1
|
Farhadi M, Sohbatzadeh F, Moghaddam AH, Firouzjaei Y, Cheng C. Enhancing the efficacy of low doses of N-acetyl-L-cysteine in mitigating CCl 4-induced hepatotoxicity in animal model using physical cold plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117642. [PMID: 39765110 DOI: 10.1016/j.ecoenv.2024.117642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025]
Abstract
Liver diseases have become widespread especially due to various factors of modern life. Although the effect of N-acetyl-L-cysteine (NAC) is investigated in the recovery of liver damage, gas plasma therapy can be identified as a promising candidate. Our study aimed to enhance the effectiveness of ineffective doses of NAC in stopping CCl4-induced hepatotoxicity in rats by physical cold plasma. The plasma-treated NAC (PTN) structural changes were investigated through FTIR and LCMS/MS analysis. It was observed that the PTN consists of various chemical bioproducts with different molecular weights. We investigated an ineffective dose of NAC and its parallel effect through the administration of PTN on liver and kidney morphology and several biochemical factors including ALT, AST, and ALP. Additionally, we examined oxidative stress, antioxidant parameters, and glutathione (GSH) levels. Results showed that PTN exhibited greater antioxidant properties and increased GSH levels, contributing to its therapeutic effects. Also, the antioxidant enzymes and oxidative stress activities improved after receiving PTN. It also enhanced histological parameters, although various damages were detected in both liver and kidney tissues after CCl4 injection, PTN remarkably prevented the tissue changes caused by CCl4. PTN could protect against liver damage even at a very low dose of NAC, acting as a prophylactic drug with a high margin of safety for hepatotoxicity.
Collapse
Affiliation(s)
- Masume Farhadi
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran; Plasma Technology Research Core, Faculty of Science, University of Mazandaran, Babolsar, Iran.
| | | | - Yasaman Firouzjaei
- Department of Animal Science, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | - Cheng Cheng
- Institute of Plasma Physics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
2
|
Claria B, Espinosa A, Rodríguez A, Dovale-Rosabal G, Bucarey JL, Pando ME, Romero N, Reinoso F, Sánchez C, Valenzuela R, Ribeiro CH, Aubourg SP. Cold-Pressed Aristotelia chilensis (Mol.) Stuntz Seed Oil Prevents Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD) in a High-Fat-Diet-Induced Obesity Murine Model. Antioxidants (Basel) 2024; 13:1384. [PMID: 39594526 PMCID: PMC11590904 DOI: 10.3390/antiox13111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
This study evaluated the effects of cold-pressed maqui (Aristotelia chilensis (Mol.) Stuntz) seed oil (MO) on liver metabolism and biochemical markers in a high-fat diet (HFD) murine model. In it, the fatty acid profile, tocopherol and tocotrienol contents, and antioxidant capacity of MO were analyzed. Male C57BL/6 mice were divided into four groups (i.e., a, b, c, and d groups) and supplemented for 12 weeks according to the following distribution: (a) control diet (CD)-sunflower oil (SO), (b) CD+MO, (c) HFD+SO, and (d) HFD+MO. Total body and organ weights, serum markers, and liver fat infiltration were assessed. MO contained 32.31% oleic acid, 46.41% linoleic acid, and 10.83% α-linolenic acid; additionally, α- and γ-tocopherol levels were 339.09 ± 5.15 and 135.52 ± 38.03 mg/kg, respectively, while β-, δ-tocopherol, and α-tocotrienol were present in trace amounts and the antioxidant capacity measured was 6.66 ± 0.19 μmol Trolox equivalent/g. MO supplementation significantly reduced the visceral fat (0.76 ± 0.06 g vs. 1.32 ± 0.04 g) and GPT (glutamate pyruvate transaminase) levels (71.8 ± 5.0 vs. 35.2 ± 2.6 U/L), and the liver fat infiltration score (6 vs. 3) in the HFD+MO group compared to HFD+SO. It is suggested that MO may effectively prevent fatty liver disease, warranting further research on its potential benefits for human health.
Collapse
Affiliation(s)
- Benjamín Claria
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Dr. Carlos Lorca Tobar 964, University of Chile, Santiago 8380494, Chile; (B.C.); (G.D.-R.); (N.R.); (F.R.); (C.S.)
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
- Center of Interdisciplinary Biomedical and Engineering Research for Health, Universidad de Valparaíso, San Felipe 2172972, Chile
| | - Alicia Rodríguez
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Dr. Carlos Lorca Tobar 964, University of Chile, Santiago 8380494, Chile; (B.C.); (G.D.-R.); (N.R.); (F.R.); (C.S.)
| | - Gretel Dovale-Rosabal
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Dr. Carlos Lorca Tobar 964, University of Chile, Santiago 8380494, Chile; (B.C.); (G.D.-R.); (N.R.); (F.R.); (C.S.)
| | - José Luis Bucarey
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
| | - María Elsa Pando
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.E.P.); (R.V.)
| | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Dr. Carlos Lorca Tobar 964, University of Chile, Santiago 8380494, Chile; (B.C.); (G.D.-R.); (N.R.); (F.R.); (C.S.)
| | - Francisca Reinoso
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Dr. Carlos Lorca Tobar 964, University of Chile, Santiago 8380494, Chile; (B.C.); (G.D.-R.); (N.R.); (F.R.); (C.S.)
| | - Camila Sánchez
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, Dr. Carlos Lorca Tobar 964, University of Chile, Santiago 8380494, Chile; (B.C.); (G.D.-R.); (N.R.); (F.R.); (C.S.)
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.E.P.); (R.V.)
| | - Carolina H. Ribeiro
- Immunology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Santiago P. Aubourg
- Department of Food Technology, Marine Research Institute (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
3
|
Fiorito S, Collevecchio C, Spogli R, Epifano F, Genovese S. Novel procedures for olive leaves extracts processing: Selective isolation of oleuropein and elenolic acid. Food Chem 2024; 447:139038. [PMID: 38507946 DOI: 10.1016/j.foodchem.2024.139038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Several processes have been developed in the past to selectively extract oleuropein and its aglycones from olive derived materials. In the present manuscript, we outline a novel approach for processing olive leaves aqueous extracts. This allowed first to select microwave irradiation as the methodology able to provide a large enrichment in oleuropein. Subsequently, the use of lamellar solids led to the selective and high yield concentration of the same. Adsorption on solids also largely contributed to the long term chemical stability of oleuropein. Finally, an eco-friendly, readily available, and reusable catalyst like H2SO4 supported on silica was applied for the hydrolysis of oleuropein into hydroxytyrosol and elenolic acid. This latter was in turn selectively isolated by an acid-base work-up providing its monoaldehydic dihydropyran form (7.8 % extractive yield), that was unequivocally characterized by GC-MS. The isolation of elenolic acid in pure form is described herein for the first time.
Collapse
Affiliation(s)
- Serena Fiorito
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy.
| | - Chiara Collevecchio
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy.
| | - Roberto Spogli
- Prolabin & Tefarm Srl, Via dell'Acciaio 9, 06129 Pontefelcino, Perugia, Italy.
| | - Francesco Epifano
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy.
| | - Salvatore Genovese
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy.
| |
Collapse
|
4
|
Stefanidis S, Ordoudi SA, Nenadis N, Pyrka I. Improving the functionality of virgin and cold-pressed edible vegetable oils: Oxidative stability, sensory acceptability and safety challenges. Food Res Int 2023; 174:113599. [PMID: 37986461 DOI: 10.1016/j.foodres.2023.113599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
In recent years, there has been a growing demand for minimally processed foods that offer health benefits and premium sensory characteristics. This trend has led to increased consumption of virgin (VOs) and cold-pressed (CPOs) oils, which are rich sources of bioactive substances. To meet consumer needs for new oil products conferring multi-functional properties over a longer storage period, the scientific community has been revisiting traditional enrichment practices while exploring novel fortification technologies. In the last four years, the interest has been growing faster; an ascending number of annually published studies are about the addition of different plant materials, agri-food by-products, or wastes (intact or extracts) to VOs and CPOs using traditional or innovative fortification processes. Considering this trend, the present review aims to provide an overview and summarize the key findings from relevant papers that were retrieved from extensively searched databases. Our meta-analysis focuses on exposing the most recent trends regarding the exploitation of VOs and CPOs as substrates, the fortification agents and their form of use, as well as the fortification technologies employed. The review critically discusses possible health claim and labeling issues and highlights some chemical and microbial safety concerns along with authenticity issues and gaps in quality specifications that manufacturers have yet to address. All these aspects are examined from the perspective of developing new oil products with well-balanced techno-, senso- and bio-functional characteristics.
Collapse
Affiliation(s)
- Stavros Stefanidis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Stella A Ordoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioanna Pyrka
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
5
|
Chen D, Shen F, Liu J, Tang H, Zhang K, Teng X, Yang F. The protective effect of Luteolin on chicken spleen lymphocytes from ammonia poisoning through mitochondria and balancing energy metabolism disorders. Poult Sci 2023; 102:103093. [PMID: 37783192 PMCID: PMC10551554 DOI: 10.1016/j.psj.2023.103093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Ammonia poses a significant challenge in the contemporary intensive breeding industry, resulting in substantial economic losses. Despite this, there is a dearth of research investigating efficacious strategies to prevent ammonia poisoning in poultry. Consequently, the objective of this study was to investigate the molecular mechanisms through which Luteolin (Lut) safeguards mitochondria and restores equilibrium to energy metabolism disorders, thereby shielding chicken spleen lymphocytes from the detrimental effects of ammonia poisoning. Chicken spleen lymphocytes were categorized into 3 distinct groups: the control group, the ammonia group (with the addition of 1 mmol/L of ammonium chloride), and the Lut group (with the treatment of 0.5 μg/mL of Lut for 12 h followed by the addition of 1 mmol/L of ammonium chloride). These groups were then cultured for a duration of 24 h. To investigate the potential protective effect of Lut on lymphocytes exposed to ammonia, various techniques were employed, including CCK-8 analysis, ultrastructural observation, reagent kit methodology, fluorescence microscopy, and quantitative real-time PCR (qRT-PCR). The findings indicate that Lut has the potential to mitigate the morphological damage of mitochondria caused by ammonia poisoning. Additionally, it can counteract the decline in mitochondrial membrane potential, ATP content, and ATPase activities (specifically Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca/Mg2+-ATPase) following exposure to ammonia in lymphocytes. Lut also has the ability to regulate the expression of genes involved in mitochondrial fusion (Opa1, Mfn1, and Mfn2) and division (Drp1 and Mff) in spleen lymphocytes after ammonia exposure. This regulation leads to a balanced energy metabolism (HK1, HK2, LDHA, LDHB, PFK, PK, SDHB, and ACO2) and provides protection against ammonia poisoning.
Collapse
Affiliation(s)
- Dechun Chen
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Fanyu Shen
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Haojinming Tang
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Kai Zhang
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
6
|
Abd El-Aziz GS, Alturkistani HA, Alshali RA, Halawani MM, Hamdy RM, Aggad WS, Kamal NJ, Hindi EA. The potential protectivity of honey and olive oil in methotrexate induced renal damage in rats. Toxicon 2023; 234:107268. [PMID: 37673343 DOI: 10.1016/j.toxicon.2023.107268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
Methotrexate (MTX) is an antimetabolite used to treat inflammatory diseases, autoimmune disorders and some malignancies. However, it has some life-threatening side effects such as nephrotoxicity which limit its clinical applications. That motivated the attention to seek for a defensive material to improve the outcomes of methotrexate while minimizing both renal and non-renal toxicity. Both honey (H) and olive oil (OO) are bioactive substances widely used as nutraceuticals that exhibited a potent therapeutic and antioxidant properties. This study aimed to assess the possible protective effect of H and OO intake either singly or together against the biochemical and structural Methotrexate-induced nephrotoxicity in rats. The study was conducted on 56 adult albino rats, they were divided into seven groups (n = 8): group 1 received only distelled water (negative control), group 2 received H (1.2 g/kg/day), group 3 received OO (1.25 ml/kg/day), group 4 received a single intraperitoneal injection of MTX (20 mg/kg), group 5 received MTX and H, group 6 received MTX and OO, group 7 received MTX, H and OO together. At the end of the experiment (2 weeks), all rats were sacrificed, and blood samples were assessed for kidney function tests. Kidney tissues were evaluated for several antioxidant parameters including Malondialdehyde (MDA), Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. Tissues were also processed for histological and immunohistochemical assessments. Results revealed that both H and OO improved the kidney function markers, histopathological and immunohistological changes due to Methotrexate-induced renal damage. Additionally, both substances also redeemed the oxidative damage of the kidney by decreasing MDA and increasing anti-oxidant enzymatic activities. Such effects were more apparent when the two substances were given together. Ultimately, our results proof that H and OO amiolerate the Methotrexate-induced nephrotoxicity in rats, thus they can be used as an adjuvant supplements for patients requiring methotrexate therapy.
Collapse
Affiliation(s)
- Gamal S Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani A Alturkistani
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasha A Alshali
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mervat M Halawani
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raid M Hamdy
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nezar J Kamal
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad A Hindi
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Koriem KMM, El-Attar MA. Almond oil restores blood parameters, liver function, blood and liver antioxidants and DNA, and liver histology more efficiently than olive oil in favism. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:599-606. [PMID: 35751565 DOI: 10.1515/jcim-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/06/2022] [Indexed: 06/09/2023]
Abstract
OBJECTIVES Favism is a metabolic disease and this study aimed to compare between olive oil and almond oil to ameliorate blood parameters, liver function, blood and liver antioxidants and DNA, and liver histology in favism rats. METHODS Animals were 36 male albino rats. They classified to 2 equal (normal and favism) groups. Normal group classified to 3 equal subgroups; Control, Olive oil, and Almond oil subgroups: normal rats orally administrated with 1 mL/100 g of saline, olive oil, and almond oil, respectively. Favism group was subdivided into 3 equal subgroup; favism, favism + olive oil, and favism + almond oil subgroups: favism rats orally administrated with no treatment, 1 mL/100 g olive oil, and 1 mL/100 g almond oil, respectively. All treatments were administrated orally by oral gavage once a day for 1 month. RESULTS The hemoglobin, hematocrite, the blood cells, glucose and glucose-6-phosphate dehydrogenase, aspartate and alanine aminotransferase, total proteins, albumin, and globulin in serum were decreased in favism. The glutathione, superoxide dismutase, and glutathione peroxidase in blood and liver were decreased in favism while alkaline phosphatase and total bilirubin in serum were increased in favism. The blood and liver malondialdehyde was increased in favism. Furthermore, oral administration with both oils in favism rats restored all these parameters to be approached the control levels. Also, both oils preserved blood and liver DNA and liver histology. CONCLUSIONS Almond oil restored blood parameters, liver function, blood and liver antioxidants and DNA, and liver histology more efficiently than olive oil in favism.
Collapse
Affiliation(s)
- Khaled Mohamed Mohamed Koriem
- Department of Medical Physiology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Marwa A El-Attar
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|