1
|
Zhang Y, Huang Y, Li Y, Zhang Z, Zuo Q, Zheng Y, Zhang Z. Influence of ZnO morphology on the capability of portable paper-based electrospray ionization mass spectrometry to determine therapeutic drugs in complex matrices. Drug Test Anal 2024; 16:1127-1136. [PMID: 38192164 DOI: 10.1002/dta.3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Adsorbents play a significant role in enhancing the analytical sensitivity of target analytes in complex samples by mitigating matrix effects. In our recent report, ZnO stood out among various adsorbents to determine target therapeutic drugs in complex biological matrices when applied for portable paper-based electrospray ionization mass spectrometry (PPESI-MS). However, the influence of the morphology of ZnO on the performance of PPESI-MS is elusive. Herein, different morphologies of ZnO particles were prepared via co-precipitation or ultrasonic methods, and their capability to determine different therapeutic drugs in serum were systemically investigated. The results demonstrated that flower-shaped ZnO gave a superior capacity, and its analysis sensitivity was 2.9-12.8-fold higher than those achieved with other ZnO morphologies. Further characterization revealed that the unique performance of flower-shaped ZnO was closely associated with its favorable desorption behavior to drugs, small spray plume, and few spray emitters at the tip of coated paper substrate. To illustrate the potential of flower-shaped ZnO, its coated paper was used as a substrate for the determination of various drugs in complex matrices such as serum, and a limit of detection as low as 2 pg mL-1 was achieved. The corresponding recoveries ranged from 93.2% to 107.2%. The developed protocol is promising in high-sensitivity analysis of target drugs in complex sample matrices.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, China
| | - Yajie Huang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, China
| | - Yun Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, China
| | - Zhiming Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, China
| | - Qianqian Zuo
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, China
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, China
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, China
| |
Collapse
|
2
|
Bernegossi AC, Castro GB, Felipe MC, de Souza TTC, Macêdo WV, Gorni GR, Corbi JJ. Anaerobic treatment removing tetrabromobisphenol A and biota safety: How do tropical aquatic species respond to effluent toxicity over short- and long-term exposures? WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11065. [PMID: 38895814 DOI: 10.1002/wer.11065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 μg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juliano José Corbi
- Universidade de São Paulo Escola de Engenharia de São Carlos, São Carlos, Brazil
| |
Collapse
|
3
|
Singh A, Majumder A, Saidulu D, Bhattacharya A, Bhatnagar A, Gupta AK. Oxidative treatment of micropollutants present in wastewater: A special emphasis on transformation products, their toxicity, detection, and field-scale investigations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120339. [PMID: 38401495 DOI: 10.1016/j.jenvman.2024.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Micropollutants have become ubiquitous in aqueous environments due to the increased use of pharmaceuticals, personal care products, pesticides, and other compounds. In this review, the removal of micropollutants from aqueous matrices using various advanced oxidation processes (AOPs), such as photocatalysis, electrocatalysis, sulfate radical-based AOPs, ozonation, and Fenton-based processes has been comprehensively discussed. Most of the compounds were successfully degraded with an efficiency of more than 90%, resulting in the formation of transformation products (TPs). In this respect, degradation pathways with multiple mechanisms, including decarboxylation, hydroxylation, and halogenation, have been illustrated. Various techniques for the analysis of micropollutants and their TPs have been discussed. Additionally, the ecotoxicity posed by these TPs was determined using the toxicity estimation software tool (T.E.S.T.). Finally, the performance and cost-effectiveness of the AOPs at the pilot scale have been reviewed. The current review will help in understanding the treatment efficacy of different AOPs, degradation pathways, and ecotoxicity of TPs so formed.
Collapse
Affiliation(s)
- Adarsh Singh
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Animesh Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
4
|
Miao B, Yakubu S, Zhu Q, Issaka E, Zhang Y, Adams M. A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules 2023; 28:2505. [PMID: 36985477 PMCID: PMC10054480 DOI: 10.3390/molecules28062505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a known endocrine disruptor employed in a range of consumer products and has been predominantly found in different environments through industrial processes and in human samples. In this review, we aimed to summarize published scientific evidence on human biomonitoring, toxic effects and mode of action of TBBPA in humans. Interestingly, an overview of various pretreatment methods, emerging detection methods, and treatment methods was elucidated. Studies on exposure routes in humans, a combination of detection methods, adsorbent-based treatments and degradation of TBBPA are in the preliminary phase and have several limitations. Therefore, in-depth studies on these subjects should be considered to enhance the accurate body load of non-invasive matrix, external exposure levels, optimal design of combined detection techniques, and degrading technology of TBBPA. Overall, this review will improve the scientific comprehension of TBBPA in humans as well as the environment, and the breakthrough for treating waste products containing TBBPA.
Collapse
Affiliation(s)
- Baoji Miao
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Salome Yakubu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qingsong Zhu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Eliasu Issaka
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yonghui Zhang
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mabruk Adams
- School of Civil Engineering, National University of Ireland, H91 TK33 Galway, Ireland
| |
Collapse
|
5
|
de Souza TTC, Castro GB, Bernegossi AC, Felipe MC, Pinheiro FR, Colombo-Corbi V, Girolli DA, Gorni GR, Corbi JJ. Pristina longiseta reproduction test: chronic exposure to environmental contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23578-23588. [PMID: 36327072 DOI: 10.1007/s11356-022-23861-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Aquatic worms are considered a suitable group to evaluate the effects of contaminants on the environment, although one of the main challenges is to use the species of local occurrence. Recently, Pristina longiseta was suggested to be used in acute bioassays. In this context, this study aimed to establish a chronic exposure for ecotoxicological bioassays using the cosmopolitan species of occurrence in Brazilian freshwater P. longiseta. Firstly, we tested three exposure times (4, 7, and 10 days) under the presence or absence of aeration for reproduction outputs. After determining the best configuration (7 days without aeration), we assessed the effects of the chronic exposures using the standardized reference substance potassium chloride (KCl), the antibiotic sulfamethoxazole (SMX), the flame retardant tetrabromobisphenol A (TBBPA), and the sugarcane vinasse. Our results showed suitability for applying the chronic exposure using P. longiseta and indicated the sensitivity of the offspring to KCl (EC50-7d = 0.51 g/L). Sulfamethoxazole and TBBPA caused a significant decrease in the offspring of P. longiseta (EC50-7d = 59.9 µg/L and < 62.5 µg/L, respectively). Sugarcane vinasse showed high toxicity for the species, and 4.26% of vinasse was calculated as EC50-7d. Therefore, the described protocol was successfully applied as an ecotoxicological bioassay to evaluate the effects of environmental contaminants on the reproduction rate of the freshwater worm P. longiseta.
Collapse
Affiliation(s)
- Tallyson Tavares Cunha de Souza
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil.
| | - Gleyson Borges Castro
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Aline Christine Bernegossi
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Mayara Caroline Felipe
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Fernanda Rodrigues Pinheiro
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | | | | | - Juliano José Corbi
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
6
|
Macêdo WV, Poulsen JS, Zaiat M, Nielsen JL. Proteogenomics identification of TBBPA degraders in anaerobic bioreactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119786. [PMID: 35872283 DOI: 10.1016/j.envpol.2022.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is the most used flame retardant worldwide and has become a threat to aquatic ecosystems. Previous research into the degradation of this micropollutant in anaerobic bioreactors has suggested several identities of putative TBBPA degraders. However, the organisms actively degrading TBBPA under in situ conditions have so far not been identified. Protein-stable isotope probing (protein-SIP) has become a cutting-edge technique in microbial ecology for enabling the link between identity and function under in situ conditions. Therefore, it was hypothesized that combining protein-based stable isotope probing with metagenomics could be used to identify and provide genomic insight into the TBBPA-degrading organisms. The identified 13C-labelled peptides were found to belong to organisms affiliated to Phytobacter, Clostridium, Sporolactobacillus, and Klebsilla genera. The functional classification of identified labelled peptides revealed that TBBPA is not only transformed by cometabolic reactions, but also assimilated into the biomass. By application of the proteogenomics with labelled micropollutants (protein-SIP) and metagenome-assembled genomes, it was possible to extend the current perspective of the diversity of TBBPA degraders in wastewater and predict putative TBBPA degradation pathways. The study provides a link to the active TBBPA degraders and which organisms to favor for optimized biodegradation.
Collapse
Affiliation(s)
- Williane Vieira Macêdo
- Laboratory of Biological Processes, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, Zip Code 13563-120, São Carlos, SP, Brazil; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Jan Struckmann Poulsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Marcelo Zaiat
- Laboratory of Biological Processes, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, Zip Code 13563-120, São Carlos, SP, Brazil
| | - Jeppe Lund Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark.
| |
Collapse
|
7
|
Metcalfe CD, Bayen S, Desrosiers M, Muñoz G, Sauvé S, Yargeau V. Methods for the analysis of endocrine disrupting chemicals in selected environmental matrixes. ENVIRONMENTAL RESEARCH 2022; 206:112616. [PMID: 34953884 DOI: 10.1016/j.envres.2021.112616] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are heterogenous in structure, chemical and physical properties, and their capacity to partition into various environmental matrixes. In many cases, these chemicals can disrupt the endocrine systems of vertebrate and invertebrate organisms when present at very low concentrations. Therefore, sensitive and varied analytical methods are required to detect these compounds in the environment. This review summarizes the analytical methods and instruments that are most used to monitor for EDCs in selected environmental matrixes. Only those matrixes for which there is a clear link between exposures and endocrine effects are included in this review. Also discussed are emerging methods for sample preparation and advanced analytical instruments that provide greater selectivity and sensitivity.
Collapse
Affiliation(s)
| | - S Bayen
- McGill University, Montréal, QC, Canada
| | - M Desrosiers
- Ministère du Développement durable, de l'Environnement et de la Lutte Contre les Changements Climatiques du Québec, Québec City, QC, Canada
| | - G Muñoz
- Université de Montréal, Montréal, QC, Canada
| | - S Sauvé
- Université de Montréal, Montréal, QC, Canada
| | - V Yargeau
- McGill University, Montréal, QC, Canada
| |
Collapse
|
8
|
Macêdo WV, Poulsen JS, Oliveira GHD, Nielsen JL, Zaiat M. Tetrabromobisphenol A (TBBPA) biodegradation in acidogenic systems: One step further on where and who. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152016. [PMID: 34856259 DOI: 10.1016/j.scitotenv.2021.152016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of brominated flame retardants such as Tetrabromobisphenol A (TBBPA) in water bodies poses a serious threat to aquatic ecosystems. Degradation of TBBPA in wastewater has successfully been demonstrated to occur through anaerobic digestion (AD), although the involved microorganisms and the conditions favouring the conversion remains unclear. In this study, it was observed that bioconversion of TBBPA did not occur during the hydrolytic stage of the AD, but during the strictly fermentative stage. Bioconversion occurred in hydrolytic-acidogenic as well as in strictly acidogenic continuous bioreactors. This indicates that the microorganisms that degrade TBBPA benefit from the electron flux taking place during glycolysis and further transformations into short-chain fatty acids. The degradation kinetics of TBBPA was inversely proportional to the complexity of the wastewater as the apparent kinetics constants were 2.11, 1.86, and 0.52 h-1·gVSS-1 for glucose, starch, and domestic sewage as carbon source, respectively. Additionally, the micropollutant loading rate relative to the overall organic loading rate is of major importance during the investigation of cometabolic transformations. The long-term exposure to TBBPA at environmentally realistic concentrations did not cause any major changes in the microbiome composition. Multivariate statistical analysis of the evolvement of the microbiome throughout the incubation suggested that Enterobacter spp. and Clostridium spp. are the key players in TBBPA degradation. Finally, a batch enrichment was conducted, which showed that concentrations of 0.5 mg·L-1 or higher are detrimental to Clostridium spp., even though these organisms are putative TBBPA degraders. The Clostridium genus was outcompeted by the Enterobacter and Klebsiella genera, hereby highlighting the effect of unrealistic concentrations frequently used in culture-dependent studies on the microbial community composition.
Collapse
Affiliation(s)
- Williane Vieira Macêdo
- Laboratory of Biological Processes, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, SP, Brazil; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark.
| | - Jan Struckmann Poulsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Guilherme Henrique Duarte Oliveira
- Laboratory of Biological Processes, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, SP, Brazil
| | - Jeppe Lund Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Marcelo Zaiat
- Laboratory of Biological Processes, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, SP, Brazil
| |
Collapse
|
9
|
Macêdo WV, Duarte Oliveira GH, Zaiat M. Tetrabromobisphenol A (TBBPA) anaerobic biodegradation occurs during acidogenesis. CHEMOSPHERE 2021; 282:130995. [PMID: 34116313 DOI: 10.1016/j.chemosphere.2021.130995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/19/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
This is the first study to bring evidence on the anaerobic biodegradation of TBBPA occurring during acidogenesis in domestic sewage at environmentally relevant concentrations by complex microbial communities. This was accomplished by continuously operating two anaerobic structured bed reactors (ASTBR) for over 100 days under acidogenic (Acidogenic Reactor, AR) and multistep methanogenic (Methanogenic Reactor, MR) conditions. In the AR, the temporal carbohydrates consumption and the acetic acid production were strongly correlated with TBBPA removal by the Pearson's test. The spatial concentration of TBBPA and carbohydrates along the MR and the kinetic degradation profiles corroborate the AR results. It is hypothesized that TBBPA biodegradation in the studied conditions occurs during acidogenesis via the cometabolism supported by non-specific enzymes and the metabolism (dehalorespiration) established by electrons donors such as H2, which are both produced during the macrocomponents breakdown in the early stages of the anaerobic digestion. The TBBPA mass balance showed that approximately 86.8 ± 0.05% and 97 ± 0.01% of the removed TBBPA was biodegraded in the AR and MR, respectively. Furthermore, TBBPA biodegradation went further than reductive debromination as total phenols were detected in the reactors' effluent.
Collapse
Affiliation(s)
- Williane Vieira Macêdo
- Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, Zip Code, 13563-120, São Carlos, SP, Brazil.
| | - Guilherme Henrique Duarte Oliveira
- Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, Zip Code, 13563-120, São Carlos, SP, Brazil.
| | - Marcelo Zaiat
- Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, Zip Code, 13563-120, São Carlos, SP, Brazil.
| |
Collapse
|
10
|
Engasheva ES, Dorozhkin VI. Determination of the timing of slaughter of sheep after the use of the drug MONIZEN ® forte. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213700042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The article is devoted to the results of determining the residual amounts of active ingredients of the medicinal product for veterinary use - MONISEN® forte - in the organs and tissues of sheep. MONISEN® forte is a solution for oral and parenteral use, the active ingredients include praziquantel and ivermectin. MONIZEN® forte is used for prophylactic and therapeutic purposes in small ruminants with cestodoses, nematodes of the lungs and gastrointestinal tract, trematodoses, estrosis, psoroptosis, chorioptosis, sarcoptosis, ixodidosis, sifunculatosis, and also melicophagoses, arachinoses, and biliary tract. Carrying out this study is mandatory for the introduction of the drug into wide industrial practice. As a result of the studies, the terms of slaughter of small ruminants after the use of the drug Monizen® forte were established. It is advisable to slaughter sheep for meat 35 days after the last use of the drug.
Collapse
|