1
|
Shen H, Nzabanita D, Sinclair GM, Vu H, Grist S, Nugegoda D, Long SM. Changes in metabolic profiles of amphipods Allorchestes compressa after acute exposures to copper, pyrene, and their mixtures. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104120. [PMID: 37019324 DOI: 10.1016/j.etap.2023.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Amphipods are ideal indicators for biomonitoring and ecotoxicological studies of environmental contaminants because they are extensively distributed in aquatic environments, are easy to collect and are important in nutrient cycling. Marine amphipods (Allorchestes compressa) were exposed to two concentrations of copper and pyrene, and their mixtures, for 24 and 48 h. Changes in polar metabolites were assessed using Gas Chromatography Mass Spectrometry (GC-MS)-based untargeted metabolomics. Generally, limited metabolite changes were observed for copper and pyrene single exposures (eight and two significant metabolites, respectively), while 28 metabolites had changed following exposures to mixtures. Furthermore, changes were mainly observed after 24 h but had seemingly returned to control levels after 48 h. Multiple types of metabolites were affected including amino acids, Tricarboxylic acid (TCA) cycle intermediates, sugars, fatty acids, and hormones. This study highlights the sensitivity of metabolomics in assessing the impacts of low concentrations of chemicals compared to traditional ecotoxicological endpoints.
Collapse
Affiliation(s)
- Hao Shen
- School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia; Aquatic Environmental Stress (AQUEST) Research Group, School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia
| | - Damien Nzabanita
- School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia
| | - Georgia M Sinclair
- School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia
| | - Hung Vu
- Aquatic Environmental Stress (AQUEST) Research Group, School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia
| | - Stephen Grist
- School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia
| | - Dayanthi Nugegoda
- School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia; Aquatic Environmental Stress (AQUEST) Research Group, School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia
| | - Sara M Long
- Aquatic Environmental Stress (AQUEST) Research Group, School of Science, RMIT-University, Bundoora West Campus, VIC 3083, Australia.
| |
Collapse
|
2
|
Zacchi FL, Dos Reis IMM, Siebert MN, Mattos JJ, Flores-Nunes F, Toledo-Silva GD, Piazza CE, Bícego MC, Taniguchi S, Bainy ACD. Differential responses in the biotransformation systems of the oyster Crassostrea gasar (Adanson, 1757) elicited by pyrene and fluorene: molecular, biochemical and histological approach - Part I. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105318. [PMID: 31590133 DOI: 10.1016/j.aquatox.2019.105318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the main contaminants in aquatic environments. PAHs can affect organisms due to their carcinogenic, mutagenic and/or teratogenic characteristics. Depending on the PAHs, concentration, and period of exposure, biological damage can occur leading to histopathologic alterations. This study aimed to evaluate the molecular, biochemical and histological responses of the oyster Crassostrea gasar exposed to pyrene (0.25 and 0.5 μM) and fluorene (0.6 and 1.2 μM), after exposure for 24 and 96 h. Concentrations of both PAHs were quantified in the water and in oyster tissues. Transcript levels of phase I (CYP3475C1, CYP2-like, CYP2AU1 and CYP356A) and phase II (GSTO-like, MGST-like and SULT-like) biotransformation-related genes and the activities of ethoxyresorufin-O-deethylase (EROD), total and microsomal glutathione S-transferase (GST and MGST) were evaluated in the gills. Also, histological changes and localization of mRNA transcripts CYP2AU1 in gills, mantle, and digestive diverticula were evaluated. Both PAHs accumulated in oyster tissues. Pyrene half-life in water was significantly lower than fluorene. Transcript levels of all genes were higher in oysters exposed to of pyrene 0.5 μM (24 h). Only CYP2AU1 gene was up-regulated by fluorene exposure. EROD and MGST activities were higher in oysters exposed to pyrene. Tubular atrophy in the digestive diverticula and an increased number of mucous cells in the mantle were observed in oysters exposed to pyrene. CYP2AU1 transcripts were observed in different tissues of pyrene-exposed oysters. A significant correlation was observed between tubular atrophy and the CYP2AU1 hybridization signal in oysters exposed to pyrene, suggesting the sensibility of the species to this PAH. These results suggest an important role of biotransformation-related genes and enzymes and tissue alterations associated to pyrene metabolism but not fluorene. In addition, it reinforces the role of CYP2AU1 gene in the biotransformation process of PAHs in the gills of C. gasar.
Collapse
Affiliation(s)
- Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Isis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Szczybelski AS, van den Heuvel-Greve MJ, Koelmans AA, van den Brink NW. Biomarker responses and biotransformation capacity in Arctic and temperate benthic species exposed to polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:631-638. [PMID: 30703720 DOI: 10.1016/j.scitotenv.2019.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Monitoring parameters for the assessment of oil and gas related contaminants and their biological effects need validation before application in the Arctic. For such monitoring purposes, we evaluated the potential use of three biomarkers (acetylcholinesterase, acyl-CoA oxidase and glutathione S-transferase) for application to an Arctic bivalve (Astarte borealis) and determined the body residue of pyrene and two pyrene metabolites (1-hydroxypyrene and pyrene-1-glucuronide) in Arctic benthic species (bivalve: Macoma calcarea; polychaete: Nephtys ciliata) and temperate benthic species (bivalve: Limecola balthica; polychaete: Alitta virens) in order to establish the potential of polycyclic aromatic hydrocarbons (PAHs) metabolite profiles as biomarkers of exposure in such species. Experimental PAH exposure levels were probably too low (0.2-1.7 mg/kg dry weight in sediment) to induce or inhibit biomarker responses in A. borealis. Concentrations of pyrene and pyrene metabolites varied between species, although no consistent patterns could be established among taxonomic groups and locations. Metabolites made up to 79% of the total pyrene concentrations, indicating that basal metabolic activity is affecting pyrene kinetics even at low concentrations in all species. This indicates that Arctic and temperate species could show similar metabolism patterns of PAHs, although more insight into the effects of confounding factors is needed.
Collapse
Affiliation(s)
- Ariadna S Szczybelski
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Department of Animal Ecology, Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | | | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Marine Research, P.O. Box 77, 4400 AB Yerseke, the Netherlands
| | - Nico W van den Brink
- Sub-department of Toxicology, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8000, 6700 EA Wageningen, the Netherlands
| |
Collapse
|
4
|
Saengtienchai A, Ikenaka Y, Kawata M, Kawai Y, Takeda K, Kondo M, Bortey-Sam N, Nakayama SMM, Mizukawa H, Ishizuka M. Comparison of xenobiotic metabolism in phase I oxidation and phase II conjugation between rats and bird species. Comp Biochem Physiol C Toxicol Pharmacol 2018; 214:28-35. [PMID: 30176376 DOI: 10.1016/j.cbpc.2018.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/14/2018] [Accepted: 08/28/2018] [Indexed: 02/01/2023]
Abstract
There have been many reports regarding toxic chemicals in birds. Chemicals are mainly metabolized in the liver through phase I oxidation by cytochrome P450 (CYP) and phase II conjugation by conjugated enzymes, such as UDP-glucuronosyltransferase (UGT), sulfotransferase (SULT), glutathione-S-transferase (GST), etc. Xenobiotic metabolism differs among bird species, but little detailed information is available. In the present study, the four-ring polycyclic aromatic hydrocarbon (PAH), pyrene, was used as a model xenobiotic to clarify the characteristics of xenobiotic metabolism in birds compared with laboratory animals by in vivo and in vitro studies. Plasma, bile, and excreta (urine and feces) were collected after oral administration of pyrene and analyzed to clarify xenobiotic metabolism ability in chickens and quails. Interestingly, pyrenediol-glucuronide sulfate (PYDOGS) and pyrenediol-diglucuronide (PYDOGG) were present in chickens and quails but not in rats. In addition, the area under the curve (AUC), maximum plasma concentration (Cmax), and time to maximum plasma concentration (Tmax) of pyrene-1-sulfate (PYOS) were higher than those of the parent molecule, pyrene, while the elimination half-life (t1/2) and mean residence time (MRT) were faster than those of the parent pyrene. With regard to sulfation of 1-hydroxypyrene (PYOH), the maximum velocity (Vmax) and Michaelis constant (Km) of rat liver cytosol were greater than those of chicken and quail liver cytosol. Furthermore, Vmax/Km of UGT activity in rat liver microsomes was also greater than those of chicken and quail liver microsomes. Characterization of xenobiotic metabolism revealed species differences between birds and mammals, raising concerns about exposure to various xenobiotics in the environment.
Collapse
Affiliation(s)
- Aksorn Saengtienchai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngam Wong Wan Rd, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Minami Kawata
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yusuke Kawai
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Kazuki Takeda
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | - Mitsuki Kondo
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | - Nesta Bortey-Sam
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | - Hazuki Mizukawa
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
5
|
Yebra-Pimentel I, Fernández-González R, Martínez-Carballo E, Simal-Gándara J. A Critical Review about the Health Risk Assessment of PAHs and Their Metabolites in Foods. Crit Rev Food Sci Nutr 2016; 55:1383-405. [PMID: 24915328 DOI: 10.1080/10408398.2012.697497] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a family of toxicants that are ubiquitous in the environment. These contaminants generate considerable interest, because some of them are highly carcinogenic in laboratory animals and have been implicated in breast, lung, and colon cancers in humans. Dietary intake of PAHs constitutes a major source of exposure in humans. Factors affecting the accumulation of PAHs in the diet, their absorption following ingestion, and strategies to assess risk from exposure to these hydrocarbons following ingestion have received very little attention. This review, therefore, focuses on concentrations of PAHs in widely consumed dietary ingredients along with gastrointestinal absorption rates in humans. Metabolism and bioavailability of PAHs in animal models and the processes, which influence the disposition of these chemicals, are discussed. Finally, based on intake, disposition, and tumorigenesis data, the exposure risk to PAHs from diet is presented. This information is expected to provide a framework for refinements in risk assessment of PAHs.
Collapse
Affiliation(s)
- Iria Yebra-Pimentel
- a Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology , University of Vigo , Ourense Campus, E-32004 Ourense , Spain
| | | | | | | |
Collapse
|
6
|
Carrasco-Navarro V, Jæger I, Honkanen JO, Kukkonen JVK, Carroll J, Camus L. Bioconcentration, biotransformation and elimination of pyrene in the arctic crustacean Gammarus setosus (Amphipoda) at two temperatures. MARINE ENVIRONMENTAL RESEARCH 2015; 110:101-109. [PMID: 26298708 DOI: 10.1016/j.marenvres.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
The influence of temperature on the bioaccumulation, toxicokinetics, biotransformation and depuration of pyrene was studied in the arctic marine amphipod Gammarus setosus. A two-compartment model was used to fit experimental values of total body burden, total metabolites and parent pyrene concentrations and to calculate toxicokinetic variables derived for two experimental treatments (2 and 8 °C). No statistically significant differences were observed with temperature for these toxicokinetic variables or bioconcentration factors. Contrarily, the Q10 values suggested that the toxicokinetic variables ke and km were temperature-dependent. This may be explained by the high standard deviation of the Q10 values. Q10 is the variation in the rate of a metabolic reaction with a 10 °C increase in temperature. Depuration rate constants were calculated from linear best fit equations applied to measured pyrene concentrations over time during the depuration phase of the experiment. During depuration, the parent pyrene was eliminated in two stages with faster elimination observed at 8 °C compared to 2 °C. This finding was also indicated by the Q10. No changes in total body burdens of metabolite concentrations were observed during the monitoring of depuration over a period of 96 h. The biotransformation pathway of pyrene in G. setosus was also investigated in this study with two main phase II biotransformation products discovered by liquid chromatography. These products are conditionally identified as the sulphate and glucose conjugates of 1-hydroxy-pyrene. Overall, the study contributes new knowledge to the understanding of the fate of PAHs in arctic biota. In particular, the study provides valuable insight into the bioaccumulation and biotransformation of an important PAH and its metabolites in a species that serves as both a predator and prey in the arctic ecosystem.
Collapse
Affiliation(s)
- V Carrasco-Navarro
- Department of Biology, University of Eastern Finland, Joensuu Campus, P.O. Box 111, FI-80101, Finland; Department of Biology, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, Kuopio, Finland.
| | - I Jæger
- Akvaplan-niva, FRAM - High North Research Centre for Climate and the Environment, N-9296 Tromsø, Norway; University of Tromsø, Institute of Arctic and Marine Biology, N-9037 Tromsø, Norway
| | - J O Honkanen
- Department of Biology, University of Eastern Finland, Joensuu Campus, P.O. Box 111, FI-80101, Finland; Akvaplan-niva, FRAM - High North Research Centre for Climate and the Environment, N-9296 Tromsø, Norway
| | - J V K Kukkonen
- University of Jyväskylä, Department of Biological and Environmental Sciences, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - JoLynn Carroll
- Akvaplan-niva, FRAM - High North Research Centre for Climate and the Environment, N-9296 Tromsø, Norway; CAGE - Centre for Arctic Gas Hydrate, Environment, and Climate, the Department of Geology, UiT The Arctic University of Norway, Norway
| | - Lionel Camus
- Akvaplan-niva, FRAM - High North Research Centre for Climate and the Environment, N-9296 Tromsø, Norway; The University Centre in Svalbard, N-9171 Longyearbyen, Norway
| |
Collapse
|
7
|
Saengtienchai A, Ikenaka Y, Darwish WS, Nakayama SMM, Mizukawa H, Ishizuka M. Characterization and tissue distribution of conjugated metabolites of pyrene in the rat. J Vet Med Sci 2015; 77:1261-7. [PMID: 26028020 PMCID: PMC4638293 DOI: 10.1292/jvms.14-0632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pyrene (PY) is a polycyclic aromatic hydrocarbon (PAH) that is often used as a biomarker
for human and wildlife exposure to PAHs. As the metabolites of PAHs, similar to their
parent compounds, pose public health risks, it is necessary to study their characteristics
and tissue-specific distribution. The present study was performed to experimentally
characterize PY metabolites and analyze the tissue-specific distribution of the conjugated
metabolites after oral administration of PY to rats. PY metabolites, such as
pyrenediol-disulfate (PYdiol-diS), pyrenediol-sulfate (PYdiol-S), pyrene-1-sufate (PYOS),
pyrene-1-glucuronide (PYOG) and 1-hydroxypyrene (PYOH), were detected in rat urine.
Although glucuronide conjugate was the predominant metabolite, the metabolite composition
varied among tissues. Interestingly, the proportion of PYOH was high in the large
intestine. Furthermore, PYOH was the only PY metabolite detected in feces.
Collapse
Affiliation(s)
- Aksorn Saengtienchai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Malmquist LMV, Selck H, Jørgensen KB, Christensen JH. Polycyclic Aromatic Acids Are Primary Metabolites of Alkyl-PAHs-A Case Study with Nereis diversicolor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5713-5721. [PMID: 25827176 DOI: 10.1021/acs.est.5b01453] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Although concentrations of alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) in oil-contaminated sediments are higher than those of unsubstituted PAHs, only little attention has been given to metabolism and ecotoxicity of alkyl-PAHs. In this study we demonstrated that metabolism of alkyl-PAHs primarily forms polycyclic aromatic acids (PAAs). We generalize this to other alkyl-PAHs, based on literature and the present study of the metabolism of 1-methylphenanthrene, 3,6-dimethylphenanthrene, and 1-, 2-, 3-, and 6-methylchrysene related to their unsubstituted parent PAHs. Also, we observed that body burdens and production of PAAs was related to the position of the methyl group, showing the same isomer specific preferences as for microbial degradation of alkyl-PAHs. We detected a high production of PAAs, and larger metabolism of alkyl-PAHs than their unsubstituted parent PAHs. We therefore propose that carboxylic acid metabolites of alkyl-PAHs have the potential of constituting a new class of contaminants in marine waters that needs attention in relation to ecological risk assessments.
Collapse
Affiliation(s)
- Linus M V Malmquist
- †Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
- ‡Department of Environmental, Social and Spatial Change, Roskilde University, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Henriette Selck
- ‡Department of Environmental, Social and Spatial Change, Roskilde University, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Kåre B Jørgensen
- §Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Jan H Christensen
- †Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
9
|
Saengtienchai A, Ikenaka Y, Nakayama SMM, Mizukawa H, Kakehi M, Bortey-Sam N, Darwish WS, Tsubota T, Terasaki M, Poapolathep A, Ishizuka M. Identification of interspecific differences in phase II reactions: determination of metabolites in the urine of 16 mammalian species exposed to environmental pyrene. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2062-2069. [PMID: 24899081 DOI: 10.1002/etc.2656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/28/2014] [Accepted: 05/29/2014] [Indexed: 06/03/2023]
Abstract
Interspecific differences in xenobiotic metabolism are a key to determining relative sensitivities of animals to xenobiotics. However, information on domesticated livestock, companion animals, and captive and free-ranging wildlife is incomplete. The present study evaluated interspecific differences in phase II conjugation using pyrene as a nondestructive biomarker of polycyclic aromatic hydrocarbon (PAH) exposure. Polycyclic aromatic hydrocarbons and their metabolites have carcinogenic and endocrine-disrupting effects in humans and wildlife and can have serious consequences. The authors collected urine from 16 mammalian species and analyzed pyrene metabolites. Interspecific differences in urinary pyrene metabolites, especially in the concentration and composition of phase II conjugated metabolites, were apparent. Glucuronide conjugates are dominant metabolites in the urine of many species, including deer, cattle, pigs, horses, and humans. However, they could not be detected in ferret urine even though the gene for ferret Uridine 5'-diphospho-glucuronosyltransferase (UDP-glucuronosyltransferase, UGT) 1A6 is not a pseudogene. Sulfate conjugates were detected mainly in the urine of cats, ferrets, and rabbits. Interestingly, sulfate conjugates were detected in pig urine. Although pigs are known to have limited aryl sulfotransferase activity, the present study demonstrated that pig liver was active in 1-hydroxypyrene sulfation. The findings have some application for biomonitoring environmental pollution.
Collapse
Affiliation(s)
- Aksorn Saengtienchai
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yin Y, Jia J, Guo HY, Yang LY, Wang XR, Sun YY. Pyrene-stimulated reactive oxygen species generation and oxidative damage in Carassius auratus. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:162-170. [PMID: 24171415 DOI: 10.1080/10934529.2013.838846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Laboratory experiments were carried out to understand the toxicology of pyrene in the goldfish Carassius auratus and investigate the potential oxidative stress induced by reactive oxygen species (ROS) in vivo in a time-dependent manner. Pyrene bioaccumulation, induction of reactive oxygen species and the consequent biochemical responses in the liver of the fish were examined. Fish were exposed to 0.05 mg/L pyrene for different periods. The pyrene concentration in fish liver was analyzed by high performance liquid chromatography (HPLC). Free radicals were detected by electron paramagnetic resonance (EPR). The activities of antioxidant enzymes, contents of nonenzymatic antioxidants and malondialdehyde (MDA) in fish liver were also determined. Results indicated that the pyrene concentrations in fish liver reached a maximum level on day 1, and then declined to a low steady state level over 7 days. The free radical significantly increased at 6 h and reached a maximum on day 2, while the superoxide dismutase (SOD) activity and MDA content were induced, and the reduced glutathione (GSH) content was inhibited by day 2. The catalase (CAT) and glutathione-S-transferase (GST) activities were significantly induced at 12 h. These results indicated that pyrene was rapidly bioaccumulated in fish resulting in redox cycling, and the production of free radical is an important mechanism of pyrene toxicity in C. auratus. The indicators of antioxidant system are sensitive and useful for the study of early biomarkers of pyrene exposure in fish.
Collapse
Affiliation(s)
- Ying Yin
- a State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University , Nanjing , China
| | | | | | | | | | | |
Collapse
|
11
|
Chen K, Zhu Q, Qian Y, Song Y, Yao J, Choi MMF. Microcalorimetric investigation of the effect of non-ionic surfactant on biodegradation of pyrene by PAH-degrading bacteria Burkholderia cepacia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:361-367. [PMID: 24011930 DOI: 10.1016/j.ecoenv.2013.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in various ecosystems and are pollutants of great concern due to their potential toxicity, mutagenecity and carcinogenicity. Surfactant has become a hot topic for its wide application in the bioremediation of PAHs. The aim of this work is to explore a microcalorimetric method to determine the toxic effect of pyrene on Bacillus subtilis (B. subtilis) and the PAH-degrading bacteria Burkholderia cepacia (B. cepacia) and to evaluate the effect of Tween 80 on biodegradation of pyrene. Power-time curves were studied and calorimetric parameters including the growth rate constant (k), half inhibitory concentration (IC₅₀), and total thermal effect (Q(T)) were determined. B. subtilis, B. cepacia and B. cepacia with Tween 80 were completely inhibited when the concentration of pyrene were 200, 800 and 1600 µg mL⁻¹, respectively. B. cepacia shows better tolerance to pyrene than B. subtilis. Tween 80 significantly improves the biodegradation of pyrene by increasing the bioavailability of pyrene. In addition, the expression of catechol 2,3-dioxygenase (C23O) in B. cepacia is responsible for the degradation of pyrene and plays an important role in improving the biodegradation of pyrene. Moreover, the activity of C23O increases with the application of Tween 80. The enhanced bioavailability and biodegradation of pyrene by Tween 80 shows the potential use of Tween 80 in the PAHs bioremediation.
Collapse
Affiliation(s)
- Ke Chen
- State Key Laboratory of Biogeology and Environmental Geology and Sino-Hungarian Joint Laboratory of Environmental Science and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Hellou J, Ross NW, Moon TW. Glutathione, glutathione S-transferase, and glutathione conjugates, complementary markers of oxidative stress in aquatic biota. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:2007-23. [PMID: 22532120 DOI: 10.1007/s11356-012-0909-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 04/02/2012] [Indexed: 05/22/2023]
Abstract
Contaminants are ubiquitous in the environment and their impacts are of increasing concern due to human population expansion and the generation of deleterious effects in aquatic species. Oxidative stress can result from the presence of persistent organic pollutants, metals, pesticides, toxins, pharmaceuticals, and nanomaterials, as well as changes in temperature or oxygen in water, the examined species, with differences in age, sex, or reproductive cycle of an individual. The antioxidant role of glutathione (GSH), accompanied by the formation of its disulfide dimer, GSSG, and metabolites in response to chemical stress, are highlighted in this review along with, to some extent, that of glutathione S-transferase (GST). The available literature concerning the use and analysis of these markers will be discussed, focusing on studies of aquatic organisms. The inclusion of GST within the suite of biomarkers used to assess the effects of xenobiotics is recommended to complement that of lipid peroxidation and mixed function oxygenation. Combining the analysis of GSH, GSSG, and conjugates would be beneficial in pinpointing the role of contaminants within the plethora of causes that could lead to the toxic effects of reactive oxygen species.
Collapse
Affiliation(s)
- Jocelyne Hellou
- Bedford Institute of Oceanography, Department of Fisheries and Oceans, Dartmouth, Nova Scotia, Canada.
| | | | | |
Collapse
|
13
|
Carrasco Navarro V, Leppänen MT, Honkanen JO, Kukkonen JVK. Trophic transfer of pyrene metabolites and nonextractable fraction from Oligochaete (Lumbriculus variegatus) to juvenile brown trout (Salmo trutta). CHEMOSPHERE 2012; 88:55-61. [PMID: 22475154 DOI: 10.1016/j.chemosphere.2012.02.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 05/31/2023]
Abstract
The trophic transfer of pyrene metabolites was evaluated by a 2-month exposure of the freshwater annelid Lumbriculus variegatus (Oligochaeta) to pyrene, followed by feeding to juvenile brown trout (Salmo trutta). The results obtained by scintillation counting (SC) proved that the pyrene metabolites produced by L. variegatus were transferred to juvenile S. trutta through diet. More detailed analyses by LC-FLD (liquid chromatography with fluorescence detection) showed that an unknown pyrene metabolite originating from L. variegatus was present in fish liver. This metabolite, although yet not properly identified, may be the glucose conjugate of 1-hydroxy-pyrene. This metabolite was not present in chromatograms of fish that were fed pyrene-spiked food pellets. In addition, the strongly bound tissue residue of L. variegatus, which was nonextractable neither by organic solvents nor by the proteolytic enzyme Proteinase K, was most likely not available for the fish through diet. Altogether, the present study shows that the metabolites of pyrene produced at low levels of the food chain may be potentially available for upper levels through diet, raising a concern about their potential toxicity to predators and supporting their inclusion in the risk assessment of PAHs.
Collapse
Affiliation(s)
- V Carrasco Navarro
- Department of Biology, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland.
| | | | | | | |
Collapse
|
14
|
Luís LG, Guilhermino L. Short-term toxic effects of naphthalene and pyrene on the common prawn (Palaemon serratus) assessed by a multi-parameter laboratorial approach: mechanisms of toxicity and impairment of individual fitness. Biomarkers 2012; 17:275-85. [DOI: 10.3109/1354750x.2012.666765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Almeida JR, Gravato C, Guilhermino L. Challenges in assessing the toxic effects of polycyclic aromatic hydrocarbons to marine organisms: a case study on the acute toxicity of pyrene to the European seabass (Dicentrarchus labrax L.). CHEMOSPHERE 2012; 86:926-937. [PMID: 22154001 DOI: 10.1016/j.chemosphere.2011.10.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 05/31/2023]
Abstract
The acute toxicity (96 h) of pyrene (PY) to European seabass (Dicentrachus labrax) juveniles assessed in a semi-static bioassay (SSB) with medium renewal at each 12h, and in a static bioassay (SB) without medium renewal was compared in laboratorial conditions (water PY concentrations: 0.07-10 mg L(-1)). Main findings in the SSB that assessed mainly the toxicity of PY and its metabolites were: increased levels of bile PY metabolites in good agreement with the profile of lipid peroxidation levels (LPO) in exposed fish relating PY exposure and oxidative damage; increased levels of PY-type compounds in the brain indicating their ability to cross the blood-brain barrier; increased levels of these substances in liver and muscle which are edible tissues for humans thus raising concern on potential adverse effects on consumers of fish from PY contaminated areas; a significant inhibition of glutathione S-transferase activity suggesting its involvement in PY detoxication as toxicant scavenger; finally, an almost complete impairment of the swimming velocity at all the PY concentrations linking sub-individual to higher population level effects. In the SB, where the overall toxicity of PY, its metabolites and environmental degradation products was evaluated, 19% and 79% of PY decay in test media was found at 12 and 96 h, respectively. In general, the effects were similar to those of SSB but with significant effects being induced at higher PY concentrations indicating that the parental compound is more toxic than its environmental degradation products. The other main differences relatively to the SSB were: increased levels of PY-type substances in the liver suggesting more accumulation in this organ. Therefore, these findings highlight the need of carefully considering experimental design options when assessing the toxicity of readily degradable substances to marine fish, and stress the importance of taking into consideration the toxicity of environmental degradation products in addition to toxic effects of the parental substance and its metabolites for marine ecological risk assessment.
Collapse
Affiliation(s)
- Joana R Almeida
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia, Largo do Prof. Abel Salazar 2, 4099-003 Porto, Portugal.
| | | | | |
Collapse
|
16
|
HELLOU JOCELYNE, BEACH DANIELG, LEONARD JAMES, BANOUB JOSEPHH. Integrating Field Analyses with Laboratory Exposures to Assess Ecosystems Health. Polycycl Aromat Compd 2012. [DOI: 10.1080/10406638.2011.651681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Hellou J. Behavioural ecotoxicology, an "early warning" signal to assess environmental quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:1-11. [PMID: 20614196 PMCID: PMC3016494 DOI: 10.1007/s11356-010-0367-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/21/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND In this review, the position of behavioural ecotoxicology within the available means to assess the status of marine environments is described as filling the gap for the needed "early warning" signals. A few examples of studies performed since the 1960s are discussed to highlight the sensitivity of these approaches in investigating the effects of chemicals, including priority pollutants and emerging contaminants, relative to conventional toxicity tests measuring survival. DISCUSSION The advantage of the behavioural response is due to the integration of biochemical and physiological processes that reflect changes at higher levels of organisation with ecological relevance. Avoidance often represents a behavioural symptom easily detected in many animals exposed to contaminants and would be a useful test to explore more widely. This rapid response would reflect a defence mechanism protective against further exposure and the potential development of more pronounced deleterious effects, whilst in some cases, escape could lead to the relocation of a species with negative consequences. An investigation of the avoidance behaviour of mud shrimp, Corophium volutator, along with the chemical analyses of sediments and amphipods to assess the quality of harbour sediments is summarised. The body burden of the amphipods was 1,000 times lower than the one associated with narcosis, emphasizing the sensitivity of this endpoint. The application of this acute toxicity test is briefly compared to additional work that involved intertidal mussels collected in the field. CONCLUSIONS Recent research undertaken with mud snails, Ilyanassa obsoleta, and harbour sediments confirmed the usefulness of the escape behaviour as an assessment tool. However, the limits of the state of knowledge regarding the fate of contaminants in species with the ability to metabolise contaminants is further discussed along with directions to be pursued to address questions arising from the reviewed literature.
Collapse
Affiliation(s)
- Jocelyne Hellou
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada.
| |
Collapse
|