1
|
Çalık DM, Lin F, Edgar M, Farrell AP, Kennedy CJ, Gillis TE, Alderman SL. Temperature matters: Acute and latent toxicity of diluted bitumen to developing salmon is potentiated by a modest increase in water temperature. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107347. [PMID: 40209296 DOI: 10.1016/j.aquatox.2025.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/28/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025]
Abstract
Heavy crude oil, like bitumen, is used globally for plastics, petrochemicals and road surfacing. Canada's oil sands are the world's third largest crude oil reserve, and diluted bitumen (dilbit) is transported across North America primarily via pipeline and rail. Two environmentally-relevant concentrations of dilbit were used with a suite of toxicological endpoints to determine if a 3 °C increase in ambient temperature (Ta) water modulated the effects of dilbit to coho salmon (Oncorhynchus kisutch) when exposed from fertilization to swim-up. The 10-20 % increase in mortality and 25 % reduction in hypoxia tolerance with dilbit exposure was magnified by 18 % and 40 %, respectively, in warmer water. Consequences of dilbit exposure persisted after 6 weeks of additional rearing in clean Ta water but were greatest in fish exposed to dilbit at elevated temperature: additional 20 % mortality and 30 % decrease in mass relative to controls, and a residual 20 % reduction in hypoxia tolerance not seen with dilbit exposure alone. Relatively lower induction of the Phase I biotransformation enzyme cyp1a and greater tissue PAC content in warm-exposed coho suggests reduced PAC metabolism as a mechanism for the observed potentiation. Thus, seasonal fluctuations and baseline increases in water temperature from climate change can exacerbate the adverse effects of oil spills on developing fish.
Collapse
Affiliation(s)
- Derin M Çalık
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Feng Lin
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mackenzie Edgar
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Sarah L Alderman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Cominassi L, Segarra A, Chandler A, Habibullah-Al-Mamun M, Knaub K, Huff Hartz KE, Mauduit F, Fangue N, Whitledge GW, Lydy MJ, Connon RE. Sublethal exposures to bifenthrin impact stress responses and behavior of juvenile Chinook salmon. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:973-983. [PMID: 39874019 DOI: 10.1093/etojnl/vgaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025]
Abstract
Juvenile Chinook salmon (Oncorhynchus tshawytscha) populations have decreased substantially in the Sacramento-San Joaquin (California, USA) Delta (Delta) over the past decades, so considerably that two of the four genetically distinct runs are now listed in the Endangered Species Act. One factor responsible for this decline is the presence of contaminants in the Delta. Insecticides, used globally in agricultural, industrial, and household settings, have the potential to contaminate nearby aquatic systems through spray drift, runoff, and direct wastewater discharge. Chinook salmon are therefore exposed, as they out-migrate through the Delta, to insecticides that have been associated with adverse biological effects in aquatic species, ranging from sublethal impairments to lethality. The goal of this study was to assess whether bifenthrin, a ubiquitous pyrethroid insecticide in the Delta, affects thermal tolerance, hypoxia tolerance, and behavior of juvenile Chinook salmon. Fish were exposed for 10 days to environmentally relevant (125 ng/L, associated with resulting body residues in wild-caught fish) and sublethal bifenthrin concentrations (500 and 1,000 ng/L). Juvenile Chinook salmon exposed to bifenthrin were tolerant to increases in hypoxia but not temperature. Fish exposed to bifenthrin showed dose-dependent behavior changes: hypoactivity at 125 ng/L, hyperactivity at 1,000 ng/L, and reduced anxiety-like behavior, including lower thigmotaxis and decreased social interaction. The results revealed that exposure to sublethal concentrations of bifenthrin, leading to environmentally relevant body burden residues, significantly altered upper thermal tolerance and caused nonlinear behavioral changes. The study suggests the existence of behavioral effect thresholds in wild-caught fish and emphasizes that higher concentrations of contaminants may impair Chinook salmon's ability to avoid predators in natural environments.
Collapse
Affiliation(s)
- Louise Cominassi
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Amelie Segarra
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Andrea Chandler
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Md Habibullah-Al-Mamun
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
- Department of Fisheries, University of Dhaka, Dhaka, Bangladesh
| | - Katie Knaub
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Florian Mauduit
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, United States
| | - Nann Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, United States
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Richard E Connon
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Pannetier P, Morin B, Cabon J, Danion M, Morin T, Clérandeau C, Le Floch S, Cachot J. Water-accommodated fractions of heavy and light oils impact DNA integrity, embryonic development, and immune system of Japanese medaka at early life stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50916-50928. [PMID: 39106018 DOI: 10.1007/s11356-024-34604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants generally found in complex mixtures. PAHs are known to cause pleiotropic effects on living organisms, including developmental defects, mutagenicity, carcinogenicity and immunotoxicity, and endocrine disruptions. The main goal of this study is to evaluate the toxicity of water-accommodated fractions (WAFs) of oils in two life stages of the Japanese medaka, larvae and juveniles. The deleterious effects of an acute exposure of 48 h to two WAFs from Arabian light crude oil (LO) and refined oil from Erika (HO) were analyzed in both stages. Relevant endpoints, including ethoxy resorufin-O-deethylase (EROD) activity, DNA damage (Comet assay), photomotor response, and sensitivity to nervous necrosis virus (NNV) infection, were investigated. Larvae exposed to both oil WAFs displayed a significant induction of EROD activity, DNA damage, and developmental anomalies, but no behavioral changes. Deleterious effects were significantly increased following exposure to 1 and 10 μg/L of LO WAFs and 10 μg/L of HO WAFs. Larval infection to NNV induced fish mortality and sharply reduced reaction to light stimulation. Co-exposure to WAFs and NNV increased the mortality rate, suggesting an impact of WAFs on fish defense capacities. WAF toxicity on juveniles was only observed following the NNV challenge, with a higher sensitivity to HO WAFs than to LO WAFs. This study highlighted that environmentally realistic exposure to oil WAFs containing different compositions and concentrations of oil generated high adverse effects, especially in the larval stage. This kind of multi-marker approach is particularly relevant to characterize the toxicity fingerprint of environmental mixtures of hydrocarbons and PAHs.
Collapse
Affiliation(s)
- Pauline Pannetier
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France.
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | - Bénédicte Morin
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France
| | - Joëlle Cabon
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Morgane Danion
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Thierry Morin
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | | | - Stéphane Le Floch
- Centre de Documentation, de Recherche Et d'Expérimentations Sur Les Pollutions Accidentelles Des Eaux, CEDRE, 29200, Brest, France
| | - Jérôme Cachot
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France
| |
Collapse
|
4
|
Pannetier P, Clérandeau C, Le Floch S, Cachot J, Morin B. Toxicity evaluation of water-accommodated fraction of heavy and light oils on the rainbow trout fish cell line RTL-W1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49715-49726. [PMID: 39080162 DOI: 10.1007/s11356-024-34458-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Fish are currently used models for the toxicity assessment of chemicals, including polycyclic aromatic hydrocarbons (PAHs). Alternative methods including fish cell lines are currently used to provide fast and reliable results on the toxic properties of chemicals while respecting ethical concerns about animal testing. The Rainbow trout liver cell line RTLW1 was used to analyze the effects of two water-accommodated fractions from two crude oils: Arabian Light crude oil (LO) and refined oil from Erika (HO). Several toxicity endpoints were assessed in this study, including cytotoxicity, EROD activity, DNA damage (comet and micronucleus assays), and ROS production. RTL-W1 cells were exposed for 24 h at two or three dilutions of WAF at 1000 µg/L (0.1% (1 μg/L), 1% (10 μg/L), and 10% (100 μg/L)) for cytotoxicity and EROD activity and 1% and 10% for ROS production and genotoxicity). Exposure of RTL-W1 cells to LO WAF induced a significant increase of EROD activity and ROS production and altered DNA integrity as revealed by both the comet assay and the micronucleus test for 10 µg/L of LO. On the other hand, HO WAF exhibited limited toxic effects except for an EROD induction for 1% WAF dilution. These results confirmed the usefulness of RTL-W1 cells for in vitro toxicological assessment of chemical mixtures.
Collapse
Affiliation(s)
- Pauline Pannetier
- CNRS, Bordeaux INP, EPOC, Univ. Bordeaux, UMR 5805, 33600, Pessac, France.
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Unit Virology, Immunology and Ecotoxicology of Fish, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | | | - Stéphane Le Floch
- Centre de Documentation, de Recherche Et d'Expérimentations Sur Les Pollutions Accidentelles Des Eaux, CEDRE, 29200, Brest, France
| | - Jérôme Cachot
- CNRS, Bordeaux INP, EPOC, Univ. Bordeaux, UMR 5805, 33600, Pessac, France
| | - Bénédicte Morin
- CNRS, Bordeaux INP, EPOC, Univ. Bordeaux, UMR 5805, 33600, Pessac, France
| |
Collapse
|
5
|
Perugini G, Edgar M, Lin F, Kennedy CJ, Farrell AP, Gillis TE, Alderman SL. Age matters: Comparing life-stage responses to diluted bitumen exposure in coho salmon (Oncorhynchus kisutch). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106350. [PMID: 36370651 DOI: 10.1016/j.aquatox.2022.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Millions of liters of diluted bitumen (dilbit), a crude oil product from Canada's oil sands region, is transported through critical Pacific salmon habitat each day. While the toxicity of the water-soluble fraction of dilbit (WSFd) to early life-stages of salmon is known, quantitative data on life-stage differences in sensitivity to WSFd is missing. To fill this knowledge gap, we exposed two juvenile life-stages of coho salmon (O. kisutch) in parallel to very low (parts per billion), environmentally-relevant concentrations of WSFd for acute (48 h) and sub-chronic (4 wk) durations. The relative sensitivities of the two life-stages (fry and parr) were assessed by comparing the timing and magnitude of biological responses using common organismal and molecular endpoints of crude oil exposure. A significant reduction in body condition occurred in both fry and parr after 4 wk exposure to WSFd. Both life-stages also experienced a concentration-dependent decrease in time-to-loss-of-equilibrium during a hypoxia challenge test at both 48 h and 4 wk of exposure. Although organismal responses were similar, molecular responses were distinct between life-stages. In general, unexposed fry had higher baseline values of hepatic phase I biotransformation indicators than unexposed parr, but induction of EROD activity and cyp1a mRNA expression in response to WSFd exposure was greater in parr than in fry. Neither gst nor hsp70 mRNA expression, markers of phase II biotransformation and cell stress, respectively, were reliably altered by WSFd exposure in either life-stage. Taken together, results of this study do not support differential sensitivities of coho fry and parr to WSFd. All the same, the potential for ontogenic differences in the expression and induction of phase I biotransformation need to be considered because age does matter for these endpoints if they are used as bioindicators of exposure in post-spill impact assessments.
Collapse
Affiliation(s)
- Gabrielle Perugini
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Mackenzie Edgar
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Feng Lin
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Sarah L Alderman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
6
|
Vazquez Roman KN, Burggren WW. Metabolic responses to crude oil during early life stages reveal critical developmental windows in the zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109274. [PMID: 35051628 DOI: 10.1016/j.cbpc.2022.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 11/03/2022]
Abstract
Morphological effects of crude oil exposure on early development in fishes have been well documented, but crude oil's metabolic effects and when in early development these effects might be most prominent remains unclear. We hypothesized that zebrafish (Danio rerio) exposed to crude oil as a high energy water accommodated fraction (HEWAF) would show increased routine oxygen consumption (ṀO2) and critical oxygen tension (PCrit) and this effect would be dependent upon day of HEWAF exposure, revealing critical windows of development for exposure effects. Zebrafish were exposed to 0%, 10%, 25%, 50% or 100% HEWAF for 24 h during one of the first six days post-fertilization (dpf). Survival rate, body mass, routine ṀO2, and PCrit were then measured at 7 dpf. Survival rate and especially body mass were both decreased based on both exposure concentration and day of crude oil exposure, with the largest decrease when HEWAF exposure occurred at 3 dpf. HEWAF effects on routine ṀO2 also differed depending upon exposure day. The largest effect occurred at 3 dpf, when ṀO2 increased significantly by ~60% from 10.1 ± 0.8 μmol O2/g/h compared to control group value of 6.3 ± 0.4 μmol O2/g/h. No significant effects of HEWAF exposure on any day were evident for PCrit (85 ± 4 mmHg in the control population). Overall, the main effects on body mass and ṀO2 measured at 7 dpf occurred when HEWAF exposures occurred at ~3 dpf. This critical window for metabolism in zebrafish larvae coincides with time of hatching, which may represent an especially vulnerable period in development.
Collapse
Affiliation(s)
- Karem N Vazquez Roman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
7
|
Mauduit F, Segarra A, Mandic M, Todgham AE, Baerwald MR, Schreier AD, Fangue NA, Connon RE. Understanding risks and consequences of pathogen infections on the physiological performance of outmigrating Chinook salmon. CONSERVATION PHYSIOLOGY 2022; 10:coab102. [PMID: 35492407 PMCID: PMC9040276 DOI: 10.1093/conphys/coab102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The greatest concentration of at-risk anadromous salmonids is found in California (USA)-the populations that have been negatively impacted by the degradation of freshwater ecosystems. While climate-driven environmental changes threaten salmonids directly, they also change the life cycle dynamics and geographic distribution of pathogens, their resulting host-pathogen interactions and potential for disease progression. Recent studies have established the correlation between pathogen detection and salmonid smolt mortality during their migration to the ocean. The objective of the present study was to screen for up to 47 pathogens in juvenile Chinook salmon (Oncorhynchus tshawytscha) that were held in cages at two key sites of the Sacramento River (CA, USA) and measure potential consequences on fish health. To do so, we used a combination of transcriptomic analysis, enzymatic assays for energy metabolism and hypoxia and thermal tolerance measures. Results revealed that fish were infected by two myxozoan parasites: Ceratonova shasta and Parvicapsula minibicornis within a 2-week deployment. Compared to the control fish maintained in our rearing facility, infected fish displayed reduced body mass, depleted hepatic glycogen stores and differential regulation of genes involved in the immune and general stress responses. This suggests that infected fish would have lower chances of migration success. In contrast, hypoxia and upper thermal tolerances were not affected by infection, suggesting that infection did not impair their capacity to cope with acute abiotic stressors tested in this study. An evaluation of long-term consequences of the observed reduced body mass and hepatic glycogen depletion is needed to establish a causal relationship between salmon parasitic infection and their migration success. This study highlights that to assess the potential sublethal effects of a stressor, or to determine a suitable management action for fish, studies need to consider a combination of endpoints from the molecular to the organismal level.
Collapse
Affiliation(s)
- F Mauduit
- Corresponding author: Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA.
| | - A Segarra
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA
| | - M Mandic
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - A E Todgham
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - M R Baerwald
- California Department of Water Resources, Division of Environmental Services, 95814 Sacramento, CA, USA
| | - A D Schreier
- Department of Animal Science, University of California Davis, 95616 Davis, CA, USA
| | - N A Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, 95616 Davis, CA, USA
| | - R E Connon
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, 95616 Davis, CA, USA
| |
Collapse
|
8
|
McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR, Nati JJH, Farrell AP. Intraspecific variation in tolerance of warming in fishes. JOURNAL OF FISH BIOLOGY 2021; 98:1536-1555. [PMID: 33216368 DOI: 10.1111/jfb.14620] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 05/12/2023]
Abstract
Intraspecific variation in key traits such as tolerance of warming can have profound effects on ecological and evolutionary processes, notably responses to climate change. The empirical evidence for three primary elements of intraspecific variation in tolerance of warming in fishes is reviewed. The first is purely mechanistic that tolerance varies across life stages and as fishes become mature. The limited evidence indicates strongly that this is the case, possibly because of universal physiological principles. The second is intraspecific variation that is because of phenotypic plasticity, also a mechanistic phenomenon that buffers individuals' sensitivity to negative impacts of global warming in their lifetime, or to some extent through epigenetic effects over successive generations. Although the evidence for plasticity in tolerance to warming is extensive, more work is required to understand underlying mechanisms and to reveal whether there are general patterns. The third element is intraspecific variation based on heritable genetic differences in tolerance, which underlies local adaptation and may define long-term adaptability of a species in the face of ongoing global change. There is clear evidence of local adaptation and some evidence of heritability of tolerance to warming, but the knowledge base is limited with detailed information for only a few model or emblematic species. There is also strong evidence of structured variation in tolerance of warming within species, which may have ecological and evolutionary significance irrespective of whether it reflects plasticity or adaptation. Although the overwhelming consensus is that having broader intraspecific variation in tolerance should reduce species vulnerability to impacts of global warming, there are no sufficient data on fishes to provide insights into particular mechanisms by which this may occur.
Collapse
Affiliation(s)
- David J McKenzie
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Yangfan Zhang
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, Plouzané, France
| | - Felipe R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, Araraquara, Brazil
| | - Julie J H Nati
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Allmon E, Serafin J, Chen S, Rodgers ML, Griffitt R, Bosker T, de Guise S, Sepúlveda MS. Effects of polycyclic aromatic hydrocarbons and abiotic stressors on Fundulus grandis cardiac transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142156. [PMID: 33207514 DOI: 10.1016/j.scitotenv.2020.142156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Following the 2010 Deepwater Horizon oil spill, extensive research has been conducted on the toxicity of oil and polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment. Many studies have identified the toxicological effects of PAHs in estuarine and marine fishes, however, only recently has work begun to identify the combinatorial effect of PAHs and abiotic environmental factors such as hypoxia, salinity, and temperature. This study aims to characterize the combined effects of abiotic stressors and PAH exposure on the cardiac transcriptomes of developing Fundulus grandis larvae. In this study, F. grandis larvae were exposed to varying environmental conditions (dissolved oxygen (DO) 2, 6 ppm; temperature 20, 30 °C; and salinity 3, 30 ppt) as well as to a single concentration of high energy water accommodated fraction (HEWAF) (∑PAHs 15 ppb). Whole larvae were sampled for RNA and transcriptional changes were quantified using RNA-Seq followed by qPCR for a set of target genes. Analysis revealed that exposure to oil and abiotic stressors impacts signaling pathways associated with cardiovascular function. Specifically, combined exposures appear to reduce development of the systemic vasculature as well as strongly impact the cardiac musculature through cardiomyocyte proliferation resulting in inhibited cardiac function and modulated blood pressure maintenance. Results of this study provide a holistic view of impacts of PAHs and common environmental stressors on the cardiac system in early life stage estuarine species. To our knowledge, this study is one of the first to simultaneously manipulate oil exposure with abiotic factors (DO, salinity, temperature) and the first to analyze cardiac transcriptional responses under these co-exposures.
Collapse
Affiliation(s)
- Elizabeth Allmon
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Jennifer Serafin
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Shuai Chen
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Maria L Rodgers
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Robert Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Thijs Bosker
- Leiden University College and Institute of Environmental Sciences, Leiden University, Anna van Buerenplein 301, 2595 DG The Hague, the Netherlands
| | - Sylvain de Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, Point61 North Eagleville Road, Storrs, CT 06269, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
10
|
Khursigara AJ, Johansen JL, Esbaugh AJ. The effects of acute crude oil exposure on growth and competition in red drum, Sciaenops ocellatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141804. [PMID: 32882563 DOI: 10.1016/j.scitotenv.2020.141804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Crude oil is a well-known toxicant that reduces cardiorespiratory performance in acutely exposed fishes. While toxic effects can manifest in death in severe cases, the ecological consequences of sub-lethal exposure remain uncertain. This study investigated the impact of crude oil exposure on long-term social competition, growth, and metabolic performance in a coastal species, the red drum (Sciaenops ocellatus). Fish were acutely exposed to either control or one of two environmentally relevant oil concentrations and reared together in groups of 15 (5 from each exposure concentration) for eight weeks under resource-rich or resource-limited scenarios. Relative to controls, a 41.3% and 45.9% reduction in the specific growth rate was-observed following exposure to 25.3 and 53.4 μg l-1 ΣPAH respectively under resource-limited conditions. These fish were subsequently sampled for metabolic performance and common indicators of social subordination including reduced glucocorticoid receptors in the gill and caudal fin damage. The reduction in specific growth rate coincided with a 15.1% and 17.3% reduction in standard metabolic rate; however, maximum metabolic rate and aerobic scope were unaffected. Additionally, measures of social subordination showed no differences between oil-exposed and control fish. These results reinforce the hypothesis that acute oil exposure can have prolonged sub-lethal effects that compromise the ability of exposed individuals to perform effectively in their environment, including gathering and/or metabolizing food. Furthermore, this work highlights the premise that oil spills can be more detrimental in already at-risk ecosystems.
Collapse
Affiliation(s)
- Alexis J Khursigara
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX, United States of America.
| | - Jacob L Johansen
- University of Hawaii at Manoa, Hawaii Institute of Marine Biology, Kaneohe, HI, United States of America
| | - Andrew J Esbaugh
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX, United States of America
| |
Collapse
|
11
|
Mearns AJ, Morrison AM, Arthur C, Rutherford N, Bissell M, Rempel-Hester MA. Effects of pollution on marine organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1510-1532. [PMID: 32671886 DOI: 10.1002/wer.1400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
This review covers selected 2019 articles on the biological effects of pollutants, including human physical disturbances, on marine and estuarine plants, animals, ecosystems, and habitats. The review, based largely on journal articles, covers field, and laboratory measurement activities (bioaccumulation of contaminants, field assessment surveys, toxicity testing, and biomarkers) as well as pollution issues of current interest including endocrine disrupters, emerging contaminants, wastewater discharges, marine debris, dredging, and disposal. Special emphasis is placed on effects of oil spills and marine debris due largely to the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico and proliferation of data on the assimilation and effects of marine debris microparticulates. Several topical areas reviewed in the past (e.g., mass mortalities ocean acidification) were dropped this year. The focus of this review is on effects, not on pollutant sources, chemistry, fate, or transport. There is considerable overlap across subject areas (e.g., some bioaccumulation data may be appeared in other topical categories such as effects of wastewater discharges, or biomarker studies appearing in oil toxicity literature). Therefore, we strongly urge readers to use keyword searching of the text and references to locate related but distributed information. Although nearly 400 papers are cited, these now represent a fraction of the literature on these subjects. Use this review mainly as a starting point. And please consult the original papers before citing them.
Collapse
Affiliation(s)
- Alan J Mearns
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | | | | | - Nicolle Rutherford
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | - Matt Bissell
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | | |
Collapse
|
12
|
Avey SR, Kennedy CJ, Farrell AP, Gillis TE, Alderman SL. Effects of diluted bitumen exposure on Atlantic salmon smolts: Molecular and metabolic responses in relation to swimming performance. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105423. [PMID: 32006756 DOI: 10.1016/j.aquatox.2020.105423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Canada's oil sands industry continues to expand and the volume of diluted bitumen (dilbit) transported across North America is increasing, adding to spill risk and environmental contamination. Dilbit exposure is known to cause adverse effects in fish, but linking molecular and cellular changes with ecologically-relevant individual performance metrics is needed to better understand the potential consequences of a dilbit spill into the aquatic environment. Therefore, this study examined the effects of dilbit exposure on subcellular responses in cardiac and skeletal muscle in relation to swimming performance in a migratory fish species at risk of exposure, Atlantic salmon. Smolts were exposed subchronically to environmentally relevant concentrations of the water-soluble fraction of dilbit (WSFd) for 24 d, and then a subset of exposed fish underwent a depuration period of 7 or 14 d, for a total of 3 experimental time points. At each time point, repeat swimming performance was assessed using sequential critical swimming speed tests (Ucrit) separated by a 24 h rest period, and then several tissues were collected to determine biotransformation enzyme activation, energetic responses, and gene expression changes. Ucrit was unaffected in fish exposed to 67.9 μg/L total initial polycyclic aromatic compounds (PAC), but fish showed a decreased reliance on lipid metabolism for adenosine triphosphate (ATP) in the heart that was maintained through 7 d depuration. In contrast, Ucrit increased in fish exposed to 9.65 μg/L PAC, corresponding to an increased reliance on anaerobic metabolic pathways in cardiac and red skeletal muscle, with partial recovery after 7 d depuration. As expected, at both concentrations WSFd hepatic cyp 1A-mediated biotransformation reactions increased, as measured by EROD activity, which remained elevated for 7 d but not after 14 d depuration. Transcript abundance of cyp1a was also increased in muscle tissue and recovered by 14 d depuration. The expression of other stress-related genes increased in white muscle of dilbit-exposed fish, but were largely unchanged in cardiac and red muscle. The transcriptional profile of cardiac tissue was compared to that of sockeye salmon similarly exposed to WSFd in a previous experiment, and is provided in supplemental text. Combined, these results demonstrate that dilbit exposure alters gene expression and enzyme activities related to xenobiotic exposure, cellular stress, and muscle energetics in juvenile Atlantic salmon without impairing swimming performance, and that most of these changes are recoverable within 14 d depuration.
Collapse
Affiliation(s)
- Sean R Avey
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sarah L Alderman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
13
|
Alderman SL, Dilkumar CM, Avey SR, Farrell AP, Kennedy CJ, Gillis TE. Effects of diluted bitumen exposure and recovery on the seawater acclimation response of Atlantic salmon smolts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105419. [PMID: 32014643 DOI: 10.1016/j.aquatox.2020.105419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Petrogenic chemicals are common and widespread contaminants in the aquatic environment. In Canada, increased extraction of bitumen from the oil sands and transport of the major crude oil export product, diluted bitumen (dilbit), amplifies the risk of a spill and contamination of Canadian waterways. Fish exposed to sublethal concentrations of crude oil can experience a variety of adverse physiological effects including osmoregulatory dysfunction. As regulation of water and ion balance is crucial during the seawater transition of anadromous fish, the hypothesis that dilbit impairs seawater acclimation in Atlantic salmon smolts (a fish at risk of exposure in Canada) was tested. Smolts were exposed for 24 d to the water-soluble fraction of dilbit in freshwater, and then transferred directly to seawater or allowed a 1 wk depuration period in uncontaminated freshwater prior to seawater transfer. The seawater acclimation response was quantified at 1 and 7 d post-transfer using established hematological, tissue, and molecular endpoints including gill Na+/K+-ATPase gene expression (nka). All smolts, irrespective of dilbit exposure, increased serum Na+ concentrations and osmolality within 1 d of seawater transfer. The recovery of these parameters to freshwater values by 7 d post-transfer was likely driven by the increased expression and activity of Na+/K+-ATPase in the gill. Histopathological changes in the gill were not observed; however, CYP1A-like immunoreactivity was detected in the pillar cells of gill lamellae of fish exposed to 67.9 μg/L PAC. Concentration-specific changes in kidney expression of a transmembrane water channel, aquaporin 3, occurred during seawater acclimation, but were resolved with 1 wk of depuration and were not associated with histopathological changes. In conclusion, apart from a robust CYP response in the gill, dilbit exposure did not greatly impact common measures of seawater acclimation, suggesting that significant osmoregulatory dysfunction is unlikely to occur if Atlantic salmon smolts are exposed sub-chronically to dilbit.
Collapse
Affiliation(s)
- Sarah L Alderman
- Department of Integrative Biology, University of Guelph, Ontario, Canada.
| | | | - Sean R Avey
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, British Columbia, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| |
Collapse
|