1
|
Kong F, Zhao Q, Wang S, Mu G, Wu X. Comparative Study on the Physical and Chemical Properties Influenced by Variations in Fermentation Bacteria Groups: Inoculating Different Fermented Mare's Milk into Cow's Milk. Foods 2025; 14:1328. [PMID: 40282730 PMCID: PMC12027402 DOI: 10.3390/foods14081328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Fermented strains play a crucial role in shaping the physicochemical properties and functionality of fermented cow's milk. The natural fermentation system demonstrates a certain degree of stability and safety after undergoing continuous domestication. Fermented mare's milk has been consumed for its intestinal health benefits in regions such as Xinjiang and Inner Mongolia in China. This consumption is closely related to the fermented strains present. Consequently, from the perspective of fermented strains, this study aimed to compare the microbiota diversity of naturally fermented mare's milk with that of inoculated fermented cow's milk, using it as a fermentation system to develop new functional fermented cow's milk products. Water retention, rheology, texture, pH, and titration acidity were analyzed to evaluate the quality of fermented cow's milk with the obtained transmission strain system. Importantly, the correlation between the property of fermented cow's milk and the diversity of fermentation system has been thoroughly analyzed. The findings indicate that the gel property of fermented cow's milk is not directly linked to the strain diversity or the core strain of fermentation. Instead, the abundance of Lactobacillus, Lactococcus, Hafnia-Obesumbacterium, Leuconostoc, Acetobacter, and Acinetobacter bacteria significantly influences the quality of fermented cow's milk. Consequently, this study has successfully developed a new type of fermented cow's milk and provided a reliable theoretical foundation for the functional enhancement of specialized fermented cow's milk products.
Collapse
Affiliation(s)
| | | | | | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaomeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Li Y, Yue X, Ren X, Pang Y, Wang T, Huangfu B, Mikhailovich ZA, Vasilievich KV, Zhang M, Luan Y, Wang Q, He X. Mare milk and fermented mare milk alleviate dextran sulfate sodium salt-induced ulcerative colitis in mice by reducing inflammation and modulating intestinal flora. J Dairy Sci 2025; 108:2182-2198. [PMID: 39647629 DOI: 10.3168/jds.2024-25181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Mare milk (MM) and fermented mare milk (FM) are specialized animal milks with high nutritional value, containing a variety of functionally active substances that are capable of resisting inflammatory responses and oxidative stress. However, little relevant research on the maintenance of intestinal homeostasis has been performed. This study aimed to investigate the effects of MM and FM on the prevention of dextran sulfate sodium salt (DSS)-induced ulcerative colitis in a mouse model and to preliminarily elucidate the underlying mechanisms. The results showed that MM and FM had different degrees of protective effects against the damage caused by DSS and alleviated ulcerative colitis by inhibiting weight loss, reducing colon length shortening, and restoring intestinal structure. Additionally, MM and FM maintained intestinal tight junction protein levels to repair barrier function, downregulated inflammatory cytokines (e.g., IL-1β, TNF-α, IL-6, and iNOS) and bolstered the body's antioxidant defense system. Moreover, MM and FM regulated dysregulation of the intestinal microenvironment by improving the diversity of the gut microbiota and reshaping its structure, including increasing the proportion of Firmicutes and Bacteroidetes and the relative abundance of beneficial bacterial genera (e.g., Akkermansia). In summary, MM and FMM can serve as dietary resources for preventing ulcerative colitis and maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | - Xiaoyu Yue
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193
| | - Xinxin Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | - Yang Pang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | - Teng Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083
| | | | | | - Mu Zhang
- Shenyang Agricultural University, Shenyang, China 110161
| | - Yue Luan
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193
| | - Qin Wang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193.
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China 100083.
| |
Collapse
|
3
|
Ganzorig O, Batdorj B, Satomi I. Characterization of volatile compound profile in Mongolian traditional fermented mare's milk, as Airag. Anim Sci J 2025; 96:e70024. [PMID: 39757010 DOI: 10.1111/asj.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 01/07/2025]
Abstract
We aimed to evaluate the volatile compounds profile in traditional airag samples collected from two regions, including Bulgan and Uvurkhangai provinces, whereas famous airag-making areas in Mongolia. The volatile compounds of airag were investigated by the GC-MS method. A total of 95 kinds of volatile compounds were detected, and these were classified into 6 different classes: 14 acids, 14 alcohols, 16 aldehydes, 19 esters, 9 ketones, and 23 aliphatic hydrocarbons. Among them, acetic acid, 2-methyl propionic acid, isoamyl lactic acid, 2-methyl butanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, n-decanoic acid, 1-propanol, 3-methyl 1-butanol, phenyl ethyl alcohol, acetaldehyde, acetoin, ethyl acetate, ethyl hexanoate, ethyl caprylate, ethyl decanoate, ethyl 9-decanoate, and ethyl laurate had a high concentration in airag samples. It may explain that acids, alcohols, and esters mainly influence the taste and aroma of airag, and aldehydes change depending on their fermentation time. We also found that Bulgan provinces` samples contained 20 types of aliphatic hydrocarbons, which may relate to the vegetation and fermentation process. The formation of sensory characteristics in airag is a complex and unclear process because it affects many factors. Our findings provide essential guidance on the composition of volatile compounds in Mongol airag.
Collapse
Affiliation(s)
- Oyundelger Ganzorig
- Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Batjargal Batdorj
- Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Ishii Satomi
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| |
Collapse
|
4
|
B S, C VT, S K, B S, M I. Advancing Fermented Food Products: Exploring Bioprocess Technologies and Overcoming Challenges. FOOD BIOPROCESS TECH 2024; 17:3461-3482. [DOI: 10.1007/s11947-023-03287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2025]
|
5
|
Istanbullugil FR, Risvanli A, Salikov R, Bayraktar M, Zhunushova A, Acaroz U, Arslan Acaroz D, Yilmaz O, Yuksel BF, Turanli M, Uz M. Koumiss and immunity: A thorough investigation of fermentation parameters and their impact on health benefits. J Dairy Sci 2024; 107:6451-6459. [PMID: 38825115 DOI: 10.3168/jds.2024-24695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/16/2024] [Indexed: 06/04/2024]
Abstract
The aim of this study was to determine the components and cytokine and immunoglobulin levels of koumiss during different fermentation periods, and to reveal the interrelation between these parameters. For achieving this objective, 10 samples of koumiss were prepared and randomly divided into 2 groups: the first group was sampled at 0, 1, 5, 12, and 24 h of incubation at room temperature for analysis. The second group was stored at +4°C, and samples were taken on d 5, 10, 15, and 20. The counts of Enterobacteriaceae spp., Staphylococcus, and Micrococcus spp. progressively decreased with the period of fermentation until becoming undetectable in the final samples of both groups. We fond positive or negative correlations between cytokine and immunoglobulin levels and the physicochemical and microbiological parameters in the koumiss samples in both groups. However, the levels of IFN-γ, IL-2, TNF-α, and IgG did not change significantly over time in both groups. Overall, it is clear that traditionally prepared koumiss under different fermentation times and temperatures does not show any differences in cytokine and immunoglobulin concentrations.
Collapse
Affiliation(s)
| | - Ali Risvanli
- Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, 720038 Bishkek, Kyrgyzstan; Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Fırat University, 23159 Elazig, Turkey.
| | - Ruslan Salikov
- Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, 720038 Bishkek, Kyrgyzstan
| | - Metin Bayraktar
- Department of Zootechny, Faculty of Veterinary Medicine, Fırat University, 23159 Elazig, Turkey
| | - Aidai Zhunushova
- Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, 720038 Bishkek, Kyrgyzstan
| | - Ulas Acaroz
- Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, 720038 Bishkek, Kyrgyzstan; Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Damla Arslan Acaroz
- Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, 720038 Bishkek, Kyrgyzstan; Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Oznur Yilmaz
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Siirt University, 56100 Siirt, Turkey
| | - Burak Fatih Yuksel
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Fırat University, 23159 Elazig, Turkey
| | - Mert Turanli
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Fırat University, 23159 Elazig, Turkey
| | - Muhammet Uz
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Fırat University, 23159 Elazig, Turkey
| |
Collapse
|
6
|
Wang L, Sun Y, Du L, Wang Q, Zhan M, Li S, Xiao X. Daily koumiss has positive regulatory effects on blood lipids and immune system: A metabolomics study. Heliyon 2024; 10:e36429. [PMID: 39253138 PMCID: PMC11382052 DOI: 10.1016/j.heliyon.2024.e36429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Koumiss, a traditional Mongolian beverage, is believed to possess high nutritional value and potential medical benefits. However, there is a lack of comprehensive research on its potential impact on the human body. Metabolomics, as a sensitive approach in systems biology, offers a new avenue for studying the overall effects of koumiss. In this work, metabolomics was utilized to identify potential biomarkers and pathways associated with koumiss using UPLC-MS detection, pattern recognition analysis, pathway enrichment, network pharmacology. The findings indicated that koumiss exerts a beneficial regulatory influence on lipid metabolism, neurotransmitters, hormones, phospholipids and arachidonic acid metabolism, besides up regulating the content of nutrients. It could reduce the risks of dyslipidemia and inflammatory responses. This study confirmed the benign regulatory effect of koumiss on normal organism from the perspective of endogenous metabolites, and provided objective support for the promotion and application of this ethnic food.
Collapse
Affiliation(s)
- Leqi Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanfang Sun
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lijing Du
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Zhan
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Mukherjee A, Breselge S, Dimidi E, Marco ML, Cotter PD. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 2024; 21:248-266. [PMID: 38081933 DOI: 10.1038/s41575-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
- VistaMilk, Cork, Ireland.
| |
Collapse
|
8
|
Yu X, Sun Y, Shen X, Li W, Cai H, Guo S, Sun Z. Effect of different isolation sources of Lactococcus lactis subsp. lactis on volatile metabolites in fermented milk. Food Chem X 2024; 21:101224. [PMID: 38384690 PMCID: PMC10878853 DOI: 10.1016/j.fochx.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/27/2024] [Accepted: 02/10/2024] [Indexed: 02/23/2024] Open
Abstract
Lactococcus lactis subsp. lactis (L. lactis subsp. lactis) is a commonly used starter cultures in fermented dairy products, contributing distinct flavor and texture characteristics with high application value. However, the strains from different isolates have different contributions to milk fermentation. Therefore, this study aimed to investigate the influence of L. lactis subsp. lactis isolated from various sources on the volatile metabolites present in fermented milk. In this study, L. lactis subsp. lactis from different isolation sources (yogurt, koumiss and goat yogurt) was utilized as a starter culture for fermentation. The volatile metabolites of fermented milk were subsequently analyzed by headspace solid phase microextraction gas chromatography-mass spectrography (HS-SPME-GC-MS). The results indicated significant differences in the structure and abundance of volatile metabolites in fermented milk produced with different isolates (R2Y = 0.96, Q2 = 0.88). Notably, the strains isolated from goat yogurt appeared to enhance the accumulation of ketones (goat yogurt vs yogurt milk: 50 %; goat yogur vs koumiss: 27.3 %)and aldehydes (goat yogurt vs yogurt milk: 21.4 %; goat yogurt vs koumiss: 54.5 %) in fermented milk than strains isolated from koumiss and yogurt milk. It significantly promoted the production of 8 flavor substances (1 substance with OAV ≥ 1 and 6 substances with OAV > 0.1) and enhanced the biosynthesis of valine, leucine, and isoleucine. This study provides valuable insights for the application of Lactococcus lactis subsp. lactis isolated from different sources in fermented dairy production and screening of potential starter cultures.
Collapse
Affiliation(s)
| | | | - Xin Shen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hongyu Cai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuai Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
9
|
Balasubramanian R, Schneider E, Gunnigle E, Cotter PD, Cryan JF. Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci Biobehav Rev 2024; 158:105562. [PMID: 38278378 DOI: 10.1016/j.neubiorev.2024.105562] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Over the past two decades, whole food supplementation strategies have been leveraged to target mental health. In addition, there has been increasing attention on the ability of gut microbes, so called psychobiotics, to positively impact behaviour though the microbiota-gut-brain axis. Fermented foods offer themselves as a combined whole food microbiota modulating intervention. Indeed, they contain potentially beneficial microbes, microbial metabolites and other bioactives, which are being harnessed to target the microbiota-gut-brain axis for positive benefits. This review highlights the diverse nature of fermented foods in terms of the raw materials used and type of fermentation employed, and summarises their potential to shape composition of the gut microbiota, the gut to brain communication pathways including the immune system and, ultimately, modulate the microbiota-gut-brain axis. Throughout, we identify knowledge gaps and challenges faced in designing human studies for investigating the mental health-promoting potential of individual fermented foods or components thereof. Importantly, we also suggest solutions that can advance understanding of the therapeutic merit of fermented foods to modulate the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland
| | | | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
10
|
Oleinikova Y, Daugaliyeva S, Mounier J, Saubenova M, Aitzhanova A. Metagenetic analysis of the bacterial diversity of Kazakh koumiss and assessment of its anti-Candida albicans activity. World J Microbiol Biotechnol 2024; 40:99. [PMID: 38363373 DOI: 10.1007/s11274-024-03896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Koumiss, a five-thousand-year-old fermented mare's milk beverage, is widely recognized for its beneficial nutrient and medicinal properties. The microbiota of Chinese and Mongolian koumiss have been largely characterized in recent years, but little is known concerning Kazakh koumiss despite this drink historically originates from the modern Kazakhstan territory. In addition, while koumiss is regarded as a drink with therapeutic potential, there are also no data on koumiss anti-Candida activity. In this context, the aims of the present study were to investigate the bacterial diversity and anti-Candida albicans activity of homemade Kazakh koumiss samples as well as fermented whey and cow's milk, derived from koumiss and propagated for several months. Koumiss bacterial communities were largely dominated by lactic acid bacteria including Lactobacillus sensu lato spp. (69% of total reads), Streptococcus (8.0%) and Lactococcus (6.1%), while other subdominant genera included Acetobacter (2.6%), Enterobacter (2.4%), and Klebsiella (1.5%). Several but not all koumiss samples as well as fermented whey and cow's milk showed antagonistic activities towards C. albicans. Linear discriminant effect size (LEfSe) analysis showed that their bacterial communities were characterized by a significantly higher abundance of amplicon sequence variants (ASV) belonging to the genus Acetobacter. In conclusion, this study allowed to identify the key microorganisms of Kazakh koumiss and provided new information on the possible underestimated contribution of acetic acid bacteria to its probiotic properties.
Collapse
Affiliation(s)
- Yelena Oleinikova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Saule Daugaliyeva
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan.
| | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F- 29280, Plouzané, France
| | - Margarita Saubenova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Aida Aitzhanova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| |
Collapse
|
11
|
Shah AB, Baiseitova A, Zahoor M, Ahmad I, Ikram M, Bakhsh A, Shah MA, Ali I, Idress M, Ullah R, Nasr FA, Al-Zharani M. Probiotic significance of Lactobacillus strains: a comprehensive review on health impacts, research gaps, and future prospects. Gut Microbes 2024; 16:2431643. [PMID: 39582101 PMCID: PMC11591481 DOI: 10.1080/19490976.2024.2431643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
A rising corpus of research has shown the beneficial effects of probiotic Lactobacilli on human health, contributing to the growing popularity of these microorganisms in recent decades. The gastrointestinal and urinary tracts are home to these bacteria, which play a vital role in the microbial flora of both humans and animals. The Lactobacillus probiotic, i.e, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus bulgaricus, are highly recognized for their remarkable probiotic qualities. The current study aims to highlight the beneficial effects of probiotics in different health conditions, point out the research gap, and highlight the future directives for the safe use of these probiotics in several health issues. Most importantly, we have added the most recent literature related to the characteristics and usage of these probiotics in clinical and pre-clinical settings. Based on the above statement, we believe that this is the first report on the application of probiotics in human diseases. By providing a deeper knowledge of the complex functions these probiotics play in both human and animal health, our analysis will direct future studies and developments in this rapidly developing field.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Aizhamal Baiseitova
- Division of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Ishaq Ahmad
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea
| | - Muhammad Ikram
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Hayatabad, Pakistan
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Allah Bakhsh
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Murad Ali Shah
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Imdad Ali
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Bellaterra, Spain
- Department of Plant Biotechnology, Faculty of Pharmacy, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Muhammad Idress
- Division of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A. Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
13
|
Xue W, Yuan X, Ji Z, Li H, Yao Y. Nutritional ingredients and prevention of chronic diseases by fermented koumiss: a comprehensive review. Front Nutr 2023; 10:1270920. [PMID: 37927510 PMCID: PMC10620529 DOI: 10.3389/fnut.2023.1270920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Koumiss, a traditional fermented dairy product made from fresh mare milk, is a sour beverage that contains an abundance of microbial communities, including lactic acid bacteria, yeast and others. Firstly, probiotics such as Lacticaseibacillus in koumiss can induce the secretion of immunoglobulin G in serum and interleukin-2 in the spleen while beneficial Saccharomyces can secrete antibacterial compounds such as citric acid and ascorbic acid for specific immunopotentiation. Additionally, more isoflavone in koumiss can regulate estrogen levels by binding to its receptors to prevent breast cancer directly. Bile salts can be converted into bile acids such as taurine or glycine by lactic acid bacteria to lower cholesterol levels in vivo. Butyric acid secretion would be increased to improve chronic gastrotis by regulating intestinal flora with lactic acid bacteria. Finally, SCFA and lCFA produced by Lacticaseibacillus inhibit the reproduction of pathogenic microorganisms for diarrhea prevention. Therefore, exploring the mechanisms underlying multiple physiological functions through utilizing microbial resources in koumiss represents promising avenues for ameliorating chronic diseases.
Collapse
Affiliation(s)
| | | | - Zhaojun Ji
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | | | | |
Collapse
|
14
|
Mao X, Yue SJ, Xu DQ, Fu RJ, Han JZ, Zhou HM, Tang YP. Research Progress on Flavor and Quality of Chinese Rice Wine in the Brewing Process. ACS OMEGA 2023; 8:32311-32330. [PMID: 37720734 PMCID: PMC10500577 DOI: 10.1021/acsomega.3c04732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Chinese rice wine (CRW) is a traditional and unique alcoholic beverage in China, favored by many consumers for its rich aroma, unique taste, and complex ingredients. Its flavor is primarily composed of volatile and nonvolatile compounds. These flavor compounds are partly derived from grains and starters (Qu), while the other part is produced by microbial metabolism and chemical reactions during the brewing process. Additionally, ethyl carbamate (EC) in CRW, a hazardous chemical, necessitates controlling its concentration during brewing. In recent years, numerous new brewing techniques for CRW have emerged. Therefore, this paper aims to collect aroma descriptions and thresholds of flavor compounds in CRW, summarize the relationship between the brewing process of CRW and flavor formation, outline methods for reducing the concentration of EC in the brewing process of CRW, and summarize the four stages (pretreatment of grains, fermentation, sterilization, and aging process) of new techniques. Furthermore, we will compare the advantages and disadvantages of different approaches, with the expectation of providing a valuable reference for improving the quality of CRW.
Collapse
Affiliation(s)
- Xi Mao
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Rui-Jia Fu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Jian-Zhang Han
- Xi’an
DaKou Wine Company Ltd., Xi’an 710300, Shaanxi Province, China
| | - Hao-Ming Zhou
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| |
Collapse
|
15
|
Evaluation of taste characteristics of chinese rice wine by quantitative description analysis, dynamic description sensory and electronic tongue. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Yan X, Sun Y, Yu X, Gao J, Wang H, Liang R, Han W, Jin X, Guo W, Liu P, Chen J. Study on the effect of koumiss on reactivation of Toxoplasma gondii infection. Front Nutr 2022; 9:1032271. [PMID: 36337653 PMCID: PMC9630357 DOI: 10.3389/fnut.2022.1032271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that infects nucleated cells of all warm-blooded animals, and most patients have latent infections. The latent infection will be reactivated in the immunocompromised or immunocompromised individuals, which will lead to severe toxoplasmosis. At present, less research has been focused on the reactivation of T. gondii infection. Koumiss is a kind of fermented milk made from fresh mare’s milk through natural fermentation that can be applied to clinical and rehabilitation medicine to mitigate the development of various diseases due to its unique functional characteristics. In this study, we explored the antagonistic effect of koumiss on reactivation of T. gondii infection. Mice were treated with dexamethasone to establish a reactivation model after infection with T. gondii and then treated with koumiss. The survival rate, SHIRPA test, serum cytokine levels, organ parasite burden and intestinal microbiota were measured, respectively. Our results showed that koumiss treatment improved the clinical symptoms of mice, significantly reduced the organ parasite burden of mice, and improved the composition and structure of intestinal flora. This study provides new evidence for the alleviation and treatment of toxoplasmosis and provides a novel idea for the development and utilization of koumiss.
Collapse
Affiliation(s)
- Xinlei Yan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Xinlei Yan,
| | - Yufei Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiuli Yu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jialu Gao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Hejing Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
| | - Ru Liang
- Department of Pediatrics, Inner Mongolia Maternal, Child Health Hospital, Hohhot, China
| | - Wenying Han
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xindong Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenhui Guo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Pufang Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jia Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
17
|
Yan X, Sun Y, Zhang G, Han W, Gao J, Yu X, Jin X. Study on the antagonistic effects of koumiss on Toxoplasma gondii infection in mice. Front Nutr 2022; 9:1014344. [PMID: 36245502 PMCID: PMC9554477 DOI: 10.3389/fnut.2022.1014344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii is an important food-borne zoonotic parasite, and approximately one-third of people worldwide are positive for T. gondii antibodies. To date, there are no specific drugs or vaccines against T. gondii. Therefore, developing a new safe and effective method has become a new trend in treating toxoplasmosis. Koumiss is rich in probiotics and many components that can alleviate the clinical symptoms of many diseases via the functional characteristics of koumiss and its regulation of intestinal flora. To investigate the antagonistic effect of koumiss on T. gondii infection, the model of acute and chronic T. gondii infection was established in this study. The survival rate, SHIRPA score, serum cytokine levels, brain cyst counts, β-amyloid deposition and intestinal flora changes were measured after koumiss feeding. The results showed that the clinical symptoms of mice were improved at 6 dpi and that the SHIRPA score decreased after koumiss feeding (P < 0.05). At the same time, the levels of IL-4, IFN-γ and TNF-α decreased (P < 0.001, P < 0.001, P < 0.01). There was no significant difference of survival rate between koumiss treatment and the other groups. Surprisingly, the results of chronic infection models showed that koumiss could significantly reduce the number of brain cysts in mice (P < 0.05), improve β-amyloid deposition in the hippocampus (P < 0.01) and decrease the levels of IFN-γ and TNF-α (P < 0.01, P < 0.05). Moreover, koumiss could influence the gut microbiota function in resisting T. gondii infection. In conclusion, koumiss had a significant effect on chronic T. gondii infection in mice and could improve the relevant indicators of acute T. gondii infection in mice. The research provides new evidence for the development of safe and effective anti-T. gondii methods, as well as a theoretical basis and data support for the use of probiotics against T. gondii infection and broadened thoughts for the development and utilization of koumiss.
Collapse
Affiliation(s)
- Xinlei Yan
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Xinlei Yan,
| | - Yufei Sun
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenying Han
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, China
| | - Jialu Gao
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, China
| | - Xiuli Yu
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, China
| | - Xindong Jin
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
18
|
Kaur H, Kaur G, Ali SA. Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties. FERMENTATION-BASEL 2022; 8:425. [DOI: 10.3390/fermentation8090425] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Numerous studies have shown a link between the consumption of fermented dairy foods and improved health outcomes. Since the early 2000s, especially probiotic-based fermented functional foods, have had a revival in popularity, mostly as a consequence of claims made about their health benefits. Among them, fermented dairy foods have been associated with obesity prevention and in other conditions such as chronic diarrhea, hypersensitivity, irritable bowel syndrome, Helicobacter pylori infection, lactose intolerance, and gastroenteritis which all are intimately linked with an unhealthy way of life. A malfunctioning inflammatory response may affect the intestinal epithelial barrier’s ability to function by interfering with the normal metabolic processes. In this regard, several studies have shown that fermented dairy probiotics products improve human health by stimulating the growth of good bacteria in the gut at the same time increasing the production of metabolic byproducts. The fermented functional food matrix around probiotic bacteria plays an important role in the survival of these strains by buffering and protecting them from intestinal conditions such as low pH, bile acids, and other harsh conditions. On average, cultured dairy products included higher concentrations of lactic acid bacteria, with some products having as much as 109/mL or g. The focus of this review is on fermented dairy foods and associated probiotic products and their mechanisms of action, including their impact on microbiota and regulation of the immune system. First, we discussed whey and whey-based fermented products, as well as the organisms associated with them. Followed by the role of probiotics, fermented-product-mediated modulation of dendritic cells, natural killer cells, neutrophils, cytokines, immunoglobulins, and reinforcement of gut barrier functions through tight junction. In turn, providing the ample evidence that supports their benefits for gastrointestinal health and related disorders.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, Indian Council of Agricultural Research-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Adaptive Laboratory Evolution of Yeasts for Aroma Compound Production. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aroma compounds are important in the food and beverage industry, as they contribute to the quality of fermented products. Yeasts produce several aroma compounds during fermentation. In recent decades, production of many aroma compounds by yeasts obtained through adaptive laboratory evolution has become prevalent, due to consumer demand for yeast strains in the industry. This review presents general aspects of yeast, aroma production and adaptive laboratory evolution and focuses on the recent advances of yeast strains obtained by adaptive laboratory evolution to enhance the production of aroma compounds.
Collapse
|
20
|
Ingredients, Processing, and Fermentation: Addressing the Organoleptic Boundaries of Plant-Based Dairy Analogues. Foods 2022; 11:foods11060875. [PMID: 35327297 PMCID: PMC8952883 DOI: 10.3390/foods11060875] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Consumer interest and research in plant-based dairy analogues has been growing in recent years because of increasingly negative implications of animal-derived products on human health, animal wellbeing, and the environment. However, plant-based dairy analogues face many challenges in mimicking the organoleptic properties of dairy products due to their undesirable off-flavours and textures. This article thus reviews fermentation as a viable pathway to developing clean-label plant-based dairy analogues with satisfactory consumer acceptability. Discussions on complementary strategies such as raw material selection and extraction technologies are also included. An overview of plant raw materials with the potential to be applied in dairy analogues is first discussed, followed by a review of the processing steps and innovative techniques required to transform these plant raw materials into functional ingredients such as plant-based aqueous extracts or flours for subsequent fermentation. Finally, the various fermentation (bacterial, yeast, and fungal) methodologies applied for the improvement of texture and other sensory qualities of plant-based dairy analogues are covered. Concerted research efforts would be required in the future to tailor and optimise the presented wide diversity of options to produce plant-based fermented dairy analogues that are both delicious and nutritionally adequate.
Collapse
|