1
|
Doering JA, Tillitt DE, Wiseman S. Reevaluation of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Equivalency Factors for Dioxin-Like Polychlorinated Dibenzo-p-Dioxins, Polychlorinated Dibenzofurans, and Polychlorinated Biphenyls for Fishes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2215-2228. [PMID: 37283214 DOI: 10.1002/etc.5690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
An expert meeting was organized by the World Health Organization (WHO) in 1997 to streamline assessments of risk posed by mixtures of dioxin-like chemicals (DLCs) through development of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) equivalency factors (TEFs) for mammals, birds, and fishes. No reevaluation has been performed for fish TEFs. Therefore, the objective of the present study was to reevaluate the TEFs for fishes based on an updated database of relative potencies (RePs) for DLCs. Selection criteria consistent with the WHO meeting resulted in 53 RePs across 14 species of fish ultimately being considered. Of these RePs, 70% were not available at the time of the WHO meeting. These RePs were used to develop updated TEFs for fishes based on a similar decision process as used at the WHO meeting. The updated TEF for 16 DLCs was greater than the WHO TEF, but only four differed by more than an order of magnitude. Measured concentrations of DLCs in four environmental samples were used to compare 2,3,7,8-TCDD equivalents (TEQs) calculated using the WHO TEFs relative to the updated TEFs. The TEQs for none of these environmental samples differed by more than an order of magnitude. Therefore, present knowledge supports that the WHO TEFs are suitable potency estimates for fishes. However, the updated TEFs pull from a larger database with a greater breadth of data and as a result offer greater confidence relative to the WHO TEFs. Risk assessors will have different criteria in the selection of TEFs, and the updated TEFs are not meant to immediately replace the formal WHO TEFs; but those who value a larger database and increased confidence in TEQs could consider using the updated TEFs. Environ Toxicol Chem 2023;42:2215-2228. © 2023 Wiley Periodicals LLC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Jon A Doering
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Donald E Tillitt
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
2
|
Manning T, Batley GE. A Guideline Value for Dioxin-Like Compounds in Marine Sediments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:257-271. [PMID: 36222176 PMCID: PMC10107634 DOI: 10.1002/etc.5499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Sediments to be dredged as part of the installation of a harbor crossing in Sydney, Australia, contained measurable concentrations of dioxin-like compounds. To assess the suitability of these sediments for ocean disposal, a defensible sediment quality guideline value (SQGV) for dioxin-like compounds, expressed as pg toxic equivalent (TEQ)fish /g dry weight, was required. There were deemed to be too many uncertainties associated with a value derived using effects data from field studies. A similar issue was associated with values based on equilibrium partitioning from sediment to pore water, largely associated with the wide range of reported sediment:water partition coefficients. Greater certainty was associated with the use of a tissue residue approach based on equilibrium partitioning between sediment and organisms determined using tissue concentrations in fish, the most sensitive aquatic biota, and biota:sediment accumulation factors. The calculation of an appropriate SQGV used data for dioxin-like compounds in both fish and sediments from Sydney Harbor. A conservative SQGV for dioxin-like compounds of 70 pg TEQ/g dry weight was deemed to be adequately protective of biota that might be exposed to these contaminants in sediments at the ocean spoil ground. The approach is transferable to similar situations internationally. Environ Toxicol Chem 2023;42:257-271. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Therese Manning
- Environmental Risk Sciences (enRiskS)Carlingford CourtNew South WalesAustralia
| | - Graeme E. Batley
- Centre for Environmental Contaminants ResearchCSIRO Land and WaterKirraweeNew South WalesAustralia
| |
Collapse
|
3
|
Dubiel J, Green D, Raza Y, Johnson HM, Xia Z, Tomy GT, Hontela A, Doering JA, Wiseman S. Alkylation of Benz[a]anthracene Affects Toxicity to Early-Life Stage Zebrafish and In Vitro Aryl Hydrocarbon Receptor 2 Transactivation in a Position-Dependent Manner. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1993-2002. [PMID: 35694968 DOI: 10.1002/etc.5396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are structurally diverse organic chemicals that can have adverse effects on the health of fishes through activation of aryl hydrocarbon receptor 2 (AhR2). They are ubiquitous in the environment, but alkyl PAHs are more abundant in some environmental matrices. However, relatively little is known regarding the effects of alkylation on the toxicity of PAHs to fishes in vivo and how this relates to potency for activation of AhR2 in vitro. Therefore, the objectives of the present study were to determine the toxicity of benz[a]anthracene and three alkylated homologs representing various alkylation positions to early life stages of zebrafish (Danio rerio) and to assess the potency of each for activation of the zebrafish AhR2 in a standardized in vitro AhR transactivation assay. Exposure of embryos to each of the PAHs caused a dose-dependent increase in mortality and malformations characteristic of AhR2 activation. Each alkyl homolog had in vivo toxicities and in vitro AhR2 activation potencies different from those of the parent PAH in a position-dependent manner. However, there was no statistically significant linear relationship between responses measured in these assays. The results suggest a need for further investigation into the effect of alkylation on the toxicity of PAHs to fishes and greater consideration of the contribution of alkylated homologs in ecological risk assessments. Environ Toxicol Chem 2022;41:1993-2002. © 2022 SETAC.
Collapse
Affiliation(s)
- Justin Dubiel
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yamin Raza
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hunter M Johnson
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zhe Xia
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alice Hontela
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Water Institute for Sustainable Environments, Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
4
|
TCDD-induced IL-24 secretion in human chorionic stromal cells inhibits placental trophoblast cell migration and invasion. Reprod Toxicol 2022; 108:10-17. [PMID: 34995713 DOI: 10.1016/j.reprotox.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 01/02/2022] [Indexed: 12/30/2022]
Abstract
Environmental pollutant dioxins are potentially harmful to pregnant women and can lead to severe adverse outcomes in pregnancy, such as spontaneous abortion and stillbirth. However, little is currently known about the underlying toxicological mechanism. Our previous study reported that the IL-24 gene is a dioxin response gene during 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) treatment. Here, we further tested the effect of TCDD on IL-24 expression in human chorionic stromal cells. We also investigated the effect of IL-24 on the behaviors of human placental trophoblast cells and predicted the potential mechanism underlying these behaviors using functional network analysis. We found that TCDD stimulates IL-24 expression in human chorionic stromal cells in an AhR (aromatic hydrocarbon receptor)-related manner. We also found that IL-24 inhibits the migration and invasion of human placental trophoblast cells, the possible mechanism of which involves thirteen key proteins and mitochondrial function. Our findings suggest that IL-24 is a potential factor induced by TCDD to regulate trophoblast cell invasion, which potentially involves in TCDD-induced abortion.
Collapse
|
5
|
Doering JA, Brinkmann M, Lucio M, Stoeck S, Vien A, Petersen S, Rhen T, Jones PD, Hecker M, Schroeder A. Sensitivity of a Model Reptile, the Common Snapping Turtle (Chelydra serpentina), to In Ovo Exposure to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin and Other Dioxin-Like Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:175-183. [PMID: 34888928 DOI: 10.1002/etc.5252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Reptiles represent the least-studied group of vertebrates with regards to ecotoxicology and no empirical toxicity data existed for dioxin-like chemicals (DLCs). This lack of toxicity data represents a significant uncertainty in ecological risk assessments of this taxon. Therefore, the present study assessed early-life sensitivity to select DLCs and developed relative potencies in the common snapping turtle (Chelydra serpentina) as a model reptile. Specifically, survival to hatch and incidence of pathologies were assessed in common snapping turtle exposed in ovo to serial concentrations of the prototypical reference congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and three other DLCs of environmental relevance, namely, 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), 2,3,7,8-tetrachlorodibenzofuran (TCDF), and 3,3',4,4',5-pentachlorobiphenyl (PCB 126). In ovo exposure to TCDD, PeCDF, TCDF, and PCB 126 caused a dose-dependent increase in early-life mortality, with median lethal doses (LD50s) of 14.9, 11.8, 29.6, and 185.9 pg/g-egg, respectively. Except for abnormal vasculature development, few pathologies were observed. Based on the measured LD50, common snapping turtle is more sensitive to TCDD in ovo than other species of oviparous vertebrates investigated to date. The potencies of PeCDF, TCDF, and PCB 126 relative to TCDD were 1.3, 0.5, and 0.08, respectively. These relative potencies are within an order of magnitude of World Health Organization (WHO) TCDD-equivalency factors (TEFs) for both mammals and birds supporting these TEFs as relevant for assessing ecological risk to reptiles. The great sensitivity to toxicities of the common snapping turtle, and potentially other species of reptiles, suggests a clear need for further investigation into the ecotoxicology of this taxon. Environ Toxicol Chem 2022;41:175-183. © 2021 SETAC.
Collapse
Affiliation(s)
- Jon A Doering
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maria Lucio
- Math, Science, and Technology Department, University of Minnesota Crookston, Crookston, Minnesota, USA
| | - Serena Stoeck
- Math, Science, and Technology Department, University of Minnesota Crookston, Crookston, Minnesota, USA
| | - Alex Vien
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Stephanie Petersen
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anthony Schroeder
- Math, Science, and Technology Department, University of Minnesota Crookston, Crookston, Minnesota, USA
| |
Collapse
|
6
|
Kuang H, Dai Y, Ding X, Li Y, Cha C, Jiang W, Zhang H, Zhou W, Zeng Y, Pang Q, Fan R. Association among blood BPDE-DNA adduct, serum interleukin-8 (IL-8) and DNA strand breaks for children with pulmonary diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:823-834. [PMID: 31722538 DOI: 10.1080/09603123.2019.1690638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Exposure to benzo[a]pyrene (B[a]P) may be a risk factor for pulmonary diseases. To investigate the correlations among B[a]P exposure level, DNA strand breaks and pulmonary inflammation, we recruited 83 children diagnosed with pulmonary diseases and 63 healthy children from Guangzhou, China. Results showed that the levels of Benzo[a]pyrene diol epoxide (BPDE) DNA adduct in blood and IL-8 in serum in case group were significantly higher than those in control group (p < 0.01). Moreover, levels of atmospheric B[a]P in case group was about twice of those in control group, which was consistent with the levels of BPDE-DNA adduct in blood. Significant positive correlations were observed among the levels of BPDE-DNA adduct, IL-8 and DNA strand breaks (p < 0.05). Our findings indicate that environmental air is an important exposure source of B[a]P and higher B[a]P exposure may contribute to the occurrence of pulmonary inflammation and lead to high health risks.
Collapse
Affiliation(s)
- Hongxuan Kuang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanyan Dai
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yonghong Li
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Caihui Cha
- Department of Psychology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wenhui Jiang
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Haibin Zhang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenji Zhou
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yingwei Zeng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qihua Pang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruifang Fan
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Singleman C, Zimmerman A, Harrison E, Roy NK, Wirgin I, Holtzman NG. Toxic Effects of Polychlorinated Biphenyl Congeners and Aroclors on Embryonic Growth and Development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:187-201. [PMID: 33118622 DOI: 10.1002/etc.4908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) cause significant health and reproductive problems in many vertebrates. Exposure during embryogenesis likely leads to defects in organ development, compromising survival and growth through adulthood. The present study identifies the impact of PCBs on the embryonic development of key organs and resulting consequences on survival and growth. Zebrafish embryos were treated with individual PCB congeners (126 or 104) or one of 4 Aroclor mixtures (1016, 1242, 1254, or 1260) and analyzed for changes in gross embryonic morphology. Specific organs were assessed for defects during embryonic development, using a variety of transgenic zebrafish to improve organ visualization. Resulting larvae were grown to adulthood while survival and growth were assayed. Embryonic gross development on PCB treatment was abnormal, with defects presenting in a concentration-dependent manner in the liver, pancreas, heart, and blood vessel organization. Polychlorinated biphenyl 126 treatment resulted in the most consistently severe and fatal phenotypes, whereas treatments with PCB 104 and Aroclors resulted in a range of more subtle organ defects. Survival of fish was highly variable although the growth rates of surviving fish were relatively normal, suggesting that maturing PCB-treated fish that survive develop compensatory strategies needed to reach adulthood. Life span analyses of fish from embryogenesis through adulthood, as in the present study, are scarce but important for the field because they help identify foci for further studies. Environ Toxicol Chem 2021;40:187-201. © 2020 SETAC.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| | - Alison Zimmerman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Elise Harrison
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Nirmal K Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Nathalia G Holtzman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
8
|
Doering JA, Dubiel J, Wiseman S. Predicting Early Life Stage Mortality in Birds and Fishes from Exposure to Low-Potency Agonists of the Aryl Hydrocarbon Receptor: A Cross-Species Quantitative Adverse Outcome Pathway Approach. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2055-2064. [PMID: 32648946 DOI: 10.1002/etc.4816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Dioxin-like compounds (DLCs) cause early life stage mortality of vertebrates through activation of the aryl hydrocarbon receptor (AhR). A prior study developed a cross-species quantitative adverse outcome pathway (qAOP) which can predict full dose-response curves of early life stage mortality for any species of bird or fish exposed to DLCs using the species- and chemical-specific 50% effect concentration (EC50) from an in vitro AhR transactivation assay with COS-7 cells. However, calculating a reliable EC50 for input into this qAOP requires the maximal response of the concentration-response curve to be known, which is not always possible for low-potency agonists, such as some polychlorinated biphenyls (PCBs). To enable predictions for these low-potency agonists, the present study revised this qAOP to use the effect concentration threshold (ECThreshold ) from the in vitro AhR transactivation assay as input. Significant linear relationships were demonstrated between ECThreshold and the dose to cause 0, 10, 50, or 100% mortality among early life stages of 3 species of birds and 7 species of fish for 4 DLCs: 2,3,7,8-tetrachlorodibenzo-p-dioxin, PCB 126, PCB 77, and PCB 105. These 4 linear relationships were combined to form the revised qAOP. This qAOP using the ECThreshold enables prediction of experimental dose-response curves for lower-potency agonists to within an order of magnitude on average, but the prior qAOP using EC50 predicts experimental dose-response curves for higher-potency agonists with greater accuracy. Environ Toxicol Chem 2020;39:2055-2064. © 2020 SETAC.
Collapse
Affiliation(s)
- Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Justin Dubiel
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
9
|
Nijoukubo D, Adachi H, Kitazawa T, Teraoka H. Blood vessels are primary targets for 2,3,7,8-tetrachlorodibenzo-p-dioxin in pre-cardiac edema formation in larval zebrafish. CHEMOSPHERE 2020; 254:126808. [PMID: 32339801 DOI: 10.1016/j.chemosphere.2020.126808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 05/07/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has adverse effects on the development and function of the heart in zebrafish eleutheroembryos (embryos and larvae). We previously reported that TCDD reduced blood flow in the mesencephalic vein of zebrafish eleutheroembryos long before inducing pericardial edema. In the present study, we compared early edema (pre-cardiac edema), reduction of deduced cardiac output and reduction of blood flow in the dorsal aorta and cardinal vein caused by TCDD. In the same group of eleutheroembryos, TCDD (1.0 ppb) caused pre-cardiac edema and circulation failure at the cardinal vein in the central trunk region with the similar time courses from 42 to 54 h post fertilization (hpf), while the same concentration of TCDD did not significantly affect aortic circulation in the central trunk region or cardiac output. The dependence of pre-cardiac edema on TCDD concentration (0-2.0 ppb) at 55 hpf correlated well with the dependence of blood flow through the cardinal vein on TCDD concentration. Several treatments that markedly inhibited TCDD-induced pre-cardiac edema such as knockdown of aryl hydrocarbon receptor nuclear translocator-1 (ARNT1) and treatment with ascorbic acid, an antioxidant, did not significantly prevent the reduction of cardiac output at 55 hpf caused by 2.0 ppb TCDD. TCDD caused hemorrhage and extravasation of Evans blue that was intravascularly injected with bovine serum albumin, suggesting an increase in endothelium permeability to serum protein induced by TCDD. The results suggest that the blood vessels are primary targets of TCDD in edema formation in larval zebrafish.
Collapse
Affiliation(s)
- Daisuke Nijoukubo
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hikaru Adachi
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| |
Collapse
|
10
|
Doering JA, Wiseman S, Giesy JP, Hecker M. A Cross-species Quantitative Adverse Outcome Pathway for Activation of the Aryl Hydrocarbon Receptor Leading to Early Life Stage Mortality in Birds and Fishes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7524-7533. [PMID: 29863850 DOI: 10.1021/acs.est.8b01438] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dioxin-like compounds (DLCs) elicit adverse effects through activation of the aryl hydrocarbon receptor (AHR). Prior investigations demonstrated that sensitivity to activation of AHR1 in an in vitro AHR transactivation assay is predictive of early life stage mortality among birds. The present study investigated the link between sensitivity to activation of AHR1s and AHR2s and early life stage mortality among fishes. A significant, linear relationship was demonstrated between sensitivity to activation of AHR2 and early life stage mortality among nine fishes, while no relationship was found for AHR1. The slope and y-intercept for the linear relationship between sensitivity to activation of AHR1 and early life stage mortality in birds was not statistically different from the same relationship for AHR2 in fishes. Data for fishes and birds across DLCs were expanded into four significant, linear regression models describing the relationship between sensitivity to activation of AHR and the dose to cause early life stage mortality of 0%, 10%, 50%, or 100%. These four relationships were combined to form a quantitative adverse outcome pathway which can predict dose-response curves of early life stage mortality for DLCs to any bird or fish from species- and chemical-specific responses in an in vitro AHR transactivation assay.
Collapse
Affiliation(s)
- Jon A Doering
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
| | - Steve Wiseman
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Department of Biological Sciences , University of Lethbridge , Lethbridge , Alberta T1K 3M4 , Canada
| | - John P Giesy
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Department of Veterinary Biomedical Sciences , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B4 , Canada
| | - Markus Hecker
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- School of Environment and Sustainability , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C8 , Canada
| |
Collapse
|
11
|
Tillitt DE, Buckler JA, Nicks DK, Candrl JS, Claunch RA, Gale RW, Puglis HJ, Little EE, Linbo TL, Baker M. Sensitivity of lake sturgeon (Acipenser fulvescens) early life stages to 2,3,7,8-tetrachlorodibenzo-P-dioxin and 3,3',4,4',5-pentachlorobiphenyl. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:988-998. [PMID: 27600767 DOI: 10.1002/etc.3614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/18/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
The aquatic food web of the Great Lakes has been contaminated with polychlorinated biphenyls (PCBs) since the mid-20th century. Threats of PCB exposures to long-lived species of fish, such as lake sturgeon (Acipenser fulvescens), have been uncertain because of a lack of information on the relative sensitivity of the species. The objective of the present study was to evaluate the sensitivity of early-life stage lake sturgeon to 3,3',4,4',5-pentachlorobiphenyl (PCB-126) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. Mortality, growth, morphological and tissue pathologies, swimming performance, and activity levels were used as assessment endpoints. Pericardial and yolk sac edema, tubular heart, yolk sac hemorrhaging, and small size were the most commonly observed pathologies in both TCDD and PCB-126 exposures, beginning as early as 4 d postfertilization, with many of these pathologies occurring in a dose-dependent manner. Median lethal doses for PCB-126 and TCDD in lake sturgeon were 5.4 ng/g egg (95% confidence interval, 3.9-7.4 ng/g egg) and 0.61 ng/g egg (0.47-0.82 ng/g egg), respectively. The resulting relative potency factor for PCB-126 (0.11) was greater than the World Health Organization estimate for fish (toxic equivalency factor = 0.005), suggesting that current risk assessments may underestimate PCB toxicity toward lake sturgeon. Swimming activity and endurance were reduced in lake sturgeon survivors from the median lethal doses at 60 d postfertilization. Threshold and median toxicity values indicate that lake sturgeon, like other Acipenser species, are more sensitive to PCB and TCDD than the other genus of sturgeon, Scaphirhynchus, found in North America. Indeed, lake sturgeon populations in the Great Lakes and elsewhere are susceptible to PCB/TCDD-induced developmental toxicity in embryos and reductions in swimming performance. Environ Toxicol Chem 2017;36:988-998. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Donald E Tillitt
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Justin A Buckler
- Five Rivers Services Corporation, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Diane K Nicks
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - James S Candrl
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Rachel A Claunch
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Robert W Gale
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Holly J Puglis
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Edward E Little
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Tiffany L Linbo
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Mary Baker
- Office of Response and Restoration, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| |
Collapse
|
12
|
Doering JA, Tang S, Peng H, Eisner BK, Sun J, Giesy JP, Wiseman S, Hecker M. High Conservation in Transcriptomic and Proteomic Response of White Sturgeon to Equipotent Concentrations of 2,3,7,8-TCDD, PCB 77, and Benzo[a]pyrene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4826-4835. [PMID: 27070345 DOI: 10.1021/acs.est.6b00490] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adverse effects associated with exposure to dioxin-like compounds (DLCs) are mediated primarily through activation of the aryl hydrocarbon receptor (AHR). However, little is known about the cascades of events that link activation of the AHR to apical adverse effects. Therefore, this study used high-throughput, next-generation molecular tools to investigate similarities and differences in whole transcriptome and whole proteome responses to equipotent concentrations of three agonists of the AHR, 2,3,7,8-TCDD, PCB 77, and benzo[a]pyrene, in livers of a nonmodel fish, the white sturgeon (Acipenser transmontanus). A total of 926 and 658 unique transcripts were up- and down-regulated, respectively, by one or more of the three chemicals. Of the transcripts shared by responses to all three chemicals, 85% of up-regulated transcripts and 75% of down-regulated transcripts had the same magnitude of response. A total of 290 and 110 unique proteins were up- and down-regulated, respectively, by one or more of the three chemicals. Of the proteins shared by responses to all three chemicals, 70% of up-regulated proteins and 48% of down-regulated proteins had the same magnitude of response. Among treatments there was 68% similarity between the global transcriptome and global proteome. Pathway analysis revealed that perturbed physiological processes were indistinguishable between equipotent concentrations of the three chemicals. The results of this study contribute toward more completely describing adverse outcome pathways associated with activation of the AHR.
Collapse
Affiliation(s)
- Jon A Doering
- Toxicology Graduate Program, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, SK S7N 5C8, Canada
| | - Hui Peng
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Bryanna K Eisner
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Jianxian Sun
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan , Saskatoon, SK S7N 5B4, Canada
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, SK S7N 5C8, Canada
| |
Collapse
|
13
|
Doering JA, Farmahin R, Wiseman S, Beitel SC, Kennedy SW, Giesy JP, Hecker M. Differences in activation of aryl hydrocarbon receptors of white sturgeon relative to lake sturgeon are predicted by identities of key amino acids in the ligand binding domain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4681-4689. [PMID: 25761200 DOI: 10.1021/acs.est.5b00085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dioxin-like compounds (DLCs) are pollutants of global environmental concern. DLCs elicit their adverse outcomes through activation of the aryl hydrocarbon receptor (AhR). However, there is limited understanding of the mechanisms that result in differences in sensitivity to DLCs among different species of fishes. Understanding these mechanisms is critical for protection of the diversity of fishes exposed to DLCs, including endangered species. This study investigated specific mechanisms that drive responses of two endangered fishes, white sturgeon (Acipenser transmontanus) and lake sturgeon (Acipenser fulvescens) to DLCs. It determined whether differences in sensitivity to activation of AhRs (AhR1 and AhR2) can be predicted based on identities of key amino acids in the ligand binding domain (LBD). White sturgeon were 3- to 30-fold more sensitive than lake sturgeon to exposure to 5 different DLCs based on activation of AhR2. There were no differences in sensitivity between white sturgeon and lake sturgeon based on activation of AhR1. Adverse outcomes as a result of exposure to DLCs have been shown to be mediated through activation of AhR2, but not AhR1, in all fishes studied to date. This indicates that white sturgeon are likely to have greater sensitivity in vivo relative to lake sturgeon. Homology modeling and in silico mutagenesis suggests that differences in sensitivity to activation of AhR2 result from differences in key amino acids at position 388 in the LBD of AhR2 of white sturgeon (Ala-388) and lake sturgeon (Thr-388). This indicates that identities of key amino acids in the LBD of AhR2 could be predictive of both in vitro activation by DLCs and in vivo sensitivity to DLCs in these, and potentially other, fishes.
Collapse
Affiliation(s)
| | - Reza Farmahin
- §Environment Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
- ∥Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | | | - Sean W Kennedy
- §Environment Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
- ∥Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - John P Giesy
- ⊥Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Markus Hecker
- ∇School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| |
Collapse
|