1
|
Genuíno MVH, Bessa AFDO, da Silva RT, Câmara GMDS, Panetto JCDC, Machado MA, Caetano SL, Ramos SB, Munari DP, Sonstegard T, Barbosa da Silva MVG, Buzanskas ME. Selection signatures detection in Nelore, Gir, and Red Sindhi cattle breeds. Mamm Genome 2025:10.1007/s00335-025-10125-z. [PMID: 40175575 DOI: 10.1007/s00335-025-10125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Technological advances in genomics and bioinformatics made it possible to study the genetic structure of breeds and understand genome changes caused by selection over generations. Our objective was to evaluate selection signatures (SS) in Nelore, Gir, and Red Sindhi cattle from Brazil and the Asian continent to identify divergent variants due to the history of formation and selection of populations, with a focus on the SS of animals from Brazil. Extended haplotype homozygosities between populations (XP-EHH), the ratio of site-specific extended haplotype homozygosity between populations (Rsb), and the allelic fixation index (Fst) were used to detect SS. Considering a window size of 50-kb, a non-sliding window approach was used to define SS regions. A total of 62, 57, and 72 genes were co-located within SS regions for Nelore, Gir, and Red Sindhi, respectively, and used to perform functional analyses per breed. Most genes were associated with productive and reproductive traits, while others were related to thermotolerance, the immune system, temperament, and coat color. The identified SS demonstrate how animal breeding programs shape the genetic makeup of these breeds to meet production system requirements, given that animals from Brazil and the Asian continent have undergone different selection processes. The identification of genes related to thermotolerance, temperament, and the immune system suggests specific alleles have enabled animals to adapt to environmental conditions and selection criteria in Brazil. Understanding SS can support breeding strategies for Nelore, Gir, and Red Sindhi cattle, contributing to enhanced resistance, adaptation, and productivity to meet food production demands.
Collapse
Affiliation(s)
| | | | - Roney Teixeira da Silva
- School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | | | | | | | - Sabrina Luzia Caetano
- School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Salvador Boccaletti Ramos
- School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Danísio Prado Munari
- School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Tad Sonstegard
- Acceligen, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | | | - Marcos Eli Buzanskas
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil.
| |
Collapse
|
2
|
Xu S, Akhatayeva Z, Liu J, Feng X, Yu Y, Badaoui B, Esmailizadeh A, Kantanen J, Amills M, Lenstra JA, Johansson AM, Coltman DW, Liu GE, Curik I, Orozco-terWengel P, Paiva SR, Zinovieva NA, Zhang L, Yang J, Liu Z, Wang Y, Yu Y, Li M. Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations. SCIENCE CHINA. LIFE SCIENCES 2025; 68:934-960. [PMID: 39609363 DOI: 10.1007/s11427-024-2744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Ruminant livestock provide a rich source of products, such as meat, milk, and wool, and play a critical role in global food security and nutrition. Over the past few decades, genomic studies of ruminant livestock have provided valuable insights into their domestication and the genetic basis of economically important traits, facilitating the breeding of elite varieties. In this review, we summarize the main advancements for domestic ruminants in reference genome assemblies, population genomics, and the identification of functional genes or variants for phenotypic traits. These traits include meat and carcass quality, reproduction, milk production, feed efficiency, wool and cashmere yield, horn development, tail type, coat color, environmental adaptation, and disease resistance. Functional genomic research is entering a new era with the advancements of graphical pangenomics and telomere-to-telomere (T2T) gap-free genome assembly. These advancements promise to improve our understanding of domestication and the molecular mechanisms underlying economically important traits in ruminant livestock. Finally, we provide new perspectives and future directions for genomic research on ruminant genomes. We suggest how ever-increasing multiomics datasets will facilitate future studies and molecular breeding in livestock, including the potential to uncover novel genetic mechanisms underlying phenotypic traits, to enable more accurate genomic prediction models, and to accelerate genetic improvement programs.
Collapse
Affiliation(s)
- Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhanerke Akhatayeva
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueyan Feng
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, 10106, Morocco
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, FI-31600, Finland
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, 10000, Croatia
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, 7400, Hungary
| | | | - Samuel R Paiva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Genetics, Brasília, Federal District, 70770917, Brazil
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, 142132, Russian Federation
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yachun Wang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Menghua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
3
|
Smit A, Mulandane FC, Wójcik SH, Malabwa C, Sili G, Mandara S, Pineau KP, Lecollinet S, Exbrayat A, Rodrigues V, Vineer HR, Dlamkile Z, Stoltsz WH, Meyer DF, Morar-Leather D, Makepeace BL, Neves L. Ehrlichia ruminantium (Ehrlichiaceae) infection rates and genotyping in Amblyomma species from southern Africa. Ticks Tick Borne Dis 2025; 16:102462. [PMID: 40107067 DOI: 10.1016/j.ttbdis.2025.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/13/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
Ticks are haematophagous ectoparasites of domestic and wild animals. With their vast geographical distribution and aptitude as vectors of a large variety of pathogens, they are ranked amongst the top two arthropod families of veterinary and medical concern. Amblyomma, the third largest genus in the Ixodidae, is important in southern Africa due to its vector competence for Ehrlichia ruminantium and other pathogens. Ehrlichia ruminantium, the causative agent of heartwater, a potentially lethal disease in ruminants, is classified as a notifiable disease by the World Organisation for Animal Health. Amblyomma species ticks were collected in five southern African countries from livestock and wildlife. They were morphologically identified to species level with taxonomic keys, and species identity was confirmed with molecular assays. Preliminary screening for E. ruminantium was conducted by targeting the pCS20 gene fragment. Genotyping of 39 E. ruminantium positives was obtained using Ampliseq technology. In total, 7,734 Amblyomma ticks were collected and identified as belonging to four species: Amblyomma eburneum, Amblyomma hebraeum, Amblyomma pomposum and Amblyomma variegatum. Ehrlichia ruminantium infection rates per country ranged from 7.1 % to 34.1 %. The genotyping analysis indicated the clustering of our sequences with strains Gardel, Welgevonden, Um Banein, Springbokfontein 4 and 2, Kwanyanga, and Blaauwkrans. The Ampliseq analysis was not effective in differentiating between strains found in southern Africa. This large study documents the genetic diversity and prevalence of E. ruminantium in ticks across southern Africa, highlighting implications for disease control and vaccine development.
Collapse
Affiliation(s)
- Andeliza Smit
- Tick Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
| | | | - Stephane H Wójcik
- Tick Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | | - Gourgelia Sili
- Department of Basic Science, Faculty of Veterinary Medicine, University Jose Eduardo dos Santos, Huambo, Angola
| | - Stephen Mandara
- Department of Animal Production Sciences, Marondera University of Agricultural Sciences and Technology, Marondera, Zimbabwe
| | - Kaïssa Plaisir Pineau
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe F-97170, France; ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, France
| | - Sylvie Lecollinet
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe F-97170, France; ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, France
| | - Antoni Exbrayat
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, France
| | - Valérie Rodrigues
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe F-97170, France; ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, France
| | - Hannah Rose Vineer
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Zinathi Dlamkile
- Tick Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Wilhelm H Stoltsz
- Tick Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Damien F Meyer
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe F-97170, France; ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, France.
| | - Darshana Morar-Leather
- Tick Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Benjamin L Makepeace
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luis Neves
- Tick Research Group, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa; Biotechnology Centre, Eduardo Mondlane University, Maputo, Mozambique
| |
Collapse
|
4
|
Nayak SS, Panigrahi M, Dutt T. Genome-wide insights into selection signatures for transcription factor binding sites in cattle ROH regions. Mamm Genome 2025:10.1007/s00335-025-10113-3. [PMID: 39984753 DOI: 10.1007/s00335-025-10113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Runs of Homozygosity (ROH) regions are characterized by homozygous genotypes inherited from a common ancestor, often arising from positive selection for adaptive traits. These homozygous regions may arise due to inbreeding, selective breeding, or demographic events like population bottlenecks. Transcription factor binding sites (TFBS) are short, specific DNA sequences where transcription factors bind to regulate the expression of nearby genes. These sites are essential for controlling biological processes such as development, metabolism, and immune response. TFBS act as key regulatory elements, and their variations can influence gene activity, contributing to phenotypic differences and adaptation. ROH often encompass regulatory elements, including TFBS, suggesting a functional connection between these genomic features. This study investigates TFBS within ROH regions in 297 animals of six cattle breeds: Gir (48), Tharparkar (72), Vrindavani (72), Frieswal (14), Holstein Friesian (63), and Jersey (28). Utilizing genotyped data of these animals, we identified genomic regions enriched with ROH. We focused on the central 10 kb regions of 50 ROH regions common across all breeds. Within these regions, 450 motifs were examined, identifying 168 transcription factors potentially binding to these regions. The results emphasize the role of TFBS in gene regulation and adaptive processes. By linking ROH patterns to regulatory elements, this study enhances our understanding of the genetic architecture underlying phenotypic traits and their adaptation to environmental pressures. These findings provide insights into the molecular mechanisms influencing genetic variation in cattle populations.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| |
Collapse
|
5
|
Azam S, Sahu A, Pandey NK, Neupane M, Van Tassell CP, Rosen BD, Gandham RK, Rath SN, Majumdar SS. Advancing the Indian cattle pangenome: characterizing non-reference sequences in Bos indicus. J Anim Sci Biotechnol 2025; 16:21. [PMID: 39915889 PMCID: PMC11804092 DOI: 10.1186/s40104-024-01133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND India harbors the world's largest cattle population, encompassing over 50 distinct Bos indicus breeds. This rich genetic diversity underscores the inadequacy of a single reference genome to fully capture the genomic landscape of Indian cattle. To comprehensively characterize the genomic variation within Bos indicus and, specifically, dairy breeds, we aim to identify non-reference sequences and construct a comprehensive pangenome. RESULTS Five representative genomes of prominent dairy breeds, including Gir, Kankrej, Tharparkar, Sahiwal, and Red Sindhi, were sequenced using 10X Genomics 'linked-read' technology. Assemblies generated from these linked-reads ranged from 2.70 Gb to 2.77 Gb, comparable to the Bos indicus Brahman reference genome. A pangenome of Bos indicus cattle was constructed by comparing the newly assembled genomes with the reference using alignment and graph-based methods, revealing 8 Mb and 17.7 Mb of novel sequence respectively. A confident set of 6,844 Non-reference Unique Insertions (NUIs) spanning 7.57 Mb was identified through both methods, representing the pangenome of Indian Bos indicus breeds. Comparative analysis with previously published pangenomes unveiled 2.8 Mb (37%) commonality with the Chinese indicine pangenome and only 1% commonality with the Bos taurus pangenome. Among these, 2,312 NUIs encompassing ~ 2 Mb, were commonly found in 98 samples of the 5 breeds and designated as Bos indicus Common Insertions (BICIs) in the population. Furthermore, 926 BICIs were identified within 682 protein-coding genes, 54 long non-coding RNAs (lncRNA), and 18 pseudogenes. These protein-coding genes were enriched for functions such as chemical synaptic transmission, cell junction organization, cell-cell adhesion, and cell morphogenesis. The protein-coding genes were found in various prominent quantitative trait locus (QTL) regions, suggesting potential roles of BICIs in traits related to milk production, reproduction, exterior, health, meat, and carcass. Notably, 63.21% of the bases within the BICIs call set contained interspersed repeats, predominantly Long Interspersed Nuclear Elements (LINEs). Additionally, 70.28% of BICIs are shared with other domesticated and wild species, highlighting their evolutionary significance. CONCLUSIONS This is the first report unveiling a robust set of NUIs defining the pangenome of Bos indicus breeds of India. The analyses contribute valuable insights into the genomic landscape of desi cattle breeds.
Collapse
Affiliation(s)
- Sarwar Azam
- National Institute of Animal Biotechnology, Hyderabad, India
- Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Abhisek Sahu
- National Institute of Animal Biotechnology, Hyderabad, India
| | | | - Mahesh Neupane
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA.
| | - Ravi Kumar Gandham
- National Institute of Animal Biotechnology, Hyderabad, India.
- Animal Biotechnology, ICAR-NBAGR, Karnal, Haryana, India.
| | | | | |
Collapse
|
6
|
Sarath Kumar T, Singh S, Ganguly I, Dixit SP. Mitogenome diversity and evolution of Bos indicus cattle in India. Gene 2025; 936:149096. [PMID: 39547362 DOI: 10.1016/j.gene.2024.149096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Mitochondrial DNA has been widely utilized as a valuable tool for studying the evolutionary and demographic history both within and between different livestock speciesover the past three decades. Evaluation of the evolutionary history, population structure and genetic diversity is imperative for their productivity, ecosystem services, and breeding and conservation strategies for effective management. The present study included complete mitogenome of 78 cattle, out of which 33 samples belonged to 6 Bos indicus breeds of India. Mitogenome diversity of zebu cattle within population (π- nucleotide, haplotype diversity) was estimated using DnaSP v6 software and between populations (FST ratio, AMOVA analysis) was estimated using Arlequin 3.5.2.2. Ladakhi breed showed maximum (π = 0.00645) while Gir (π = 0.00042) and Tharparkar (π = 0.00053) showed minimum diversity. The diversity between the breeds of Indian cattle was 16.34 %. There were 13 and 14 haplotypes in each of I1 and I2 halogroups respectively suggesting that the divergence of Bos indicus haplotypes likely occurred within the Indian subcontinent. The Bos indicus and Bos taurus cattle lineages separated approximately 0.75 million years ago. The divergence pattern observed in zebu cattle highlighted the probability of a distinct ancestor and supported notion of independent divergence of Bos indicus.
Collapse
Affiliation(s)
- T Sarath Kumar
- ICAR-National Bureau of Animal Genetic Resources, GT Road Bypass, Karnal, Haryana 132001, India
| | - Sanjeev Singh
- ICAR-National Bureau of Animal Genetic Resources, GT Road Bypass, Karnal, Haryana 132001, India.
| | - Indrajit Ganguly
- ICAR-National Bureau of Animal Genetic Resources, GT Road Bypass, Karnal, Haryana 132001, India
| | - S P Dixit
- ICAR-National Bureau of Animal Genetic Resources, GT Road Bypass, Karnal, Haryana 132001, India
| |
Collapse
|
7
|
Lovász L, Sommer‐Trembo C, Barth JM, Scasta JD, Grancharova‐Hill R, Lemoine RT, Kerekes V, Merckling L, Bouskila A, Svenning J, Fages A. Rewilded horses in European nature conservation - a genetics, ethics, and welfare perspective. Biol Rev Camb Philos Soc 2025; 100:407-427. [PMID: 39279124 PMCID: PMC11718625 DOI: 10.1111/brv.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
In recent decades, the integration of horses (Equus ferus) in European rewilding initiatives has gained widespread popularity due to their potential for regulating vegetation and restoring natural ecosystems. However, employing horses in conservation efforts presents important challenges, which we here explore and discuss. These challenges encompass the lack of consensus on key terms inherent to conservation and rewilding, the entrenched culture and strong emotions associated with horses, low genetic diversity and high susceptibility to hereditary diseases in animals under human selection, as well as insufficient consideration for the social behaviour of horses in wild-living populations. In addition, management of wild-living horses involves intricate welfare, ethics and legislative dimensions. Anthropocentric population-control initiatives may be detrimental to horse group structures since they tend to prioritise individual welfare over the health of populations and ecosystems. To overcome these challenges, we provide comprehensive recommendations. These involve a systematic acquisition of genetic information, a focus on genetic diversity rather than breed purity and minimal veterinary intervention in wild-living populations. Further, we advise allowing for natural top-down and bottom-up control - or, if impossible, simulating this by culling or non-lethal removal of horses - instead of using fertility control for population management. We advocate for intensified collaboration between conservation biologists and practitioners and enhanced communication with the general public. Decision-making should be informed by a thorough understanding of the genetic makeup, common health issues and dynamics, and social behaviour in wild-living horse populations. Such a holistic approach is essential to reconcile human emotions associated with horses with the implementation of conservation practices that are not only effective but also sustainable for the long-term viability of functional, biodiverse ecosystems, while rehabilitating the horse as a widespread wild-living species in Europe.
Collapse
Affiliation(s)
- Lilla Lovász
- Zoological Institute, Department of Environmental SciencesUniversity of BaselVesalgasse 1Basel4051Switzerland
| | - Carolin Sommer‐Trembo
- Department of PaleontologyUniversity of ZurichKarl‐Schmid‐Strasse 4Zurich8006Switzerland
| | - Julia M.I. Barth
- Zoological Institute, Department of Environmental SciencesUniversity of BaselVesalgasse 1Basel4051Switzerland
| | - John D. Scasta
- Department of Ecosystem Science and ManagementUniversity of Wyoming1000 E University AveLaramieWyoming82071USA
| | | | - Rhys T. Lemoine
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of BiologyAarhus UniversityNy Munkegade 116Aarhus C8000Denmark
| | - Viola Kerekes
- Hortobágy National Park DirectorateSumen u. 2Debrecen4024Hungary
| | - Léa Merckling
- Réserve Naturelle Petite Camargue Alsacienne1 Rue de la PiscicultureSaint‐Louis68300France
| | - Amos Bouskila
- Department of Life SciencesBen‐Gurion University of the NegevBen‐Gurion Blvd 1Beer‐Sheva84105Israel
| | - Jens‐Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of BiologyAarhus UniversityNy Munkegade 116Aarhus C8000Denmark
| | - Antoine Fages
- Zoological Institute, Department of Environmental SciencesUniversity of BaselVesalgasse 1Basel4051Switzerland
| |
Collapse
|
8
|
Khamzina AK, Igoshin AV, Muslimova ZU, Turgumbekov AA, Khussainov DM, Yudin NS, Ussenbekov YS, Larkin DM. Resequencing Composite Kazakh Whiteheaded Cattle: Insights into Ancestral Breed Contributions, Selection Signatures, and Candidate Genetic Variants. Animals (Basel) 2025; 15:385. [PMID: 39943155 PMCID: PMC11815988 DOI: 10.3390/ani15030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigates the genetic architecture of the Kazakh Whiteheaded (KWH) cattle, applying population genetics approaches to resequenced genomes. FST analysis of 66 cattle breeds identified breeds for admixture analysis. At K = 19, the composite KWH breed showed contributions from Hereford, Altai, and Kalmyk cattle. Principal component analysis and ancestry inference confirmed these patterns, with KWH genomes comprising 45% Hereford, 30% Altai, and 25% Kalmyk ancestries. Haplotype analysis revealed 73 regions under putative selection in KWH, some shared with Hereford (e.g., with the gene DCUN1D4) and some KWH-specific (e.g., with the gene SCMH1). FST analysis identified 105 putative intervals under selection, with key genes (KITLG, SLC9C1, and SCMH1) involved in coat colour and physiological adaptations. Functional enrichment using The Database for Annotation, Visualization, and Integrated Discovery (DAVID) in selected regions highlighted clusters associated with developmental processes, ubiquitination, and fatty acid metabolism. Point FST identified 42 missense variants in genes enriched in functions related to economically important traits. Local ancestry inference revealed genomic intervals with predominantly non-Hereford ancestry, including high Altai (e.g., SCAPER) and Kalmyk (e.g., SRD5A2) contributions, while Hereford-dominated regions included genes ENO1 and RERE. This work elucidates the genomic contributions and adaptive signatures of selection shaping the KWH breed, providing candidate genetic variants for breeding program improvement and enhanced genome predictions.
Collapse
Affiliation(s)
- Aigerim K. Khamzina
- Green Biotechnology and Cell Engineering Laboratory, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan;
| | - Alexander V. Igoshin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Zhadyra U. Muslimova
- Faculty of Veterinary and Zooengineering, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan (D.M.K.)
| | - Asset A. Turgumbekov
- Faculty of Veterinary and Zooengineering, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan (D.M.K.)
| | - Damir M. Khussainov
- Faculty of Veterinary and Zooengineering, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan (D.M.K.)
| | - Nikolay S. Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yessengali S. Ussenbekov
- Faculty of Veterinary and Zooengineering, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan (D.M.K.)
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
9
|
Taniguchi M. Utilizing Indigenous Animal Genetic Resources-Based on Research Into Indigenous Cattle Breeds in the Basque Country in Northern Spain and Indigenous Pig Breeds in Vietnam. Anim Sci J 2025; 96:e70046. [PMID: 40069921 PMCID: PMC11897423 DOI: 10.1111/asj.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
Biodiversity, climate change, and food security are closely related and increasing worldwide concerns. Therefore, sustainable productivity and changes to the livestock industry are required for the maintenance or amelioration of the global environment and the future of humanity. This review describes the potential of animal genetic resources and their expected roles in livestock improvement. Herein, I report the findings of my previous collaborative research project on the domestication of cattle and pigs, and genetic analysis of native cattle in the Basque Country, Spain, to improve the meat quality of native livestock genetic resources. In addition, I review another research on the diversity of native pigs in Vietnam and the establishment of a gene bank. The conservation of native livestock genetic resources is important for sustainable food production in each region, the inheritance of food culture, and to be available for future needs because native livestock adapted to their habitat's environment can coexist with locally cultivated crops. This encourages livestock researchers to consider sustainable production through the future use of native livestock genetic resources and to seek feasible solutions.
Collapse
Affiliation(s)
- Masaaki Taniguchi
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaJapan
| |
Collapse
|
10
|
Nayak SS, Rajawat D, Jain K, Sharma A, Gondro C, Tarafdar A, Dutt T, Panigrahi M. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Mamm Genome 2024; 35:577-599. [PMID: 39397083 DOI: 10.1007/s00335-024-10075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Livestock plays an essential role in sustaining human livelihoods, offering a diverse range of species integral to food security, economic stability, and cultural traditions. The domestication of livestock, which began over 10,000 years ago, has driven significant genetic changes in species such as cattle, buffaloes, sheep, goats, and pigs. Recent advancements in genomic technologies, including next-generation sequencing (NGS), genome-wide association studies (GWAS), and genomic selection, have dramatically enhanced our understanding of these genetic developments. This review brings together key research on the domestication process, phylogenetics, genetic diversity, and selection signatures within major livestock species. It emphasizes the importance of admixture studies and evolutionary forces like natural selection, genetic drift, and gene flow in shaping livestock populations. Additionally, the integration of machine learning with genomic data offers new perspectives on the functional roles of genes in adaptation and evolution. By exploring these genomic advancements, this review provides insights into genetic variation and evolutionary processes that could inform future approaches to improving livestock management and adaptation to environmental challenges, including climate change.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ayon Tarafdar
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| |
Collapse
|
11
|
Zhong J, Wang W, Li Y, Wei J, Cui S, Song N, Zhang Y, Liu H. Genome-Wide Identification and Evolutionary and Mutational Analysis of the Bos taurus Pax Gene Family. Genes (Basel) 2024; 15:897. [PMID: 39062676 PMCID: PMC11275364 DOI: 10.3390/genes15070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Bos taurus is known for its tolerance of coarse grains, adaptability, high temperature, humidity, and disease resistance. Primarily, cattle are raised for their meat and milk, and pinpointing genes associated with traits relevant to meat production can enhance their overall productivity. The aim of this study was to identify the genome, analyze the evolution, and explore the function of the Pax gene family in B. taurus to provide a new molecular target for breeding in meat-quality-trait cattle. In this study, 44 Pax genes were identified from the genome database of five species using bioinformatics technology, indicating that the genetic relationships of bovids were similar. The Pax3 and Pax7 protein sequences of the five animals were highly consistent. In general, the Pax gene of the buffalo corresponds to the domestic cattle. In summary, there are differences in affinity between the Pax family genes of buffalo and domestic cattle in the Pax1/9, Pax2/5/8, Pax3/7, and Pax4/6 subfamilies. We believe that Pax1/9 has an effect on the growth traits of buffalo and domestic cattle. The Pax3/7 gene is conserved in the evolution of buffalo and domestic animals and may be a key gene regulating the growth of B. taurus. The Pax2/5/8 subfamily affects coat color, reproductive performance, and milk production performance in cattle. The Pax4/6 subfamily had an effect on the milk fat percentage of B. taurus. The results provide a theoretical basis for understanding the evolutionary, structural, and functional characteristics of the Pax family members of B. taurus and for molecular genetics and the breeding of meat-production B. taurus species.
Collapse
Affiliation(s)
- Jintao Zhong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
| | - Wenliang Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
| | - Yifei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
| | - Jia Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
| | - Shuangshuang Cui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
| | - Ning Song
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hongyu Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (J.Z.); (W.W.); (Y.L.); (J.W.); (S.C.); (N.S.); (Y.Z.)
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
12
|
Jiang Q, Zhu L, Zeng H, Basang Z, Suolang Q, Huang J, Cai Y. Evolutionary adaptations generally reverse phenotypic plasticity to restore ancestral phenotypes during new environment adaptation in cattle. Ecol Evol 2024; 14:e11489. [PMID: 38840586 PMCID: PMC11150418 DOI: 10.1002/ece3.11489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Phenotype plasticity and evolution adaptations are the two main ways in which allow populations to deal with environmental changes, but the potential relationship between them remains controversial. Using a reciprocal transplant approach with cattle adapted to the Tibetan Plateau and adjacent lowlands, we aim to investigate the relative contributions of evolutionary processes and phenotypic plasticity in driving both phenotypic and transcriptomic changes under natural conditions. We observed that while numerous genetic transcriptomic changes were evident during the forward adaptation to highland environments, plastic changes predominantly facilitate the transformation of transcriptomes into a preferred state when Tibetan cattle are reintroduced to lowland habitats. Genes with ancestral plasticity are generally reversed by evolutionary adaptations and show a closer expression level to the ancestral stage in evolved Tibetan cattle. A similar trend was also observed at the phenotypes level, with a majority of biochemical and hemorheology phenotypes showing a tendency to revert to their ancestral patterns, suggesting the restoration of ancestral expression levels is a widespread evolutionary trend during adaptation. The findings of our study contribute to the debate regarding the relative contributions of plasticity and genetic changes in mammal environment adaptation. Furthermore, we highlight that the restoration of ancestral phenotypes represents a general pattern in cattle new environment adaptation.
Collapse
Affiliation(s)
- Qiang Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
- Institute of Animal Science and Veterinary MedicineShandong Academy of Agricultural SciencesJinanChina
| | - Li Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Hao Zeng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Zhuzha Basang
- Institute of Animal Science and Veterinary MedicineTibet Academy of Agricultural and Animal Husbandry SciencesLhasaChina
| | - Quji Suolang
- Institute of Animal Science and Veterinary MedicineTibet Academy of Agricultural and Animal Husbandry SciencesLhasaChina
| | - Jinming Huang
- Institute of Animal Science and Veterinary MedicineShandong Academy of Agricultural SciencesJinanChina
| | - Yafei Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
13
|
Álvarez Cecco P, Balbi M, Bonamy M, Rogberg Muñoz A, Olivera H, Giovambattista G, Fernández ME. Skin transcriptome analysis in Brangus cattle under heat stress. J Therm Biol 2024; 121:103852. [PMID: 38615495 DOI: 10.1016/j.jtherbio.2024.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Heat stress is a major factor that negatively affects animal welfare and production systems. Livestock should adapt to tropical and subtropical areas and to meet this, composite breeds have been developed. This work aimed to evaluate gene expression profiles in the skin of Brangus cattle under heat stress using a case-control design, and to correlate this with skin histological characteristics. Two groups of bulls were set using rectal temperature as a criterion to define stress conditions: stressed (N = 5) and non-stressed (N = 5) groups. Skin transcriptomics was performed and correlations between breed composition, phenotypic and skin histological traits were evaluated. Results showed 4309 differentially expressed genes (P < 0.01), 2113 downregulated and 2196 upregulated. Enrichment and ontology analyses revealed 132 GO terms and 67 pathways (P < 0.01), including thermogenesis, glycolysis, gluconeogenesis, mitochondrial activity, antioxidant and immune response, and apoptosis. The identity of the terms and pathways indicated the diversity of mechanisms directed to relieve the animals' suffering, acting from simple passive mechanisms (conduction, convection and radiation) to more complex active ones (behavioural changes, evaporation, vasodilation and wheezing). Furthermore, significant differences between phenotypic and skin histological traits and correlations between pairs of traits suggested a direction towards heat dissipation processes. In this sense, number of vessels was positively correlated with number of sweat glands (P < 0.001) and both were positively correlated with zebuine genetic content (P < 0.05 and P < 0.01, respectively), gland size was positively correlated with epidermal thickness and negatively with hair length (P < 0.05), and epidermal thickness was negatively correlated with gland-epidermis distance (P < 0.0005). These results support the notion that response to heat stress is physiologically complex, producing significant changes in the expression of genes involved in several biological pathways, while the animal's ability to face it depends greatly on their skin features.
Collapse
Affiliation(s)
- Paulo Álvarez Cecco
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - Marianela Balbi
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - Martín Bonamy
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - Andrés Rogberg Muñoz
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSQ, Buenos Aires, Argentina
| | - Hernán Olivera
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - Guillermo Giovambattista
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - María Elena Fernández
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina.
| |
Collapse
|
14
|
Svenning JC, Lemoine RT, Bergman J, Buitenwerf R, Le Roux E, Lundgren E, Mungi N, Pedersen RØ. The late-Quaternary megafauna extinctions: Patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. CAMBRIDGE PRISMS. EXTINCTION 2024; 2:e5. [PMID: 40078803 PMCID: PMC11895740 DOI: 10.1017/ext.2024.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2025]
Abstract
Across the last ~50,000 years (the late Quaternary) terrestrial vertebrate faunas have experienced severe losses of large species (megafauna), with most extinctions occurring in the Late Pleistocene and Early to Middle Holocene. Debate on the causes has been ongoing for over 200 years, intensifying from the 1960s onward. Here, we outline criteria that any causal hypothesis needs to account for. Importantly, this extinction event is unique relative to other Cenozoic (the last 66 million years) extinctions in its strong size bias. For example, only 11 out of 57 species of megaherbivores (body mass ≥1,000 kg) survived to the present. In addition to mammalian megafauna, certain other groups also experienced substantial extinctions, mainly large non-mammalian vertebrates and smaller but megafauna-associated taxa. Further, extinction severity and dates varied among continents, but severely affected all biomes, from the Arctic to the tropics. We synthesise the evidence for and against climatic or modern human (Homo sapiens) causation, the only existing tenable hypotheses. Our review shows that there is little support for any major influence of climate, neither in global extinction patterns nor in fine-scale spatiotemporal and mechanistic evidence. Conversely, there is strong and increasing support for human pressures as the key driver of these extinctions, with emerging evidence for an initial onset linked to pre-sapiens hominins prior to the Late Pleistocene. Subsequently, we synthesize the evidence for ecosystem consequences of megafauna extinctions and discuss the implications for conservation and restoration. A broad range of evidence indicates that the megafauna extinctions have elicited profound changes to ecosystem structure and functioning. The late-Quaternary megafauna extinctions thereby represent an early, large-scale human-driven environmental transformation, constituting a progenitor of the Anthropocene, where humans are now a major player in planetary functioning. Finally, we conclude that megafauna restoration via trophic rewilding can be expected to have positive effects on biodiversity across varied Anthropocene settings.
Collapse
Affiliation(s)
- Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Rhys T. Lemoine
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Juraj Bergman
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Robert Buitenwerf
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Elizabeth Le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Erick Lundgren
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Ninad Mungi
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Rasmus Ø. Pedersen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
MacPhillamy C, Chen T, Hiendleder S, Williams JL, Alinejad-Rokny H, Low WY. DNA methylation analysis to differentiate reference, breed, and parent-of-origin effects in the bovine pangenome era. Gigascience 2024; 13:giae061. [PMID: 39435573 PMCID: PMC11484048 DOI: 10.1093/gigascience/giae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/19/2024] [Accepted: 07/25/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Most DNA methylation studies have used a single reference genome with little attention paid to the bias introduced due to the reference chosen. Reference genome artifacts and genetic variation, including single nucleotide polymorphisms (SNPs) and structural variants (SVs), can lead to differences in methylation sites (CpGs) between individuals of the same species. We analyzed whole-genome bisulfite sequencing data from the fetal liver of Angus (Bos taurus taurus), Brahman (Bos taurus indicus), and reciprocally crossed samples. Using reference genomes for each breed from the Bovine Pangenome Consortium, we investigated the influence of reference genome choice on the breed and parent-of-origin effects in methylome analyses. RESULTS Our findings revealed that ∼75% of CpG sites were shared between Angus and Brahman, ∼5% were breed specific, and ∼20% were unresolved. We demonstrated up to ∼2% quantification bias in global methylation when an incorrect reference genome was used. Furthermore, we found that SNPs impacted CpGs 13 times more than other autosomal sites (P < $5 \times {10}^{ - 324}$) and SVs contained 1.18 times (P < $5 \times {10}^{ - 324}$) more CpGs than non-SVs. We found a poor overlap between differentially methylated regions (DMRs) and differentially expressed genes (DEGs) and suggest that DMRs may be impacting enhancers that target these DEGs. DMRs overlapped with imprinted genes, of which 1, DGAT1, which is important for fat metabolism and weight gain, was found in the breed-specific and sire-of-origin comparisons. CONCLUSIONS This work demonstrates the need to consider reference genome effects to explore genetic and epigenetic differences accurately and identify DMRs involved in controlling certain genes.
Collapse
Affiliation(s)
- Callum MacPhillamy
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
| | - Tong Chen
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
| | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
- Robinson Research Institute,, The University of Adelaide, North Adelaide SA 5006, Australia
| | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, Univeristy of New South Wales, Sydney, NSW 2052, Australia
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
| |
Collapse
|
16
|
MacPhillamy C, Ren Y, Chen T, Hiendleder S, Low WY. MicroRNA breed and parent-of-origin effects provide insights into biological pathways differentiating cattle subspecies in fetal liver. Front Genet 2023; 14:1329939. [PMID: 38162682 PMCID: PMC10757722 DOI: 10.3389/fgene.2023.1329939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: MicroRNAs (miRNAs) play a crucial role in regulating gene expression during key developmental processes, including fetal development. Brahman (Bos taurus indicus) and Angus (Bos taurus taurus) cattle breeds represent two major cattle subspecies with strikingly different phenotypes. Methods: We analyzed miRNA expression in liver samples of purebred and reciprocal crosses of Angus and Brahman to investigate breed and parent-of-origin effects at the onset of accelerated fetal growth. Results: We identified eight novel miRNAs in fetal liver samples and 14 differentially expressed miRNAs (DEMs) between purebred samples. Correlation of gene expression modules and miRNAs by breed and parent-of-origin effects revealed an enrichment of genes associated with breed-specific differences in traits such as heat tolerance (Brahman) and fat deposition (Angus). We demonstrate that genes predicted to be targets of DEMs were more likely to be differentially expressed than non-targets (p-value < 0.05). We identified several miRNAs (bta-miR-187, bta-miR-216b, bta-miR-2284c, bta-miR-2285c, bta-miR-2285cp, bta-miR-2419-3p, bta-miR-2419-5p, and bta-miR-11984) that showed similar correlation patterns as bta-miR-2355-3p, which has been associated with the glutamatergic synapse pathway, a key facilitator of heat tolerance. Furthermore, we report Angus-breed-specific miRNAs (bta-miR-2313-5p, btamiR-490, bta-miR-2316, and bta-miR-11990) that may be involved in fat deposition. Finally, we showed that the DEMs identified in fetal liver are involved in Rap1, MAPK, and Ras signalling pathways, which are important for fetal development, muscle development and metabolic traits such as fat metabolism. Conclusion: Our work sheds light on the miRNA expression patterns that contribute to gene expression differences driving phenotypic differences in indicine and taurine cattle.
Collapse
Affiliation(s)
- Callum MacPhillamy
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Tong Chen
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Stefan Hiendleder
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
- Robinson Research Institute, The University of Adelaide, North Adelaide, SA, Australia
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
17
|
Nayak SS, Panigrahi M, Rajawat D, Ghildiyal K, Sharma A, Parida S, Bhushan B, Mishra BP, Dutt T. Comprehensive selection signature analyses in dairy cattle exploiting purebred and crossbred genomic data. Mamm Genome 2023; 34:615-631. [PMID: 37843569 DOI: 10.1007/s00335-023-10021-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
The main objective of the current research was to locate, annotate, and highlight specific areas of the bovine genome that are undergoing intense positive selection. Here, we are analyzing selection signatures in crossbred (Bos taurus X Bos indicus), taurine (Bos taurus), and indicine (Bos indicus) cattle breeds. Indicine cattle breeds found throughout India are known for their higher heat tolerance and disease resilience. More breeds and more methods can provide a better understanding of the selection signature. So, we have worked on nine distinct cattle breeds utilizing seven different summary statistics, which is a fairly extensive approach. In this study, we carried out a thorough genome-wide investigation of selection signatures using bovine 50K SNP data. We have included the genotyped data of two taurine, two crossbreds, and five indicine cattle breeds, for a total of 320 animals. During the 1950s, these indicine (cebuine) cattle breeds were exported with the aim of enhancing the resilience of taurine breeds in Western countries. For this study, we employed seven summary statistics, including intra-population, i.e., Tajima's D, CLR, iHS, and ROH and inter-population statistics, i.e., FST, XP-EHH, and Rsb. The NCBI database, PANTHER 17.0, and CattleQTL database were used for annotation after finding the important areas under selection. Some genes, including EPHA6, CTNNA2, NPFFR2, HS6ST3, NPR3, KCNIP4, LIPK, SDCBP, CYP7A1, NSMAF, UBXN2B, UGDH, UBE2K, and DAB1, were shown to be shared by three or more different approaches. Therefore, it gives evidence of the most intense selection in these areas. These genes are mostly linked to milk production and adaptability traits. This study also reveals selection regions that contain genes which are crucial to numerous biological functions, including those associated with milk production, coat color, glucose metabolism, oxidative stress response, immunity and circadian rhythms.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Anurodh Sharma
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - B P Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| |
Collapse
|
18
|
Senczuk G, Di Civita M, Rillo L, Macciocchi A, Occidente M, Saralli G, D’Onofrio V, Galli T, Persichilli C, Di Giovannantonio C, Pilla F, Matassino D. The genome-wide relationships of the critically endangered Quadricorna sheep in the Mediterranean region. PLoS One 2023; 18:e0291814. [PMID: 37851594 PMCID: PMC10584175 DOI: 10.1371/journal.pone.0291814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/22/2023] [Indexed: 10/20/2023] Open
Abstract
Livestock European diffusion followed different human migration waves from the Fertile Crescent. In sheep, at least two diffusion waves have shaped the current breeds' biodiversity generating a complex genetic pattern composed by either primitive or fine-wool selected breeds. Nowadays most of the sheep European breeds derive from the second wave which is supposed to have largely replaced oldest genetic signatures, with the exception of several primitive breeds confined on the very edge of Northern Europe. Despite this, some populations also in the Mediterranean region are characterised by the presence of phenotypic traits considered ancestral such as the policeraty, large horns in the ram, short tail, and a moulting fleece. Italy is home of a large number of local breeds, albeit some are already extinct, others are listed as critically endangered, and among these there is the Quadricorna breed which is a four-horned sheep characterised by several traits considered as ancestral. In this context we genotyped 47 individuals belonging to the Quadricorna sheep breed, a relict and endangered breed, from Central and Southern Italy. In doing so we used the Illumina OvineSNP50K array in order to explore its genetic diversity and to compare it with other 41 breeds from the Mediterranean region and Middle-East, with the specific aim to reconstruct its origin. After retaining 32,862 SNPs following data filtering, the overall genomic architecture has been explored by using genetic diversity indices, Principal Component Analysis (PCA) and admixture analysis, while the genetic relationships and migration events have been inferred using a neighbor-joining tree based on Reynolds' distances and by the maximum likelihood tree as implemented in treemix. The Quadricorna breed exhibit genetic diversity indices comparable with those of most of the other analysed breeds, however, the two populations showed opposing patterns of genetic diversity suggesting different levels of genomic inbreeding and drift (FIS and FROH). In general, all the performed genome-wide analyses returned complementary results, indicating a westward longitudinal cline compatible with human migrations from the Middle-East and several additional genetic footprints which might mirror more recent historical events. Interestingly, among the Italian breeds, the original Quadricorna (QUAD_SA) first separated showing its own ancestral component. In addition, the admixture analysis does not suggest any signal of recent gene exchange with other Italian local breeds, highlighting a rather ancestral purity of this population. On the other hand, both the neighbor-joining tree and the treemix analysis seem to suggest a proximity of the Quadricorna populations to breeds of South-Eastern Mediterranean origin. Although our results do not support a robust link between the genetics of the first wave and the presence of primitive traits, the observed genetic uniqueness together with the inferred phylogeograpic reconstruction would suggest an ancient presence of the Quadricorna breed in the Italian Peninsula. Because of this singularity, urgent conservation actions are needed in order to keep the breed and all related cultural products alive.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Marika Di Civita
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Luigina Rillo
- Consortium for Experimentation, Dissemination, and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Alessandra Macciocchi
- Agenzia Regionale per lo Sviluppo e l’Innovazione dell’Agricoltura del Lazio (ARSIAL), Roma, Italy
| | - Mariaconsiglia Occidente
- Consortium for Experimentation, Dissemination, and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Giorgio Saralli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Valentina D’Onofrio
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Tiziana Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Christian Persichilli
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | | | - Fabio Pilla
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Donato Matassino
- Consortium for Experimentation, Dissemination, and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| |
Collapse
|
19
|
Zegeye T, Belay G, Vallejo-Trujillo A, Han J, Hanotte O. Genome-wide diversity and admixture of five indigenous cattle populations from the Tigray region of northern Ethiopia. Front Genet 2023; 14:1050365. [PMID: 37600659 PMCID: PMC10432725 DOI: 10.3389/fgene.2023.1050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
The Tigray region, where we found around eight per cent of the indigenous cattle population of Ethiopia, is considered as the historic centre of the country, with the ancient pre-Aksumite and Aksumite civilisations in contact with the civilisations of the Fertile Crescent and the Indian subcontinent. Here, we used whole genome sequencing data to characterise the genomic diversity, relatedness, and admixture of five cattle populations (Abergelle, Arado, Begait, Erob, and Raya) indigenous to the Tigray region of Ethiopia. We detected 28 to 29 million SNPs and 2.7 to 2.9 million indels in each population, of which 7% of SNPs and 34% of indels were novel. Functional annotation of the variants showed around 0.01% SNPs and 0.22%-0.27% indels in coding regions. Enrichment analysis of genes overlapping missense private SNPs revealed 20 significant GO terms and KEGG pathways that were shared by or specific to breeds. They included important genes associated with morphology (SCN4A, TAS1R2 and KCNG4), milk yield (GABRG1), meat quality (MMRN2, VWC2), feed efficiency (PCDH8 and SLC26A3), immune response (LAMC1, PCDH18, CELSR1, TLR6 and ITGA5), heat resistance (NPFFR1 and HTR7) and genes belonging to the olfactory gene family, which may be related to adaptation to harsh environments. Tigray indigenous cattle are very diverse. Their genome-wide average nucleotide diversity ranged from 0.0035 to 0.0036. The number of heterozygous SNPs was about 0.6-0.7 times higher than homozygous ones. The within-breed average number of ROHs ranged from 777.82 to 1000.45, with the average sum of the length of ROHs ranging from 122.01 Mbp to 163.88 Mbp. The genomic inbreeding coefficients differed among animals and breeds, reaching up to 10% in some Begait and Raya animals. Tigray indigenous cattle shared a common ancestry with Asian indicine (85.6%-88.7%) and African taurine (11.3%-14.1%) cattle, with very small, if any, European taurine introgression. This study identified high within-breed genetic diversity representing an opportunity for breeding improvement programs and, also, significant novel variants that could increase the number of known cattle variants, an important contribution to the knowledge of domestic cattle genetic diversity.
Collapse
Affiliation(s)
- Tsadkan Zegeye
- Mekelle Agricultural Research Center, Tigray Agricultural Research Institute, Mekelle, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Live Gene—CTLGH, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adriana Vallejo-Trujillo
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jianlin Han
- Live Gene—CTLGH, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Olivier Hanotte
- Live Gene—CTLGH, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Cells, Organism and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
20
|
Lee SJ, Cho HS, Noh S, Kim YH, Seo HW, Oh Y. A Postmortem Case Study-An Analysis of microRNA Patterns in a Korean Native Male Calf ( Bos taurus coreanae) That Died of Fat Necrosis. Animals (Basel) 2023; 13:2149. [PMID: 37443947 DOI: 10.3390/ani13132149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Korean native cattle are highly valued for their rich marbling and flavor. Nonetheless, endeavors to enhance marbling levels can result in obesity, a prevalent contributor to fat necrosis. Fat necrosis is characterized by the formation of necrotic fat masses in the abdominal cavity, which physically puts pressure on affected organs, causing physical torsion or obstruction, resulting in death and consequent economic loss. Pancreatic injuries or diabetes mellitus were reported as factors of fat necrosis in humans; however, the pathogenesis in animals has not been established. In this study, we identified fat necrosis in a 6-month-old Korean native cow and investigated its potential underlying causes. Serum samples were utilized for a microarray analysis of bovine miRNA. Comparative examination of miRNA expression levels between cattle afflicted with fat necrosis and healthy cattle unveiled notable variances in 24 miRNAs, such as bta-miR-26a, bta-miR-29a, bta-miR-30a-5p and bta-miR-181a. Upon conducting miRNA-mediated KEGG pathway analysis, several pathways including the prolactin signal pathway, insulin resistance, autophagy, the insulin-signaling pathway and the FoxO-signaling pathway were found to be significantly enriched in the calf affected by fat necrosis. As a result, this study potentially indicates a potential connection between fat necrosis and diabetes in Korean native cattle.
Collapse
Affiliation(s)
- Sang-Joon Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho-Seong Cho
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Sanghyun Noh
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young Hun Kim
- Division of Companion Animal Science, Woosong Infomation College, Daejeon 34606, Republic of Korea
| | - Hwi-Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yeonsu Oh
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
21
|
Zhang N, Shao X, Guo Y, Zhang X, Zhou Y, Yuan J, Tang Z, Hu S, Minyaev SS, Cai D. Ancient Mitochondrial Genomes Provide New Clues to the Origin of Domestic Cattle in China. Genes (Basel) 2023; 14:1313. [PMID: 37510218 PMCID: PMC10379582 DOI: 10.3390/genes14071313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cattle are one of the six livestock species that have occupied an important place in Chinese history. Previous ancient DNA studies have indicated that Chinese taurine cattle (Bos taurus taurus) are exotic, but the exact route and diffusion by which they were introduced to China is unknown. In this study, we extracted the mitochondrial genomes of 34 cases of ancient taurine cattle (from the late Neolithic to Qin and Han dynasties) excavated from sites in northern China and the eastern Eurasian steppe, and successfully obtained 14 mitochondrial genome sequences. The results of ancient DNA analysis reveal that with cultural exchange and trade, there was close genetic exchange between domestic taurine cattle in different regions. The haplotypes shared by domestic cattle have genetic continuity, reflecting the strong cultural influence of the large capital city sites such as Taosi, Shimao and Erlitou on the surrounding areas. This study suggests that ancient northern Chinese taurine cattle may have accompanied the westward transmission of agricultural or painted pottery culture and thus had a maternal genetic contribution to modern Tibetan cattle.
Collapse
Affiliation(s)
- Naifan Zhang
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun 130012, China
| | - Xinyue Shao
- Faculty of Arts and Humanities (Archaeology), University of Southampton, Southampton SO17 1BF, UK
| | - Yaqi Guo
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun 130012, China
| | - Xinyu Zhang
- Department of Archaeology, Jilin University Museum of Archaeology & Art, Changchun 130012, China
| | - Yawei Zhou
- History College, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Yuan
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100710, China
| | - Zhuowei Tang
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun 130012, China
| | - Songmei Hu
- Shaanxi Provincial Institute of Archaeology, Xi'an 710054, China
| | - Sergey Stepanovich Minyaev
- Institute for the History of Material Culture, Russian Academy of Sciences, Dvortsovaya Nab. 18, St. Petersburg 191186, Russia
| | - Dawei Cai
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun 130012, China
| |
Collapse
|
22
|
Stock J, Wells JCK. Dairying and the evolution and consequences of lactase persistence in humans. Anim Front 2023; 13:7-13. [PMID: 37324209 PMCID: PMC10266752 DOI: 10.1093/af/vfad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
| | - Jonathan C K Wells
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
23
|
Xia X, Qu K, Wang Y, Sinding MHS, Wang F, Hanif Q, Ahmed Z, Lenstra JA, Han J, Lei C, Chen N. Global dispersal and adaptive evolution of domestic cattle: a genomic perspective. STRESS BIOLOGY 2023; 3:8. [PMID: 37676580 PMCID: PMC10441868 DOI: 10.1007/s44154-023-00085-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/26/2023] [Indexed: 09/08/2023]
Abstract
Domestic cattle have spread across the globe and inhabit variable and unpredictable environments. They have been exposed to a plethora of selective pressures and have adapted to a variety of local ecological and management conditions, including UV exposure, diseases, and stall-feeding systems. These selective pressures have resulted in unique and important phenotypic and genetic differences among modern cattle breeds/populations. Ongoing efforts to sequence the genomes of local and commercial cattle breeds/populations, along with the growing availability of ancient bovid DNA data, have significantly advanced our understanding of the genomic architecture, recent evolution of complex traits, common diseases, and local adaptation in cattle. Here, we review the origin and spread of domestic cattle and illustrate the environmental adaptations of local cattle breeds/populations.
Collapse
Affiliation(s)
- Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000, China
| | - Yan Wang
- Qingdao Municipal Bureau of Agriculture and Rural Affairs, Qingdao, 266000, China
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, 12350, Pakistan
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jianlin Han
- Livestock Genetic Program, International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya
- CAAS-ILRI Joint Laboratory On Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
24
|
Solodneva E, Svishcheva G, Smolnikov R, Bazhenov S, Konorov E, Mukhina V, Stolpovsky Y. Genetic Structure Analysis of 155 Transboundary and Local Populations of Cattle ( Bos taurus, Bos indicus and Bos grunniens) Based on STR Markers. Int J Mol Sci 2023; 24:5061. [PMID: 36902492 PMCID: PMC10003406 DOI: 10.3390/ijms24055061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/09/2023] Open
Abstract
Every week, 1-2 breeds of farm animals, including local cattle, disappear in the world. As the keepers of rare allelic variants, native breeds potentially expand the range of genetic solutions to possible problems of the future, which means that the study of the genetic structure of these breeds is an urgent task. Providing nomadic herders with valuable resources necessary for life, domestic yaks have also become an important object of study. In order to determine the population genetic characteristics, and clarify the phylogenetic relationships of modern representatives of 155 cattle populations from different regions of the world, we collected a large set of STR data (10,250 individuals), including unique native cattle, 12 yak populations from Russia, Mongolia and Kyrgyzstan, as well as zebu breeds. Estimation of main population genetic parameters, phylogenetic analysis, principal component analysis and Bayesian cluster analysis allowed us to refine genetic structure and provided insights in relationships of native populations, transboundary breeds and populations of domestic yak. Our results can find practical application in conservation programs of endangered breeds, as well as become the basis for future fundamental research.
Collapse
Affiliation(s)
- Evgenia Solodneva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Gulnara Svishcheva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Rodion Smolnikov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Sergey Bazhenov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Evgenii Konorov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| | - Vera Mukhina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Yurii Stolpovsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
25
|
Agwamba KD, Nachman MW. The demographic history of house mice (Mus musculus domesticus) in eastern North America. G3 (BETHESDA, MD.) 2023; 13:jkac332. [PMID: 36546306 PMCID: PMC9911051 DOI: 10.1093/g3journal/jkac332] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
The Western European house mouse (Mus musculus domesticus) is a widespread human commensal that has recently been introduced to North America. Its introduction to the Americas is thought to have resulted from the transatlantic movements of Europeans that began in the early 16th century. To study the details of this colonization history, we examine population structure, explore relevant demographic models, and infer the timing of divergence among house mouse populations in the eastern United States using published exome sequences from five North American populations and two European populations. For North American populations of house mice, levels of nucleotide variation were lower, and low-frequency alleles were less common than for European populations. These patterns provide evidence of a mild bottleneck associated with the movement of house mice into North America. Several analyses revealed that one North American population is genetically admixed, which indicates at least two source populations from Europe were independently introduced to eastern North America. Estimated divergence times between North American and German populations ranged between ∼1,000 and 7,000 years ago and overlapped with the estimated divergence time between populations from Germany and France. Demographic models comparing different North American populations revealed that these populations diverged from each other mostly within the last 500 years, consistent with the timing of the arrival of Western European settlers to North America. Together, these results support a recent introduction of Western European house mice to eastern North America, highlighting the effects of human migration and colonization on the spread of an invasive human commensal.
Collapse
Affiliation(s)
- Kennedy D Agwamba
- Center for Computational Biology, Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael W Nachman
- Center for Computational Biology, Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Spetter MJ, Louge Uriarte EL, Verna AE, Odeón AC, González Altamiranda EA. Temporal and geographic dynamics of bovine viral diarrhea virus in American countries. Res Vet Sci 2022; 153:66-73. [PMID: 36327621 DOI: 10.1016/j.rvsc.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a worldwide distributed pathogen of livestock classified into three species, BVDV-1 (Pestivirus A), BVDV-2 (Pestivirus B), and HoBi-like pestivirus (HoBiPeV; Pestivirus H). Despite being considered endemic in several regions of the Americas, the spatiotemporal distribution of BVDV is scarcely known. This study aimed to reconstruct the population dynamics of BVDV in American countries. The analyses performed with the partial 5´UTR gene showed that BVDV-1 and -2 would have started their diversification in the 1670s and 1790s in the United States, whereas HoBiPeV probably emerged in the 1980s in Brazil. No evident geographic clustering was observed in the Bayesian trees, which may indicate that multiple introductions events would have occurred following the first introduction. This study provides new insights into BVDV dynamics, although further analyses including sequences from other American countries and continents will help to expand the knowledge of BVDV evolution and transmission.
Collapse
Affiliation(s)
- Maximiliano J Spetter
- Centro de Investigación Veterinaria de Tandil (CIVETAN) CONICET-CICPBA-UNCPBA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, CP 7000 Tandil, Buenos Aires, Argentina
| | - Enrique L Louge Uriarte
- Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS, INTA-CONICET), Ruta 226 km 73.5, CP 7620 Balcarce, Buenos Aires, Argentina
| | - Andrea E Verna
- Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS, INTA-CONICET), Ruta 226 km 73.5, CP 7620 Balcarce, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ Buenos Aires, Argentina
| | - Anselmo C Odeón
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta 226 km 73.5, CP 7620 Buenos Aires, Argentina
| | - Erika A González Altamiranda
- Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS, INTA-CONICET), Ruta 226 km 73.5, CP 7620 Balcarce, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ Buenos Aires, Argentina.
| |
Collapse
|
27
|
Legacies of domestication, Neolithic diffusion and trade between Indian subcontinent and Island Southeast Asia shape maternal genetic diversity of Andaman cattle. PLoS One 2022; 17:e0278681. [PMID: 36490290 PMCID: PMC9733863 DOI: 10.1371/journal.pone.0278681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Andaman cattle is a precious indigenous livestock species endemic to Andaman and Nicobar Islands, India. Till date, origin and genetic makeup of the breed which is warranted for breed conservation is not known. Moreover, the spread of zebu cattle from Indus valley to different parts of Island Southeast Asia (ISEA) is not properly understood. Here, we report the genetic diversity, population structure of Andaman cattle and their evolution in the context of epicentre of zebu domestication and ISEA. High genetic diversity in complete mitochondrial D-loop sequences indicated the ability of the breed to withstand impending climate change. Total 81 haplotypes were detected and all of them except three belonged to Bos indicus. The presence of taurine haplotypes in Andaman cattle indicate introgression by European-derived cattle. A poor phylogenetic signal of Andaman cattle with genetic affinities with cattle of Indian subcontinent and ISEA was observed. The poor phylogenetic structure may be due to multidirectional gene flow from Indian subcontinent and ISEA, with which Andaman shares a close cultural and trade relationship from Neolithic age. We hypothesize that Andaman cattle is the outcome of Neolithic diffusion from centre of zebu domestication along with multidirectional commercial exchange between Indian subcontinent and ISEA.
Collapse
|
28
|
Strandén I, Kantanen J, Lidauer MH, Mehtiö T, Negussie E. Animal board invited review: Genomic-based improvement of cattle in response to climate change. Animal 2022; 16:100673. [PMID: 36402112 DOI: 10.1016/j.animal.2022.100673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Climate change brings challenges to cattle production, such as the need to adapt to new climates and pressure to reduce greenhouse emissions (GHG). In general, the improvement of traits in current breeding goals is favourably correlated with the reduction of GHG. Current breeding goals and tools for increasing cattle production efficiency have reduced GHG. The same amount of production can be achieved by a much smaller number of animals. Genomic selection (GS) may offer a cost-effective way of using an efficient breeding approach, even in low- and middle-income countries. As climate change increases the intensity of heatwaves, adaptation to heat stress leads to lower efficiency of production and, thus, is unfavourable to the goal of reducing GHG. Furthermore, there is evidence that heat stress during cow pregnancy can have many generation-long lowering effects on milk production. Both adaptation and reduction of GHG are among the difficult-to-measure traits for which GS is more efficient and suitable than the traditional non-genomic breeding evaluation approach. Nevertheless, the commonly used within-breed selection may be insufficient to meet the new challenges; thus, cross-breeding based on selecting highly efficient and highly adaptive breeds may be needed. Genomic introgression offers an efficient approach for cross-breeding that is expected to provide high genetic progress with a low rate of inbreeding. However, well-adapted breeds may have a small number of animals, which is a source of concern from a genetic biodiversity point of view. Furthermore, low animal numbers also limit the efficiency of genomic introgression. Sustainable cattle production in countries that have already intensified production is likely to emphasise better health, reproduction, feed efficiency, heat stress and other adaptation traits instead of higher production. This may require the application of innovative technologies for phenotyping and further use of new big data techniques to extract information for breeding.
Collapse
Affiliation(s)
- I Strandén
- Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland.
| | - J Kantanen
- Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - M H Lidauer
- Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - T Mehtiö
- Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - E Negussie
- Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| |
Collapse
|
29
|
A SNP of the COX4I2 gene associated with environmental adaptation in Chinese cattle. Gene 2022; 851:147043. [DOI: 10.1016/j.gene.2022.147043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
|
30
|
Senczuk G, Di Civita M, Rillo L, Macciocchi A, Occidente M, Saralli G, D’Onofrio V, Galli T, Persichilli C, Di Giovannantonio C, Pilla F, Matassino D. The ancestral origin of the critically endangered Quadricorna sheep as revealed by genome-wide analysis. PLoS One 2022; 17:e0275989. [PMID: 36288337 PMCID: PMC9605034 DOI: 10.1371/journal.pone.0275989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Livestock European diffusion followed different human migration waves from the Fertile Crescent. In sheep, at least two diffusion waves have shaped the current breeds' biodiversity generating a complex genetic pattern composed by either primitive or fine-wool selected breeds. Among primitive breeds, aside from sharing common ancestral genomic components, they also show several traits such as the policeraty, large horns in the ram, short tail, and a moulting fleece, considered as ancestral. Although most of the primitive breeds characterized by these traits are confined on the very edge of Northern Europe, several residual populations are also scattered in the Mediterranean region. In fact, although in Italy a large number of local breeds are already extinct, others are listed as critically endangered, and among these there is the Quadricorna breed which is a four-horned sheep characterized by several ancestral traits. In this context we genotyped 47 individuals belonging to the Quadricorna sheep breed, a relict and endangered breed, from Central and Southern Italy. In doing so we used the Illumina OvineSNP50K array in order to explore its genetic diversity and to compare it with other 33 primitive traits-related, Mediterranean and Middle-East breeds, with the specific aim to reconstruct its origin. After retaining 35,680 SNPs following data filtering, the overall genomic architecture has been explored by using genetic diversity indices, Principal Component Analysis (PCA) and admixture analysis, while the genetic relationships and migration events have been inferred using a neighbor-joining tree based on Reynolds' distances and by the maximum likelihood tree as implemented in treemix. Multiple convergent evidence from all our population genetics analyses, indicated that the two Quadricorna populations differ from all the other Italian breeds, while they resulted to be very close to the Middle Eastern and primitive European breeds. In addition, the genetic diversity indices highlighted values comparable with those of most of the other analyzed breeds, despite the two populations exhibit slightly different genetic indices suggesting different levels of genomic inbreeding and drift (FIS and FROH). The admixture analysis does not suggest any signal of recent gene exchange with other Italian local breeds, highlighting a rather ancestral purity of the two populations, while on the other hand the treemix analysis seems to suggest an ancient admixture with other primitive European breeds. Finally, all these evidences seem to trace back the residual Quadricorna sheep to an early Neolithic spread, probably following a Mediterranean route and that urgent conservation actions are needed in order to keep the breed and all related cultural products alive.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
- * E-mail:
| | - Marika Di Civita
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Luigina Rillo
- Consortium for Experimentation, Dissemination and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Alessandra Macciocchi
- Agenzia Regionale per lo Sviluppo e l’Innovazione dell’Agricoltura del Lazio (ARSIAL), Roma, Italy
| | - Mariaconsiglia Occidente
- Consortium for Experimentation, Dissemination and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Giorgio Saralli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Valentina D’Onofrio
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Tiziana Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Christian Persichilli
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | | | - Fabio Pilla
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Donato Matassino
- Consortium for Experimentation, Dissemination and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| |
Collapse
|
31
|
Liu X, Liu Q, Sun S, Sun H, Wang Y, Shen X, Zhang L. Exploring AI-2-mediated interspecies communications within rumen microbial communities. MICROBIOME 2022; 10:167. [PMID: 36203182 PMCID: PMC9540692 DOI: 10.1186/s40168-022-01367-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The rumen is an ecosystem with a complex microbial microflora in which microbes initiate biofilm formation by attaching to plant surfaces for plant degradation and are capable of converting feed to nutrients and energy via microbial processes. Quorum sensing (QS) is a cell-to-cell communication mechanism that allows microbes to synchronize the expression of multiple genes in the group to perform social behaviors such as chemotaxis and biofilm formation using self-synthesized QS signaling molecules. Whereas QS has been extensively studied in model microorganisms under pure culture conditions, QS mechanisms are poorly understood in complex bacterial communities, such as the rumen microflora, in which cell-to-cell communication may be common. RESULTS Here, we analyzed 981 rumens bacterial and archaeal genomes from the Joint Genome Institute (JGI) and GenBank databases and identified 15 types of known QS signaling molecule-related genes. The analysis of the prevalence and abundance of genes involved in QS showed that 767 microbial genomes appeared to possess QS-related genes, including 680 bacterial genomes containing autoinducer-2 (AI-2) synthase- or receptor-encoding genes. Prevotella, Butyivibrio, Ruminococcus, Oribacterium, Selenomonas, and Treponema, known abundant bacterial genera in the rumen, possessed the greatest numbers of AI-2-related genes; these genes were highly expressed within the metatranscriptome dataset, suggesting that intra- and interspecies communication mediated by AI-2 among rumen microbes was universal in the rumen. The QS processes mediated by the dCache_1-containing AI-2 receptors (CahRs) with various functional modules may be essential for degrading plants, digesting food, and providing energy and nutrients to the host. Additionally, a universal natural network based on QS revealed how rumen microbes coordinate social behaviors via the AI-2-mediated QS system, most of which may potentially function via AI-2 binding to the extracellular sensor dCache_1 domain to activate corresponding receptors involved in different signal transduction pathways, such as methyl-accepting chemotaxis proteins, histidine kinases, serine phosphatases, c-di-GMP synthases and phosphodiesterases, and serine/threonine kinases in the rumen. CONCLUSIONS The exploration of AI-2-related genes, especially CahR-type AI-2 receptors, greatly increased our insight into AI-2 as a potentially "universal" signal mediating social behaviors and will help us better understand microbial communication networks and the function of QS in plant-microbe interactions in complex microecosystems. Video Abstract.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Microbiology and Bioengineering, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinmeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Sihuai Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hengxi Sun
- Department of Microbiology and Bioengineering, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Wang
- Department of Biotechnology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lei Zhang
- Department of Microbiology and Bioengineering, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
32
|
Wright W, Tworek HJS, von Keyserlingk MAG, Koralesky KE, Weary DM. Using animal history to inform current debates in gene editing farm animals: A systematic review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.938085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is growing interest in gene editing farm animals. Some alterations could benefit animal welfare (e.g., improved heat tolerance in cattle with the “slick” gene), the environment (e.g., reducing methane emissions from cattle with induced pluripotent stem cells), and productivity (e.g., higher weight gains in cattle with the “double muscling” gene). Existing scholarship on the acceptability of such modifications has used myriad approaches to identify societal factors that shape the ethics and governance of this technology. We argue that integrating historical approaches—particularly from the relatively new and burgeoning field of animal history—offers a form of “anticipatory knowledge” that can help guide discussions on this topic. We conducted a systematic review of the animal history literature in English, German, and Spanish to identify the influence of political, scientific, economic, social, and cultural factors on the development and acceptance of such technologies. We identified analogous structures and fault lines in past debates about farm animals that provide insights for contemporary discussions about gene editing. Those analogous structures include the market power of meatpackers or the racialized precepts in livestock breeding, and fault lines, like the disconnect between states and citizens over the direction of food systems. Highlighting these similarities demonstrates how external forces have shaped—and will continue to shape—the acceptance or rejection of emerging biotechnologies as applied to farm animals.
Collapse
|
33
|
Nishikaku K, Yonezawa T, Nishibori M, Harada M, Kawaguchi F, Sasazaki S, Torii Y, Imakawa K, Kawai K, Liu J, Mannen H, Kobayashi T. Phylogenomics and Spatiotemporal Dynamics of Bovine Leukemia Virus Focusing on Asian Native Cattle: Insights Into the Early Origin and Global Dissemination. Front Microbiol 2022; 13:917324. [PMID: 35814709 PMCID: PMC9263593 DOI: 10.3389/fmicb.2022.917324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine leukemia virus (BLV), the causative agent of enzootic bovine leukosis, is currently one of the most important pathogens affecting the cattle industry worldwide. Determining where and in which host it originated, and how it dispersed across continents will provide valuable insights into its historical emergence as the cattle pathogen. Various species in the Bos genus were domesticated in Asia, where they also diversified. As native cattle (taurine cattle, zebu cattle, yak, and water buffalo) are indigenous and adapted to local environments, we hypothesized that Asian native cattle could have harbored BLV and, therefore, that they were important for virus emergence, maintenance, and spread. In this study, phylogeographic and ancestral trait analyses—including sequences obtained from Asian native cattle—were used to reconstruct the evolutionary history of BLV. It was shown that, since its probable emergence in Asia, the virus spread to South America and Europe via international trade of live cattle. It was inferred that zebu cattle were the hosts for the early origin of BLV, while taurine cattle played the significant role in the transmission worldwide. In addition, the results of positive selection analysis indicate that yak had a substantially minor role in the transmission of this virus. In this study, endogenous deltaretrovirus sequences in bats, collected in Asian countries, were also analyzed on whether these sequences were present in the bat genome. Endogenous deltaretrovirus sequences were detected from bat species endemic to specific regions and geographically isolated for a long time. Endogenous deltaretrovirus sequences from these geographically isolated species represent ancient exogenous deltaretroviruses distributions. The phylogenetic analysis revealed that these newly obtained endogenous deltaretrovirus sequences were closely related to those of BLV from Asian native cattle, indicating that BLV-related ancient deltaretroviruses circulated in Asia long before the emergence of BLV. Together, our analyses provide evidence for origin and spatiotemporal dynamics of BLV.
Collapse
Affiliation(s)
- Kohei Nishikaku
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Takahiro Yonezawa
- Laboratory of Animal Genetics, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masashi Harada
- Laboratory Animal Center, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Fuki Kawaguchi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shinji Sasazaki
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yasushi Torii
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Kazuhiko Imakawa
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Kuniko Kawai
- Department of Biology, School of Biological Science, Tokai University, Sapporo, Japan
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry and Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hideyuki Mannen
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Tomoko Kobayashi
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
- *Correspondence: Tomoko Kobayashi,
| |
Collapse
|
34
|
Hummel GL, Austin K, Cunningham-Hollinger HC. Comparing the maternal-fetal microbiome of humans and cattle: a translational assessment of the reproductive, placental, and fetal gut microbiomes. Biol Reprod 2022; 107:371-381. [PMID: 35412586 DOI: 10.1093/biolre/ioac067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
An analysis of sites within the maternal reproductive microbiome that potentially contribute to fetal gut microbial colonization, with a special focus on the comparison between humans and cattle.
Collapse
Affiliation(s)
- Gwendolynn L Hummel
- Department of Animal and Veterinary Science, University of Wyoming, Laramie, WY, 82071
| | - Kathleen Austin
- Department of Animal and Veterinary Science, University of Wyoming, Laramie, WY, 82071
| | | |
Collapse
|
35
|
Dorji J, Vander Jagt CJ, Chamberlain AJ, Cocks BG, MacLeod IM, Daetwyler HD. Recovery of mitogenomes from whole genome sequences to infer maternal diversity in 1883 modern taurine and indicine cattle. Sci Rep 2022; 12:5582. [PMID: 35379858 PMCID: PMC8980051 DOI: 10.1038/s41598-022-09427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/18/2022] [Indexed: 11/09/2022] Open
Abstract
Maternal diversity based on a sub-region of mitochondrial genome or variants were commonly used to understand past demographic events in livestock. Additionally, there is growing evidence of direct association of mitochondrial genetic variants with a range of phenotypes. Therefore, this study used complete bovine mitogenomes from a large sequence database to explore the full spectrum of maternal diversity. Mitogenome diversity was evaluated among 1883 animals representing 156 globally important cattle breeds. Overall, the mitogenomes were diverse: presenting 11 major haplogroups, expanding to 1309 unique haplotypes, with nucleotide diversity 0.011 and haplotype diversity 0.999. A small proportion of African taurine (3.5%) and indicine (1.3%) haplogroups were found among the European taurine breeds and composites. The haplogrouping was largely consistent with the population structure derived from alternate clustering methods (e.g. PCA and hierarchical clustering). Further, we present evidence confirming a new indicine subgroup (I1a, 64 animals) mainly consisting of breeds originating from China and characterised by two private mutations within the I1 haplogroup. The total genetic variation was attributed mainly to within-breed variance (96.9%). The accuracy of the imputation of missing genotypes was high (99.8%) except for the relatively rare heteroplasmic genotypes, suggesting the potential for trait association studies within a breed.
Collapse
Affiliation(s)
- Jigme Dorji
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Benjamin G Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
36
|
Rajawat D, Panigrahi M, Kumar H, Nayak SS, Parida S, Bhushan B, Gaur GK, Dutt T, Mishra BP. Identification of important genomic footprints using eight different selection signature statistics in domestic cattle breeds. Gene 2022; 816:146165. [PMID: 35026292 DOI: 10.1016/j.gene.2021.146165] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022]
Abstract
In the present study, the population genomic data of different cattle breeds were explored to decipher the genomic regions affected due to selective events and reflected in the productive, reproductive, thermo-tolerance, and health-related traits. To find out these genomic deviations due to selective sweeps, we used eight different statistical tools (Tajima's D, Fu & Li's D*, CLR, ROH, iHS, FST, FLK, and hapFLK) on seven indigenous and five exotic cattle breeds. We further performed composite analysis by comparing their covariance matrix. Several candidate genes were found to be related to milk production (ADARB, WDR70, and CA8), reproductive (PARN, FAM134B2, and ZBTB20), and health-related traits (SP110, CXCL2, CLXCL3, CXCL5, IRF8, and MYOM1). The outcome of this investigation provides a basis for detecting selective sweeps that explain the genetic variation of traits. They may possess functional importance for multiple cattle breeds in different subcontinents. However, further studies are required to improve the findings using high-density arrays or whole-genome sequencing with higher resolution and greater sample sizes.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - G K Gaur
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - B P Mishra
- Division of Animal Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
37
|
Temporal analysis of bovine pestivirus diversity in Brazil. Braz J Microbiol 2022; 53:1675-1682. [PMID: 35349125 PMCID: PMC9433493 DOI: 10.1007/s42770-022-00735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/17/2022] [Indexed: 11/02/2022] Open
Abstract
In this study, phylogenetic and evolutionary analyses of cattle pestiviruses (BVDV-1, 2 and HoBiPeV) originating in Brazil were used to investigate the temporal diversification of subgenotypes in the country. Inferred dated phylogeny and time of the most recent common ancestor (tMRCA) demonstrated that some BVDV subgenotypes (1a, 1b, 1d, 1e, and 2b) and HoBi-like sequences clustered according to the region in which they were collected and that the diversification of subgenotypes appears to have occurred around the introduction of first Bos taurus and then Bos indicus, followed by expansion to form the adapted Brazilian breeds. The present results help to elucidate the temporal facts that led to diversification of ruminant pestiviruses in cattle in Brazil.
Collapse
|
38
|
Talenti A, Powell J, Hemmink JD, Cook EAJ, Wragg D, Jayaraman S, Paxton E, Ezeasor C, Obishakin ET, Agusi ER, Tijjani A, Amanyire W, Muhanguzi D, Marshall K, Fisch A, Ferreira BR, Qasim A, Chaudhry U, Wiener P, Toye P, Morrison LJ, Connelley T, Prendergast JGD. A cattle graph genome incorporating global breed diversity. Nat Commun 2022; 13:910. [PMID: 35177600 PMCID: PMC8854726 DOI: 10.1038/s41467-022-28605-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/20/2022] [Indexed: 11/28/2022] Open
Abstract
Despite only 8% of cattle being found in Europe, European breeds dominate current genetic resources. This adversely impacts cattle research in other important global cattle breeds, especially those from Africa for which genomic resources are particularly limited, despite their disproportionate importance to the continent's economies. To mitigate this issue, we have generated assemblies of African breeds, which have been integrated with genomic data for 294 diverse cattle into a graph genome that incorporates global cattle diversity. We illustrate how this more representative reference assembly contains an extra 116.1 Mb (4.2%) of sequence absent from the current Hereford sequence and consequently inaccessible to current studies. We further demonstrate how using this graph genome increases read mapping rates, reduces allelic biases and improves the agreement of structural variant calling with independent optical mapping data. Consequently, we present an improved, more representative, reference assembly that will improve global cattle research.
Collapse
Affiliation(s)
- A Talenti
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - J Powell
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - J D Hemmink
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health, Easter Bush, Midlothian, EH25 9RG, UK
- Centre for Tropical Livestock Genetics and Health, ILRI Kenya, Nairobi, 30709-00100, Kenya
| | - E A J Cook
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health, ILRI Kenya, Nairobi, 30709-00100, Kenya
| | - D Wragg
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
- Centre for Tropical Livestock Genetics and Health, Easter Bush, Midlothian, EH25 9RG, UK
| | - S Jayaraman
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - E Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - C Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - E T Obishakin
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
- Biomedical Research Centre, Ghent University Global Campus, Songdo, Incheon, South Korea
| | - E R Agusi
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
- Biomedical Research Centre, Ghent University Global Campus, Songdo, Incheon, South Korea
| | - A Tijjani
- International Livestock Research Institute (ILRI) PO, 5689, Addis Ababa, Ethiopia
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, PO Box 5689, Addis Ababa, Ethiopia
| | - W Amanyire
- School of Biosecurity, Biotechnology and Laboratory Sciences (SBLS), College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - D Muhanguzi
- School of Biosecurity, Biotechnology and Laboratory Sciences (SBLS), College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - K Marshall
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health, ILRI Kenya, Nairobi, 30709-00100, Kenya
| | - A Fisch
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - B R Ferreira
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - A Qasim
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - U Chaudhry
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - P Wiener
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - P Toye
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health, ILRI Kenya, Nairobi, 30709-00100, Kenya
| | - L J Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
- Centre for Tropical Livestock Genetics and Health, Easter Bush, Midlothian, EH25 9RG, UK
| | - T Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
- Centre for Tropical Livestock Genetics and Health, Easter Bush, Midlothian, EH25 9RG, UK
| | - J G D Prendergast
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
- Centre for Tropical Livestock Genetics and Health, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
39
|
Riley S. “Meating” the Demand: Markets and Commodification. Anim Welf 2022. [DOI: 10.1007/978-3-030-85870-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Utsunomiya YT, Fortunato AAAD, Milanesi M, Trigo BB, Alves NF, Sonstegard TS, Garcia JF. Bos taurus haplotypes segregating in Nellore (Bos indicus) cattle. Anim Genet 2021; 53:58-67. [PMID: 34921423 DOI: 10.1111/age.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
Brazil is the largest exporter of beef in the world, and most of that beef derives from Nellore cattle. Although considered a zebu breed (Bos indicus), the history of Nellore cattle in Brazil is marked by the importation of bulls from India, the use of a Creole taurine (Bos taurus) maternal lineage to quickly expand the herds and backcrossing to Nellore bulls to recover zebu ancestry. As a consequence, the current Brazilian Nellore population carries an average taurine ancestry of approximately 1%. Although that percentage seems small, some taurine variants deviate substantially from that average, with the better-known cases being the PLAG1-Q haplotype involved with body size variation and the Guarani (PG ) polled variant producing hornless animals. Here, we report taurine haplotypes in 9074 Nellore animals genotyped for 539 657 imputed SNP markers. Apart from PLAG1-Q and PG , our analysis further revealed common taurine haplotypes (>3%) spanning genes related to immunity, growth, reproduction and hair and skin phenotypes. Using data from 22 economically important traits, we showed that many of the major QTL previously reported in the breed are at least partially driven by taurine haplotypes. As B. taurus and B. indicus haplotypes are highly divergent, presenting widely different sets of functional variants, our results provide promising targets for future scrutiny in Nellore cattle.
Collapse
Affiliation(s)
- Y T Utsunomiya
- Department of Production and Animal Health, School of Veterinary Medicine of Araçatuba, São Paulo State University, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,AgroPartners Consulting. R. Floriano Peixoto, 120 - Sala 43A - Centro, Araçatuba, SP, 16010-220, Brazil
| | - A A A D Fortunato
- Department of Production and Animal Health, School of Veterinary Medicine of Araçatuba, São Paulo State University, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,Personal-PEC. R. Sebastião Lima, 1336 - Centro, Campo Grande, MS, 79004-600, Brazil
| | - M Milanesi
- AgroPartners Consulting. R. Floriano Peixoto, 120 - Sala 43A - Centro, Araçatuba, SP, 16010-220, Brazil.,Department for Innovation in Biological, Agro-Food and Forest Systems, Università Della Tuscia, Via S. Camillo de Lellis snc, Viterbo, 01100, Italy
| | - B B Trigo
- Department of Production and Animal Health, School of Veterinary Medicine of Araçatuba, São Paulo State University, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil
| | - N F Alves
- Department of Production and Animal Health, School of Veterinary Medicine of Araçatuba, São Paulo State University, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil
| | | | - J F Garcia
- Department of Production and Animal Health, School of Veterinary Medicine of Araçatuba, São Paulo State University, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,International Atomic Energy Agency Collaborating Centre on Animal Genomics and Bioinformatics, 16050-680 R. Clovis Pestana 793 - Dona Amelia, Araçatuba, SP, Brazil.,AgroPartners Consulting. R. Floriano Peixoto, 120 - Sala 43A - Centro, Araçatuba, SP, 16010-220, Brazil.,Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University, 14884-900 Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, Brazil
| |
Collapse
|
41
|
Zhang X, Yang L, Hou L, Li H, Xiang H, Zhao X. Ancient Mitogenomes Reveal the Domestication and Distribution of Cattle During the Longshan Culture Period in North China. Front Genet 2021; 12:759827. [PMID: 34887902 PMCID: PMC8650136 DOI: 10.3389/fgene.2021.759827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
Cattle, as an important tool for agricultural production in ancient China, have a complex history of domestication and distribution in China. Although it is generally accepted that ancient Chinese taurine cattle originated from the Near East, the explanation regarding their spread through China and whether or not this spread was associated with native aurochs during ancient times are still unclear. In this study, we obtained three nearly complete mitochondrial genomes (mitogenomes) from bovine remains dating back ca. 4,000 years at the Taosi and Guchengzhai sites in North China. For the first time at the mitogenome level, phylogenetic analyses confirmed the approximately 4,000-year-old bovines from North China as taurine cattle. All ancient cattle from both sites belonged to the T3 haplogroup, suggesting their origin from the Near East. The high affinity between ancient samples and southern Chinese taurine cattle indicated that ancient Chinese cattle had a genetic contribution to the taurine cattle of South China. A rapid decrease in the female effective population size ca. 4.65 thousand years ago (kya) and a steep increase ca. 1.99 kya occurred in Chinese taurine cattle. Overall, these results provide increasing evidence of the origin of cattle in the middle Yellow River region of China.
Collapse
Affiliation(s)
- Xing Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Liu Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lingyun Hou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xingbo Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Population genetic diversity and genetic evaluation models reveal the maternal genetic structure and conservation priority characteristics of indigenous cattle in China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Cubric‐Curik V, Novosel D, Brajkovic V, Rota Stabelli O, Krebs S, Sölkner J, Šalamon D, Ristov S, Berger B, Trivizaki S, Bizelis I, Ferenčaković M, Rothammer S, Kunz E, Simčič M, Dovč P, Bunevski G, Bytyqi H, Marković B, Brka M, Kume K, Stojanović S, Nikolov V, Zinovieva N, Schönherz AA, Guldbrandtsen B, Čačić M, Radović S, Miracle P, Vernesi C, Curik I, Medugorac I. Large‐scale mitogenome sequencing reveals consecutive expansions of domestic taurine cattle and supports sporadic aurochs introgression. Evol Appl 2021; 15:663-678. [PMID: 35505892 PMCID: PMC9046920 DOI: 10.1111/eva.13315] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Vlatka Cubric‐Curik
- Department of Animal Science University of Zagreb Faculty of Agriculture Zagreb Croatia
| | - Dinko Novosel
- Department of Animal Science University of Zagreb Faculty of Agriculture Zagreb Croatia
- Department of Pathology Croatian Veterinary Institute Zagreb Croatia
| | - Vladimir Brajkovic
- Department of Animal Science University of Zagreb Faculty of Agriculture Zagreb Croatia
| | - Omar Rota Stabelli
- Department of Sustainable Agro‐Ecosystems and Bioresources, Research and Innovation Centre Fondazione Edmund Mach S. Michele all' Adige Italy
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis Gene Center Ludwig Maximilians University Munich Munich Germany
| | - Johann Sölkner
- Division of Livestock Sciences Department of Sustainable Agricultural Systems BOKU‐University of Natural Resources and Life Sciences Vienna Vienna Austria
| | - Dragica Šalamon
- Department of Animal Science University of Zagreb Faculty of Agriculture Zagreb Croatia
| | | | - Beate Berger
- AREC Raumberg‐Gumpenstein Institute of Organic Farming and Biodiversity of Farm Animals Thalheim Austria
| | | | - Iosif Bizelis
- Faculty of Animal Science and Aquaculture Department of Animal Breeding & Husbandry Agricultural University of Athens Athens Greece
| | - Maja Ferenčaković
- Department of Animal Science University of Zagreb Faculty of Agriculture Zagreb Croatia
| | - Sophie Rothammer
- Population Genomics Group Faculty of Veterinary Medicine Department of Veterinary Sciences LMU Munich Munich Germany
| | - Elisabeth Kunz
- Population Genomics Group Faculty of Veterinary Medicine Department of Veterinary Sciences LMU Munich Munich Germany
| | - Mojca Simčič
- Biotechnical Faculty Department of Animal Science University of Ljubljana Ljubljana Slovenia
| | - Peter Dovč
- Biotechnical Faculty Department of Animal Science University of Ljubljana Ljubljana Slovenia
| | - Gojko Bunevski
- Faculty of Agricultural Sciences and Food University Ss. Cyril and Methodius Skopje Macedonia
| | - Hysen Bytyqi
- Faculty of Agriculture and Veterinary Department of Animal Science University of Prishtina Prishtina Kosovo
| | - Božidarka Marković
- Biotechnical Faculty Department of Livestock Science University of Montenegro Podgorica Montenegro
| | - Muhamed Brka
- Faculty of Agriculture and Food Science Institute of Animal Sciences University of Sarajevo Sarajevo Bosnia and Herzegovina
| | | | - Srđan Stojanović
- Ministry of Agriculture, Forestry and Water Management Beograd Serbia
| | - Vasil Nikolov
- Executive Agency for Selection and Reproduction in Animal Breeding Sofia Bulgaria
| | - Natalia Zinovieva
- Center of Biotechnology and Molecular Diagnostics of the L.K. Ernst Institute of Animal Husbandry Moscow Region Russia
| | | | - Bernt Guldbrandtsen
- Department of Animal Sciences Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
| | - Mato Čačić
- Croatian Agricultural Agency Zagreb Croatia
| | - Siniša Radović
- Institute for Quaternary Palaeontology and Geology Croatian Academy of Sciences and Arts Zagreb Croatia
| | - Preston Miracle
- Department of Archaeology University of Cambridge Cambridge UK
| | - Cristiano Vernesi
- Department of Sustainable Agro‐Ecosystems and Bioresources, Research and Innovation Centre Fondazione Edmund Mach S. Michele all' Adige Italy
| | - Ino Curik
- Department of Animal Science University of Zagreb Faculty of Agriculture Zagreb Croatia
| | - Ivica Medugorac
- Population Genomics Group Faculty of Veterinary Medicine Department of Veterinary Sciences LMU Munich Munich Germany
| |
Collapse
|
44
|
Effects of Temperament on the Reproduction of Beef Cattle. Animals (Basel) 2021; 11:ani11113325. [PMID: 34828056 PMCID: PMC8614566 DOI: 10.3390/ani11113325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary In beef cattle and other livestock species, temperament can be considered as their behavioral responses to human interaction. Temperament evaluation allows classifying cattle according to the level of responsiveness, from calm to excitable. Consistently across studies, beef females classified as more excitable have signs of increased stress response and are less fertile compared to cohorts with calmer temperament. Cattle temperament can be improved via genetic selection and acclimating young animals to human interaction and handling procedures. Abstract Temperament is often defined as the behavioral expression of animals in response to human interaction. Cattle temperament can be evaluated using an association of chute score and exit velocity, with cattle then classified as adequate or excitable temperament. To assess the impacts of temperament on various beef systems, these evaluation criteria were associated with productive and reproductive parameters of Bos taurus and B. indicus-influenced cattle. Consistently across studies, excitable cattle had greater plasma cortisol compared to animals with adequate temperament. Studies also reported that excitable beef females have poorer reproductive performance compared to calmer cohorts, including reduced annual pregnancy rates, decreased calving rate, weaning rate, and kg of calf weaned/cow exposed to breeding. Acclimating B. indicus × B. taurus or B. taurus heifers to human handling improved behavioral expression of temperament and hastened puberty attainment. However, similar benefits were not observed when mature cows were acclimated to human handling. Collectively, temperament of beef females measured via behavioral responses upon human handling impacts their reproductive and productive responses independent of breed type, and should be considered for optimal beef cattle production.
Collapse
|
45
|
Zeller U, Göttert T. Humans, megafauna and landscape structure – Rock engravings from Namibia encourage a comparative approach to central Europe and southern Africa. VERTEBRATE ZOOLOGY 2021. [DOI: 10.3897/vz.71.e72811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper deals with reflections that arose after observing prehistoric rock engravings at different locations in Namibia. These observations stimulated comparative considerations with focus on southern Africa and central Europe. Similar to the Aurignacian rock art of European origin, the most common motifs in the Namibian rock engravings are large animals. While in Europe, the species that served as a blueprint for the illustration of Aurignacian rock art have mostly disappeared, the megafauna illustrated on the rock engravings in Namibia can still be found in the immediate vicinity of the rock art. Against this background, we discuss and further develop a comparative regional approach. We reconstruct and evaluate the suitability of African savannas and still-existing megafauna communities as an appropriate reference-frame for natural European grassland systems and extinct associated warm-adapted megafauna (Eemian Interglacial megafauna). Special attention is laid on the unique situation in Africa in the light of a global extinction wave of megafauna following increasing human activity in the Late Quaternary. This leads us to discuss the use of domesticated ungulates as surrogate taxa to fulfill ecosystem functions in Europe as part of concepts termed “rewilding” or “naturalistic grazing”. After critically examining these concepts, we conclude that using domesticated forms as representatives of extinct or locally disappeared species in Europe has its justification to some extent. If, however, the naturally occurring megaherbivore community still exists (Africa), these naturally occurring species should be given priority due to their organismic abilities and limitations adapted to the harsh conditions in their specific environment. Finally, we discuss the application of (transboundary) protected areas as effective instruments to mitigate human-wildlife conflicts. A holistic approach, including nature conservation and preservation of cultural achievements (domesticated forms, grazing systems), appears promising for the effective protection of the natural African savanna ecosystems with their unique fauna elements, as illustrated in rock engravings that inspired us to write this paper.
Collapse
|
46
|
Spetter MJ, Louge Uriarte EL, Verna AE, Leunda MR, Pereyra SB, Odeón AC, González Altamiranda EA. Genomic diversity and phylodynamic of bovine viral diarrhea virus in Argentina. INFECTION GENETICS AND EVOLUTION 2021; 96:105089. [PMID: 34563649 DOI: 10.1016/j.meegid.2021.105089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/29/2021] [Accepted: 09/19/2021] [Indexed: 01/16/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is an important pathogen of ruminants worldwide and is characterized by high genetic diversity and a wide range of clinical presentations. In Argentina, several studies have evaluated the genetic diversity of BVDV but no phylodynamic study has been published yet. In this study, a comprehensive compilation and update of Argentinean BVDV sequences were performed, and the evolutionary history of BVDV was characterized by phylodynamic analyses based on the 5´UTR. Although BVDV-1b and BVDV-1a were the most frequent subtypes, novel subtypes for Argentina, 1e and 1i, were identified. The phylodynamic analysis suggested that BVDV started its diversification in the mid-1650s with an exponential increase in viral diversity since the late 1990s, possibly related to the livestock expansion and intensification in the country. Evolutionary rate in the 5´UTR was faster for BVDV-1a than for BVDV-1b, and both subtypes presented an endemic nature according to the demographic reconstructions. The current study contributes to clarify the evolutionary history of BVDV in the main cattle region of the country and provides useful information about the epidemiology and future development of diagnostic and control tools in Argentina.
Collapse
Affiliation(s)
- Maximiliano J Spetter
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ Buenos Aires, Argentina; Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible INTA - CONICET, Ruta 226 km 73,5, CP 7620 Balcarce, Argentina
| | - Enrique L Louge Uriarte
- Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible INTA - CONICET, Ruta 226 km 73,5, CP 7620 Balcarce, Argentina.
| | - Andrea E Verna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ Buenos Aires, Argentina; Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible INTA - CONICET, Ruta 226 km 73,5, CP 7620 Balcarce, Argentina
| | - María Rosa Leunda
- Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible INTA - CONICET, Ruta 226 km 73,5, CP 7620 Balcarce, Argentina
| | - Susana B Pereyra
- Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible INTA - CONICET, Ruta 226 km 73,5, CP 7620 Balcarce, Argentina
| | - Anselmo C Odeón
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
| | - Erika A González Altamiranda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ Buenos Aires, Argentina; Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible INTA - CONICET, Ruta 226 km 73,5, CP 7620 Balcarce, Argentina.
| |
Collapse
|
47
|
A Review of Australian Tick Vaccine Research. Vaccines (Basel) 2021; 9:vaccines9091030. [PMID: 34579266 PMCID: PMC8473225 DOI: 10.3390/vaccines9091030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Tick vaccine research in Australia has demonstrated leadership worldwide through the development of the first anti-tick vaccine in the 1990s. Australia’s Commonwealth Scientific and Industrial Research Organisation’s (CSIRO) research led to the development of vaccines and/or precursors of vaccines (such as crude extracts) for both the cattle tick and the paralysis tick. CSIRO commercialised the Bm86 vaccine in the early 1990s for Rhipicephalus australis; however, issues with dosing and lack of global conservation led to the market closure of Tick-GARD in Australia. New research programs arose both locally and globally. The Australian paralysis tick Ixodes holocyclus has perplexed research veterinarians since the 1920s; however, not until the 2000s did biotechnology exist to elucidate the neurotoxin—holocyclotoxin family of toxins leading to a proof of concept vaccine cocktail. This review revisits these discoveries and describes tributes to deceased tick vaccine protagonists in Australia, including Sir Clunies Ross, Dr Bernard Stone and Dr David Kemp.
Collapse
|
48
|
Verardo LL, E Silva FF, Machado MA, do Carmo Panetto JC, de Lima Reis Faza DR, Otto PI, de Almeida Regitano LC, da Silva LOC, do Egito AA, do Socorro Maués Albuquerque M, Zanella R, da Silva MVGB. Genome-Wide Analyses Reveal the Genetic Architecture and Candidate Genes of Indicine, Taurine, Synthetic Crossbreds, and Locally Adapted Cattle in Brazil. Front Genet 2021; 12:702822. [PMID: 34386042 PMCID: PMC8353373 DOI: 10.3389/fgene.2021.702822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
Cattle population history, breeding systems, and geographic subdivision may be reflected in runs of homozygosity (ROH), effective population size (Ne), and linkage disequilibrium (LD) patterns. Thus, the assessment of this information has become essential to the implementation of genomic selection on purebred and crossbred cattle breeding programs. In this way, we assessed the genotype of 19 cattle breeds raised in Brazil belonging to taurine, indicine, synthetic crossbreds, and Iberian-derived locally adapted ancestries to evaluate the overall LD decay patterns, Ne, ROH, and breed composition. We were able to obtain a general overview of the genomic architecture of cattle breeds currently raised in Brazil and other tropical countries. We found that, among the evaluated breeds, different marker densities should be used to improve the genomic prediction accuracy and power of genome-wide association studies. Breeds showing low Ne values indicate a recent inbreeding, also reflected by the occurrence of longer ROH, which demand special attention in the matting schemes to avoid extensive inbreeding. Candidate genes (e.g., ABCA7, PENK, SPP1, IFNAR1, IFNAR2, SPEF2, PRLR, LRRTM1, and LRRTM4) located in the identified ROH islands were evaluated, highlighting biological processes involved with milk production, behavior, rusticity, and fertility. Furthermore, we were successful in obtaining the breed composition regarding the taurine and indicine composition using single-nucleotide polymorphism (SNP) data. Our results were able to observe in detail the genomic backgrounds that are present in each breed and allowed to better understand the various contributions of ancestor breeds to the modern breed composition to the Brazilian cattle.
Collapse
Affiliation(s)
- Lucas Lima Verardo
- Animal Breeding Lab, Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | | | | | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | | | | | - Ricardo Zanella
- Department of Veterinary Medicine, Universidade de Passo Fundo, Passo Fundo, Brazil
| | | |
Collapse
|
49
|
Jang J, Kim K, Lee YH, Kim H. Population differentiated copy number variation of Bos taurus, Bos indicus and their African hybrids. BMC Genomics 2021; 22:531. [PMID: 34253178 PMCID: PMC8276479 DOI: 10.1186/s12864-021-07808-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
Background CNV comprises a large proportion in cattle genome and is associated with various traits. However, there were few population-scale comparison studies on cattle CNV. Results Here, autosome-wide CNVs were called by read depth of NGS alignment result and copy number variation regions (CNVRs) defined from 102 Eurasian taurine (EAT) of 14 breeds, 28 Asian indicine (ASI) of 6 breeds, 22 African taurine (AFT) of 2 breeds, and 184 African humped cattle (AFH) of 17 breeds. The copy number of every CNVRs were compared between populations and CNVRs with population differentiated copy numbers were sorted out using the pairwise statistics VST and Kruskal-Wallis test. Three hundred sixty-two of CNVRs were significantly differentiated in both statistics and 313 genes were located on the population differentiated CNVRs. Conclusion For some of these genes, the averages of copy numbers were also different between populations and these may be candidate genes under selection. These include olfactory receptors, pathogen-resistance, parasite-resistance, heat tolerance and productivity related genes. Furthermore, breed- and individual-level comparison was performed using the presence or copy number of the autosomal CNVRs. Our findings were based on identification of CNVs from short Illumina reads of 336 individuals and 39 breeds, which to our knowledge is the largest dataset for this type of analysis and revealed important CNVs that may play a role in cattle adaption to various environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07808-7.
Collapse
Affiliation(s)
- Jisung Jang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Kwondo Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Ho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea. .,Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea. .,eGnome, Inc, Seoul, South Korea.
| |
Collapse
|
50
|
Illa SK, Mukherjee S, Nath S, Mukherjee A. Genome-Wide Scanning for Signatures of Selection Revealed the Putative Genomic Regions and Candidate Genes Controlling Milk Composition and Coat Color Traits in Sahiwal Cattle. Front Genet 2021; 12:699422. [PMID: 34306039 PMCID: PMC8299338 DOI: 10.3389/fgene.2021.699422] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background In the evolutionary time scale, selection shapes the genetic variation and alters the architecture of genome in the organisms. Selection leaves detectable signatures at the genomic coordinates that provide clues about the protein-coding regions. Sahiwal is a valuable indicine cattle adapted to tropical environments with desirable milk attributes. Insights into the genomic regions under putative selection may reveal the molecular mechanisms affecting the quantitative and other important traits. To understand this, the present investigation was undertaken to explore signatures of selection in the genome of Sahiwal cattle using a medium-density genotyping INDUS chip. Result De-correlated composite of multiple selection signals (DCMS), which combines five different univariate statistics, was computed in the dataset to detect the signatures of selection in the Sahiwal genome. Gene annotations, Quantitative Trait Loci (QTL) enrichment, and functional analyses were carried out for the identification of significant genomic regions. A total of 117 genes were identified, which affect a number of important economic traits. The QTL enrichment analysis highlighted 14 significant [False Discovery Rate (FDR)-corrected p-value ≤ 0.05] regions on chromosomes BTA 1, 3, 6, 11, 20, and 21. The top three enriched QTLs were found on BTA 6, 20, and 23, which are associated with exterior, health, milk production, and reproduction traits. The present study on selection signatures revealed some key genes related with coat color (PDGFRA, KIT, and KDR), facial pigmentation (LEF), milk fat percent (MAP3K1, HADH, CYP2U1, and SGMS2), sperm membrane integrity (OSTC), lactation persistency (MRPS30, NNT, CCL28, HMGCS1, NIM1K, ZNF131, and CCDC152), milk yield (GHR and ZNF469), reproduction (NKX2-1 and DENND1A), and bovine tuberculosis susceptibility (RNF144B and PAPSS1). Further analysis of candidate gene prioritization identified four hub genes, viz., KIT, KDR, MAP3K1, and LEF, which play a role in coat color, facial pigmentation, and milk fat percentage in cattle. Gene enrichment analysis revealed significant Gene ontology (GO) terms related to breed-specific coat color and milk fat percent. Conclusion The key candidate genes and putative genomic regions associated with economic traits were identified in Sahiwal using single nucleotide polymorphism data and the DCMS method. It revealed selection for milk production, coat color, and adaptability to tropical climate. The knowledge about signatures of selection and candidate genes affecting phenotypes have provided a background information that can be further utilized to understand the underlying mechanism involved in these traits in Sahiwal cattle.
Collapse
Affiliation(s)
- Satish Kumar Illa
- Division of Animal Genetics and Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Sabyasachi Mukherjee
- Division of Animal Genetics and Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Sapna Nath
- Artificial Breeding Research Center, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| | - Anupama Mukherjee
- Division of Animal Genetics and Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, India
| |
Collapse
|