1
|
Ma R, Qin J, Wang S, Guan S, Jia F, Deng Y, Bai J, Wang S. Exploration of immune-related diagnostic biomarkers in unexplained infertility by bioinformatics analysis and machine learning. Taiwan J Obstet Gynecol 2025; 64:438-449. [PMID: 40368512 DOI: 10.1016/j.tjog.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 05/16/2025] Open
Abstract
OBJECTIVE We aimed to discover the biomarkers associated with UI and their correlation with immune cell infiltration. MATERIALS AND METHODS The GSE165004 data set was extracted from the Gene Expression Omnibus and IRGs were obtained from Immport and InnateDB databases. Differential expression analysis, WGCNA, and three machine learning algorithms (LASSO, SVM, and random forest) were used to determine the immune-related hub biomarkers for UI. The diagnostic performance of these markers was evaluated in GSE165004 and validation set (GSE16532). Furthermore, single-sample GSEA was employed to analyze the infiltration level of immune cells and Spearman analysis was conducted to assess the correlation between biomarker and immune cells. The functional enrichment and potential drugs for each biomarker were explored. The biomarker genes were validated in clinical samples by real time PCR assay. RESULTS Six shared genes (ANXA2, CD300E, IL27RA, SEMA3F, GIPR, and WFDC2) were identified as diagnostic biomarkers by integration analysis. ROC analysis revealed that these markers had diagnostic value for UI both in training and validation sets. Moreover, these biomarkers are closely associated with immune cells, such as natural killer T cells and effector memory CD8 T cells. GSEA analysis showed that these genes were mainly involved in chromosome and mitochondria-related biological functions. Drug prediction indicated that all genes targeted Benzo(a)pyrene. All the biomarker genes, expect for GIPR were differentially expressed in endometrium tissues of UI patients, compared with controls. CONCLUSION This study identified immune-related diagnostic biomarkers in UI, providing new insights into understanding the molecular mechanisms and therapeutic targets of UI.
Collapse
Affiliation(s)
- Ran Ma
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Jituan Qin
- Gynaecology and Obstetrics, Nanjing Liuhe District Hospital of Traditional Chinese Medicine, Jiangsu, 211500, China
| | - Sugai Wang
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Sufen Guan
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Fangjuan Jia
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - YingYing Deng
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Jing Bai
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| | - Saili Wang
- Gynaecology and Obstetrics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China.
| |
Collapse
|
2
|
Montano L, Baldini GM, Piscopo M, Liguori G, Lombardi R, Ricciardi M, Esposito G, Pinto G, Fontanarosa C, Spinelli M, Palmieri I, Sofia D, Brogna C, Carati C, Esposito M, Gallo P, Amoresano A, Motta O. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. TOXICS 2025; 13:151. [PMID: 40137477 PMCID: PMC11946043 DOI: 10.3390/toxics13030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds with fused aromatic rings, primarily derived from combustion processes and environmental pollutants. This narrative review discusses the most relevant studies on PAHs, focusing on their sources, environmental and occupational exposure, and effects on human health, emphasizing their roles as carcinogenic, mutagenic, and teratogenic agents. The primary pathways for human exposure to PAHs are through the ingestion of contaminated food (mainly due to some food processing methods, such as smoking and high-temperature cooking techniques), the inhalation of ambient air, and the smoking of cigarettes. Coke oven workers are recognized as a high-risk occupational group for PAH exposure, highlighting the need for appropriate strategies to mitigate these risks and safeguard worker health. PAHs are metabolized into reactive intermediates in the body, which can lead to DNA damage and promote the development of various health conditions, particularly in environments with high exposure levels. Chronic PAH exposure has been linked to respiratory diseases, as well as cardiovascular problems and immune system suppression. Furthermore, this review underscores the significant impact of PAHs on reproductive health. The results of the reported studies suggest that both male and female fertility can be compromised due to oxidative stress, DNA damage, and endocrine disruption caused by PAH exposure. In males, PAHs impair sperm quality, while, in females, they disrupt ovarian function, potentially leading to infertility, miscarriage, and birth defects. Fetal exposure to PAHs is also associated with neurodevelopmental disorders. Given the extensive and detrimental health risks posed by PAHs, this review stresses the importance of stringent environmental regulations, occupational safety measures, and public health initiatives to mitigate exposure and safeguard reproductive and overall health.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority (ASL) Salerno, 84124 Salerno, Italy
- Coordination Unit of the Network for Environmental and Reproductive Health (Eco Food Fertility Project), Oliveto Citra Hospital, 84124 Salerno, Italy
| | - Giorgio Maria Baldini
- Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Giovanna Liguori
- Territorial Pharmaceutical Service, Local Health Authority (ASL), 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Renato Lombardi
- Territorial Pharmaceutical Service, Local Health Authority (ASL), 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Maria Ricciardi
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | | | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Daniele Sofia
- Research Department, Sense Square Srl, 84084 Salerno, Italy;
- Department of Computer Engineering, Modeling, Electronics and Systems, University of Calabria, Via P. Bucci, Cubo 44/a Rende, 87036 Arcavacata, Italy
| | - Carlo Brogna
- Department of Research, Craniomed Group Facility Srl, 20091 Bresso, Italy;
| | - Cosimo Carati
- Student of Department of Medicine Surger, University Cattolica Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy;
| | - Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento Coordinamento di Chimica, Via della Salute, 2, 80005 Portici, Italy; (M.E.); (P.G.)
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento Coordinamento di Chimica, Via della Salute, 2, 80005 Portici, Italy; (M.E.); (P.G.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
| |
Collapse
|
3
|
Lim J, Shioda T, Malott KF, Shioda K, Odajima J, Leon Parada KN, Nguyen J, Getze S, Lee M, Nguyen J, Reshel Blakeley S, Trinh V, Truong HA, Luderer U. Prenatal exposure to benzo[a]pyrene depletes ovarian reserve and masculinizes embryonic ovarian germ cell transcriptome transgenerationally. Sci Rep 2023; 13:8671. [PMID: 37248279 PMCID: PMC10227008 DOI: 10.1038/s41598-023-35494-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
People are widely exposed to polycyclic aromatic hydrocarbons, like benzo[a]pyrene (BaP). Prior studies showed that prenatal exposure to BaP depletes germ cells in ovaries, causing earlier onset of ovarian senescence post-natally; developing testes were affected at higher doses than ovaries. Our primary objective was to determine if prenatal BaP exposure results in transgenerational effects on ovaries and testes. We orally dosed pregnant germ cell-specific EGFP-expressing mice (F0) with 0.033, 0.2, or 2 mg/kg-day BaP or vehicle from embryonic day (E) 6.5-11.5 (F1 offspring) or E6.5-15.5 (F2 and F3). Ovarian germ cells at E13.5 and follicle numbers at postnatal day 21 were significantly decreased in F3 females at all doses of BaP; testicular germ cell numbers were not affected. E13.5 germ cell RNA-sequencing revealed significantly increased expression of male-specific genes in female germ cells across generations and BaP doses. Next, we compared the ovarian effects of 2 mg/kg-day BaP dosing to wild type C57BL/6J F0 dams from E6.5-11.5 or E12.5-17.5. We observed no effects on F3 ovarian follicle numbers with either of the shorter dosing windows. Our results demonstrate that F0 BaP exposure from E6.5-15.5 decreased the number of and partially disrupted transcriptomic sexual identity of female germ cells transgenerationally.
Collapse
Affiliation(s)
- Jinhwan Lim
- Department of Environmental and Occupational Health, University of California, Irvine (UCI), Irvine, CA, 92617, USA
| | - Toshihiro Shioda
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kelli F Malott
- Department of Environmental and Occupational Health, University of California, Irvine (UCI), Irvine, CA, 92617, USA
- Environmental Health Sciences Graduate Program, UCI, Irvine, CA, 92617, USA
| | - Keiko Shioda
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Junko Odajima
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, 02129, USA
| | | | - Julie Nguyen
- Department of Medicine, UCI, Irvine, CA, 92617, USA
| | | | - Melody Lee
- Department of Medicine, UCI, Irvine, CA, 92617, USA
| | | | | | - Vienna Trinh
- Department of Medicine, UCI, Irvine, CA, 92617, USA
| | | | - Ulrike Luderer
- Department of Environmental and Occupational Health, University of California, Irvine (UCI), Irvine, CA, 92617, USA.
- Department of Developmental and Cell Biology, UCI, Irvine, CA, 92617, USA.
- Department of Medicine, UCI, Irvine, CA, 92617, USA.
- Center for Occupational and Environmental Health, 856 Health Sciences Rd, Suite 3200, Zot 1830, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Stefansdottir A, Marečková M, Matkovic M, Allen CM, Spears N. In vitro exposure to benzo[a]pyrene damages the developing mouse ovary. REPRODUCTION AND FERTILITY 2023; 4:RAF-22-0071. [PMID: 39225137 PMCID: PMC10160542 DOI: 10.1530/raf-22-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/14/2023] [Indexed: 09/04/2024] Open
Abstract
Females are born with a finite number of oocytes, collectively termed the ovarian reserve, established within the developing fetal ovary. Consequently, maternal exposure to reproductive toxicants can have harmful effects on the future fertility of her unborn female fetus. The chemical benzo[a]pyrene (B[a]P) is a prominent component of cigarette smoke. Despite it being a known ovotoxicant, around 8% of women in Europe smoke during pregnancy. The purpose of this research was to examine the effect of B[a]P on the developing ovary, using the mouse as a model and with experiments carried out in vitro. B[a]P-exposure to the fetal ovary prior to follicle formation reduced the number of germ cells and subsequently, the number of healthy primordial follicles, by up to 76%; however, while proliferation of germ cells was not affected, the germ cells contained higher levels of DNA double-strand breaks. Exposure to B[a]P also affected the proportion of oocytes progressing through prophase I of meiosis. B[a]P exposure to neonatal mouse ovaries, after follicle formation, resulted in an 85% reduction in the number of healthy follicles, with a corresponding increase in apoptotic cell death and reduction in somatic cell proliferation. Although there was a trend towards a higher level of oxidative stress in B[a]P-exposed ovaries, this was not statistically significant; likewise, the antioxidant melatonin failed to protect against the B[a]P-induced ovarian damage. Together, the results here demonstrate that B[a]P-exposure damages the developing ovary, both before and shortly after follicle formation, an effect that could lead to a subsequent decrease in fertility.
Collapse
Affiliation(s)
| | | | | | | | - Norah Spears
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Levine L, Hall JE. Does the environment affect menopause? A review of the effects of endocrine disrupting chemicals on menopause. Climacteric 2023; 26:206-215. [PMID: 37011670 DOI: 10.1080/13697137.2023.2173570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Endocrine disrupting chemicals are widely distributed in our environment. Humans are exposed to these compounds not only through their occupations, but also through dietary consumption and exposure to contaminated water, personal care products and textiles. Chemicals that are persistent in the body and in our environment include dioxins and polychlorinated biphenyls. Non-persistent chemicals including bisphenol A, phthalates and parabens are equally as important because they are ubiquitous in our environment. Heavy metals, including lead and cadmium, can also have endocrine disrupting properties. Although difficult to study due to their variety of sources of exposures and mechanisms of action, these chemicals have been associated with early menopause, increased frequency of vasomotor symptoms, altered steroid hormone levels and markers of diminished ovarian reserve. Understanding the impacts of these exposures is important given the potential for epigenetic modification, which can alter gene function and result in multi-generational effects. This review summarizes findings in humans and animals or cell-based models from the past decade of research. Continued research is needed to assess the effects of mixtures of chemicals, chronic exposures and new compounds that are continuously being developed as replacements for toxic chemicals that are being phased out.
Collapse
Affiliation(s)
- L Levine
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, NC, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J E Hall
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, NC, USA
| |
Collapse
|
6
|
Perono GA, Petrik JJ, Thomas PJ, Holloway AC. The effects of polycyclic aromatic compounds (PACs) on mammalian ovarian function. Curr Res Toxicol 2022; 3:100070. [PMID: 35492299 PMCID: PMC9043394 DOI: 10.1016/j.crtox.2022.100070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/09/2022] Open
Abstract
Toxicity of polycyclic aromatic compounds (PACs) is limited to a subset of PACs. Exposure to these compounds impact major processes necessary for ovarian function. PAC exposure causes follicle loss and aberrant steroid production and angiogenesis. PAC exposure may increase the risk for impaired fertility and ovarian pathologies. The study of PACs as ovarian toxicants should include additional compounds.
Polycyclic aromatic compounds (PACs) are a broad class of contaminants ubiquitously present in the environment due to natural and anthropogenic activities. With increasing industrialization and reliance on petroleum worldwide, PACs are increasingly being detected in different environmental compartments. Previous studies have shown that PACs possess endocrine disruptive properties as these compounds often interfere with hormone signaling and function. In females, the ovary is largely responsible for regulating reproductive and endocrine function and thus, serves as a primary target for PAC-mediated toxicity. Perturbations in the signaling pathways that mediate ovarian folliculogenesis, steroidogenesis and angiogenesis can lead to adverse reproductive outcomes including polycystic ovary syndrome, premature ovarian insufficiency, and infertility. To date, the impact of PACs on ovarian function has focused predominantly on polycyclic aromatic hydrocarbons like benzo(a)pyrene, 3-methylcholanthrene and 7,12-dimethylbenz[a]anthracene. However, investigation into the impact of substituted PACs including halogenated, heterocyclic, and alkylated PACs on mammalian reproduction has been largely overlooked despite the fact that these compounds are found in higher abundance in free-ranging wildlife. This review aims to discuss current literature on the effects of PACs on the ovary in mammals, with a particular focus on folliculogenesis, steroidogenesis and angiogenesis, which are key processes necessary for proper ovarian functions.
Collapse
|
7
|
Lim J, Ramesh A, Shioda T, Leon Parada K, Luderer U. Sex Differences in Embryonic Gonad Transcriptomes and Benzo[a]pyrene Metabolite Levels After Transplacental Exposure. Endocrinology 2022; 163:bqab228. [PMID: 34734245 PMCID: PMC8633617 DOI: 10.1210/endocr/bqab228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 11/19/2022]
Abstract
Polycyclic aromatic hydrocarbons like benzo[a]pyrene (BaP) are generated during incomplete combustion of organic materials. Prior research has demonstrated that BaP is a prenatal ovarian toxicant and carcinogen. However, the metabolic pathways active in the embryo and its developing gonads and the mechanisms by which prenatal exposure to BaP predisposes to ovarian tumors later in life remain to be fully elucidated. To address these data gaps, we orally dosed pregnant female mice with BaP from embryonic day (E) 6.5 to E11.5 (0, 0.2, or 2 mg/kg/day) for metabolite measurement or E9.5 to E11.5 (0 or 3.33 mg/kg/day) for embryonic gonad RNA sequencing. Embryos were harvested at E13.5 for both experiments. The sum of BaP metabolite concentrations increased significantly with dose in the embryos and placentas, and concentrations were significantly higher in female than male embryos and in embryos than placentas. RNA sequencing revealed that enzymes involved in metabolic activation of BaP are expressed at moderate to high levels in embryonic gonads and that greater transcriptomic changes occurred in the ovaries in response to BaP than in the testes. We identified 490 differentially expressed genes (DEGs) with false discovery rate P-values < 0.05 when comparing BaP-exposed to control ovaries but no statistically significant DEGs between BaP-exposed and control testes. Genes related to monocyte/macrophage recruitment and activity, prolactin family genes, and several keratin genes were among the most upregulated genes in the BaP-exposed ovaries. Results show that developing ovaries are more sensitive than testes to prenatal BaP exposure, which may be related to higher concentrations of BaP metabolites in female embryos.
Collapse
Affiliation(s)
- Jinhwan Lim
- Department of Environmental and Occupational Health, University of California Irvine, Irvine, CA, USA
- Department of Medicine, University of California Irvine, Irvine, CA, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Toshi Shioda
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, USA
| | - Kathleen Leon Parada
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Ulrike Luderer
- Department of Environmental and Occupational Health, University of California Irvine, Irvine, CA, USA
- Department of Medicine, University of California Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
8
|
Rahmani Z, Karimpour Malekshah A, Zargari M, Talebpour Amiri F. Effect of prenatal exposure to Benzo[a]pyrene on ovarian toxicity and reproductive dysfunction: Protective effect of atorvastatin in the embryonic period. ENVIRONMENTAL TOXICOLOGY 2021; 36:1683-1693. [PMID: 33978294 DOI: 10.1002/tox.23164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/05/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
As an environmental contaminant, Benzo[a]pyrene (B[a]P; BaP) disrupts the antioxidant signaling and thus leads to the induction of oxidative stress and the damage of DNA in the ovary. low-dose atorvastatin (ATV) has antioxidant and anti-apoptotic properties. The present study aimed to survey the effects of prenatal exposure to BaP on ovarian toxicity and also to investigate the protective role of ATV in reducing ovarian toxicity. In this study, rats were divided into seven groups: control, ATV (10 mg/kg), oil, BaP (10 and 20 mg/kg), and ATV + BaP (10 and 20 mg/kg). BaP and ATV were administrated from gestation day 7-16 (GD7 to GD16), orally. 10 weeks after the birth, female offsprings were examined for oxidative stress markers, sex hormones, ovarian and tubular tissue structure, and the apoptosis markers. Data showed that BaP significantly reduced glutathione, increased malondialdehyde level, and disrupted the tissue structure of the ovary. Moreover, estrogen and progesterone levels significantly decreased in the offsprings rats. Also, BaP increased caspase-3 immunoreactivity. Atorvastatin treatment along with BaP in the embryonic period were able to bring the antioxidant status and sex hormones levels relatively close to normal. Besides, histological findings showed that atorvastatin was able to improve ovarian and oviduct abnormalities caused by BaP. Based on the above studies be concluded that atorvastatin in the embryonic during was able to reduce ovarian damage caused by BaP with antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Zahra Rahmani
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali Karimpour Malekshah
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Biochemistry, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Environmental Pollutant Benzo[a]pyrene Upregulated Long Non-coding RNA HZ07 Inhibits Trophoblast Cell Migration by Inactivating PI3K/AKT/MMP2 Signaling Pathway in Recurrent Pregnancy Loss. Reprod Sci 2021; 28:3085-3093. [PMID: 34050522 DOI: 10.1007/s43032-021-00630-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Benzo(a)pyrene (BaP) is a ubiquitous environmental endocrine-disrupting chemical that is known to have toxic effects on reproduction. However, the underlying mechanisms describing how BaP and its metabolite benzo[a]pyrene-7, 8-diol-9, 10-epoxide (BPDE) induce recurrent pregnancy loss (RPL) are still largely unclear. In this study, we identified a novel long non-coding RNA (lnc-HZ07, NCBI MT936329) that was upregulated in trophoblast cells after exposure to BPDE, and lnc-HZ07 expression was significantly higher in RPL villous tissues than that in control villous tissues. Knockdown of lnc-HZ07 promoted trophoblast cell migration, whereas overexpression of lnc-HZ07 inhibited trophoblast cell migration. Further study showed that lnc-HZ07 inhibited trophoblast migration by downregulating matrix metalloproteinase 2 (MMP2) expression via dephosphorylation of AKT. These results demonstrated a novel regulatory pathway in which BaP downregulated AKT phosphorylation and inhibited MMP2 expression by upregulating lnc-HZ07, suggesting that lnc-HZ07 could be considered as a potential pathological marker of BaP-induced RPL and therapeutic target for this disease.
Collapse
|
10
|
Xu H, Mu X, Ding Y, Tan Q, Liu X, He J, Gao R, Li N, Geng Y, Wang Y, Chen X. Melatonin alleviates benzo(a)pyrene-induced ovarian corpus luteum dysfunction by suppressing excessive oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111561. [PMID: 33254415 DOI: 10.1016/j.ecoenv.2020.111561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Benzo(a)pyrene (B(a)P) is a widespread persistent organic pollutant (POP) and a well-known endocrine disruptor. Exposure to BaP is known to disrupt the steroid balance and impair embryo implantation, but the mechanism under it remains unclear. The corpus luteum (CL), the primary source of progesterone during early pregnancy, plays a pivotal role in embryo implantation and pregnancy maintenance. The inappropriate luteal function may result in implantation failure and spontaneous abortions. Therefore, this study was conducted to assess the effects and potential mechanisms of B(a)P on the CL function. Our results showed that pregnant mice received B(a)P displayed impaired embryo implantation and dysfunction of ovarian CL. The estrogen and progesterone levels decreased by B(a)P. In vitro, exposure to BPDE, which is the metabolite of B(a)P, affected the luteinization of granular cell KK-1. Additionally, melatonin and its receptors, which are important for ovarian function and anti-oxidative damage, were affected by B(a)P or BPDE. B(a)P or BPDE-treated alone impaired antioxidant capacity of ovarian granulosa cells, caused an increasing of ROS and cell apoptosis, and disrupted the PI3K/AKT/GSK3β signaling pathway in vivo and in vitro. Co-treatment with melatonin alleviated B(a)P or BPDE-induced CL dysfunction by ameliorating oxidative stress, counteracting phosphorylation of PI3K/AKT/GSK3β signaling pathway, decreasing the apoptosis of the ovarian cells. Moreover, activation of the melatonin receptor by ramelteon in KK-1 cells exhibits an analogous protective effect as melatonin. In conclusion, our findings not only firstly clarify the potential mechanisms of BaP-induced CL dysfunction, but also extend the understanding about the ovarian protection of melatonin and its receptors against B(a)P exposure.
Collapse
Affiliation(s)
- Hanting Xu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Qiman Tan
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Nanyan Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| |
Collapse
|
11
|
Xie D, Yang W, Fang J, Li H, Xiong L, Kong F, Wang A, Liu Z, Wang H. Chromosomal abnormality: Prevalence, prenatal diagnosis and associated anomalies based on a provincial-wide birth defects monitoring system. J Obstet Gynaecol Res 2020; 47:865-872. [PMID: 33372274 DOI: 10.1111/jog.14569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023]
Abstract
AIM To investigate the epidemiology of chromosomal abnormalities (CA) in fetuses of all pregnancies based on a provincial-wide birth defects-monitoring system, which could provide scientific basis for making relatively policy and research. METHODS Chromosomal abnormalities cases were collected from all hospitals in Hunan Province, China, between 2016 and 2019. The prevalence of CAs was calculated to examine associations among infant sex, maternal age and region. The rates of prenatal diagnosis and termination of pregnancy (TOP) involving CA or associated anomalies were calculated as rates or proportions. RESULTS From 2016 to 2019, a total of 2 883 890 perinatal infants (28 weeks of gestation to postpartum 7 days) underwent prenatal screening and diagnostic tests, and 3181 fetuses were diagnosed as CA, with the prevalence of 11.03/10 000. The average prevalence of CAs was higher for male than female fetuses (11.33/10 000 vs 10.06/10 000) (OR = 1.13, 95% CI: 1.05-1.21), which was higher in urban areas than rural areas (23.03/10 000 vs 7.13/10 000) (OR = 3.23, 95% CI: 3.02-3.47), and the prevalence increased linearly with maternal age ( X trend 2 = 1821.844, P = 0.000). Among the fetuses with CAs, 3097 (97.36%) were diagnosed prenatally, and 3046 (98.35%) underwent TOP. The majority of CA were numerical abnormalities (90.18%). The main types of numerical autosomal abnormalities were trisomy 21 (6.69/10 000, 59.57%), trisomy 18 (1.13/10 000, 10.04%) and trisomy 13 (0.21/10 000, 1.88%). The main types of numerical gonosomal abnormalities were Klinefelter syndrome (0.68/10 000, 6.02%), Turner syndrome (0.49/10 000, 4.39%), Triple X syndrome (0.26/10 000, 2.29%) and 47,XYY syndrome (0.21/10 000, 1.91%). The three associated anomalies with the highest proportions were congenital heart defects (CHD) (41.06%), cleft palate or/and cleft lip (10.89%) and congenital talipes equinovarus (8.94%). CONCLUSION The prevalence of CA was lower than that reported. Chromosome detection should be further promoted including test contest and coverage, especially for urban areas, older mothers and fetuses with CHD, cleft palate or/and cleft lip or congenital talipes equinovarus.
Collapse
Affiliation(s)
- Donghua Xie
- Department of Information Management, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Wenzhen Yang
- Department of Health Management, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Junqun Fang
- Department of Health Management, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Haoxian Li
- Obstetrics Department of Shunde Hospital, The First People's Hospital of Shunde, Southern Medical University, Foshan, China
| | - Lili Xiong
- Department of Information Management, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Fanjuan Kong
- Department of Information Management, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Aihua Wang
- Department of Information Management, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Zhiyu Liu
- Department of Information Management, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Hua Wang
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| |
Collapse
|
12
|
Luo ZB, Rahman SU, Xuan MF, Han SZ, Li ZY, Yin XJ, Kang JD. The protective role of ginsenoside compound K in porcine oocyte meiotic maturation failed caused by benzo(a)pyrene during in vitro maturation. Theriogenology 2020; 157:96-109. [PMID: 32810794 DOI: 10.1016/j.theriogenology.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/27/2022]
Abstract
Benzo(a)pyrene (BaP) is a pollutant and carcinogen derived from air pollution. It causes serious damage to reproductive system, especially ovary. Ginseng is always used in food and traditional medicine as a nutraceuticals or herbal medicine. Ginsenoside compound K (CK) is a major bioactive ingredient of ginseng, that shows very specific anti-apoptosis, anti-oxidant, and anti-inflammatory activities and thus, it protects cells from damage. The aim of this study was to investigate the effects of CK on the BaP-induced inhibition of the in vitro maturation of porcine oocytes and their subsequent embryonic development capacity. We found that supplementation with 10 μg mL-1 CK during in vitro maturation significantly increased maturation rate (P < 0.05) and the expression level of related genes after damage induced by 40 μM BaP treatment. In addition, reactive oxygen species (ROS) levels significantly decreased and ATP content and mitochondrial membrane potential (MMP) increased after CK supplementation (P < 0.05). The competence for embryonic development was improved by the induction of pluripotency gene expression and the inhibition of apoptosis after CK supplementation of BaP-treated oocytes. Supplementation with 10 μg mL-1 CK improved porcine oocyte maturation and subsequent embryonic development of parthenogenetic activation (33.01 vs. 20.92, P < 0.05) and in vitro fertilization (24.01 vs. 16.52, P < 0.05) by increasing antioxidant activity and improving mitochondrial function after BaP-induced damage.
Collapse
Affiliation(s)
- Zhao-Bo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Saeed Ur Rahman
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Mei-Fu Xuan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Sheng-Zhong Han
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhou-Yan Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
13
|
Godschalk RWL, Yauk CL, van Benthem J, Douglas GR, Marchetti F. In utero Exposure to Genotoxicants Leading to Genetic Mosaicism: An Overlooked Window of Susceptibility in Genetic Toxicology Testing? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:55-65. [PMID: 31743493 PMCID: PMC6973016 DOI: 10.1002/em.22347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 05/08/2023]
Abstract
In utero development represents a sensitive window for the induction of mutations. These mutations may subsequently expand clonally to populate entire organs or anatomical structures. Although not all adverse mutations will affect tissue structure or function, there is growing evidence that clonally expanded genetic mosaics contribute to various monogenic and complex diseases, including cancer. We posit that genetic mosaicism is an underestimated potential health problem that is not fully addressed in the current regulatory genotoxicity testing paradigm. Genotoxicity testing focuses exclusively on adult exposures and thus may not capture the complexity of genetic mosaicisms that contribute to human disease. Numerous studies have shown that conversion of genetic damage into mutations during early developmental exposures can result in much higher mutation burdens than equivalent exposures in adults in certain tissues. Therefore, we assert that analysis of genetic effects caused by in utero exposures should be considered in the current regulatory testing paradigm, which is possible by harmonization with current reproductive/developmental toxicology testing strategies. This is particularly important given the recent proposed paradigm change from simple hazard identification to quantitative mutagenicity assessment. Recent developments in sequencing technologies offer practical tools to detect mutations in any tissue or species. In addition to mutation frequency and spectrum, these technologies offer the opportunity to characterize the extent of genetic mosaicism following exposure to mutagens. Such integration of new methods with existing toxicology guideline studies offers the genetic toxicology community a way to modernize their testing paradigm and to improve risk assessment for vulnerable populations. Environ. Mol. Mutagen. 61:55-65, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Roger W. L. Godschalk
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Carole L. Yauk
- Mechanistic Studies DivisionEnvironmental Health Science and Research Bureau, Health CanadaOttawaK1A 0K9OntarioCanada
| | - Jan van Benthem
- Center for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - George R. Douglas
- Mechanistic Studies DivisionEnvironmental Health Science and Research Bureau, Health CanadaOttawaK1A 0K9OntarioCanada
| | - Francesco Marchetti
- Mechanistic Studies DivisionEnvironmental Health Science and Research Bureau, Health CanadaOttawaK1A 0K9OntarioCanada
| |
Collapse
|
14
|
Heflich RH, Johnson GE, Zeller A, Marchetti F, Douglas GR, Witt KL, Gollapudi BB, White PA. Mutation as a Toxicological Endpoint for Regulatory Decision-Making. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:34-41. [PMID: 31600846 DOI: 10.1002/em.22338] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 05/23/2023]
Abstract
Mutations induced in somatic cells and germ cells are responsible for a variety of human diseases, and mutation per se has been considered an adverse health concern since the early part of the 20th Century. Although in vitro and in vivo somatic cell mutation data are most commonly used by regulatory agencies for hazard identification, that is, determining whether or not a substance is a potential mutagen and carcinogen, quantitative mutagenicity dose-response data are being used increasingly for risk assessments. Efforts are currently underway to both improve the measurement of mutations and to refine the computational methods used for evaluating mutation data. We recommend continuing the development of these approaches with the objective of establishing consensus regarding the value of including the quantitative analysis of mutation per se as a required endpoint for comprehensive assessments of toxicological risk. Environ. Mol. Mutagen. 61:34-41, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert H Heflich
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | | - Andreas Zeller
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Kristine L Witt
- National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
15
|
Luderer U, Eskenazi B, Hauser R, Korach KS, McHale CM, Moran F, Rieswijk L, Solomon G, Udagawa O, Zhang L, Zlatnik M, Zeise L, Smith MT. Proposed Key Characteristics of Female Reproductive Toxicants as an Approach for Organizing and Evaluating Mechanistic Data in Hazard Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:75001. [PMID: 31322437 PMCID: PMC6791466 DOI: 10.1289/ehp4971] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Identification of female reproductive toxicants is currently based largely on integrated epidemiological and in vivo toxicology data and, to a lesser degree, on mechanistic data. A uniform approach to systematically search, organize, integrate, and evaluate mechanistic evidence of female reproductive toxicity from various data types is lacking. OBJECTIVE We sought to apply a key characteristics approach similar to that pioneered for carcinogen hazard identification to female reproductive toxicant hazard identification. METHODS A working group of international experts was convened to discuss mechanisms associated with chemical-induced female reproductive toxicity and identified 10 key characteristics of chemicals that cause female reproductive toxicity: 1) alters hormone receptor signaling; alters reproductive hormone production, secretion, or metabolism; 2) chemical or metabolite is genotoxic; 3) induces epigenetic alterations; 4) causes mitochondrial dysfunction; 5) induces oxidative stress; 6) alters immune function; 7) alters cell signal transduction; 8) alters direct cell–cell interactions; 9) alters survival, proliferation, cell death, or metabolic pathways; and 10) alters microtubules and associated structures. As proof of principle, cyclophosphamide and diethylstilbestrol (DES), for which both human and animal studies have demonstrated female reproductive toxicity, display at least 5 and 3 key characteristics, respectively. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), for which the epidemiological evidence is mixed, exhibits 5 key characteristics. DISCUSSION Future efforts should focus on evaluating the proposed key characteristics against additional known and suspected female reproductive toxicants. Chemicals that exhibit one or more of the key characteristics could be prioritized for additional evaluation and testing. A key characteristics approach has the potential to integrate with pathway-based toxicity testing to improve prediction of female reproductive toxicity in chemicals and potentially prevent some toxicants from entering common use. https://doi.org/10.1289/EHP4971.
Collapse
Affiliation(s)
- Ulrike Luderer
- Center for Occupational and Environmental Health, University of California, Irvine, Irvine, California, USA
| | - Brenda Eskenazi
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kenneth S. Korach
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Cliona M. McHale
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Francisco Moran
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Linda Rieswijk
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Institute of Data Science, Maastricht University, Maastricht, Netherlands
| | - Gina Solomon
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Osamu Udagawa
- Center for Health and Environmental Risk Research, National Institute of Environmental Studies, Tsukuba-City, Ibaraki, Japan
| | - Luoping Zhang
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Marya Zlatnik
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, California, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Martyn T. Smith
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
16
|
Vulimiri SV, Olivero O. Introduction: Special Issue on Transplacental/Transgenerational Mutagenesis and Carcinogenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:392-394. [PMID: 30951218 PMCID: PMC8168685 DOI: 10.1002/em.22292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Suryanarayana V. Vulimiri
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, District of Columbia
| | - Ofelia Olivero
- Intramural Diversity Workforce Branch (IDWB), Center for Cancer Training, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|