1
|
Maloni G, Miotelo L, Otero IVR, Souza FCD, Nocelli RCF, Malaspina O. Acute toxicity and sublethal effects of thiamethoxam on the stingless bee Scaptotrigona postica: Survival, neural morphology, and enzymatic responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125864. [PMID: 39954757 DOI: 10.1016/j.envpol.2025.125864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Native and cultivated plants in the Neotropics benefit from the pollination services provided by stingless bees. The use of neonicotinoid insecticides negatively impacts bee health, even though bees are not their primary targets. This study determined the oral mean lethal concentration (LC50) of thiamethoxam (TMX) after 24 h of exposure for the stingless bee Scaptotrigona postica. Based on the LC₅₀ value (0.11 ng a.i./μL) obtained, two fractions of this value (1/10 and 1/100 LC₅₀) were selected to assess survival time (LT₅₀), as well as to conduct neural morphological and enzymatic analyses. The LC₅₀/100 group had a LT₅₀ of 15 days, compared to 17 days in the control group, while the LC₅₀/10 group survived for 8 days. Morphological analyses revealed increased Kenyon cell spacing and pyknosis in the mushroom bodies after 1, 3, and 6 days of exposure, suggesting that thiamethoxam adversely affects the brain of S. postica. Regarding enzymatic activity, comparisons between the control and the two sublethal concentrations revealed that Carboxylesterase and Glutathione S-transferase (GST) activity increased in the abdomens after six days of exposure. GST activity also increased in the bees' heads for the LC₅₀/10 concentration after six days of exposure (Control x TMX group). The enzymatic results suggests that thiamethoxam induces oxidative stress in S. postica. The results presented underscore the necessity of considering stingless bees in regulatory decisions regarding the use of insecticides, ensuring that the risks to this important group of pollinators are adequately assessed.
Collapse
Affiliation(s)
- Geovana Maloni
- Department of General and Applied Biology, Sao Paulo State University, Biosciences Institute of Rio Claro, Avenida 24-A, 1515, Rio Claro, Brazil
| | - Lucas Miotelo
- Department of General and Applied Biology, Sao Paulo State University, Biosciences Institute of Rio Claro, Avenida 24-A, 1515, Rio Claro, Brazil.
| | - Igor Vinicius Ramos Otero
- Department of General and Applied Biology, Sao Paulo State University, Biosciences Institute of Rio Claro, Avenida 24-A, 1515, Rio Claro, Brazil
| | - Fernanda Carolaine de Souza
- Department of General and Applied Biology, Sao Paulo State University, Biosciences Institute of Rio Claro, Avenida 24-A, 1515, Rio Claro, Brazil
| | | | - Osmar Malaspina
- Department of General and Applied Biology, Sao Paulo State University, Biosciences Institute of Rio Claro, Avenida 24-A, 1515, Rio Claro, Brazil
| |
Collapse
|
2
|
Bender de Souza IL, Macarini LC, de Oliveira CMR, Ferreira NGC, Guimarães ATB. Effects of anthropogenic stress on stingless bees Melipona mandacaia inhabiting urban and natural environments. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104658. [PMID: 39970996 DOI: 10.1016/j.etap.2025.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Bees play a crucial role as pollinators, significantly contributing to ecosystem health. However, they face growing threats from human activities. This study uses biomarkers to evaluate the health status of Melipona mandacaia, a stingless bee native to the Caatinga biome, as indicators of anthropogenic stress. Bees were collected from the unique Caatinga biome, which had no recorded human pressure, and from an urban area with high human pressure. These bees were then analyzed for various biomarkers to assess the different levels of anthropogenic stress. The biomarkers included cholinesterases (ChE) to assess neurotoxicity, catalase (CAT) to measure antioxidant responses, glutathione S-transferases (GST) for detoxification pathways, and lipid peroxidation (LPO) as an indicator of oxidative stress. The results reveal that ChE inhibition may be associated with stress levels due to human activities showing an inhibition pattern with increased stress levels (up to 54.4 % inhibition), while the remaining biomarkers showed mixed responses across the different stress-level areas. In addition, the use of a principal component analysis (PCA) allowed a separation between the different groups and the weigh of the measured variables to each anthropogenic stress group. The integrated biomarker response (IBR) index was applied showing a clear distinction among groups. The obtained results could be partly explained by the beekeeping practices in some locations, which may have mitigated the effects of anthropogenic stressors to a certain degree, especially in HS. These findings underscore the importance of monitoring wild bee health in the Caatinga and demonstrate the value of a multifaceted biomarker approach for understanding the impacts of anthropogenic stressors on bee populations in varied environments and the effects of beekeeping.
Collapse
Affiliation(s)
- Isabelle Letícia Bender de Souza
- Ecotoxicology and Landscape Research Group, Rua Universitária n. 2069, Cascavel, PR, Brazil; Graduate Program in Biosciences and Health - Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária n. 2069, Cascavel, PR, Brazil
| | - Leanna Camila Macarini
- Ecotoxicology and Landscape Research Group, Rua Universitária n. 2069, Cascavel, PR, Brazil
| | - Cíntia Mara Ribas de Oliveira
- Graduate Program in Environmental Management (PPGAmb), Universidade Positivo (UP) and Centro de Pesquisa da Universidade Positivo (CPUP), Professor Pedro Viriato Parigot de Souza, n. 5300, Curitiba, PR 81280-330, Brazil
| | - Nuno G C Ferreira
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, Matosinhos 4450-208, Portugal; School of Biosciences - Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK.
| | - Ana Tereza Bittencourt Guimarães
- Ecotoxicology and Landscape Research Group, Rua Universitária n. 2069, Cascavel, PR, Brazil; Graduate Program in Biosciences and Health - Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária n. 2069, Cascavel, PR, Brazil
| |
Collapse
|
3
|
Řezáč M, Řezáčová V, Heneberg P. Differences in the abundance and diversity of endosymbiotic bacteria drive host resistance of Philodromus cespitum, a dominant spider of central European orchards, to selected insecticides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123486. [PMID: 39615475 DOI: 10.1016/j.jenvman.2024.123486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Accepted: 11/24/2024] [Indexed: 01/15/2025]
Abstract
The ability of tissue endosymbionts to degrade and detoxify agrochemicals is increasingly recognized as a mechanism supporting the survival of arthropods in agroecosystems. Therefore, tissue endosymbionts have the potential to drive insecticide resistance in agrobiont spiders, i.e., in major generalist predators and pest control agents within agroecosystems. We hypothesized that the abundance and diversity of the endosymbiotic bacteria of Philodromus cespitum, a philodromid spider dominating central European apple orchards, vary with regard to differences in predation capacity and drive host insecticide resistance. We provisioned P. cespitum with diets of varying protein and lipid content and topically exposed them to field-relevant doses of commonly used insecticides, namely Mospilan (acetamiprid), Movento (spirotetramat), Gondola (sulfoxaflor), Decis (deltamethrin), Coragen (chlorantraniliprole), and Benevia (cyantraniliprole). The analyses were based on 16S rDNA profiles from lysates of the cephalothorax and legs of the tested spiders. The application of Benevia, Mospilan, and Movento was partially lethal. The spiders that were resistant to the treatments with Benevia, Mospilan, or Movento were associated with the increased relative abundance of Mycoplasmatota by more than one order of magnitude. Additionally, the abundance of other bacteria differed in Mospilan-resistant and Mospilan-sensitive individuals. In contrast, the diet regimens were not associated with any major differences in the microbiome diversity nor the diversity of endosymbionts. Philodromus cespitum hosts assemblages with unexpectedly high beta diversity of endosymbionts. The OTU identified as the alpha proteobacterium endosymbiont of Coelostomidia zealandica was an obligate endosymbiont of the analyzed P. cespitum population. Wolbachia, Rickettsia, and Spiroplasma endosymbionts were also highly prevalent and differed in their responses to the applied treatments. In conclusion, differences in the abundance and diversity of endosymbiotic bacteria drove the resistance of the spider host to selected insecticides.
Collapse
Affiliation(s)
- Milan Řezáč
- Crop Research Institute, Prague, Czech Republic
| | | | - Petr Heneberg
- Crop Research Institute, Prague, Czech Republic; Charles University, Third Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
4
|
El-Sayed ASA, Fathy NAM, Labib M, El-Baz AF, El-Sheikh AA, Moustafa AH. Biological control of nosemosis in Apis mellifera L. with Acacia nilotica extract. Sci Rep 2024; 14:28340. [PMID: 39550385 PMCID: PMC11569257 DOI: 10.1038/s41598-024-78874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Nosemosis is one of the most devastating diseases of Apis mellifera (Honey bees) caused by the single-celled spore-forming fungi Nosema apis, N. ceranae and N. neumanii, causing a severe loss on the colony vitality and productivity. Fumagillin, a MetAP2 inhibitor, was a certified treatment for controlling nosemosis, nevertheless, due to its deleterious effects on honey bees and humans, it is prohibited. So, searching for novel biological agents with affordable selectivity to target Nosema species infecting Apis mellifera, with nil toxicity to bees and humans is the main objective of this study. Nosema species were isolated from naturally infected honey bees. The methanolic extracts of Acacia nilotica, Elaeis guineensis, and Catharanthus roseus were tested to selectively control the growth of Nosema spp of honeybees. The spores of Nosema species were molecularly and morphologically identified. Among the tested plant extracts, the methanolic extracts (0.1%) of A. nilotica had the most activity towards Nosema spp causing about 37.8 and 32.5% reduction in the spores' load at 5- and 9-days post-infection, respectively, compared to the untreated control. At 0.1%, the A. nilotica methanolic extract exhibited the highest inhibitory effect for Nosema spores, without any obvious bee mortality. Catharanthus roseus displayed a reduction of spores by 27.02%, with bee mortality rate of 27.02%. At 1% for 5 dpi, the A. nilotica extracts led to 18.18% bee mortality, while the C. roseus extracts resulted in 100% mortality, as revealed from the toxicity and quantification bioassays. So, the extracts of A. nilotica and C. roseus had a significant effect in controlling the N. apis and N. ceranae titer compared to the infected untreated control at both time points. The titer of N. apis and N. ceranae was noticeably decreased by more than 80% and 90%, in response to A. nilotica, compared to the control. From the metabolic profiling by GC-MS analysis, the most frequent active compounds of A. nilotica were 2,4,6-trihy-droxybenzoic acid, 1,2-dihydroxybenzene, myristic acid, and linoleic acid. These compounds were analyzed in silico to assess their binding affinity to the ATP binding protein, methionine aminopeptidase and polar tube protein of Nosema species as target enzymes. The compound 2,4,6-trihydroxybenzoic acid had the lowest energy to bind with ATP binding protein, methionine aminopeptidase and polar tube protein of Nosema, followed by 1,2-dihydroxybenzene and myristic acid, compared to fumagilin. So, from the experimental and molecular docking analysis, the extracts of A. nilotica had the highest activity to attack the cellular growth machinery of Nosema species without an obvious effect to the honeybees, ensuring their prospective promising application.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Nahla A M Fathy
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Mai Labib
- Agriculture Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, 12619, Egypt
| | - Ashraf F El-Baz
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 22857/79, Egypt
| | - Aly A El-Sheikh
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Ahmed H Moustafa
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Botina LL, Barbosa WF, Viana TA, de Oliveira Faustino A, Martins GF. Physiological responses of the stingless bee Partamona helleri to oral exposure to three agrochemicals: impact on antioxidant enzymes and hemocyte count. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54648-54658. [PMID: 39207621 DOI: 10.1007/s11356-024-34790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Agrochemicals pose significant threats to the survival of bees, yet the physiological impacts of sublethal doses on stingless bees remain poorly understood. This study investigated the effects of acute oral exposure to three commercial formulations of agrochemicals [CuSO4 (leaf fertilizer), glyphosate (herbicide), and spinosad (bioinsecticide)] on antioxidant enzymes, malondialdehyde content (MDA), nitric oxide (NO) levels, and total hemocyte count (THC) in the stingless bee Partamona helleri. Foragers were exposed to lethal concentrations aimed to kill 5% (LC5) of CuSO4 (120 μg mL-1) or spinosad (0.85 μg mL-1) over a 24-h period. Glyphosate-exposed bees received the recommended label concentration (7400 μg mL-1), as they exhibited 100% survival after exposure. Ingestion of CuSO4 or glyphosate-treated diets by bees was reduced. Levels of NO and catalase (CAT) remained unaffected at 0 h or 24 h post-exposure. Superoxide dismutase (SOD) activity was higher at 0 h compared to 24 h, although insignificantly so when compared to the control. Exposure to CuSO4 reduced glutathione S-transferase (GST) activity at 0 h but increased it after 24 h, for both CuSO4 and glyphosate. MDA levels decreased after 0 h exposure to CuSO4 or spinosad but increased after 24 h exposure to all tested agrochemicals. THC showed no difference among glyphosate or spinosad compared to the control or across time. However, CuSO4 exposure significantly increased THC. These findings shed light on the physiological responses of stingless bees to agrochemicals, crucial for understanding their overall health.
Collapse
Affiliation(s)
- Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Wagner Faria Barbosa
- Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Thaís Andrade Viana
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | |
Collapse
|
6
|
de Souza FC, Miotelo L, Maloni G, Otero IVR, Nocelli RCF, Malaspina O. Thiamethoxam toxicity on the stingless bee Friesiomelitta varia: LC 50, survival time, and enzymatic biomarkers assessment. CHEMOSPHERE 2024; 363:142853. [PMID: 39019173 DOI: 10.1016/j.chemosphere.2024.142853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Bees play a crucial role as pollinating insects in both natural and cultivated areas. However, the use of pesticides, such as thiamethoxam, has been identified as a contributing factor compromising bee health. The current risk assessment primarily relies on the model species Apis mellifera, raising concerns about the applicability of these assessments to other bee groups, including stingless bees. In this study, we investigated the acute toxicity of thiamethoxam on the stingless bee Frieseomelitta varia by determining the average lethal concentration (LC50) and mean lethal time (LT50). Additionally, we evaluated the enzymatic profile of Acetylcholinesterase (AChE), Carboxylesterase-3 (CaE-3), and Glutathione S-Transferase (GST), in the heads and abdomens of F. varia after exposure to thiamethoxam (LC50/10). The LC50 of thiamethoxam was determined to be 0.68 ng ai/μL, and the LT50 values were 37 days for the control group, 25 days at LC50/10, and 27 days at LC50/100. The thiamethoxam significantly decreased the survival time of F. varia. Furthermore, the enzymatic profile exhibited differences in CaE3 activity within one day in the heads and ten days in the abdomen. GST activity showed differences in the abdomen after one and five days of thiamethoxam exposure. These findings suggests that the abdomen is more affected than the head after oral exposure to thiamethoxam. Our study provides evidence of the toxicity of thiamethoxam at both the cellular and organismal levels, reinforcing the need to include non-Apis species in pollinator risk assessments. and provide solid arguments for bee protection.
Collapse
Affiliation(s)
- Fernanda Carolaine de Souza
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro. Departamento de Biologia Geral e Aplicada, Programa de pós graduação em Ciências Biológicas: Biologia Celular, Molecular e Microbiologia, Brazil.
| | - Lucas Miotelo
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro. Departamento de Biologia Geral e Aplicada, Programa de pós graduação em Ciências Biológicas: Biologia Celular, Molecular e Microbiologia, Brazil.
| | - Geovana Maloni
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro. Departamento de Biologia Geral e Aplicada, Programa de pós graduação em Ciências Biológicas: Biologia Celular, Molecular e Microbiologia, Brazil.
| | - Igor Vinicius Ramos Otero
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro. Departamento de Biologia Geral e Aplicada, Programa de pós graduação em Ciências Biológicas: Biologia Celular, Molecular e Microbiologia, Brazil.
| | | | - Osmar Malaspina
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro. Departamento de Biologia Geral e Aplicada, Programa de pós graduação em Ciências Biológicas: Biologia Celular, Molecular e Microbiologia, Brazil.
| |
Collapse
|
7
|
Choi JY, Chon K, Kim J, Vasamsetti BMK, Kim BS, Yoon CY, Hwang S, Park KH, Lee JH. Assessment of Lambda-Cyhalothrin and Spinetoram Toxicity and Their Effects on the Activities of Antioxidant Enzymes and Acetylcholinesterase in Honey Bee ( Apis mellifera) Larvae. INSECTS 2024; 15:587. [PMID: 39194792 DOI: 10.3390/insects15080587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
Honeybees play a crucial role as agricultural pollinators and are frequently exposed to various pollutants, including pesticides. In this study, we aimed to evaluate the toxicity of lambda-cyhalothrin (LCY) and spinetoram (SPI) in honey bee larvae reared in vitro through single (acute) and repeated (chronic) exposure. The acute LD50 values for LCY and SPI were 0.058 (0.051-0.066) and 0.026 (0.01-0.045) μg a.i./larva, respectively. In chronic exposure, the LD50 values of LCY and SPI were 0.040 (0.033-0.046) and 0.017 (0.014-0.019) μg a.i./larva, respectively. The chronic no-observed-effect dose of LCY and SPI was 0.0125 μg a.i./larva. Adult deformation rates exceeded 30% in all LCY treatment groups, showing statistically significant differences compared to the solvent control group (SCG). Similarly, SPI-treated bees exhibited significantly more deformities than SCG. Furthermore, we examined the activities of several enzymes, namely, acetylcholinesterase (AChE), glutathione-S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD), in larvae, pupae, and newly emerged bees after chronic exposure at the larval stage (honey bee larval chronic LD50, LD50/10 (1/10th of LD50), and LD50/20 (1/20th of LD50)). LCY and SPI induced significant changes in detoxification (GST), antioxidative (SOD and CAT), and signaling enzymes (AChE) during the developmental stages (larvae, pupae, and adults) of honey bees at sublethal and residue levels. Our results indicate that LCY and SPI may affect the development of honey bees and alter the activity of enzymes associated with oxidative stress, detoxification, and neurotransmission. These results highlight the potential risks that LCY and SPI may pose to the health and normal development of honey bees.
Collapse
Affiliation(s)
- Ji-Yeong Choi
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Kyongmi Chon
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Juyeong Kim
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Bala Murali Krishna Vasamsetti
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Bo-Seon Kim
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Chang-Young Yoon
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sojeong Hwang
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Kyeong-Hun Park
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea
| |
Collapse
|
8
|
Di Noi A, Caliani I, D'Agostino A, Cai G, Romi M, Campani T, Ferrante F, Baracchi D, Casini S. Assessing the effects of a commercial fungicide and an herbicide, alone and in combination, on Apis mellifera: Insights from biomarkers and cognitive analysis. CHEMOSPHERE 2024; 359:142307. [PMID: 38734252 DOI: 10.1016/j.chemosphere.2024.142307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/20/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Agrochemicals play a vital role in protecting crops and enhancing agricultural production by reducing threats from pests, pathogens and weeds. The toxicological status of honey bees can be influenced by a number of factors, including pesticides. While extensive research has focused on the lethal and sublethal effects of insecticides on individual bees and colonies, it is important to recognise that fungicides and herbicides can also affect bees' health. Unfortunately, in the field, honey bees are exposed to mixtures of compounds rather than single substances. This study aimed to evaluate the effects of a commercial fungicide and a commercial herbicide, both individually and in combination, on honey bees. Mortality assays, biomarkers and learning and memory tests were performed, and the results were integrated to assess the toxicological status of honey bees. Neurotoxicity (acetylcholinesterase and carboxylesterase activities), detoxification and metabolic processes (glutathione S-transferase and alkaline phosphatase activities), immune system function (lysozyme activity and haemocytes count) and genotoxicity biomarkers (Nuclear Abnormalities assay) were assessed. The fungicide Sakura® was found to activate detoxification enzymes and affect alkaline phosphatase activity. The herbicide Elegant 2FD and the combination of both pesticides showed neurotoxic effects and induced detoxification processes. Exposure to the herbicide/fungicide mixture impaired learning and memory in honey bees. This study represents a significant advance in understanding the toxicological effects of commonly used commercial pesticides in agriculture and contributes to the development of effective strategies to mitigate their adverse effects on non-target insects.
Collapse
Affiliation(s)
- Agata Di Noi
- Department of Life Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy.
| | - Antonella D'Agostino
- Department of Economics and Statistics, University of Siena, Piazza S. Francesco 7, 53100 Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Marco Romi
- Department of Life Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Federico Ferrante
- Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100 6, Viterbo, Italy
| | - David Baracchi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| |
Collapse
|
9
|
Misiewicz A, Filipiak ZM, Kadyrova K, Bednarska AJ. Combined effects of three insecticides with different modes of action on biochemical responses of the solitary bee Osmia bicornis. CHEMOSPHERE 2024; 359:142233. [PMID: 38705404 DOI: 10.1016/j.chemosphere.2024.142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Bees are simultaneously exposed to a variety of pesticides, which are often applied in mixtures and can cause lethal and sublethal effects. The combined effects of pesticides, however, are not measured in the current risk assessment schemes. Additionally, the sublethal effects of pesticides on a variety of physiological processes are poorly recognized in bees, especially in non-Apis solitary bees. In this study, we used a full-factorial design to examine the main and interactive effects of three insecticide formulations with different modes of action (Mospilan 20 SP, Sherpa 100 EC, and Dursban 480 EC) on bee biochemical processes. We measured acetylcholinesterase (AChE), glutathione S-transferase (GST) and esterase (EST) activities, as well as a nonenzymatic biomarker associated with energy metabolism, i.e., ATP level. All studied endpoints were affected by Sherpa 100 EC, and the activities of AChE and EST as well as ATP levels were affected by Dursban 480 EC. Moreover, complex interactions between all three insecticides affected ATP levels, showing outcomes that cannot be predicted when testing each insecticide separately. The results indicate that even if interactive effects are sometimes difficult to interpret, there is a need to study such interactions if laboratory-generated toxicity data are to be extrapolated to field conditions.
Collapse
Affiliation(s)
- Anna Misiewicz
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland.
| | - Zuzanna M Filipiak
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland
| | - Kamila Kadyrova
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland
| |
Collapse
|
10
|
Khurshid A, Inayat R, Basit A, Mobarak SH, Gui SH, Liu TX. Effects of thiamethoxam on physiological and molecular responses to potato plant (Solanum tuberosum), green peach aphid (Myzus persicae), and parasitoid (Aphidius gifuensis). PEST MANAGEMENT SCIENCE 2024; 80:3000-3009. [PMID: 38312101 DOI: 10.1002/ps.8006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND To improve integrated pest management (IPM) performance it is essential to assess pesticide side effects on host plants, insect pests, and natural enemies. The green peach aphid (Myzus persicae Sulzer) is a major insect pest that attacks various crops. Aphidius gifuensis is an essential natural enemy of M. persicae that has been applied effectively in controlling M. persicae. Thiamethoxam is a neonicotinoid pesticide widely used against insect pests. RESULTS The current study showed the effect of thiamethoxam against Solanum tuberosum, M. persicae, and A. gefiuensis and the physiological and molecular response of the plants, aphids, and parasitoids after thiamethoxam application. Thiamethoxam affected the physical parameters of S. tuberosum and generated a variety of sublethal effects on M. persicae and A. gefiuensis, including nymph development time, adult longevity, and fertility. Our results showed that different thiamethoxam concentrations [0.1, 0.5, and 0.9 μm active ingredient (a.i.)/L] on different time durations (2, 6, and 10 days) increased the antioxidant enzyme activities SOD, POD, and CAT of S. tuberosum, M. persicae, and A. gefiuensis significantly compared with the control. Our results also showed that different thiamethoxam concentrations (0.1, 0.5, and 0.9 μm a.i./L) on different time durations (2, 6, and 10 days) increased the expression of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione-S-transferase (GST) genes of S. tuberosum, M. persicae, and A. gefiuensis compared with the control. CONCLUSION Our findings reveal that using thiamethoxam at suitable concentrations and time durations for host plants and natural enemies may enhance natural control through the conservation of natural enemies by overcoming any fitness disadvantages. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Rehan Inayat
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Abdul Basit
- Institute of Entomology, Guizhou University, Guiyang, China
| | | | - Shun-Hua Gui
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Planelló R, Aquilino M, Beaugeard L, Llorente L, Herrero Ó, Siaussat D, Lécureuil C. Unveiling Molecular Effects of the Secondary Metabolite 2-Dodecanone in the Model Hymenopteran Nasonia vitripennis. TOXICS 2024; 12:159. [PMID: 38393254 PMCID: PMC10892068 DOI: 10.3390/toxics12020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Over the past decade, multiple studies have suggested that the secondary metabolites produced by plants against herbivorous insects could be used as biopesticides. However, as the molecular mechanism of action of these compounds remains unknown, it is difficult to predict how they would affect non-target insects; thus, their innocuity needs to be clarified. Here, we investigate, from the molecular level to the organism, the responses of a useful parasitic insect Nasonia vitripennis (Walker, 1836) being exposed at the pupae stage for 48 h (up to 6 days) to sublethal doses (5 µg/L and 500 µg/L) of 2-Dodecanone. 2-Dodecanone altered the gene expression of genes related to ecdysone-related pathways, biotransformation, and cell homeostasis. A significant induction of ecdysone response-genes (EcR, usp, E78, Hr4, Hr38) was detected, despite no significant differences in ecdysteroid levels. Regarding the cell homeostasis processes, the gene l(2)efl was differentially altered in both experimental conditions, and a dose-dependent induction of hex81 was observed. 2-Dodecanone also triggered an induction of Cyp6aQ5 activity. Finally, 2-Dodecanone exposure had a significant effect on neither development time, energy reserves, nor egg-laying capacity; no potential genotoxicity was detected. For the first time, this study shows evidence that 2-Dodecanone can modulate gene expression and interfere with the ecdysone signalling pathway in N. vitripennis. This could lead to potential endocrine alterations and highlight the suitability of this organism to improve our general understanding of the molecular effects of plant defences in insects. Our findings provide new insights into the toxicity of 2-Dodecanone that could potentially be explored in other species and under field conditions for plant protection and pest management as a means to reduce reliance on synthetic pesticides.
Collapse
Affiliation(s)
- Rosario Planelló
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - Mónica Aquilino
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - Laureen Beaugeard
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), CNRS-Université de Tours, 37200 Tours, France;
| | - Lola Llorente
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - Óscar Herrero
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - David Siaussat
- Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France;
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), CNRS-Université de Tours, 37200 Tours, France;
| |
Collapse
|
12
|
Démares F, Gibert L, Lapeyre B, Creusot P, Renault D, Proffit M. Ozone exposure induces metabolic stress and olfactory memory disturbance in honey bees. CHEMOSPHERE 2024; 346:140647. [PMID: 37949186 DOI: 10.1016/j.chemosphere.2023.140647] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Human activities, urbanization, and industrialization contribute to pollution that affects climate and air quality. A main atmospheric pollutant, the tropospheric ozone (O3), can damage living organisms by generating oxidative radicals, causing respiratory problems in humans and reducing yields and growth in plants. Exposure to high concentrations of O3 can result in oxidative stress in plants and animals, eventually leading to substantial ecological consequences. Plants produce volatile organic compounds (VOCs) emitted in the environment and detected by pollinators (mainly by their antennae), foraging for nutritious resources. Several pollinators, including honey bees, recognize and discriminate flowers through olfactory cues and memory. Exposure to different concentrations of O3 was shown to alter the emission of floral VOCs by plants as well as their lifetime in the atmosphere, potentially impacting plant-pollinator interactions. In this report, we assessed the impacts of exposure to field-realistic concentrations of O3 on honey bees' antennal response to floral VOCs, on their olfactory recall and discriminative capacity and on their antioxidant responses. Antennal activity is altered depending on VOCs structure and O3 concentrations. During the behavioral tests, we first check consistency between olfactory learning rates and memory scores after 15 min. Then bees exposed to 120 and 200 ppb of ozone do not exert specific recall responses with rewarded VOCs 90 min after learning, compared to controls whose specific recall responses were consistent between time points. We also report for the first time in honey bees how the superoxide dismutase enzyme, an antioxidant defense against oxidative stress, saw its enzymatic activity rate decreases after exposure to 80 ppb of ozone. This work tends to demonstrate how hurtful can be the impact of air pollutants upon pollinators themselves and how this type of pollution needs to be addressed in future studies aiming at characterizing plant-insect interactions more accurately.
Collapse
Affiliation(s)
- Fabien Démares
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France.
| | - Laëtitia Gibert
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Benoit Lapeyre
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Pierre Creusot
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - David Renault
- Écosystèmes, Biodiversité, Évolution (EcoBio) CNRS - UMR 6553, Université de Rennes 1, 35042 Rennes, France
| | - Magali Proffit
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| |
Collapse
|
13
|
Abuagla MIB, Iqbal J, Raweh HSA, Alqarni AS. Olfactory Learning Behavior and Mortality of the Honey Bee Apis mellifera jemenitica in Response to Pyrethroid Insecticide (Deltamethrin). TOXICS 2023; 12:25. [PMID: 38250981 PMCID: PMC10818679 DOI: 10.3390/toxics12010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Honey bees are constantly threatened due to the wide use of pesticides. This study presents the effects of deltamethrin on the mortality, olfactory learning, and memory formation of the native Saudi bee Apis mellifera jemenitica. Topical and oral application of realistic field and serial dilutions of deltamethrin (250, 125, 62.5, and 25 ppm) caused significant mortality at 4, 12, 24, and 48 h posttreatment. Bee mortality increased with the increasing concentration of insecticide at all tested posttreatment times. Highest mortality was observed at 24 h and 48 h after both exposure routes. Food consumption gradually decreased with increasing concentration of deltamethrin during oral exposure. The LC50 of deltamethrin was determined at 12, 24, and 48 h for topical (86.28 ppm, 36.16 ppm, and 29.19 ppm, respectively) and oral (35.77 ppm, 32.53 ppm, and 30.78 ppm, respectively) exposure. Oral exposure led to significantly higher bee mortality than topical exposure of deltamethrin at 4 h and 12 h, but both exposure routes were equally toxic to bees at 24 h and 48 h. The sublethal concentrations (LC10, LC20, and LC30) of deltamethrin significantly impaired the learning during conditioning trials, as well as the memory formation of bees at 2, 12, and 24 h after topical and oral exposure. Thus, deltamethrin inhibits learning, and bees were unable to memorize the learned task.
Collapse
Affiliation(s)
| | | | | | - Abdulaziz S. Alqarni
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (J.I.)
| |
Collapse
|
14
|
Bischoff K, Moiseff J. The role of the veterinary diagnostic toxicologist in apiary health. J Vet Diagn Invest 2023; 35:597-616. [PMID: 37815239 PMCID: PMC10621547 DOI: 10.1177/10406387231203965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Susceptibility of individuals and groups to toxicants depends on complex interactions involving the host, environment, and other exposures. Apiary diagnostic investigation and honey bee health are truly population medicine: the colony is the patient. Here we provide basic information on the application of toxicology to the testing of domestic honey bees, and, in light of recent research, expand on some of the challenges of interpreting analytical chemistry findings as they pertain to hive health. The hive is an efficiently organized system of wax cells used to store brood, honey, and bee bread, and is protected by the bee-procured antimicrobial compound propolis. Toxicants can affect individual workers outside or inside the hive, with disease processes that range from acute to chronic and subclinical to lethal. Toxicants can impact brood and contaminate honey, bee bread, and structural wax. We provide an overview of important natural and synthetic toxicants to which honey bees are exposed; behavioral, husbandry, and external environmental factors influencing exposure; short- and long-term impacts of toxicant exposure on individual bee and colony health; and the convergent impacts of stress, nutrition, infectious disease, and toxicant exposures on colony health. Current and potential future toxicology testing options are included. Common contaminants in apiary products consumed or used by humans (honey, wax, pollen), their sources, and the potential need for product testing are also noted.
Collapse
Affiliation(s)
- Karyn Bischoff
- New York State Animal Health Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jennifer Moiseff
- New York State Animal Health Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Pons DG, Herrera C, Torrens-Mas M, Leza M, Sastre-Serra J. Sublethal doses of glyphosate modulates mitochondria and oxidative stress in honeybees by direct feeding. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22028. [PMID: 37259187 DOI: 10.1002/arch.22028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Honeybees are essential for the ecosystem maintenance and for plant production in agriculture. Glyphosate is a broad-spectrum systemic herbicide widely used in crops to control weeds and could affect honeybees' health in sublethal doses. Our aim was to study how sublethal doses of glyphosate affects to oxidative stress and mitochondrial homeostasis in honeybees. We exposed honeybees to glyphosate at 5 and 10 mg·l-1 for 2 and 10 h for the gene expression analysis by reverse transcription polymerase chain reaction and for 48 and 72 h for the antioxidant enzymes activity and lipid peroxidation determination. We observed a general increase in antioxidant- and mitochondrial-related genes expression in honeybees after 2 h of exposition to glyphosate, as well as a rise in catalase and superoxide dismutase enzymatic activity after 48 h and an increment in lipid peroxidation adducts generation after 72 h. These results suggest a direct effect of glyphosate on honeybees' health, with an insufficient response of the antioxidant system to the generated oxidative stress, resulting in an increase in lipid peroxidation and, therefore, oxidative damage. Altogether, results obtained in this work demonstrate that sublethal treatments of glyphosate could directly affect honeybee individuals under laboratory conditions. Therefore, it is necessary to investigate alternatives to glyphosate to determine if they are less harmful to non-target organisms.
Collapse
Affiliation(s)
- Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Illes Balears, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, Illes Balears, Spain
| | - Cayetano Herrera
- Department of Biology (Zoology), University of the Balearic Islands, Palma, Balearic Islands, Spain
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Illes Balears, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, Illes Balears, Spain
- Translational Research In Aging and Longevity (TRIAL) Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Mar Leza
- Department of Biology (Zoology), University of the Balearic Islands, Palma, Balearic Islands, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Illes Balears, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Shi M, Guo Y, Wu YY, Dai PL, Dai SJ, Diao QY, Gao J. Acute and chronic effects of sublethal neonicotinoid thiacloprid to Asian honey bee (Apis cerana cerana). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105483. [PMID: 37532314 DOI: 10.1016/j.pestbp.2023.105483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023]
Abstract
Pesticide pollution is one of the most important factors for global bee declines. Despite many studies have revealed that the most important Chinese indigenous species,Apis cerana, is presenting a high risk on exposure to neonicotinoids, the toxicology information on Apis cerana remain limited. This study was aimed to determine the acute and chronic toxic effects of thiacloprid (IUPAC name: {(2Z)-3-[(6-Chloro-3-pyridinyl)methyl]-1,3-thiazolidin-2-ylidene}cyanamide) on behavioral and physiological performance as well as genome-wide transcriptome in A. cerana. We found the 1/5 LC50 of thiacloprid significantly impaired learning and memory abilities after both acute and chronic exposure, nevertheless, has no effects on the sucrose responsiveness and phototaxis climbing ability of A. cerana. Moreover, activities of detoxification enzyme P450 monooxygenases and CarE were increased by short-term exposure to thiacloprid, while prolonged exposure caused suppression of CarE activity. Neither acute nor chronic exposure to thiacloprid altered honey bee AChE activities. To further study the potential defense molecular mechanisms in Asian honey bee under pesticide stress, we analyzed the transcriptomes of honeybees in response to thiacloprid stress. The transcriptomic profiles revealed consistent upregulation of immune- and stress-related genes by both acute or chronic treatments. Our results suggest that the chronic exposure to thiacloprid produced greater toxic effects than a single administration to A. cerana. Altogether, our study deepens the understanding of the toxicological characteristic of A. cerana against thiacloprid, and could be used to further investigate the complex molecular mechanisms in Asian honey bee under pesticide stress.
Collapse
Affiliation(s)
- Min Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Yi Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yan-Yan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ping-Li Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shao-Jun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Qing-Yun Diao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
17
|
La Porta G, Magara G, Goretti E, Caldaroni B, Dörr AJM, Selvaggi R, Pallottini M, Gardi T, Cenci-Goga BT, Cappelletti D, Elia AC. Applying Artificial Neural Networks to Oxidative Stress Biomarkers in Forager Honey Bees ( Apis mellifera) for Ecological Assessment. TOXICS 2023; 11:661. [PMID: 37624166 PMCID: PMC10459414 DOI: 10.3390/toxics11080661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Insect pollinators provide an important ecosystem service that supports global biodiversity and environmental health. The study investigates the effects of the environmental matrix on six oxidative stress biomarkers in the honey bee Apis mellifera. Thirty-five apiaries located in urban, forested, and agricultural areas in Central Italy were sampled during the summer season. Enzyme activities in forager bees were analyzed using an artificial neural network, allowing the identification and representation of the apiary patterns in a Self-Organizing Map. The SOM nodes were correlated with the environmental parameters and tissue levels of eight heavy metals. The results indicated that the apiaries were not clustered according to their spatial distribution. Superoxide dismutase expressed a positive correlation with Cr and Mn concentrations; catalase with Zn, Mn, Fe, and daily maximum air temperature; glutathione S-transferase with Cr, Fe, and daily maximal air temperature; and glutathione reductase showed a negative correlation to Ni and Fe exposure. This study highlights the importance of exploring how environmental stressors affect these insects and the role of oxidative stress biomarkers. Artificial neural networks proved to be a powerful approach to untangle the complex relationships between the environment and oxidative stress biomarkers in honey bees. The application of SOM modeling offers a valuable means of assessing the potential effects of environmental pressures on honey bee populations.
Collapse
Affiliation(s)
- Gianandrea La Porta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy (E.G.); (D.C.)
| | - Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy (E.G.); (D.C.)
| | - Enzo Goretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy (E.G.); (D.C.)
| | - Barbara Caldaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy (E.G.); (D.C.)
| | - Ambrosius Josef Martin Dörr
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy (E.G.); (D.C.)
| | - Roberta Selvaggi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy (E.G.); (D.C.)
| | - Matteo Pallottini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy (E.G.); (D.C.)
| | - Tiziano Gardi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy
| | | | - David Cappelletti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy (E.G.); (D.C.)
| | - Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy (E.G.); (D.C.)
| |
Collapse
|
18
|
Bastarache P, Bouafoura R, Omakele E, Moffat CE, Vickruck JL, Morin PJ. Spinosad-associated modulation of select cytochrome P450s and glutathione S-transferases in the Colorado potato beetle, Leptinotarsa decemlineata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21993. [PMID: 36546461 DOI: 10.1002/arch.21993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an insect pest that threatens potato crops. Multiple options exist to limit the impact of this pest even though insecticides remain a primary option for its control. Insecticide resistance has been reported in Colorado potato beetles and a better understanding of the molecular players underlying such process is of utmost importance to optimize the tools used to mitigate the impact of this insect. Resistance against the insecticide spinosad has been reported in this insect and this work thus aims at exploring the expression of targets previously associated with insecticide response in Colorado potato beetles exposed to this compound. Amplification and quantification of transcripts coding for cytochrome P450s and glutathione S-transferases were conducted via qRT-PCR in insects treated with varying doses of spinosad and for different time duration. This approach notably revealed differential expression of CYP6a23 and CYP12a5 in insects exposed to low doses of spinosad for 4 h as well as modulation of CYP6a13, CYP6d4, GST, GST1, and GST1-Like in insects treated with high doses of spinosad for the same duration. RNAi-based targeting of CYP4g15 and CYP6a23 was associated with marked reduction of transcript expression 7 days following dsRNA injection and reduction of the former had a marked impact on insect viability. In general, results presented here provide novel information regarding the expression of transcripts relevant to spinosad response in Colorado potato beetles and reveal a novel target to consider in the development of RNAi-based strategies aimed at this potato pest.
Collapse
Affiliation(s)
- Pierre Bastarache
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Raed Bouafoura
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Enock Omakele
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Chandra E Moffat
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
| | - Jess L Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
19
|
Algamdi AG, Shaher FM, Mahyoub JA. Biological comparative study between Wolbachia-infected Aedes aegypti mosquito and Wolbachia-uninfected strain, Jeddah city, Saudi Arabia. Saudi J Biol Sci 2023; 30:103581. [PMID: 36844640 PMCID: PMC9943864 DOI: 10.1016/j.sjbs.2023.103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/06/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, samples of Wolbachia-infected Aedes aegypti mosquitoes were collected from Al-Safa district in Jeddah city, Saudi Arabia. The presence of Wolbachia bacteria in mosquitoes was confirmed by PCR technique and they were reared and propagated in the laboratory. Comparative studies were conducted between Wolbachia-infected A. Aegypti and the Wolbachia-uninfected laboratory strain in terms of their ability to withstand drought, resist two types of insecticides and the activities of pesticide detoxification enzymes. The Wolbachia-infected A. aegypti strain proved less able to withstand the drought period, as the egg-hatching rate of the Wolbachia-uninfected strain was greater than that of the Wolbachia-infected strain after one, two and three months of dry periods. Compared to the Wolbachia-uninfected strain, the Wolbachia-infected strain demonstrated a relatively greater resistance to tested pesticides, namely Baton 100EC and Fendure 25EC which may be attributed to the higher levels of the detoxification enzymes glutathione-S-transferase and catalase and the lower levels of esterase and acetylcholine esterase.
Collapse
Affiliation(s)
- Abdullah G. Algamdi
- Department of Biology Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fekri M. Shaher
- Hodeidah University, Hodeidah, Republic of Yemen,Corresponding author.
| | - Jazem A. Mahyoub
- Department of Biology Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Martins CAH, Caliani I, D'Agostino A, Di Noi A, Casini S, Parrilli M, Azpiazu C, Bosch J, Sgolastra F. Biochemical responses, feeding and survival in the solitary bee Osmia bicornis following exposure to an insecticide and a fungicide alone and in combination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27636-27649. [PMID: 36383317 PMCID: PMC9995414 DOI: 10.1007/s11356-022-24061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
In agricultural ecosystems, bees are exposed to combinations of pesticides that may have been applied at different times. For example, bees visiting a flowering crop may be chronically exposed to low concentrations of systemic insecticides applied before bloom and then to a pulse of fungicide, considered safe for bees, applied during bloom. In this study, we simulate this scenario under laboratory conditions with females of the solitary bee, Osmia bicornis L. We studied the effects of chronic exposure to the neonicotinoid insecticide, Confidor® (imidacloprid) at a realistic concentration, and of a pulse (1 day) exposure of the fungicide Folicur® SE (tebuconazole) at field application rate. Syrup consumption, survival, and four biomarkers: acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione S-transferase (GST), and alkaline phosphatase (ALP) were evaluated at two different time points. An integrated biological response (IBRv2) index was elaborated with the biomarker results. The fungicide pulse had no impact on survival but temporarily reduced syrup consumption and increased the IBRv2 index, indicating potential molecular alterations. The neonicotinoid significantly reduced syrup consumption, survival, and the neurological activity of the enzymes. The co-exposure neonicotinoid-fungicide did not increase toxicity at the tested concentrations. AChE proved to be an efficient biomarker for the detection of early effects for both the insecticide and the fungicide. Our results highlight the importance of assessing individual and sub-individual endpoints to better understand pesticide effects on bees.
Collapse
Affiliation(s)
- Cátia Ariana Henriques Martins
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università Di Bologna, Viale Fanin 42, 40127, Bologna, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Antonella D'Agostino
- Department of Management and Quantitative Studies, University of Naples Parthenope, Naples, Italy
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy.
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Martina Parrilli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università Di Bologna, Viale Fanin 42, 40127, Bologna, Italy
| | - Celeste Azpiazu
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de La Barceloneta 37, 08003, Barcelona, Spain
- Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Jordi Bosch
- CREAF, Universitat Autònoma de Barcelona, 08193, Barcelona, Bellaterra, Spain
| | - Fabio Sgolastra
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università Di Bologna, Viale Fanin 42, 40127, Bologna, Italy
| |
Collapse
|
21
|
Effect of Ascosphaera apis Infestation on the Activities of Four Antioxidant Enzymes in Asian Honey Bee Larval Guts. Antioxidants (Basel) 2023; 12:antiox12010206. [PMID: 36671067 PMCID: PMC9854781 DOI: 10.3390/antiox12010206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Ascosphaera apis infects exclusively bee larvae and causes chalkbrood, a lethal fungal disease that results in a sharp reduction in adult bees and colony productivity. However, little is known about the effect of A. apis infestation on the activities of antioxidant enzymes in bee larvae. Here, A. apis spores were purified and used to inoculate Asian honey bee (Apis cerana) larvae, followed by the detection of the host survival rate and an evaluation of the activities of four major antioxidant enzymes. At 6 days after inoculation (dpi) with A. apis spores, obvious symptoms of chalkbrood disease similar to what occurs in Apis mellifera larvae were observed. PCR identification verified the A. apis infection of A. cerana larvae. Additionally, the survival rate of larvae inoculated with A. apis was high at 1−2 dpi, which sharply decreased to 4.16% at 4 dpi and which reached 0% at 5 dpi, whereas that of uninoculated larvae was always high at 1~8 dpi, with an average survival rate of 95.37%, indicating the negative impact of A. apis infection on larval survival. As compared with those in the corresponding uninoculated groups, the superoxide dismutase (SOD) and catalase (CAT) activities in the 5- and 6-day-old larval guts in the A. apis−inoculated groups were significantly decreased (p < 0.05) and the glutathione S-transferase (GST) activity in the 4- and 5-day-old larval guts was significantly increased (p < 0.05), which suggests that the inhibition of SOD and CAT activities and the activation of GST activity in the larval guts was caused by A. apis infestation. In comparison with that in the corresponding uninoculated groups, the polyphenol oxidase (PPO) activity was significantly increased (p < 0.05) in the 5-day-old larval gut but significantly reduced (p < 0.01) in the 6-day-old larval gut, indicating that the PPO activity in the larval guts was first enhanced and then suppressed. Our findings not only unravel the response of A. cerana larvae to A. apis infestation from a biochemical perspective but also offer a valuable insight into the interaction between Asian honey bee larvae and A. apis.
Collapse
|
22
|
Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol 2023; 13:1112278. [PMID: 36699674 PMCID: PMC9868318 DOI: 10.3389/fphys.2022.1112278] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Threatening the global community is a wide variety of potential threats, most notably invasive pest species. Invasive pest species are non-native organisms that humans have either accidentally or intentionally spread to new regions. One of the most effective and first lines of control strategies for controlling pests is the application of insecticides. These toxic chemicals are employed to get rid of pests, but they pose great risks to people, animals, and plants. Pesticides are heavily used in managing invasive pests in the current era. Due to the overuse of synthetic chemicals, numerous invasive species have already developed resistance. The resistance development is the main reason for the failure to manage the invasive species. Developing pesticide resistance management techniques necessitates a thorough understanding of the mechanisms through which insects acquire insecticide resistance. Insects use a variety of behavioral, biochemical, physiological, genetic, and metabolic methods to deal with toxic chemicals, which can lead to resistance through continuous overexpression of detoxifying enzymes. An overabundance of enzymes causes metabolic resistance, detoxifying pesticides and rendering them ineffective against pests. A key factor in the development of metabolic resistance is the amplification of certain metabolic enzymes, specifically esterases, Glutathione S-transferase, Cytochromes p450 monooxygenase, and hydrolyses. Additionally, insect guts offer unique habitats for microbial colonization, and gut bacteria may serve their hosts a variety of useful services. Most importantly, the detoxification of insecticides leads to resistance development. The complete knowledge of invasive pest species and their mechanisms of resistance development could be very helpful in coping with the challenges and effectively developing effective strategies for the control of invasive species. Integrated Pest Management is particularly effective at lowering the risk of chemical and environmental contaminants and the resulting health issues, and it may also offer the most effective ways to control insect pests.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Ruidong Fan
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Hira Naz
- Research and Development Centre for Fine Chemicals, National Key Laboratory of Green Pesticides, Guizhou University, Guiyang, China
| | - Bamisope Steve Bamisile
- Department of Entomology, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yiming Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- College of Science, Tibet University, Lhasa, China
| |
Collapse
|
23
|
Kinareikina A, Silivanova E. Impact of Insecticides at Sublethal Concentrations on the Enzyme Activities in Adult Musca domestica L. TOXICS 2023; 11:47. [PMID: 36668773 PMCID: PMC9862462 DOI: 10.3390/toxics11010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, the use of pesticides is, as before, the most common way to control arthropod plant pests and the ectoparasites of animals. The sublethal effects of pesticides on insects can appear at different levels, from genetics to populations, and the study of these effects is important for a better understanding of the environmental and evolutionary patterns of pesticidal resistance. The current study aimed to assess the sublethal effects of chlorfenapyr and fipronil on the activities of detoxifying enzymes (carboxylesterase-CarE, acetylcholinesterase-AChE, glutathione-S-transferase-GST, and cytochrome P450 monooxygenase-P450) in adults Musca domestica L. The insects were exposure to insecticides by a no-choice feeding test and the enzyme activities and the AChE kinetic parameters were examined in female and male specimens at 24 h after their exposure. According to Tukey's test, the CarE activity was statistically significantly decreased by 29.63% in the females of M. domestica after an exposure to chlorfenapyr at a concentration of 0.015% when compared to the controls (p ≤ 0.05). An exposure to the sublethal concentration of fipronil (0.001%) was followed by a slightly decrease in the specific activity (33.20%, p ≤ 0.05) and the main kinetic parameters (Vmax, Km) of AChE in females in comparison with the control values. The GST and P450 activities had not significantly changed in M. domestica males and females 24 h after their exposure to chlorfenapyr and fipronil at sublethal concentrations. The results suggest that the males and females of M. domestica displayed biochemically different responses to fipronil, that is a neurotoxin, and chlorfenapyr, that is a decoupler of oxidative phosphorylation. Further research needs to be addressed to the molecular mechanisms underlying the peculiarities of the insect enzyme responses to different insecticides.
Collapse
|
24
|
Biodegradation of the Pesticides Bifenthrin and Fipronil by Bacillus Isolated from Orange Leaves. Appl Biochem Biotechnol 2022; 195:3295-3310. [PMID: 36585549 DOI: 10.1007/s12010-022-04294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
The pyrethroid bifenthrin and the phenylpyrazole fipronil are widely employed insecticides, and their extensive use became an environmental issue. Therefore, this study evaluated their biodegradation employing bacterial strains of Bacillus species isolated from leaves of orange trees, aiming at new biocatalysts with high efficiency for use singly and in consortium. Experiments were performed in liquid culture medium at controlled temperature and stirring (32 °C, 130 rpm). After 5 days, residual quantification by HPLC-UV/Vis showed that Bacillus amyloliquefaciens RFD1C presented 93% biodegradation of fipronil (10.0 mg.L-1 initial concentration) and UPLC-HRMS analyses identified the metabolite fipronil sulfone. Moreover, Bacillus pseudomycoides 3RF2C showed a biodegradation of 88% bifenthrin (30.0 mg.L-1 initial concentration). A consortium composed of the 8 isolated strains biodegraded 81% fipronil and 51% bifenthrin, showing that this approach did not promote better results than the most efficient strains employed singly, although high rates of biodegradation were observed. In conclusion, bacteria of the Bacillus genus isolated from leaves of citrus biodegraded these pesticides widely applied to crops, showing the importance of the plant microbiome for degradation of toxic xenobiotics.
Collapse
|
25
|
Insights into the toxicity and biodegradation of fipronil in contaminated environment. Microbiol Res 2022; 266:127247. [DOI: 10.1016/j.micres.2022.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
26
|
Siddiqui JA, Luo Y, Sheikh UAA, Bamisile BS, Khan MM, Imran M, Hafeez M, Ghani MI, Lei N, Xu Y. Transcriptome analysis reveals differential effects of beta-cypermethrin and fipronil insecticides on detoxification mechanisms in Solenopsis invicta. Front Physiol 2022; 13:1018731. [PMID: 36277215 PMCID: PMC9583148 DOI: 10.3389/fphys.2022.1018731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Insecticide resistance poses many challenges in insect pest control, particularly in the control of destructive pests such as red imported fire ants (Solenopsis invicta). In recent years, beta-cypermethrin and fipronil have been extensively used to manage invasive ants, but their effects on resistance development in S. invicta are still unknown. To investigate resistance development, S. invicta was collected from populations in five different cities in Guangdong, China. The results showed 105.71- and 2.98-fold higher resistance against fipronil and beta-cypermethrin, respectively, in the Guangzhou population. The enzymatic activities of acetylcholinesterase, carboxylases, and glutathione S-transferases significantly increased with increasing beta-cypermethrin and fipronil concentrations. Transcriptomic analysis revealed 117 differentially expressed genes (DEGs) in the BC-ck vs. BC-30 treatments (39 upregulated and 78 downregulated), 109 DEGs in F-ck vs. F-30 (33 upregulated and 76 downregulated), and 499 DEGs in BC-30 vs. F-30 (312 upregulated and 187 downregulated). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEGs associated with insecticide resistance were significantly enriched in metabolic pathways, the AMPK signaling pathway, the insulin signaling pathway, carbon metabolism, peroxisomes, fatty acid metabolism, drug metabolism enzymes and the metabolism of xenobiotics by cytochrome P450. Furthermore, we found that DEGs important for insecticide detoxification pathways were differentially regulated under both insecticide treatments in S. invicta. Comprehensive transcriptomic data confirmed that detoxification enzymes play a significant role in insecticide detoxification and resistance development in S. invicta in Guangdong Province. Numerous identified insecticide-related genes, GO terms, and KEGG pathways indicated the resistance of S. invicta workers to both insecticides. Importantly, this transcriptome profile variability serves as a starting point for future research on insecticide risk evaluation and the molecular mechanism of insecticide detoxification in invasive red imported fire ants.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Yuanyuan Luo
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Yuanyuan Luo, ; Yijuan Xu,
| | | | | | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Imran
- State Key Laboratory for the Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Nie Lei
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
- *Correspondence: Yuanyuan Luo, ; Yijuan Xu,
| |
Collapse
|
27
|
Benito-Murcia M, Botías C, Martín-Hernández R, Higes M, Soler F, Perez-Lopez M, Míguez-Santiyán MP, Martinez-Morcillo S. Evaluating the chronic effect of two varroacides using multiple biomarkers and an integrated biological response index. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103920. [PMID: 35772611 DOI: 10.1016/j.etap.2022.103920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
There is mounting evidence that acaricides are among the most prevalent medicinal compounds in honey bee hive matrices worldwide. According to OCDE guideline No. 245 chronic lethal concentration of tau-fluvalinate (at concentrations ranging from 77.5 to 523.18 ppm), coumaphos (59.8 ppm) and dimethoate (0.7 ppm) were determined. The activity of the biomarkers acetylcholinesterase (AChE), carboxylesterase (CbE), glutathione S-transferase (GST), catalase (CAT) and malondialdehyde (MDA) was analysed and as they are implicated in neurotoxicity, biotransformation and antioxidant defences, these values were combined into an integrated biomarker response (IBR). There was enhanced AChE, CAT and GST activity in honey bees exposed to tau-fluvalinate, while dimethoate inhibited AChE activity. Both dimethoate and coumaphos inhibited CbE activity but they enhanced CAT activity and MDA formation. Our results highlight how these biomarkers may serve to reveal honey bee exposure to commonly used acaricides.
Collapse
Affiliation(s)
- María Benito-Murcia
- Centro de Investigación Apícola y Agroambiental (CIAPA), Laboratorio de Patología Apícola, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), 19180 Marchamalo, Spain
| | - Cristina Botías
- Centro de Investigación Apícola y Agroambiental (CIAPA), Laboratorio de Patología Apícola, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), 19180 Marchamalo, Spain
| | - Raquel Martín-Hernández
- Centro de Investigación Apícola y Agroambiental (CIAPA), Laboratorio de Patología Apícola, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), 19180 Marchamalo, Spain; Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02008 Albacete, Spain
| | - Mariano Higes
- Centro de Investigación Apícola y Agroambiental (CIAPA), Laboratorio de Patología Apícola, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), 19180 Marchamalo, Spain
| | - Francisco Soler
- Toxicology Unit, Veterinary School, University of Extremadura, 10003 Caceres, Spain
| | - Marcos Perez-Lopez
- Toxicology Unit, Veterinary School, University of Extremadura, 10003 Caceres, Spain
| | | | | |
Collapse
|
28
|
Benchaâbane S, Ayad AS, Loucif-Ayad W, Soltani N. Multibiomarker responses after exposure to a sublethal concentration of thiamethoxam in the African honeybee (Apis mellifera intermissa). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109334. [PMID: 35351619 DOI: 10.1016/j.cbpc.2022.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Thiamethoxam is an insecticide mainly used in agriculture to control insect pests. However, non-target insect species, such as honeybees, may also be impacted. In this study, adults of Apis mellifera intermissa were orally exposed under laboratory conditions to a sublethal concentration of thiamethoxam (CL25= 0.17 ng/μl) for 9 days and the effects were evaluated at the biochemical level, by monitoring specific oxidative stress and neuronal biomarkers. Results showed an increase in the antioxidant enzymes, glutatione-S-transferase (GST), catalase (CAT) and glutathione peroxidase (GPx) and in content of malondialdehyde (MDA). The activity of acetylcholinesterase (AChE) was downregulated as evidence of a neurotoxic action and no significant change was observed in glutathione (GSH). Exposure to the insecticide thiamethoxam induced oxidative stress and defense mechanisms affecting honeybee physiology.
Collapse
Affiliation(s)
- S Benchaâbane
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria.
| | - A S Ayad
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria
| | - W Loucif-Ayad
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; Faculty of Medicine, Badji Mokhtar University, Annaba 23000, Algeria
| | - N Soltani
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria
| |
Collapse
|
29
|
Démares F, Gibert L, Creusot P, Lapeyre B, Proffit M. Acute ozone exposure impairs detection of floral odor, learning, and memory of honey bees, through olfactory generalization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154342. [PMID: 35257776 DOI: 10.1016/j.scitotenv.2022.154342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Air pollution stemming from human activities affects the environment in which plant and animal species live and interact. Similar to primary air pollutants which are emitted, secondary air pollutants, such as tropospheric ozone (O3) formed from nitrogen oxides, are also harmful to human health and plant physiology. Yet, few reports studied the effects of O3 on pollinators' physiology, despite that this pollutant, with its high oxidative potential, likely affects pollinators behaviors, especially the perception of signals they rely on to navigate their environment. Volatile Organic Compounds (VOCs) released by plants are used as signals by different animals. For pollination services, VOCs attract different insects to the flowers and strengthen these interactions. Here, we used the honey bee Apis mellifera as a model to characterize the effects of acute exposure to different realistic mixing ratios of O3 (80-, 120-, and 200-ppb) on two crucial aspects: first, how exposed honey bees detect VOCs; and second, how O3 affects these pollinators' learning and memory processes. With electroantennogram (EAG) recordings, we showed that increasing O3 mixing ratios had a biphasic effect: an initial 25% decrease of the antennal activity when bees were tested directly after exposure (O3 direct effect), followed by a 25% increase in activity and response when bees were allowed a two-hour rest after exposure (O3 delayed effect). In parallel, during olfactory conditioning, increasing O3 mixing ratios in both exposure protocols scarcely affected olfactory learning, followed by a decrease in recall of learned odors and an increase of response to new odors, leading to a higher generalization rate (i.e., discrimination impairment). These results suggest a link between O3-related oxidative stress and olfactory coding disturbance in the honey bee brain. If ozone affects the pollinators' olfaction, foraging behaviors may be modified, in addition with a possible long-term harmful effect on pollination services.
Collapse
Affiliation(s)
- Fabien Démares
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France.
| | - Laëtitia Gibert
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Pierre Creusot
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Benoit Lapeyre
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Magali Proffit
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| |
Collapse
|
30
|
Expression of MRJP3 and HSP70 mRNA Levels in Apis mellifera L. Workers after Dietary Supplementation with Proteins, Prebiotics, and Probiotics. INSECTS 2022; 13:insects13070571. [PMID: 35886747 PMCID: PMC9318322 DOI: 10.3390/insects13070571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Royal jelly is an essential substance for the development of bees from larval to adult stages. Studies have identified a group of key proteins in royal jelly, denominated major royal jelly proteins (MRJPs). The group currently consists of nine proteins (MRJP1–MRJP9), with MRJP1 being the most abundant and MRJP3 being used as a microsatellite marker for the selection of queens with a greater production of royal jelly. The diet of bees is mostly composed of proteins, and supplementing this intake to encourage a higher production of their primary product is important for producers. It is estimated that, by adding probiotic and prebiotic organisms to their diets, the benefits to bees will be even greater, both for their immune systems and primary responses to stress. Circumstances that are adverse compared to those of the natural habitat of bees eventually substantially interfere with bee behavior. Stress situations are modulated by proteins termed heat shock proteins (HSPs). Among these, HSP70 has been shown to exhibit abundance changes whenever bees experience unusual situations of stress. Thus, we sought to supplement A. mellifera bee colony diets with proteins and prebiotic and probiotic components, and to evaluate the expression levels of MRJP3 and HSP70 mRNAs using qRT-PCR. The results revealed that differences in the expression of MRJP3 can be attributed to the different types of feed offered. Significant differences were evident when comparing the expression levels of MRJP3 and HSP70, suggesting that protein supplementation with pre/probiotics promotes positive results in royal jelly synthesis carried out by honey bee nurses.
Collapse
|
31
|
He Q, Yang Q, Liu Q, Hu Z, Gao Q, Dong Y, Xiao J, Yu L, Cao H. The effects of beta-cypermethrin, chlorbenzuron, chlorothalonil, and pendimethalin on Apis mellifera ligustica and Apis cerana cerana larvae reared in vitro. PEST MANAGEMENT SCIENCE 2022; 78:1407-1416. [PMID: 34897947 DOI: 10.1002/ps.6757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/26/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Declines in bee populations and diversity have drawn international attention. The long-term use of chemical pesticides has affected bee behavior and physiology. This study aimed to investigate the effects of chronic exposure to four commonly used chemical pesticides (beta-cypermethrin, chlorbenzuron, chlorothalonil and pendimethalin) on the growth of Apis mellifera ligustica and Apis cerana cerana larvae reared in vitro. RESULTS Pesticide type and concentration were the main factors affecting honeybee fitness. Beta-cypermethrin and chlorbenzuron had chronic toxic effects on bee larvae. They reduced the fitness of A. m. ligustica and A. c. cerana even at low doses of 323.5 ng g-1 for beta-cypermethrin and 62.6 ng g-1 for chlorbenzuron in bee bread. The effects were positively associated with the dietary amounts of pesticides. By contrast, chlorothalonil and pendimethalin exposure did not affect bee larvae despite changes in enzyme activities. Caution is still needed with chlorothalonil, which led to a decrease in harvest adult bee numbers at a high dose (6937.2 ng g-1 ). Furthermore, a difference in pesticide resistance was observed, suggesting that A. m. ligustica may tolerate toxic effects better than A. c. cerana. CONCLUSION This study sheds new light on chronic toxicity in bee larvae exposed to residues in bee bread. The results could guide the scientific and rational use of chemical pesticides to reduce the potential risks to A. m. ligustica and A. c. cerana. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qibao He
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qing Yang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qiongqiong Liu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zhaoyin Hu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yongcheng Dong
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jinjing Xiao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Linsheng Yu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
32
|
Pal E, Almasri H, Paris L, Diogon M, Pioz M, Cousin M, Sené D, Tchamitchian S, Tavares DA, Delbac F, Blot N, Brunet JL, Belzunces LP. Toxicity of the Pesticides Imidacloprid, Difenoconazole and Glyphosate Alone and in Binary and Ternary Mixtures to Winter Honey Bees: Effects on Survival and Antioxidative Defenses. TOXICS 2022; 10:toxics10030104. [PMID: 35324729 PMCID: PMC8954695 DOI: 10.3390/toxics10030104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023]
Abstract
To explain losses of bees that could occur after the winter season, we studied the effects of the insecticide imidacloprid, the herbicide glyphosate and the fungicide difenoconazole, alone and in binary and ternary mixtures, on winter honey bees orally exposed to food containing these pesticides at concentrations of 0, 0.01, 0.1, 1 and 10 µg/L. Attention was focused on bee survival, food consumption and oxidative stress. The effects on oxidative stress were assessed by determining the activity of enzymes involved in antioxidant defenses (superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase and glucose-6-phosphate dehydrogenase) in the head, abdomen and midgut; oxidative damage reflected by both lipid peroxidation and protein carbonylation was also evaluated. In general, no significant effect on food consumption was observed. Pesticide mixtures were more toxic than individual substances, and the highest mortalities were induced at intermediate doses of 0.1 and 1 µg/L. The toxicity was not always linked to the exposure level and the number of substances in the mixtures. Mixtures did not systematically induce synergistic effects, as antagonism, subadditivity and additivity were also observed. The tested pesticides, alone and in mixtures, triggered important, systemic oxidative stress that could largely explain pesticide toxicity to honey bees.
Collapse
Affiliation(s)
- Elisa Pal
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France; (E.P.); (H.A.); (M.P.); (M.C.); (D.S.); (S.T.); (D.A.T.); (J.-L.B.)
| | - Hanine Almasri
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France; (E.P.); (H.A.); (M.P.); (M.C.); (D.S.); (S.T.); (D.A.T.); (J.-L.B.)
| | - Laurianne Paris
- CNRS, Laboratoire Microorganismes, Génome et Environnement, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (L.P.); (M.D.); (F.D.); (N.B.)
| | - Marie Diogon
- CNRS, Laboratoire Microorganismes, Génome et Environnement, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (L.P.); (M.D.); (F.D.); (N.B.)
| | - Maryline Pioz
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France; (E.P.); (H.A.); (M.P.); (M.C.); (D.S.); (S.T.); (D.A.T.); (J.-L.B.)
| | - Marianne Cousin
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France; (E.P.); (H.A.); (M.P.); (M.C.); (D.S.); (S.T.); (D.A.T.); (J.-L.B.)
| | - Déborah Sené
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France; (E.P.); (H.A.); (M.P.); (M.C.); (D.S.); (S.T.); (D.A.T.); (J.-L.B.)
| | - Sylvie Tchamitchian
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France; (E.P.); (H.A.); (M.P.); (M.C.); (D.S.); (S.T.); (D.A.T.); (J.-L.B.)
| | - Daiana Antonia Tavares
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France; (E.P.); (H.A.); (M.P.); (M.C.); (D.S.); (S.T.); (D.A.T.); (J.-L.B.)
| | - Frédéric Delbac
- CNRS, Laboratoire Microorganismes, Génome et Environnement, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (L.P.); (M.D.); (F.D.); (N.B.)
| | - Nicolas Blot
- CNRS, Laboratoire Microorganismes, Génome et Environnement, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (L.P.); (M.D.); (F.D.); (N.B.)
| | - Jean-Luc Brunet
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France; (E.P.); (H.A.); (M.P.); (M.C.); (D.S.); (S.T.); (D.A.T.); (J.-L.B.)
| | - Luc P. Belzunces
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France; (E.P.); (H.A.); (M.P.); (M.C.); (D.S.); (S.T.); (D.A.T.); (J.-L.B.)
- Correspondence: ; Tel.: +33-(0)43272-2604
| |
Collapse
|
33
|
Algamdi AG, Mahyoub JA. Detection of insecticide detoxification enzymes activities in Aedes aegypti mosquito, the vector of dengue fever in Saudi Arabia. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, the sensitivity of Aedes aegypti mosquitoe larvae to four types of pesticides two phosphorous-based and two pyrethroid insecticides was investigated. The larvae revealed approximately 1.126-fold more susceptibility to Safrotin (LC50 = 0.127 ppm) than Fendure (LC50 = 0.143) in the case of phosphorous-based pesticides and approximately 1.265-fold more susceptibility to AlphaQuest (LC50 = 0.0347 ppm) than Klash (LC50 = 0.0439) in the case of pyrothroid insecticides. Comparison between groups revealed that AlphaQuest was more effective than Klash, Safrotin and Fendure by approximately 1.3, 3.6 and 4.1-fold, respectively. The presence of enzyme activities relevant to insecticide resistance was often evaluated using enzyme assays to detect the underlying resistance mechanisms that may not be detected using bioassays. In this study, the results revealed significant decrease in the activity of esterase, glutathione- S- transferase and acetylcholine esterase enzymes to varying degrees. There were significant increases in catalase and total glutathione activity in all treatments compared to the control. The study concluded that this variation in enzyme activities is due to the type and purity of the additive compound and the source and purity of the active ingredient. The study recommends using the catalase enzyme and total glutathione as a biomarker indication for pesticide synergistic intoxication in aquatic animals.
Collapse
Affiliation(s)
- Abdullah G. Algamdi
- Department of Biology Sciences, Faculty of Sciences, King Abdulaziz University, Saudi Arabia
| | - Jazem A. Mahyoub
- Department of Biology Sciences, Faculty of Sciences, King Abdulaziz University, Saudi Arabia
- IBB University, Ibb, Republic of Yemen
| |
Collapse
|
34
|
Mayack C, Macherone A, Zaki AG, Filiztekin E, Özkazanç B, Koperly Y, Schick SJ, Eppley EJ, Deb M, Ambiel N, Schafsnitz AM, Broadrup RL. Environmental exposures associated with honey bee health. CHEMOSPHERE 2022; 286:131948. [PMID: 34426277 DOI: 10.1016/j.chemosphere.2021.131948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Bee health is declining on a global scale, yet the exact causes and their interactions responsible for the decline remain unknown. To more objectively study bee health, recently biomarkers have been proposed as an essential tool, because they can be rapidly quantified and standardized, serving as a comparable measure across bee species and varying environments. Here, we used a systems biology approach to draw associations between endogenous and exogenous chemical profiles, with pesticide exposure, or the abundance of the 21 most common honey bee diseases. From the analysis we identified chemical biomarkers for both pesticide exposure and bee diseases along with the mechanistic biological pathways that may influence disease onset and progression. We found a total of 2352 chemical features, from 30 different hives, sampled from seven different locations. Of these, a total of 1088 significant associations were found that could serve as chemical biomarker profiles for predicting both pesticide exposure and the presence of diseases in a bee colony. In almost all cases we found novel external environmental exposures within the top seven associations with bee diseases and pesticide exposures, with the majority having previously unknown connections to bee health. We highlight the exposure-outcome paradigm and its ability to identify previously uncategorized interactions from different environmental exposures associated with bee diseases, pesticides, mechanisms, and potential synergistic interactions of these that are responsible for honey bee health decline.
Collapse
Affiliation(s)
- Christopher Mayack
- Department of Biology, Swarthmore College, Swarthmore, PA, USA; Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey.
| | - Anthony Macherone
- Life Science and Chemical Analysis Group, Agilent Technologies, Santa Clara, CA, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asal Ghaffari Zaki
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
| | - Elif Filiztekin
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
| | - Burcu Özkazanç
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
| | - Yasameen Koperly
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
| | | | | | - Moniher Deb
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Nicholas Ambiel
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | | | | |
Collapse
|
35
|
Decio P, Miotelo L, Pereira FDC, Roat TC, Marin-Morales MA, Malaspina O. Enzymatic responses in the head and midgut of Africanized Apis mellifera contaminated with a sublethal concentration of thiamethoxam. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112581. [PMID: 34352576 DOI: 10.1016/j.ecoenv.2021.112581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The increasing use of insecticides, promoted by the intensification of agriculture, has raised concerns about their influence on the decline of bee colonies, which play a fundamental role in pollination. Thus, it is fundamental to elucidate the effects of insecticides on bees. This study investigated the damage caused by a sublethal concentration of thiamethoxam - TMX (0.0227 ng/μL of feed) in the head and midgut of Africanized Apis mellifera, by analyzing the enzymatic biomarkers, oxidative stress, and occurrence of lipid peroxidation. The data showed that the insecticide increased acetylcholinesterase activity (AChE) and glutathione-S-transferase (GST), whereas carboxylesterase (CaE3) activity decreased in the heads. Our results indicate that the antioxidant enzymes were less active in the head because only glutathione peroxidase (GPX) showed alterations. In the midgut, there were no alkaline phosphatase (ALP) or superoxide dismutase (SOD) responses and a decrease in the activity of CaE was observed. Otherwise, there was an increase in GPX, and the TBARS (thiobarbituric acid reactive substances) assay also showed differences in the midgut. The TBARS (thiobarbituric acid reactive substances) assay also showed differences in the midgut. The results showed enzymes such as CaE3, GST, AChE, ALP, SOD, and GPX, as well as the TBARS assay, are useful biomarkers on bees. They may be used in combination as a promising tool for characterizing bee exposure to insecticides.
Collapse
Affiliation(s)
- Pâmela Decio
- São Paulo State University (Unesp), Institute of Biosciences, Av. 24A, 1515. CEP: 13506-900, Rio Claro, São Paulo, Brazil.
| | - Lucas Miotelo
- São Paulo State University (Unesp), Institute of Biosciences, Av. 24A, 1515. CEP: 13506-900, Rio Claro, São Paulo, Brazil
| | - Franco Dani Campos Pereira
- São Paulo State University (Unesp), Institute of Biosciences, Av. 24A, 1515. CEP: 13506-900, Rio Claro, São Paulo, Brazil; NUPEFEN - Núcleo de pesquisas em Educação Física, Estética e Nutrição, Claretiano University Center, Avenida Santo Antônio Maria Claret, 1724. CEP: 13503-257, Rio Claro, São Paulo, Brazil
| | - Thaisa Cristina Roat
- São Paulo State University (Unesp), Institute of Biosciences, Av. 24A, 1515. CEP: 13506-900, Rio Claro, São Paulo, Brazil
| | - Maria Aparecida Marin-Morales
- São Paulo State University (Unesp), Institute of Biosciences, Av. 24A, 1515. CEP: 13506-900, Rio Claro, São Paulo, Brazil
| | - Osmar Malaspina
- São Paulo State University (Unesp), Institute of Biosciences, Av. 24A, 1515. CEP: 13506-900, Rio Claro, São Paulo, Brazil
| |
Collapse
|
36
|
Caliani I, Campani T, Conti B, Cosci F, Bedini S, D'Agostino A, Giovanetti L, Di Noi A, Casini S. First application of an Integrated Biological Response index to assess the ecotoxicological status of honeybees from rural and urban areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47418-47428. [PMID: 33891238 PMCID: PMC8384815 DOI: 10.1007/s11356-021-14037-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/16/2021] [Indexed: 05/05/2023]
Abstract
Understanding the effects of environmental contaminants on honeybees is essential to minimize their impacts on these important pollinating insects. The aim of this study was to assess the ecotoxicological status of honeybees in environments undergoing different anthropic pressure: a wood (reference site), an orchard, an agricultural area, and an urban site, using a multi-biomarker approach. To synthetically represent the ecotoxicological status of the honeybees, the responses of the single biomarkers were integrated by the Integrated Biological Response (IBRv2) index. Overall, the strongest alteration of the ecotoxicological status (IBRv2 = 7.52) was detected in the bees from the orchard due to the alteration of metabolic and genotoxicity biomarkers indicating the presence of pesticides, metals, and lipophilic compounds. Honeybees from the cultivated area (IBRv2 = 7.18) revealed an alteration especially in neurotoxicity, metabolic, and genotoxicity biomarkers probably related to the presence of pesticides, especially fungicides. Finally, in the urban area (IBRv2 = 6.60), the biomarker results (GST, lysozyme, and hemocytes) indicated immunosuppression in the honeybees and the effects of the presence of lipophilic compounds and metals in the environment.
Collapse
Affiliation(s)
- Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy.
| | - Barbara Conti
- Department of Agriculture, Food and Environment Entomology, University of Pisa, via del Borghetto, 80, 56124, Pisa, Italy
| | - Francesca Cosci
- Department of Agriculture, Food and Environment Entomology, University of Pisa, via del Borghetto, 80, 56124, Pisa, Italy
| | - Stefano Bedini
- Department of Agriculture, Food and Environment Entomology, University of Pisa, via del Borghetto, 80, 56124, Pisa, Italy
| | - Antonella D'Agostino
- Department of Management and Quantitative Studies, University of Naples "Parthenope", via Generale Parisi, 13, 80132, Napoli, Italy
| | - Laura Giovanetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| |
Collapse
|
37
|
Lupi D, Palamara Mesiano M, Adani A, Benocci R, Giacchini R, Parenti P, Zambon G, Lavazza A, Boniotti MB, Bassi S, Colombo M, Tremolada P. Combined Effects of Pesticides and Electromagnetic-Fields on Honeybees: Multi-Stress Exposure. INSECTS 2021; 12:716. [PMID: 34442282 PMCID: PMC8396937 DOI: 10.3390/insects12080716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
Honeybee and general pollinator decline is extensively reported in many countries, adding new concern to the general biodiversity loss. Many studies were addressed to assess the causes of pollinator decline, concluding that in most cases multi-stress effects were the most probable ones. In this research, the combined effects of two possible stress sources for bees, pesticides and electromagnetic fields (multi-stress conditions), were analyzed in the field. Three experimental sites were chosen: a control one far from direct anthropogenic stress sources, a pesticide-stress site and multi-stress one, adding to the same exposure to pesticides the presence of an electromagnetic field, coming from a high-voltage electric line. Experimental apiaries were monitored weekly for one year (from April 2017 to April 2018) by means of colony survival, queen activity, storage and brood amount, parasites and pathogens, and several biomarkers in young workers and pupae. Both exposure and effect biomarkers were analysed: among the first, acetylcholinesterase (AChE), catalase (CAT), glutathione S-transferase (GST) and alkaline phosphatase (ALP) and Reactive Oxygen Species (ROS); and among the last, DNA fragmentation (DNAFRAGM) and lipid peroxidation (LPO). Results showed that bee health conditions were the worst in the multi-stress site with only one colony alive out of the four ones present at the beginning. In this site, a complex picture of adverse effects was observed, such as disease appearance (American foulbrood), higher mortality in the underbaskets (common to pesticide-stress site), behavioral alterations (queen changes, excess of honey storage) and biochemical anomalies (higher ALP activity at the end of the season). The overall results clearly indicate that the multi-stress conditions were able to induce biochemical, physiological and behavioral alterations which severely threatened bee colony survival.
Collapse
Affiliation(s)
- Daniela Lupi
- Department of Food, Environment and Nutritional Sciences (DEFENS), University of Milan, 20133 Milan, Italy; (M.P.M.); (M.C.)
| | - Marco Palamara Mesiano
- Department of Food, Environment and Nutritional Sciences (DEFENS), University of Milan, 20133 Milan, Italy; (M.P.M.); (M.C.)
| | - Agnese Adani
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (A.A.); (P.T.)
| | - Roberto Benocci
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.B.); (R.G.); (P.P.); (G.Z.)
| | - Roberto Giacchini
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.B.); (R.G.); (P.P.); (G.Z.)
| | - Paolo Parenti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.B.); (R.G.); (P.P.); (G.Z.)
| | - Giovanni Zambon
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; (R.B.); (R.G.); (P.P.); (G.Z.)
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy; (A.L.); (M.B.B.); (S.B.)
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy; (A.L.); (M.B.B.); (S.B.)
| | - Stefano Bassi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy; (A.L.); (M.B.B.); (S.B.)
| | - Mario Colombo
- Department of Food, Environment and Nutritional Sciences (DEFENS), University of Milan, 20133 Milan, Italy; (M.P.M.); (M.C.)
| | - Paolo Tremolada
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy; (A.A.); (P.T.)
| |
Collapse
|
38
|
Almasri H, Tavares DA, Tchamitchian S, Pélissier M, Sené D, Cousin M, Brunet JL, Belzunces LP. Toxicological status changes the susceptibility of the honey bee Apis mellifera to a single fungicidal spray application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42807-42820. [PMID: 33822299 DOI: 10.1007/s11356-021-13747-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
During all their life stages, bees are exposed to residual concentrations of pesticides, such as insecticides, herbicides, and fungicides, stored in beehive matrices. Fungicides are authorized for use during crop blooms because of their low acute toxicity to honey bees. Thus, a bee that might have been previously exposed to pesticides through contaminated food may be subjected to fungicide spraying when it initiates its first flight outside the hive. In this study, we assessed the effects of acute exposure to the fungicide in bees with different toxicological statuses. Three days after emergence, bees were subjected to chronic exposure to the insecticide imidacloprid and the herbicide glyphosate, either individually or in a binary mixture, at environmental concentrations of 0.01 and 0.1 μg/L in food (0.0083 and 0.083 μg/kg) for 30 days. Seven days after the beginning of chronic exposure to the pesticides (10 days after emergence), the bees were subjected to spraying with the fungicide difenoconazole at the registered field dosage. The results showed a delayed significant decrease in survival when honey bees were treated with the fungicide. Fungicide toxicity increased when honey bees were chronically exposed to glyphosate at the lowest concentration, decreased when they were exposed to imidacloprid, and did not significantly change when they were exposed to the binary mixture regardless of the concentration. Bees exposed to all of these pesticide combinations showed physiological disruptions, revealed by the modulation of several life history traits related mainly to metabolism, even when no effect of the other pesticides on fungicide toxicity was observed. These results show that the toxicity of active substances may be misestimated in the pesticide registration procedure, especially for fungicides.
Collapse
Affiliation(s)
- Hanine Almasri
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Daiana Antonia Tavares
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Sylvie Tchamitchian
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Michel Pélissier
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Déborah Sené
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Marianne Cousin
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Jean-Luc Brunet
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France
| | - Luc P Belzunces
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000, Avignon, France.
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France.
| |
Collapse
|
39
|
Almasri H, Tavares DA, Diogon M, Pioz M, Alamil M, Sené D, Tchamitchian S, Cousin M, Brunet JL, Belzunces LP. Physiological effects of the interaction between Nosema ceranae and sequential and overlapping exposure to glyphosate and difenoconazole in the honey bee Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112258. [PMID: 33915451 DOI: 10.1016/j.ecoenv.2021.112258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Pathogens and pollutants, such as pesticides, are potential stressors to all living organisms, including honey bees. Herbicides and fungicides are among the most prevalent pesticides in beehive matrices, and their interaction with Nosema ceranae is not well understood. In this study, the interactions between N. ceranae, the herbicide glyphosate and the fungicide difenoconazole were studied under combined sequential and overlapping exposure to the pesticides at a concentration of 0.1 µg/L in food. In the sequential exposure experiment, newly emerged bees were exposed to the herbicide from day 3 to day 13 after emerging and to the fungicide from day 13 to day 23. In the overlapping exposure experiment, bees were exposed to the herbicide from day 3 to day 13 and to the fungicide from day 7 to day 17. Infection by Nosema in early adult life stages (a few hours post emergence) greatly affected the survival of honey bees and elicited much higher mortality than was induced by pesticides either alone or in combination. Overlapping exposure to both pesticides induced higher mortality than was caused by sequential or individual exposure. Overlapping, but not sequential, exposure to pesticides synergistically increased the adverse effect of N. ceranae on honey bee longevity. The combination of Nosema and pesticides had a strong impact on physiological markers of the nervous system, detoxification, antioxidant defenses and social immunity of honey bees.
Collapse
Affiliation(s)
- Hanine Almasri
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | | | - Marie Diogon
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Maryline Pioz
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Maryam Alamil
- INRAE, UR Biostatistiques et Processus Spatiaux, F-84914 Avignon, France
| | - Déborah Sené
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Sylvie Tchamitchian
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Marianne Cousin
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Jean-Luc Brunet
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Luc P Belzunces
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France.
| |
Collapse
|
40
|
Dorneles AL, Rosa-Fontana ADS, Dos Santos CF, Blochtein B. Larvae of stingless bee Scaptotrigona bipunctata exposed to organophosphorus pesticide develop into lighter, smaller and deformed adult workers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116414. [PMID: 33445151 DOI: 10.1016/j.envpol.2020.116414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Organophosphorus pesticides such as chlorpyrifos are often used in agriculture due to their broad spectrum of action. However, this insecticide and acaricide is considered highly toxic to the environment and can cause toxicity in nontarget insects such as bees. In addition to adult individuals, immature can also be exposed to residues of this insecticide by larval food. Thus, we investigated the effects of chlorpyrifos concentrations on the larval development of stingless bee Scaptotrigona bipunctata workers reared in vitro. We evaluated four different biomarkers: a) survival, b) development time, c) body mass and d) morphological characteristics (head width, intertegular distance, wing area and proportion of deformed bees). The exposure of the larvae to different doses of chlorpyrifos significantly reduced survival probability but did not cause changes in the development time. Regarding morphometric analysis, bees exposed to chlorpyrifos showed a reduction in body mass and size, and 28% of the emerged adults showed a reduction in wing area and deformations. Therefore, this work shows that S. bipunctata larvae exposed to the sublethal effects of chlorpyrifos are likely to have reduced chances of survival. However, if they emerge, they will be lighter, smaller and less able than equivalent but not exposed workers. These impaired attributes have the potential to compromise the future workforce in colonies exposed to this pesticide.
Collapse
Affiliation(s)
- Andressa Linhares Dorneles
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil.
| | | | - Charles Fernando Dos Santos
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Betina Blochtein
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| |
Collapse
|
41
|
Review on Sublethal Effects of Environmental Contaminants in Honey Bees ( Apis mellifera), Knowledge Gaps and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041863. [PMID: 33672936 PMCID: PMC7918799 DOI: 10.3390/ijerph18041863] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
Honey bees and the pollination services they provide are fundamental for agriculture and biodiversity. Agrochemical products and other classes of contaminants, such as trace elements and polycyclic aromatic hydrocarbons, contribute to the general decline of bees' populations. For this reason, effects, and particularly sublethal effects of contaminants need to be investigated. We conducted a review of the existing literature regarding the type of effects evaluated in Apis mellifera, collecting information about regions, methodological approaches, the type of contaminants, and honey bees' life stages. Europe and North America are the regions in which A. mellifera biological responses were mostly studied and the most investigated compounds are insecticides. A. mellifera was studied more in the laboratory than in field conditions. Through the observation of the different responses examined, we found that there were several knowledge gaps that should be addressed, particularly within enzymatic and molecular responses, such as those regarding the immune system and genotoxicity. The importance of developing an integrated approach that combines responses at different levels, from molecular to organism and population, needs to be highlighted in order to evaluate the impact of anthropogenic contamination on this pollinator species.
Collapse
|
42
|
Nicewicz Ł, Nicewicz AW, Kafel A, Nakonieczny M. Set of stress biomarkers as a practical tool in the assessment of multistress effect using honeybees from urban and rural areas as a model organism: a pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9084-9096. [PMID: 33128148 PMCID: PMC7884360 DOI: 10.1007/s11356-020-11338-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
A decrease among honey bee populations (Apis mellifera) in the traditional apiaries has been observed in recent years. In light of this negative phenomenon, urban beekeeping seems to be an appropriate alternative solution for the bee population in reducing the toxic effects of a large number of pesticides that are commonly used in agricultural ecosystems. Despite the rapid development of urban beekeeping, there is little information regarding the different aspects of the defense effectiveness of bees from the urban and rural areas. The study was aimed to show whether honey bees from these two locations differ in the level of the valuable biomarkers of stress exposure helpful in establishing which bees, from urban or rural areas, are under greater environmental pressure. For this purpose, foragers from an urban rooftop apiary and a traditional rural apiary were collected. The chosen biomarkers were measured in various tissues of bees. The activity of glutathione S-transferase and acetylcholinesterase, the level of total antioxidant capacity, heat shock protein 70 (Hsp70), and defensin were selected for the analyses. In our opinion, the Hsp70 and defensin levels seemed to be important in the indication of urban multistress factors. The higher level of heat shock proteins and defensins in tissues/organs of bees from the urban apiary-in the gut (an increase, respectively, 92% and 7.3%) and fat body (an increase, respectively, 130% and 7.8%), known as targets of environmental toxins, pointed out the urban environment as highly stressful at both the individual and colony levels. In turn, high total antioxidant capacity was measured in the guts of honey bees from rural area (an increase 107%). Such a situation suggests a different mechanism of defense and specificity of rural and urban environmental stressors and also honey bees foraging activity.
Collapse
Affiliation(s)
- Łukasz Nicewicz
- Research Team of Animal Physiology and Ecotoxicology, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, PL, Poland.
| | - Agata W Nicewicz
- Research Team of Animal Physiology and Ecotoxicology, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, PL, Poland
| | - Alina Kafel
- Research Team of Animal Physiology and Ecotoxicology, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, PL, Poland
| | - Mirosław Nakonieczny
- Research Team of Animal Physiology and Ecotoxicology, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, PL, Poland
| |
Collapse
|
43
|
Caliani I, Campani T, Conti B, Cosci F, Bedini S, D'Agostino A, Ammendola A, Di Noi A, Gori A, Casini S. Multi-biomarker approach and IBR index to evaluate the effects of different contaminants on the ecotoxicological status of Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111486. [PMID: 33130481 DOI: 10.1016/j.ecoenv.2020.111486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 05/21/2023]
Abstract
The honeybee, Apis mellifera L. (Hymenoptera: Apidae), a keystone pollinator of wild plant species and agricultural crops, is disappearing globally due to parasites and diseases, habitat loss, genetic constraints, beekeeper management issues and to the widespread use of pesticides. Besides insecticides, widely studied in this species, honeybees are also exposed to herbicides and fungicides and heavy metals whose lethal and sublethal effects need to be investigated. In this context, our study aimed to evaluate the effects of fungicides and of heavy metals on honeybees and to develop and apply a multi-biomarker approach that include an Integrated Biological Index (IBRv2) to assess the toxicological status of this species. Biomarkers of neurotoxicity (AChE and CaE), metabolic alteration (ALP, and GST) and immune system (LYS, granulocytes) were measured, following honeybees' exposure to cadmium or to a crop fungicide, using the genotoxic compound EMS as positive control. A biomarker of genotoxicity (NA assay) was developed and applied for the first time in honeybees. At the doses tested, all the contaminants showed sublethal toxicity to the bees, highlighting in particular genotoxic effects. The data collected were analyzed by an IBRv2 index, which integrated the seven biomarkers used in this study. IBRv2 index increased with increasing cadmium or fungicide concentrations. The IBRv2 represents a simple tool for a general description of honeybees ecotoxicological health status. Results highlight the need for more in-depth investigations on the effects of fungicides on non-target organisms, such as honeybees, using sensitive methods for the determination of sublethal effects. This study contributes to the development of a multi-biomarker approach to be used for a more accurate ecotoxicological environmental monitoring of these animals.
Collapse
Affiliation(s)
- Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| | - Barbara Conti
- Department of Agriculture, Food and Environment Entomology, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Francesca Cosci
- Department of Agriculture, Food and Environment Entomology, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Stefano Bedini
- Department of Agriculture, Food and Environment Entomology, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Antonella D'Agostino
- Department of Management and Quantitative Studies, University of Naples "Parthenope", via Generale Parisi, 13, 80132 Napoli, Italy
| | - Anna Ammendola
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Alessandro Gori
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| |
Collapse
|
44
|
Sheng S, Wang J, Zhang XR, Liu ZX, Yan MW, Shao Y, Zhou JC, Wu FA, Wang J. Evaluation of Sensitivity to Phoxim and Cypermethrin in an Endoparasitoid, Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae), and Its Parasitization Efficiency Under Insecticide Stress. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6134349. [PMID: 33580255 PMCID: PMC7881259 DOI: 10.1093/jisesa/ieab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 04/29/2023]
Abstract
Insecticides can have consequences for beneficial arthropods. Insect parasitoids can contact insecticides through direct exposure spray droplets or residues on crop foliage. Here, we focus on better understand the response of Meteorus pulchricornis (Wesmael), a parasitoid wasp of lepidopteran pests, and its detoxification mechanisms on stress caused by phoxim and cypermethrin. Hence, we determined the dose-mortality curves and estimating the sublethal concentrations (LC30 and LC50). Then, we applied the sublethal concentrations against adult parasitoids to assess its survival, parasitism efficacy, and also developmental and morphometric parameters of their offspring. Simultaneously, we check the activities of glutathione S-transferase (GST), acetylcholinesterase (AChE), and peroxidase (POD) after sublethal exposure of both insecticides, which has measured until 48 h after treatment. Overall, phoxim and cypermethrin exhibited acute lethal activity toward the parasitoid with LC50 values 4.608 and 8.570 mg/liter, respectively. Also, we detect that LC30 was able to trigger the enzymatic activity of GST, AChE, and POD, suggesting a potential detoxification mechanism. However, even when subjected to sublethal exposure, our results indicate strong negatives effects, in particular for phoxim, which has affected the parasitism efficacy and also the developmental and morphometric parameters of M. pulchricornis offspring. Therefore, it can be concluded that both phoxim and cypermethrin have negative impacts on M. pulchricornis and we suggest cautioning their use and the need for semifield and field assessments to confirm such an impact.
Collapse
Affiliation(s)
- Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, PR China
- Corresponding author, e-mail:
| | - Jiao Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - Xiao-rui Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - Zhi-xiang Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - Meng-wen Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - Ying Shao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, PR China
| | - Jin-cheng Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, PR China
| | - Fu-an Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, PR China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, PR China
| |
Collapse
|
45
|
Poupart TA, Waugh SM, Kato A, Arnould JPY. Foraging niche overlap during chick-rearing in the sexually dimorphic Westland petrel. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191511. [PMID: 33391777 PMCID: PMC7735354 DOI: 10.1098/rsos.191511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Most Procellariform seabirds are pelagic, breed in summer when prey availability peaks, and migrate for winter. They also display a dual foraging strategy (short and long trips) and sex-specific foraging. The Westland petrel Procellaria westlandica, a New Zealand endemic, is one of the rare seabirds breeding in winter. Preliminary findings on this large and sexually dimorphic petrel suggest a foraging behaviour with no evidence of a dual strategy, within a narrow range and with shared areas between sexes. To investigate further this unusual strategy, the present study determined the fine-scale at-sea behaviours (global positioning system and accelerometer data loggers) and trophic niches (stable isotopes in whole blood) of chick-rearing individuals (16 males and 13 females). All individuals foraged on the shelf-slope of the west coast of New Zealand's South Island with short, unimodal trips. Both sexes foraged at similar intensity without temporal, spatial or isotopic niche segregation. These findings suggest the presence of a winter prey resource close to the colony, sufficient to satisfy the nutritional needs of breeding without increasing the foraging effort or intra-specific competition avoidance during winter. Additional data are needed to assess the consistency of foraging niche between the sexes and its reproductive outcomes in view of anticipated environmental changes.
Collapse
Affiliation(s)
- Timothée A. Poupart
- School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
- Museum of New Zealand, Te Papa Tongarewa, PO Box 467, Wellington 6011, New Zealand
- Centre d’Études Biologiques de Chizé, UMR7372 CNRS/La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Susan M. Waugh
- Museum of New Zealand, Te Papa Tongarewa, PO Box 467, Wellington 6011, New Zealand
| | - Akiko Kato
- Centre d’Études Biologiques de Chizé, UMR7372 CNRS/La Rochelle Université, 79360 Villiers-en-Bois, France
| | - John P. Y. Arnould
- School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| |
Collapse
|
46
|
Almasri H, Tavares DA, Pioz M, Sené D, Tchamitchian S, Cousin M, Brunet JL, Belzunces LP. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111013. [PMID: 32888588 DOI: 10.1016/j.ecoenv.2020.111013] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 05/21/2023]
Abstract
Multiple pesticides originating from plant protection treatments and the treatment of pests infecting honey bees are frequently detected in beehive matrices. Therefore, winter honey bees, which have a long life span, could be exposed to these pesticides for longer periods than summer honey bees. In this study, winter honey bees were exposed through food to the insecticide imidacloprid, the fungicide difenoconazole and the herbicide glyphosate, alone or in binary and ternary mixtures, at environmental concentrations (0 (controls), 0.1, 1 and 10 μg/L) for 20 days. The survival of the honey bees was significantly reduced after exposure to these 3 pesticides individually and in combination. Overall, the combinations had a higher impact than the pesticides alone with a maximum mortality of 52.9% after 20 days of exposure to the insecticide-fungicide binary mixture at 1 μg/L. The analyses of the surviving bees showed that these different pesticide combinations had a systemic global impact on the physiological state of the honey bees, as revealed by the modulation of head, midgut and abdomen glutathione-S-transferase, head acetylcholinesterase, abdomen glucose-6-phosphate dehydrogenase and midgut alkaline phosphatase, which are involved in the detoxification of xenobiotics, the nervous system, defenses against oxidative stress, metabolism and immunity, respectively. These results demonstrate the importance of studying the effects of chemical cocktails based on low realistic exposure levels and developing long-term tests to reveal possible lethal and adverse sublethal interactions in honey bees and other insect pollinators.
Collapse
Affiliation(s)
- Hanine Almasri
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France
| | | | - Maryline Pioz
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France
| | - Déborah Sené
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France
| | - Sylvie Tchamitchian
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France
| | - Marianne Cousin
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France
| | - Jean-Luc Brunet
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France
| | - Luc P Belzunces
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, 84914, Avignon, France.
| |
Collapse
|
47
|
Wang L, Zhao F, Tao Q, Li J, Xu Y, Li Z, Lu Y. Toxicity and Sublethal Effect of Triflumezopyrim Against Red Imported Fire Ant (Hymenoptera: Formicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1753-1760. [PMID: 32382750 DOI: 10.1093/jee/toaa083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 06/11/2023]
Abstract
The use of insecticide remains the frontline method in controlling red imported fire ant (Solenopsis invicta Buren) (Hymenoptera: Formicidae), one of the worst invasive ants in the world. Neonicotinoids are effective ingredients in toxic baits for suppressing S. invicta population. To search for new and effective insecticides, the toxicity and sublethal effects of triflumezopyrim, a novel neonicotinoid analog, were evaluated against S. invicta. No high mortality of ants was observed after they fed on sugar water containing 120 μg/ml triflumezopyrim for 72 h; however, 100% mortality was achieved after ants fed on sugar water containing 10 μg/ml triflumezopyrim for 2 wk. Furthermore, at 10 μg/ml, triflumezopyrim did not inhibit ant food consumption within the 7-d treatment period. These results indicate that triflumezopyrim is a slow acting toxin and may be qualified as bait toxin for managing red imported fire ants. At 1 μg/ml, triflumezopyrim did not cause any significant effect on colony growth within 56 d and did not inhibit the food consumption during the whole trial period. At 10 μg/ml, triflumezopyrim displayed a significant reduction of aggressiveness during confrontation with native ants, resulting in higher mortality than the ants in the control. However, at 1 μg/ml, triflumezopyrim did not show any significant impact on both aggressiveness and mortality of the red imported fire ants.
Collapse
Affiliation(s)
- Lei Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Fei Zhao
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Qiuhong Tao
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Jiayi Li
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Yijuan Xu
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Zhiqiang Li
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen Administration for Market Regulation, Shenzhen, China
| | - Yongyue Lu
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
48
|
Gao S, Zhang K, Wei L, Wei G, Xiong W, Lu Y, Zhang Y, Gao A, Li B. Insecticidal Activity of Artemisia vulgaris Essential Oil and Transcriptome Analysis of Tribolium castaneum in Response to Oil Exposure. Front Genet 2020; 11:589. [PMID: 32670352 PMCID: PMC7330086 DOI: 10.3389/fgene.2020.00589] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
Red flour beetle (Tribolium castaneum) is one of the most destructive pests of stored cereals worldwide. The essential oil (EO) of Artemisia vulgaris (mugwort) is known to be a strong toxicant that inhibits the growth, development, and reproduction of T. castaneum. However, the molecular mechanisms underlying the toxic effects of A. vulgaris EO on T. castaneum remain unclear. Here, two detoxifying enzymes, carboxylesterase (CarEs) and cytochrome oxidase P450 (CYPs), were dramatically increased in red flour beetle larvae when they were exposed to A. vulgaris EO. Further, 758 genes were differentially expressed between EO treated and control samples. Based on Gene Ontology (GO) analysis, numerous differentially expressed genes (DEGs) were enriched for terms related to the regulation of biological processes, response to stimulus, and antigen processing and presentation. Our results indicated that A. vulgaris EO disturbed the antioxidant activity in larvae and partially inhibited serine protease (SP), cathepsin (CAT), and lipase signaling pathways, thus disrupting larval development and reproduction as well as down-regulating the stress response. Moreover, these DEGs showed that A. vulgaris indirectly affected the development and reproduction of beetles by inducing the expression of genes encoding copper-zinc-superoxide dismutase (CuZnSOD), heme peroxidase (HPX), antioxidant enzymes, and transcription factors. Moreover, the majority of DEGs were mapped to the drug metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Notably, the following genes were detected: 6 odorant binding proteins (OBPs), 5 chemosensory proteins (CSPs), 14 CYPs, 3 esterases (ESTs), 5 glutathione S-transferases (GSTs), 6 UDP-glucuronosyltransferases (UGTs), and 2 multidrug resistance proteins (MRPs), of which 8 CYPs, 2 ESTs, 2 GSTs, and 3 UGTs were up-regulated dramatically after exposure to A. vulgaris EO. The residual DEGs were significantly down-regulated in EO exposed larvae, implying that partial compensation of metabolism detoxification existed in treated beetles. Furthermore, A. vulgaris EO induced overexpression of OBP/CYP, and RNAi against these genes significantly increased mortality of larvae exposed to EO, providing further evidence for the involvement of OBP/CYP in EO metabolic detoxification in T. castaneum. Our results provide an overview of the transcriptomic changes in T. castaneum in response to A. vulgaris EO.
Collapse
Affiliation(s)
- Shanshan Gao
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Kunpeng Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guanyun Wei
- College of Life Sciences, Nantong University, Nantong, China
| | - Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yonglei Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Aoxiang Gao
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
49
|
Glavan G, Novak S, Božič J, Jemec Kokalj A. Comparison of sublethal effects of natural acaricides carvacrol and thymol on honeybees. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104567. [PMID: 32448421 DOI: 10.1016/j.pestbp.2020.104567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
The parasitic mite Varroa destructor is a threat to beekeeping colonies. Among naturally derived acaricides, the monoterpenoid essential oil compound thymol is used in beekeeping for varroa mite control, but adverse impacts on honeybees has been already documented. Carvacrol, another monoterpenoid, also has a high acaricidal potential and could thus be promising for regular use in beekeeping, but information is scarce regarding the effects of prolonged systemic administration of carvacrol on honeybees. In this study, we evaluate and compared the sublethal effects of long term consumption of carvacrol and thymol on Carnolian honeybee workers (Apis mellifera carnica). Survival and feeding rate were determined preliminary to assess sublethal concentrations. The sublethal effects were analysed by the activity of the acetylcholinesterase (AChE), enzyme involved in the control of neurotransmission, and the activity of detoxifying enzyme glutathione S-transferase (GST) in heads and thoraces. We found that, thymol and carvacrol, caused mortality only at the highest concentrations tested, 1% and 5% respectively. As demonstrated by others, both substances could be effective against varroa at concentrations ten times lower than those causing significant honeybee mortality. However, we demonstrated sublethal effects at the 0.05% carvacrol and thymol exposure concentrations evidenced as increased activity of AChE and GST in the honeybee heads. In conclusion, prolonged treatment with thymol and carvacrol affects bee nervous system and induce detoxification processes possibly resulting in a limited use for acaricidal purposes. We postulate that under the same chronic exposure conditions carvacrol and thymol will have similar sublethal effects on honeybees.
Collapse
Affiliation(s)
- Gordana Glavan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Janko Božič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
50
|
Transcriptomic analysis to elucidate the response of honeybees (Hymenoptera: Apidae) to amitraz treatment. PLoS One 2020; 15:e0228933. [PMID: 32143212 PMCID: PMC7060074 DOI: 10.1371/journal.pone.0228933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/27/2020] [Indexed: 12/01/2022] Open
Abstract
Amitraz is an acaricide that is widely used in apiculture. Several studies have reported that in honeybees (Apis mellifera Linnaeus; Hymenoptera: Apidae), amitraz affects learning, memory, behavior, immunity, and various other physiological processes. Despite this, few studies have explored the molecular mechanisms underlying the action of amitraz on honeybees. Here, we investigated the transcriptome of honeybees after exposure to 9.4 mg/L amitraz for 10 d, a subchronic dose. Overall, 279 differentially expressed genes (DEGs) were identified (237 upregulated, 42 downregulated). Several, including Pla2, LOC725381, LOC413324, LOC724386, LOC100577456, LOC551785, and P4504c3, were validated by quantitative PCR. According to gene ontology, DEGs were mainly involved in metabolism, biosynthesis, and translation. Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that amitraz treatment affected the relaxin signaling pathway, platelet activation, and protein digestion and absorption.
Collapse
|