 0.93 for %DNA in tail (%TDNA) and R2 = 0.78 for tail length (TL)]. A slightly increased %TDNA was observed in lung and liver tissue from vehicle controls; and TL was slightly reduced in bronchoalveolar lavage cells from the high-dose group. In our comet protocol, a small block of tissue designated for comet analysis is frozen immediately at tissue collection and kept deep frozen until rapidly homogenised and embedded in agarose. To demonstrate the feasibility of long-term freezing of samples, we analysed the day-to-day variation of our internal historical negative and positive comet assay controls collected over a 10-year period (1128 observations, 11 batches of frozen untreated and H2O2-treated A549 lung epithelial cells). The H2O2 treatment explained most of the variation 57–77% and the day-to-day variation was only 2–12%. The presented protocol allows analysis of samples collected over longer time span, at different locations, with reduced variation by reducing number of electrophoreses and is suitable for both toxicological and epidemiological studies. The use of frozen tissues; however, requires great care during preparation before analysis, with handling as a major risk factor.
Collapse
Affiliation(s)
- Petra Jackson
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen Ø DK-2100, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Furtado-Filho OV, Borba JB, Dallegrave A, Pizzolato TM, Henriques JAP, Moreira JCF, Saffi J. Effect of 950 MHz UHF electromagnetic radiation on biomarkers of oxidative damage, metabolism of UFA and antioxidants in the livers of young rats of different ages. Int J Radiat Biol 2013; 90:159-68. [DOI: 10.3109/09553002.2013.817697] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|