1
|
Kiem S, Papenkort S, Borsdorf M, Böl M, Siebert T. Reproducibility of smooth muscle mechanical properties in consecutive stretch and activation protocols. Pflugers Arch 2025; 477:729-739. [PMID: 40119220 PMCID: PMC12003463 DOI: 10.1007/s00424-025-03075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/31/2024] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
Mechanical organ models are crucial for understanding organ function and clinical applications. These models rely on input data regarding smooth muscle properties, typically gathered from experiments involving stimulations at different muscle lengths. However, reproducibility of these experimental results is a major challenge due to rapid changes in active and passive smooth muscle properties during the measurement period. Usually, preconditioning of the tissue is employed to ensure reproducible behavior in subsequent experiments, but this process itself alters the tissue's mechanical properties. To address this issue, three protocols (P1, P2, P3) without preconditioning were developed and compared to preserve the initial mechanical properties of smooth muscle tissue. Each protocol included five repetitive experimental cycles with stimulations at a long muscle length, varying in the number of stimulations at a short muscle length (P1: 0, P2: 1, P3: 2 stimulations). Results showed that P2 and P3 successfully reproduced the initial active force at a long length over five cycles, but failed to maintain the initial passive forces. Conversely, P1 was most effective in maintaining constant passive forces over the cycles. These findings are supported by existing adaptation models. Active force changes are primarily due to the addition or removal of contractile units in the contractile apparatus, while passive force changes mainly result from actin polymerization induced by contractions, leading to cytoskeletal stiffening. This study introduces a new method for obtaining reproducible smooth muscle parameters, offering a foundation for future research to replicate the mechanical properties of smooth muscle tissue without preconditioning.
Collapse
Affiliation(s)
- Simon Kiem
- Department of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany.
| | - Stefan Papenkort
- Department of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
| | - Mischa Borsdorf
- Department of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Brunswick, Germany
| | - Tobias Siebert
- Department of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
Udayamohan VS, Byju AG, Harris JL, Haridas B. Effect of Compressive Strain Rates on Viscoelasticity and Water Content in Intact Porcine Stomach Wall Tissues. J Biomech Eng 2025; 147:021002. [PMID: 39520072 DOI: 10.1115/1.4067084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Laparoscopic staplers are used extensively to seal and transect tissue. These devices compress tissue between the stapler jaws to achieve a desired compressed tissue thickness in preparation for stapling. The extent and rate of compression are dependent on surgeon technique, tissue characteristics, and stapler type, all of which can impact stapling outcomes such as bleeding, staple line leaks, and tissue healing. Historically, surgeons have relied on their experience, training, and tactile feedback from the device to optimize stapling. In recent years, the transition to electromechanical and robotic staplers has greatly impacted the tactile feedback available to the surgeon. This raises new questions about the optimal rates of tissue compression and the resultant tissue forces. This study quantifies the transmural biomechanics of the porcine stomach wall. Multirate indentation tests were used to observe the effects of indentation rate on the viscoelastic behavior of the stomach tissue during indentation, stress relaxation, and unconstrained recovery. Results show that the stomach wall demonstrates higher stress relaxation (88% versus 80%) and greater strain recovery (52% versus 47%) when indented at high rates (37.5%/s) versus slow rates (7.5%/s). Additionally, water content analysis was used to study fluid flow away from indented regions. Unindented regions were found to have greater water content compared to indented regions (78% compared to 75%). This data generated in this study may be used to enable the development of constitutive models of stomach tissue, which in turn may inform the control algorithms that drive compressive surgical devices.
Collapse
Affiliation(s)
- Vijay Shashank Udayamohan
- Department of Biomedical Engineering, Texas A&M University, 9201 Warm Springs Cir, Plano, TX 75024
- Texas A&M University
| | - Achu Geetha Byju
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., 3120 TAMU, College Station, TX 77843
- Texas A&M University
| | - Jason L Harris
- Ethicon Endosurgery, 4545 Creek Road, Cincinnati, OH 45242
| | - Balakrishna Haridas
- Departments of Biomedical and Mechanical Engineering, Texas A&M University, 101 Bizzell St., 3120 TAMU, College Station, TX 77843
| |
Collapse
|
3
|
Geldner J, Papenkort S, Kiem S, Böl M, Siebert T. Active and passive material response of urinary bladder smooth muscle tissue in uniaxial and biaxial tensile testing. Acta Biomater 2025; 193:255-266. [PMID: 39706540 DOI: 10.1016/j.actbio.2024.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The urinary bladder is a hollow organ that undergoes significant deformation as it receives, stores, and releases urine. To understand the organ mechanics, it is necessary to obtain information about the material properties of the tissues involved. In displacement-controlled tensile tests, tissue samples are mounted on a device that applies stretches to the tissue in one or more directions, resulting in a specific stress response. For this study, we performed uniaxial and biaxial stretch experiments on tissue samples (n = 36) from the body region of the porcine urinary bladder. We analyzed the stress-relaxation, activation dynamics, and passive and active stretch-stress response. Main findings of our experiments are: (1) For uniaxial and biaxial stretching, the time constants for stress-relaxation depend on the stretch amplitude, (2) biaxially stretched samples experienced slower activation with τact increasing by +63% compared to uniaxial stretching, (3) biaxial tests are characterized by reduced optimum stretches λopt by -18%, and (4) biaxial and uniaxial tests showed no significant difference in maximum active stresses σopt. To interpret the results, we present a continuum mechanical model based on a viscoelastic, isotropic solid extended by a set of active muscle fibers. Model predictions show that results (3) and (4) can be explained by a uniform distribution of fiber orientations and a specific shape of the active fiber stress-stretch relationship. This study highlights how deformation modes during tensile testing affects smooth muscle mechanics, proving insights for interpreting experimental data and improving organ modeling. STATEMENT OF SIGNIFICANCE: In this study, we examined the mechanical properties of porcine bladder smooth muscle using uniaxial and equibiaxial tensile tests. To our knowledge, this is the first instance where the active stress-stretch relationships of smooth muscle tissue have been analysed under equibiaxial stretch. The data collected offer a detailed understanding of the connection between deformation and active stress production, surpassing the insights provided by existing uniaxial tests in the literature. These findings are crucial for comprehending the physiology of smooth muscle tissue and for developing constitutive muscle models that can make more accurate predictions about the functionality of hollow organs in both health and disease. Additionally, our findings on smooth muscle active stress could aid in the creation of biomaterials that interact with or even replace natural muscle.
Collapse
Affiliation(s)
- Julian Geldner
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.
| | - Stefan Papenkort
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Simon Kiem
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tobias Siebert
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Holzapfel GA, Humphrey JD, Ogden RW. Biomechanics of soft biological tissues and organs, mechanobiology, homeostasis and modelling. J R Soc Interface 2025; 22:20240361. [PMID: 39876788 PMCID: PMC11775666 DOI: 10.1098/rsif.2024.0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 11/01/2024] [Indexed: 01/31/2025] Open
Abstract
The human body consists of many different soft biological tissues that exhibit diverse microstructures and functions and experience diverse loading conditions. Yet, under many conditions, the mechanical behaviour of these tissues can be described well with similar nonlinearly elastic or inelastic constitutive relations, both in health and some diseases. Such constitutive relations are essential for performing nonlinear stress analyses, which in turn are critical for understanding physiology, pathophysiology and even clinical interventions, including surgery. Indeed, most cells within load-bearing soft tissues are highly sensitive to their local mechanical environment, which can typically be quantified using methods of continuum mechanics only after the constitutive relations are determined from appropriate data, often multi-axial. In this review, we discuss some of the many experimental findings of the structure and the mechanical response, as well as constitutive formulations for 10 representative soft tissues or organs, and present basic concepts of mechanobiology to support continuum biomechanical studies. We conclude by encouraging similar research along these lines, but also the need for models that can describe and predict evolving tissue properties under many conditions, ranging from normal development to disease progression and wound healing. An important foundation for biomechanics and mechanobiology now exists and methods for collecting detailed multi-scale data continue to progress. There is, thus, considerable opportunity for continued advancement of mechanobiology and biomechanics.
Collapse
Affiliation(s)
- Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jay D. Humphrey
- Department of Biomedical Engineering and Vascular Biology & Therapeutics Program, Yale University and Yale School of Medicine, New Haven, CT, USA
| | - Ray W. Ogden
- School of Mathematics and Statistics, University of Glasgow, Scotland, UK
| |
Collapse
|
5
|
Krzyżek P. Helicobacter pylori Efflux Pumps: A Double-Edged Sword in Antibiotic Resistance and Biofilm Formation. Int J Mol Sci 2024; 25:12222. [PMID: 39596287 PMCID: PMC11594842 DOI: 10.3390/ijms252212222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Helicobacter pylori is a major pathogen associated with various gastric diseases. Despite decades of research, the treatment of H. pylori remains challenging. One of the primary mechanisms contributing to failures of therapies targeting this bacterium is genetic mutations in drug target sites, although the growing body of scientific data highlights that efflux pumps may also take part in this process. Efflux pumps are proteinaceous transporters actively expelling antimicrobial agents from the interior of the targeted cells and reducing the intracellular concentration of these compounds. Considering that efflux pumps contribute to both antimicrobial resistance and biofilm formation, an in-depth understanding of their properties may constitute a cornerstone in the development of novel therapeutics against H. pylori. In line with this, the aim of the current review is to describe the multitude of efflux pumps produced by H. pylori and present the data describing the involvement of these proteins in tolerance and/or resistance to various classes of antimicrobial substances.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
6
|
Sahoo AK, Chakraverty S. An unsupervised wavelet neural network model for approximating the solutions of non-linear nervous stomach model governed by tension, food and medicine. Comput Methods Biomech Biomed Engin 2024; 27:1538-1551. [PMID: 37606186 DOI: 10.1080/10255842.2023.2248332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/24/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023]
Abstract
The human stomach is a complex organ. Its role is to degrade food particles by using mechanical forces and chemical reactions in order to release nutrients. All ingested items, including our nutrition, should first pass through the stomach, making it arguably the most crucial segment in the gastrointestinal tract. Computational and mathematical modeling of the stomach is an emerging field of biomechanics where several complex phenomena, such as solid mechanics of the gastric wall, gastric electrophysiology, and fluid mechanics of the digesta need to be addressed. Developing a meshfree comprehensive algorithm for solving the nervous stomach model that enables analysing the relationships between these phenomena remains one of the most significant challenges in biomechanics. This research dedicates to study the dynamics of nervous stomach model governed by a mathematical representation depending on three categories viz. Tension (T), Food (F) and Medicine (M), i.e. TFM model. In this regard, a machine learning paradigm, namely POLYnomial WinOwed with Gaussian (PolyWOG) Wavelet Neural Network (PWNN) model has been implemented for handling the non-linear TFM models. We compared the obtained outcomes of present work with results of a well-known numerical computing paradigm and an existing wavelet neural algorithm. Also, we have done statistical assessment studies at different testing points, which reveal that the proposed architecture is effective and accurate.
Collapse
Affiliation(s)
- Arup Kumar Sahoo
- Department of Mathematics, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - S Chakraverty
- Department of Mathematics, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
7
|
Turac IR, Porfire A, Iurian S, Crișan AG, Casian T, Iovanov R, Tomuță I. Expanding the Manufacturing Approaches for Gastroretentive Drug Delivery Systems with 3D Printing Technology. Pharmaceutics 2024; 16:790. [PMID: 38931911 PMCID: PMC11207633 DOI: 10.3390/pharmaceutics16060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Gastroretentive drug delivery systems (GRDDSs) have gained substantial attention in the last 20 years due to their ability to retain the drug in the stomach for an extended time, thus promoting an extended release and high bioavailability for a broad range of active pharmaceutical ingredients (APIs) that are pH-sensitive and/or have a narrow absorption window. The currently existing GRDDSs include floating, expanding, mucoadhesive, magnetic, raft-forming, ion-exchanging, and high-density systems. Although there are seven types of systems, the main focus is on floating, expanding, and mucoadhesive systems produced by various techniques, 3D printing being one of the most revolutionary and currently studied ones. This review assesses the newest production technologies and briefly describes the in vitro and in vivo evaluation methods, with the aim of providing a better overall understanding of GRDDSs as a novel emerging strategy for targeted drug delivery.
Collapse
Affiliation(s)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (I.-R.T.); (S.I.); (A.G.C.); (T.C.); (R.I.); (I.T.)
| | | | | | | | | | | |
Collapse
|
8
|
Li C, Chen XD, Xiao J, Deng R, Jin Y. Impact of reduced gravity on food mixing and emptying in human stomach: A numerical simulation study. PHYSICS OF FLUIDS 2024; 36. [DOI: 10.1063/5.0208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Gravitational conditions in space diverge significantly from those experienced on Earth, and these alterations may have significant effects on gastric digestion, ultimately affecting the health of astronauts. To understand these effects, the behavior of mixing and emptying in the human stomach under both reduced and normal gravity is investigated numerically. The solver utilized in this study is developed based on the open-source toolbox OpenFOAM. The gastric contents consist of water and a soluble food bolus characterized by a density of 1100 kg m−3, viscosity of 10−5 m2 s−1, and diffusivity of 3.09 × 10−9 m2 s−1. The effects of gravity magnitude, initial food bolus location, and terminal antral contractions (TACs) are studied. The numerical results demonstrate that the food retention rate can be increased by up to ∼20% in the initial 6 min as normal gravity is reduced to zero gravity. The numerical results support that gravity favors the emptying of the food through the pylorus. The distributions of food concentrations and pH are also significantly influenced by the gravity condition. Under zero gravity conditions, food in the distal stomach is quickly emptied due to the strong flow dynamics in the antrum. A delay of approximately 6 min is observed when the food bolus is initially located in the proximal stomach. TACs efficiently enhance the emptying and mixing of the food in the distal stomach, while their effects on the proximal stomach are marginal.
Collapse
|
9
|
Mac CH, Tai HM, Huang SM, Peng HH, Sharma AK, Nguyen GLT, Chang PJ, Wang JT, Chang Y, Lin YJ, Sung HW. Orally Ingested Self-Powered Stimulators for Targeted Gut-Brain Axis Electrostimulation to Treat Obesity and Metabolic Disorders. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310351. [PMID: 38591658 DOI: 10.1002/adma.202310351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Obesity is a significant health concern that often leads to metabolic dysfunction and chronic diseases. This study introduces a novel approach to combat obesity using orally ingested self-powered electrostimulators. These electrostimulators consist of piezoelectric BaTiO3 (BTO) particles conjugated with capsaicin (Cap) and aim to activate the vagus nerve. Upon ingestion by diet-induced obese (DIO) mice, the BTO@Cap particles specifically target and bind to Cap-sensitive sensory nerve endings in the gastric mucosa. In response to stomach peristalsis, these particles generate electrical signals. The signals travel via the gut-brain axis, ultimately influencing the hypothalamus. By enhancing satiety signals in the brain, this neuromodulatory intervention reduces food intake, promotes energy metabolism, and demonstrates minimal toxicity. Over a 3-week period of daily treatments, DIO mice treated with BTO@Cap particles show a significant reduction in body weight compared to control mice, while maintaining their general locomotor activity. Furthermore, this BTO@Cap particle-based treatment mitigates various metabolic alterations associated with obesity. Importantly, this noninvasive and easy-to-administer intervention holds potential for addressing other intracerebral neurological diseases.
Collapse
Affiliation(s)
- Cam-Hoa Mac
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsien-Meng Tai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 350401, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Amit Kumar Sharma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Giang Le Thi Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Ju Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jui-To Wang
- Neurological Institute, Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yen Chang
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsing-Wen Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
10
|
Papenkort S, Borsdorf M, Kiem S, Böl M, Siebert T. Regional differences in stomach stretch during organ filling and their implications on the mechanical stress response. J Biomech 2024; 168:112107. [PMID: 38677029 DOI: 10.1016/j.jbiomech.2024.112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
As part of the digestive system, the stomach plays a crucial role in the health and well-being of an organism. It produces acids and performs contractions that initiate the digestive process and begin the break-up of ingested food. Therefore, its mechanical properties are of interest. This study includes a detailed investigation of strains in the porcine stomach wall during passive organ filling. In addition, the observed strains were applied to tissue samples subjected to biaxial tensile tests. The results show inhomogeneous strains during filling, which tend to be higher in the circumferential direction (antrum: 13.2%, corpus: 22.0%, fundus: 67.8%), compared to the longitudinal direction (antrum: 4.8%, corpus: 24.7%, fundus: 50.0%) at a maximum filling of 3500 ml. Consequently, the fundus region experienced the greatest strain. In the biaxial tensile experiments, the corpus region appeared to be the stiffest, reaching nominal stress values above 400 kPa in the circumferential direction, whereas the other regions only reached stress levels of below 50 kPa in both directions for the investigated stretch range. Our findings gain new insight into stomach mechanics and provide valuable data for the development and validation of computational stomach models.
Collapse
Affiliation(s)
- Stefan Papenkort
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Mischa Borsdorf
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany
| | - Simon Kiem
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tobias Siebert
- Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
11
|
Machado MPR, Gama LA, Beckmann APS, Pinto LA, de Miranda JRDA, Marques RG, Américo MF. Gastric plication surgery changes gastrointestinal and metabolic parameters in an obesity-induced high-fat diet model. Neurogastroenterol Motil 2024; 36:e14717. [PMID: 37994287 DOI: 10.1111/nmo.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Obesity treatment includes less invasive procedures such as gastric plication (GP) surgery; however, its effects on gastrointestinal (GI) motility parameters are underestimated. We aimed to verify the metabolic and gastrointestinal effects of GP surgery in the rat obesity model. METHODS A high-fat diet-induced obesity was used. Animals were allocated to four experimental groups: control sham (n = 6); control GP (n = 10); obese sham (n = 6); and obese GP (n = 10). Nutritional and murinometric parameters, gastric motility, glucose tolerance, histopathology, fat depots, leptin, and lipoproteins levels were evaluated 30 days after surgery. Data were analyzed by ANOVA followed by post Tukey or Kruskal-Wallis test followed by Dunn's multiple comparisons test. KEY RESULTS Gastric plication decreased leptin levels, feed efficiency, and body weight gain. GP does not improve lipid profile in obese animals and however, ameliorates glucose tolerance in control and obese rats. GP did not improve the gastric emptying time or normalize the frequency of contractions disturbed by obesity. Surgery provides a remodeling process in the mucosa and muscularis mucosa layers, evidenced by leukocyte infiltration mainly in the mucosa layer. CONCLUSIONS & INFERENCES Our study revealed the influence of the gastrointestinal tract on obesity is underestimated with pieces of evidence pointing out its important role as a target for surgical treatment.
Collapse
Affiliation(s)
- Mariana Pirani Rocha Machado
- São Paulo State University - UNESP, Botucatu, Brazil
- Araguaia Valley University Center (UNIVAR), Barra do Garças, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Kuhar S, Mittal R. Computational Models of the Fluid Mechanics of the Stomach. J Indian Inst Sci 2024; 104:65-76. [DOI: 10.1007/s41745-024-00421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 01/04/2025]
|
13
|
Holzer CS, Pukaluk A, Viertler C, Regitnig P, Caulk AW, Eschbach M, Contini EM, Holzapfel GA. Biomechanical characterization of the passive porcine stomach. Acta Biomater 2024; 173:167-183. [PMID: 37984627 DOI: 10.1016/j.actbio.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
The complex mechanics of the gastric wall facilitates the main digestive tasks of the stomach. However, the interplay between the mechanical properties of the stomach, its microstructure, and its vital functions is not yet fully understood. Importantly, the pig animal model is widely used in biomedical research for preliminary or ethically prohibited studies of the human digestion system. Therefore, this study aims to thoroughly characterize the mechanical behavior and microstructure of the porcine stomach. For this purpose, multiple quasi-static mechanical tests were carried out with three different loading modes, i.e., planar biaxial extension, radial compression, and simple shear. Stress-relaxation tests complemented the quasi-static experiments to evaluate the deformation and strain-dependent viscoelastic properties. Each experiment was conducted on specimens of the complete stomach wall and two separate layers, mucosa and muscularis, from each of the three gastric regions, i.e., fundus, body, and antrum. The significant preconditioning effects and the considerable regional and layer-specific differences in the tissue response were analyzed. Furthermore, the mechanical experiments were complemented with histology to examine the influence of the microstructural composition on the macrostructural mechanical response and vice versa. Importantly, the shear tests showed lower stresses in the complete wall compared to the single layers which the loose network of submucosal collagen might explain. Also, the stratum arrangement of the muscularis might explain mechanical anisotropy during tensile tests. This study shows that gastric tissue is characterized by a highly heterogeneous microstructure with regional variations in layer composition reflecting not only functional differences but also diverse mechanical behavior. STATEMENT OF SIGNIFICANCE: Unfortunately, only few experimental data on gastric tissue are available for an adequate material parameter and model estimation. The present study therefore combines layer- and region-specific stomach wall mechanics obtained under multiple loading conditions with histological insights into the heterogeneous microstructure. On the one hand, the extensive data sets of this study expand our understanding of the interplay between gastric mechanics, motility and functionality, which could help to identify and treat associated pathologies. On the other hand, such data sets are of high relevance for the constitutive modeling of stomach tissue, and its application in the field of medical engineering, e.g., in the development of surgical staplers and the improvement of bariatric surgical interventions.
Collapse
Affiliation(s)
| | - Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Christian Viertler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Peter Regitnig
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | | | | | | | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, NTNU, Trondheim, Norway.
| |
Collapse
|
14
|
Castro-López C, Romero-Luna HE, García HS, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A. Key Stress Response Mechanisms of Probiotics During Their Journey Through the Digestive System: A Review. Probiotics Antimicrob Proteins 2023; 15:1250-1270. [PMID: 36001271 DOI: 10.1007/s12602-022-09981-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
The survival of probiotic microorganisms during their exposure to harsh environments plays a critical role in the fulfillment of their functional properties. In particular, transit through the human gastrointestinal tract (GIT) is considered one of the most challenging habitats that probiotics must endure, because of the particularly stressful conditions (e.g., oxygen level, pH variations, nutrient limitations, high osmolarity, oxidation, peristalsis) prevailing in the different sections of the GIT, which in turn can affect the growth, viability, physiological status, and functionality of microbial cells. Consequently, probiotics have developed a series of strategies, called "mechanisms of stress response," to protect themselves from these adverse conditions. Such mechanisms may include but are not limited to the induction of new metabolic pathways, formation/production of particular metabolites, and changes of transcription rates. It should be highlighted that some of such mechanisms can be conserved across several different strains or can be unique for specific genera. Hence, this review attempts to review the state-of-the-art knowledge of mechanisms of stress response displayed by potential probiotic strains during their transit through the GIT. In addition, evidence whether stress responses can compromise the biosafety of such strains is also discussed.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Haydee E Romero-Luna
- Instituto Tecnológico Superior de Xalapa/Tecnológico Nacional de México, Reserva Territorial s/n Sección 5, Santa Bárbara, Xalapa-Enríquez, Veracruz, 91096, México
| | - Hugo S García
- Unidad de Investigación Y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz/Tecnológico Nacional de México, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, 91897, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México.
| |
Collapse
|
15
|
Demirel A, Özgünay ŞE, Eminoğlu Ş, Balkaya AN, Onur T, Kılıçarslan N, Gamlı M. Ultrasonographic Evaluation of Gastric Content and Volume in Pediatric Patients Undergoing Elective Surgery: A Prospective Observational Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1432. [PMID: 37761393 PMCID: PMC10529717 DOI: 10.3390/children10091432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Anesthesia-related complications, such as pulmonary aspiration of gastric contents, occur in approximately 0.02-0.1% of elective pediatric surgeries. Aspiration risk can be reliably assessed by ultrasound examination of the gastric antrum, making it an essential non-invasive bedside tool. In this prospective observational study, since most of our patients are immigrants and have communication problems, we wanted to investigate gastric contents and the occurrence of "high risk stomach" in children undergoing elective surgery for the possibility of pulmonary aspiration, even if the children and/or parents reported their last oral intake time. This risk is defined by ultrasound findings of solid content in the antrum and/or a calculated gastric volume exceeding 1.25 mL/kg. Children aged 2-18 were included in the study. Both supine and right lateral decubitus (RLD) ultrasound examinations were performed on the antrum before surgery. Using a qualitative grading scale from 0 to 2, we evaluated the gastric fluid content. The cross-sectional area (CSA) of the antrum was measured in the RLD position, aiding the calculation of the gastric fluid volume according to an established formula by Perlas. Ultrasound measurements of 97 children were evaluated. The median fasting duration was 4 h for liquids and 9 h for thick liquids and solids. Solid content was absent in all the children. Five children (5.2%) exhibited a grade 2 antrum, implying that fluid content was visible in both the supine and RLD positions. The median antral CSA in the RLD was 2.36 cm2, with a median gastric volume of 0.46 mL/kg. For patients with a grade 0 antrum, a moderate and positive correlation was observed between the antral CSA and BMI, and a strong and positive correlation was evident between the antral CSA and age, similar to a grade 1 antrum. Only a single child (1%) had a potentially elevated risk of aspiration of gastric contents. Hence, the occurrence of a "high risk stomach" was 1% (95% confidence interval: 0.1-4.7%) and is consistent with the literature. As a necessary precaution, we propose the regular use of ultrasound evaluations of gastric contents, given their non-invasive, bedside-friendly, and straightforward implementation, for identifying risks when fasting times are uncertain and for ruling out unknown risk factors in each potential patient.
Collapse
Affiliation(s)
- Asiye Demirel
- Department of Anesthesiology and Reanimation, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa 16310, Turkey; (Ş.E.Ö.); (Ş.E.); (A.N.B.); (T.O.); (N.K.); (M.G.)
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang X, Cao J, Han K, Choi M, She Y, Scheven UM, Avci R, Du P, Cheng LK, Natale MRD, Furness JB, Liu Z. Diffeomorphic Surface Modeling for MRI-Based Characterization of Gastric Anatomy and Motility. IEEE Trans Biomed Eng 2023; 70:2046-2057. [PMID: 37018592 PMCID: PMC10443119 DOI: 10.1109/tbme.2023.3234509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Gastrointestinal magnetic resonance imaging (MRI) provides rich spatiotemporal data about the movement of the food inside the stomach, but does not directly report muscular activity on the stomach wall. Here we describe a novel approach to characterize the motility of the stomach wall that drives the volumetric changes of the ingesta. METHODS A neural ordinary differential equation was optimized to model a diffeomorphic flow that ascribed the deformation of the stomach wall to a continuous biomechanical process. Driven by this diffeomorphic flow, the surface of the stomach progressively changes its shape over time, while preserving its topology and manifoldness. RESULTS We tested this approach with MRI data collected from 10 rats under a lightly anesthetized condition, and demonstrated accurate characterization of gastric motor events with an error in the order of sub-millimeters. Uniquely, we characterized gastric anatomy and motility with a surface coordinate system common at both individual and group levels. Functional maps were generated to reveal the spatial, temporal, and spectral characteristics of muscle activity and its coordination across different regions. The peristalsis at the distal antrum had a dominant frequency and peak-to-peak amplitude of [Formula: see text] cycles per minute and [Formula: see text] mm, respectively. The relationship between muscle thickness and gastric motility was found to be distinct between two functional regions in the proximal and distal stomach. CONCLUSION These results demonstrate the efficacy of using MRI to model gastric anatomy and function. SIGNIFICANCE The proposed approach is expected to enable non-invasive and accurate mapping of gastric motility for preclinical and clinical studies.
Collapse
|
17
|
Zhang M, Zuo Z, Zhang X, Wang L. Food biopolymer behaviors in the digestive tract: implications for nutrient delivery. Crit Rev Food Sci Nutr 2023; 64:8709-8727. [PMID: 37216487 DOI: 10.1080/10408398.2023.2202778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biopolymers are prevalent in both natural and processed foods, serving as thickeners, emulsifiers, and stabilizers. Although specific biopolymers are known to affect digestion, the mechanisms behind their influence on the nutrient absorption and bioavailability in processed foods are not yet fully understood. The aim of this review is to elucidate the complex interplay between biopolymers and their behavior in vivo, and to provide insights into the possible physiological consequences of their consumption. The colloidization process of biopolymer in various phases of digestion was analyzed and its impact on nutrition absorption and gastrointestinal tract was summarized. Furthermore, the review discusses the methodologies used to assess colloidization and emphasizes the need for more realistic models to overcome challenges in practical applications. By controlling macronutrient bioavailability using biopolymers, it is possible to enhance health benefits, such as improving gut health, aiding in weight management, and regulating blood sugar levels. The physiological effect of extracted biopolymers utilized in modern food structuring technology cannot be predicted solely based on their inherent functionality. It is essential to account for factors such as their initial consuming state and interactions with other food components to better understand the potential health benefits of biopolymers.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhongyu Zuo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xinxia Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Friis SJ, Hansen TS, Poulsen M, Gregersen H, Brüel A, Vinge Nygaard J. Biomechanical properties of the stomach: A comprehensive comparative analysis of human and porcine gastric tissue. J Mech Behav Biomed Mater 2023; 138:105614. [PMID: 36527978 DOI: 10.1016/j.jmbbm.2022.105614] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stomach-related disorders impose medical challenges and are associated with significant social and economic costs. The field of biomechanics is promising for understanding tissue behavior and for development of medical treatments and surgical interventions. In gastroenterology, animal models are often used when studies on humans are not possible. Often large animal models with similar anatomical characteristics (size and shape) are preferred. However, it is uncertain if stomachs from humans and large animals have similar mechanical properties. The aim of the present study is to characterize and compare hyper- and viscoelastic properties of porcine and human gastric tissue using tension and radial compression tests. METHODS Hyperelastic and viscoelastic properties were quantified from quasi-static ramp tests and stress relaxation tests. Tension in two directions and radial compression experiments were done on intact stomach wall samples as well as on separated mucosa and muscularis layer samples from porcine and human fundus, corpus and antrum. RESULTS AND CONCLUSIONS Similar hyper- and viscoelastic constitutive models can be used to describe porcine and human gastric tissue. In total, 19 constitutive parameters were compared and results showed significant variations between species. For example, for intact circumferential samples from antrum, the stiffness (a) and relaxation (τ1) were greater for human samples than for porcine samples (p < 0.0001). The constitutive parameters were condition-, region- and layer-dependent and no distinct pattern hereof between species was found. This indicates that different parameters must be used to describe the specific situation. The present work provides insight into porcine and human gastric radial compressive and tensile hyper- and viscoelastic properties, strengthening the inter-species relation of the biomechanical properties. Constitutive relations were established that may aid development and translation of diagnostic or therapeutic devices with computational models.
Collapse
Affiliation(s)
- Sif Julie Friis
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark; Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | | | - Mette Poulsen
- Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | - Hans Gregersen
- California Medical Innovations Institute, San Diego, CA, USA
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jens Vinge Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
19
|
Digestion of meat proteins in a human-stomach: A CFD simulation study. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Xin M, Zhao M, Tian J, Li B. Guidelines for in vitro simulated digestion and absorption of food. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Meili Xin
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province Shenyang Liaoning China
| | - Min Zhao
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province Shenyang Liaoning China
| | - Jinlong Tian
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province Shenyang Liaoning China
| | - Bin Li
- College of Food Science Shenyang Agricultural University Shenyang Liaoning China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province Shenyang Liaoning China
| |
Collapse
|
21
|
Gómez-Martínez DG, Ramos F, Ramos M, Robles F. A bioinspired model for the generation of a motivational state from energy homeostasis. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Cao J, Wang X, Chen J, Zhang N, Liu Z. The vagus nerve mediates the stomach-brain coherence in rats. Neuroimage 2022; 263:119628. [PMID: 36113737 PMCID: PMC10008817 DOI: 10.1016/j.neuroimage.2022.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Interactions between the brain and the stomach shape both cognitive and digestive functions. Recent human studies report spontaneous synchronization between brain activity and gastric slow waves in the resting state. However, this finding has not been replicated in any animal models. The neural pathways underlying this apparent stomach-brain synchrony is also unclear. Here, we performed functional magnetic resonance imaging while simultaneously recording body-surface gastric slow waves from anesthetized rats in the fasted vs. postprandial conditions and performed a bilateral cervical vagotomy to assess the role of the vagus nerve. The coherence between brain fMRI signals and gastric slow waves was found in a distributed "gastric network", including subcortical and cortical regions in the sensory, motor, and limbic systems. The stomach-brain coherence was largely reduced by the bilateral vagotomy and was different between the fasted and fed states. These findings suggest that the vagus nerve mediates the spontaneous coherence between brain activity and gastric slow waves, which is likely a signature of real-time stomach-brain interactions. However, its functional significance remains to be established.
Collapse
Affiliation(s)
- Jiayue Cao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Jiande Chen
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, Huck Institutes of the life sciences, Pennsylvania State University, USA
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
23
|
Toniolo I, Berardo A, Foletto M, Fiorillo C, Quero G, Perretta S, Carniel EL. Patient-specific stomach biomechanics before and after laparoscopic sleeve gastrectomy. Surg Endosc 2022; 36:7998-8011. [PMID: 35451669 PMCID: PMC9028903 DOI: 10.1007/s00464-022-09233-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/29/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Obesity has become a global epidemic. Bariatric surgery is considered the most effective therapeutic weapon in terms of weight loss and improvement of quality of life and comorbidities. Laparoscopic sleeve gastrectomy (LSG) is one of the most performed procedures worldwide, although patients carry a nonnegligible risk of developing post-operative GERD and BE. OBJECTIVES The aim of this work is the development of computational patient-specific models to analyze the changes induced by bariatric surgery, i.e., the volumetric gastric reduction, the mechanical response of the stomach during an inflation process, and the related elongation strain (ES) distribution at different intragastric pressures. METHODS Patient-specific pre- and post-surgical models were extracted from Magnetic Resonance Imaging (MRI) scans of patients with morbid obesity submitted to LSG. Twenty-three patients were analyzed, resulting in forty-six 3D-geometries and related computational analyses. RESULTS A significant difference between the mechanical behavior of pre- and post-surgical stomach subjected to the same internal gastric pressure was observed, that can be correlated to a change in the global stomach stiffness and a minor gastric wall tension, resulting in unusual activations of mechanoreceptors following food intake and satiety variation after LSG. CONCLUSIONS Computational patient-specific models may contribute to improve the current knowledge about anatomical and physiological changes induced by LSG, aiming at reducing post-operative complications and improving quality of life in the long run.
Collapse
Affiliation(s)
- Ilaria Toniolo
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Alice Berardo
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy.
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy.
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Mirto Foletto
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Bariatric Surgery Unit, Azienda Ospedaliera, University of Padova, Padova, Italy
| | - Claudio Fiorillo
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Quero
- Digestive Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of Sacred Heart of Rome, Rome, Italy
| | - Silvana Perretta
- IHU Strasbourg, Strasbourg, France
- IRCAD France, Strasbourg, France
- Department of Digestive and Endocrine Surgery, NHC, Strasbourg, France
| | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| |
Collapse
|
24
|
Sif Julie F, Torben Strøm H, Mette P, Hans G, Jens Vinge N. Dynamic viscoelastic properties of porcine gastric tissue: Effects of loading frequency, region and direction. J Biomech 2022; 143:111302. [PMID: 36126503 DOI: 10.1016/j.jbiomech.2022.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 12/30/2022]
Abstract
The gastric biomechanics influences digestive function as well as a range of topics of medical and scientific interests such as interaction between the stomach and gastric devices. Hence, the mechanical properties are essential for understanding gastric tissue and function in health and disease, and for the development of diagnostic or therapeutic devices. A key characteristic to be characterized is the time dependent mechanical tissue properties. The aim of this study was to characterize viscoelastic properties of the stomach across a frequency range. Longitudinal and circumferential stomach samples from the porcine fundus, corpus and antrum were pre-stretched 10 % and sinusoidally loaded with 10 % dynamic strain. The viscoelastic properties were assessed from 0.01 - 15 Hz using dynamic mechanical analysis. The storage moduli, loss moduli and tan δ had a significant second-order polynomial trend with increasing frequency. For the loss moduli, significant differences were observed between 0.01 and 15 Hz and between 0.05 and 15 Hz (p = 0.023 to 0.041). Significant differences were not found for storage moduli. Tan δ was frequency-independent, indicating that the two moduli varied proportionally. Fundus had significantly smaller storage moduli for longitudinal samples compared to corpus (p = 0.034) and antrum (p = 0.014) but was not significantly different for circumferential samples. Analysis of direction-dependency showed significant differences between longitudinal and circumferential samples (p = 0.002 to 0.042). The presented work provides insight into tensile viscoelastic properties of gastric tissue, which is useful for developing biomaterials, devices and computational models for device development specification calibrations.
Collapse
Affiliation(s)
- Friis Sif Julie
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark; Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | | | - Poulsen Mette
- Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | - Gregersen Hans
- California Medical Innovations Institute, San Diego, CA, United States
| | - Nygaard Jens Vinge
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
25
|
Li Y, Kong F. Simulating human gastrointestinal motility in dynamic in vitro models. Compr Rev Food Sci Food Saf 2022; 21:3804-3833. [PMID: 35880687 DOI: 10.1111/1541-4337.13007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/26/2022] [Accepted: 06/22/2022] [Indexed: 01/28/2023]
Abstract
The application of dynamic in vitro gastrointestinal (GI) models has grown in popularity to understand the impact of food structure and composition on human health. Given that GI motility is integral to digestion and absorption, a predictive in vitro model should faithfully replicate the motility patterns and motor functions in vivo. In this review, typical characteristics of gastric and small intestinal motility in humans as well as the biomechanical and hydrodynamic events pertinent to gut motility are summarized. The simulation of GI motility in the presently existing dynamic in vitro models is discussed from an engineering perspective and categorized into hydraulic, piston/probe-driven, roller-driven, pneumatic, and other systems. Each system and its representative models are evaluated in terms of their motility patterns, the key hydrodynamic characteristics concerning gut motility, their performance in simulating the key physiological events, and their ability to establish in vitro-in vivo correlations. Practical Application: The review paper provided useful information in the design of dynamic GI models and the simulation of human gastric and small intestinal motility which are important for understanding food and health.
Collapse
Affiliation(s)
- Yiwen Li
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
26
|
Patel B, Gizzi A, Hashemi J, Awakeem Y, Gregersen H, Kassab G. Biomechanical constitutive modeling of the gastrointestinal tissues: a systematic review. MATERIALS & DESIGN 2022; 217:110576. [PMID: 35935127 PMCID: PMC9351365 DOI: 10.1016/j.matdes.2022.110576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The gastrointestinal (GI) tract is a continuous channel through the body that consists of the esophagus, the stomach, the small intestine, the large intestine, and the rectum. Its primary functions are to move the intake of food for digestion before storing and ultimately expulsion of feces. The mechanical behavior of GI tissues thus plays a crucial role for GI function in health and disease. The mechanical properties are characterized by a biomechanical constitutive model, which is a mathematical representation of the relation between load and deformation in a tissue. Hence, validated biomechanical constitutive models are essential to characterize and simulate the mechanical behavior of the GI tract. Here, a systematic review of these constitutive models is provided. This review is limited to studies where a model of the strain energy function is proposed to characterize the stress-strain relation of a GI tissue. Several needs are identified for more advanced modeling including: 1) Microstructural models that provide actual structure-function relations; 2) Validation of coupled electro-mechanical models accounting for active muscle contractions; 3) Human data to develop and validate models. The findings from this review provide guidelines for using existing constitutive models as well as perspective and directions for future studies.
Collapse
Affiliation(s)
- Bhavesh Patel
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Alessio Gizzi
- Department of Engineering, Campus Bio-Medico University of Rome, Via A. del Portillo 21, 00128 Rome, IT
| | - Javad Hashemi
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Yousif Awakeem
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Hans Gregersen
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| | - Ghassan Kassab
- California Medical Innovations Institute, 11107 Roselle St, San Diego, CA 92121, USA
| |
Collapse
|
27
|
Acharya S, Halder S, Kou W, Kahrilas PJ, Pandolfino JE, Patankar NA. A fully resolved multiphysics model of gastric peristalsis and bolus emptying in the upper gastrointestinal tract. Comput Biol Med 2022; 143:104948. [PMID: 35091365 PMCID: PMC9014465 DOI: 10.1016/j.compbiomed.2021.104948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
Over the past few decades, in silico modeling of organ systems has significantly furthered our understanding of their physiology and biomechanical function. In spite of the relative importance of the digestive system in normal functioning of the human body, there is a scarcity of high-fidelity models for the upper gastrointestinal tract including the esophagus and the stomach. In this work, we present a detailed numerical model of the upper gastrointestinal tract that not only accounts for the fiber architecture of the muscle walls, but also the multiphasic components they help transport during normal digestive function. Construction details for 3D models of representative stomach geometry are presented along with a simple strategy for assigning circular and longitudinal muscle fiber orientations for each layer. We developed a fully resolved model of the stomach to simulate gastric peristalsis by systematically activating muscle fibers embedded in the stomach. Following this, for the first time, we simulate gravity-driven bolus emptying into the stomach due to density differences between ingested contents and fluid contents of the stomach. Finally, we present a case of retrograde flow of fluid from the stomach into the esophagus, resembling the phenomenon of acid reflux. This detailed computational model of the upper gastrointestinal tract provides a foundation for future models to investigate the biomechanics of acid reflux and probe various strategies for gastric bypass surgeries to address the growing problem of obesity.
Collapse
Affiliation(s)
- Shashank Acharya
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sourav Halder
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Wenjun Kou
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Peter J Kahrilas
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John E Pandolfino
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Neelesh A Patankar
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA; Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
28
|
Egboh SMC, Abere S. Gastroparesis: A Multidisciplinary Approach to Management. Cureus 2022; 14:e21295. [PMID: 35186557 PMCID: PMC8846567 DOI: 10.7759/cureus.21295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Gastroparesis is a neuromuscular disorder whose hallmark is delayed gastric emptying. It is a global challenge to the healthcare system because of poor treatment satisfaction for both the patients and clinicians, eventually leading to a reduction in the quality of life, with antecedent anxiety and depression. Although it is multifactorial in origin, diabetic, idiopathic, and drug-induced gastroparesis are the major risk factors. Disrupted interstitial cells of Cajal (ICC) and gastric dysrhythmia are pivotal to the pathogenesis, with most of the investigations targeted toward assessing gastric emptying and accommodation usually affected by distorted ICC and other neural networks. The treatment challenges can be overcome by a multidisciplinary approach involving gastroenterologists, gastrointestinal surgeons, biomedical engineers, nutritionists, psychologists, nurses, radionuclide radiologists, pharmacists, and family physicians. The exploration of the fundamental physiological processes underlying gastroparesis with the use of biomechanical materials should be given more attention by biomedical engineers to integrate innovative engineering with medicine for solving complex medical issues.
Collapse
Affiliation(s)
| | - Sarah Abere
- Internal Medicine, Rivers State University Teaching Hospital, Port Harcourt, NGA
| |
Collapse
|
29
|
Ayyaz MS, Lali MIU, Hussain M, Rauf HT, Alouffi B, Alyami H, Wasti S. Hybrid Deep Learning Model for Endoscopic Lesion Detection and Classification Using Endoscopy Videos. Diagnostics (Basel) 2021; 12:diagnostics12010043. [PMID: 35054210 PMCID: PMC8775223 DOI: 10.3390/diagnostics12010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
In medical imaging, the detection and classification of stomach diseases are challenging due to the resemblance of different symptoms, image contrast, and complex background. Computer-aided diagnosis (CAD) plays a vital role in the medical imaging field, allowing accurate results to be obtained in minimal time. This article proposes a new hybrid method to detect and classify stomach diseases using endoscopy videos. The proposed methodology comprises seven significant steps: data acquisition, preprocessing of data, transfer learning of deep models, feature extraction, feature selection, hybridization, and classification. We selected two different CNN models (VGG19 and Alexnet) to extract features. We applied transfer learning techniques before using them as feature extractors. We used a genetic algorithm (GA) in feature selection, due to its adaptive nature. We fused selected features of both models using a serial-based approach. Finally, the best features were provided to multiple machine learning classifiers for detection and classification. The proposed approach was evaluated on a personally collected dataset of five classes, including gastritis, ulcer, esophagitis, bleeding, and healthy. We observed that the proposed technique performed superbly on Cubic SVM with 99.8% accuracy. For the authenticity of the proposed technique, we considered these statistical measures: classification accuracy, recall, precision, False Negative Rate (FNR), Area Under the Curve (AUC), and time. In addition, we provided a fair state-of-the-art comparison of our proposed technique with existing techniques that proves its worthiness.
Collapse
Affiliation(s)
- M Shahbaz Ayyaz
- Department of Computer Science, University of Gujrat, Gujrat 50700, Pakistan; (M.S.A.); (M.H.)
| | - Muhammad Ikram Ullah Lali
- Department of Information Sciences, University of Education Lahore, Lahore 41000, Pakistan; (M.I.U.L.); (S.W.)
| | - Mubbashar Hussain
- Department of Computer Science, University of Gujrat, Gujrat 50700, Pakistan; (M.S.A.); (M.H.)
| | - Hafiz Tayyab Rauf
- Centre for Smart Systems, AI and Cybersecurity, Staffordshire University, Stoke-on-Trent ST4 2DE, UK
- Correspondence:
| | - Bader Alouffi
- Department of Computer Science, College of Computers and Information Technology, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia; (B.A.); (H.A.)
| | - Hashem Alyami
- Department of Computer Science, College of Computers and Information Technology, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia; (B.A.); (H.A.)
| | - Shahbaz Wasti
- Department of Information Sciences, University of Education Lahore, Lahore 41000, Pakistan; (M.I.U.L.); (S.W.)
| |
Collapse
|
30
|
Majumdar S, Gupta S, Krishnamurthy S. Multifarious applications of bioactive glasses in soft tissue engineering. Biomater Sci 2021; 9:8111-8147. [PMID: 34766608 DOI: 10.1039/d1bm01104a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue engineering (TE), a new paradigm in regenerative medicine, repairs and restores the diseased or damaged tissues and eliminates drawbacks associated with autografts and allografts. In this context, many biomaterials have been developed for regenerating tissues and are considered revolutionary in TE due to their flexibility, biocompatibility, and biodegradability. One such well-documented biomaterial is bioactive glasses (BGs), known for their osteoconductive and osteogenic potential and their abundant orthopedic and dental clinical applications. However, in the last few decades, the soft tissue regenerative potential of BGs has demonstrated great promise. Therefore, this review comprehensively covers the biological application of BGs in the repair and regeneration of tissues outside the skeleton system. BGs promote neovascularization, which is crucial to encourage host tissue integration with the implanted construct, making them suitable biomaterial scaffolds for TE. Moreover, they heal acute and chronic wounds and also have been reported to restore the injured superficial intestinal mucosa, aiding in gastroduodenal regeneration. In addition, BGs promote regeneration of the tissues with minimal renewal capacity like the heart and lungs. Besides, the peripheral nerve and musculoskeletal reparative properties of BGs are also reported. These results show promising soft tissue regenerative potential of BGs under preclinical settings without posing significant adverse effects. Albeit, there is limited bench-to-bedside clinical translation of elucidative research on BGs as they require rigorous pharmacological evaluations using standardized animal models for assessing biomolecular downstream pathways.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| |
Collapse
|
31
|
Coupled experimental and computational approach to stomach biomechanics: Towards a validated characterization of gastric tissues mechanical properties. J Mech Behav Biomed Mater 2021; 125:104914. [PMID: 34715641 DOI: 10.1016/j.jmbbm.2021.104914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/06/2021] [Accepted: 10/17/2021] [Indexed: 12/31/2022]
Abstract
Gastric diseases are one of the most relevant healthcare problems worldwide. Interventions and therapies definition/design mainly derive from biomedical and clinical expertise. Computational biomechanics, with particular regard to the finite element method, provides hard-to-measure quantities during in-vivo tests, such as strain and stress distribution, leading to a more comprehensive and promising approach to improve the effectiveness of many different clinical activities. However, reliable finite element models of biological organs require appropriate constitutive formulations of building tissues, whose parameters identification needs an experimental campaign consisting in different tests on human tissues and organs. The aim of the reported here research activities was the identification of mechanical properties of human gastric tissues. Human gastric specimens were tested at tissue, sub-structural and structural levels, by tensile, membrane indentation and inflation tests, respectively. On the other hand, animal experimentations on tissue layers from literature pointed out the mechanical response at sub-tissue level during tensile loading conditions. In detail, the analysis of experimental results at sub-tissue and tissue levels led to a fibre-reinforced visco-hyperelastic constitutive formulation and to the identification of gastric layers mechanical behaviour. Results from experimentations on human samples were coupled with data derived from animal models. Data from sub-structural and structural experimentations were exploited to upgrade and validate the constitutive formulations and parameters. The developed investigations led to a reliable constitutive framework of human gastric tissues that both describe stomach mechanical functionality and allow computational investigations. Indeed, the comparisons among average computational data and experimental medians provided the following RMSEs (Root Mean Square Errors): 0.89 N, 0.15 N for corpus and fundus during membrane indentation test, respectively, and 0.44 kPa during inflation test. Accounting for the magnitude of experimental and computational data, the RMSEs can be considered low and acceptable because they concerned biological samples. In fact, biological tissues and structures are affected by a high inherent inter-samples' variability, which is detectable in both the geometrical configuration and the mechanical behaviour. The specific values of the here reported RMSEs ensured the reliability of the achieved parameters and the quality of the overall developed procedure. Reliable computational models of the gastric district could become efficient clinical tools to find out the main crucial aspects of bariatric procedures, such as the mechanical stimulation of gastric mechano-receptors. Moreover, the methods of computational biomechanics will permit to run the preliminary tests of new and innovative bariatric procedures, on one hand, predicting the successful rate and the effectiveness, and, on other hand, reducing the use of animal testing.
Collapse
|
32
|
Singh G, Chanda A. Mechanical properties of whole-body soft human tissues: a review. Biomed Mater 2021; 16. [PMID: 34587593 DOI: 10.1088/1748-605x/ac2b7a] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
The mechanical properties of soft tissues play a key role in studying human injuries and their mitigation strategies. While such properties are indispensable for computational modelling of biological systems, they serve as important references in loading and failure experiments, and also for the development of tissue simulants. To date, experimental studies have measured the mechanical properties of peripheral tissues (e.g. skin)in-vivoand limited internal tissuesex-vivoin cadavers (e.g. brain and the heart). The lack of knowledge on a majority of human tissues inhibit their study for applications ranging from surgical planning, ballistic testing, implantable medical device development, and the assessment of traumatic injuries. The purpose of this work is to overcome such challenges through an extensive review of the literature reporting the mechanical properties of whole-body soft tissues from head to toe. Specifically, the available linear mechanical properties of all human tissues were compiled. Non-linear biomechanical models were also introduced, and the soft human tissues characterized using such models were summarized. The literature gaps identified from this work will help future biomechanical studies on soft human tissue characterization and the development of accurate medical models for the study and mitigation of injuries.
Collapse
Affiliation(s)
- Gurpreet Singh
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
| | - Arnab Chanda
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India.,Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS), Delhi, India
| |
Collapse
|
33
|
Bhattarai A, Kowalczyk W, Tran TN. A literature review on large intestinal hyperelastic constitutive modeling. Clin Biomech (Bristol, Avon) 2021; 88:105445. [PMID: 34416632 DOI: 10.1016/j.clinbiomech.2021.105445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Impacts, traumas and strokes are spontaneously life-threatening, but chronic symptoms strangle patient every day. Colorectal tissue mechanics in such chronic situations not only regulates the physio-psychological well-being of the patient, but also confirms the level of comfort and post-operative clinical outcomes. Numerous uniaxial and multiaxial tensile experiments on healthy and affected samples have evidenced significant differences in tissue mechanical behavior and strong colorectal anisotropy across each layer in thickness direction and along the length. Furthermore, this study reviewed various forms of passive constitutive models for the highly fibrous colorectal tissue ranging from the simplest linearly elastic and the conventional isotropic hyperelastic to the most sophisticated second harmonic generation image based anisotropic mathematical formulation. Under large deformation, the isotropic description of tissue mechanics is unequivocally ineffective which demands a microstructural based tissue definition. Therefore, the information collected in this review paper would present the current state-of-the-art in colorectal biomechanics and profoundly serve as updated computational resources to develop a sophisticated characterization of colorectal tissues.
Collapse
Affiliation(s)
- Aroj Bhattarai
- Department of Orthopaedic Surgery, University of Saarland, Germany
| | | | - Thanh Ngoc Tran
- Department of Orthopaedic Surgery, University of Saarland, Germany.
| |
Collapse
|
34
|
Cheng LK, Nagahawatte ND, Avci R, Du P, Liu Z, Paskaranandavadivel N. Strategies to Refine Gastric Stimulation and Pacing Protocols: Experimental and Modeling Approaches. Front Neurosci 2021; 15:645472. [PMID: 33967679 PMCID: PMC8100207 DOI: 10.3389/fnins.2021.645472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric pacing and stimulation strategies were first proposed in the 1960s to treat motility disorders. However, there has been relatively limited clinical translation of these techniques. Experimental investigations have been critical in advancing our understanding of the control mechanisms that innervate gut function. In this review, we will discuss the use of pacing to modulate the rhythmic slow wave conduction patterns generated by interstitial cells of Cajal in the gastric musculature. In addition, the use of gastric high-frequency stimulation methods that target nerves in the stomach to either inhibit or enhance stomach function will be discussed. Pacing and stimulation protocols to modulate gastric activity, effective parameters and limitations in the existing studies are summarized. Mathematical models are useful to understand complex and dynamic systems. A review of existing mathematical models and techniques that aim to help refine pacing and stimulation protocols are provided. Finally, some future directions and challenges that should be investigated are discussed.
Collapse
Affiliation(s)
- Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of General Surgery, Vanderbilt University Medical Center, Nashville, TN, United States.,Riddet Institute, Palmerston North, New Zealand
| | - Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
35
|
Gorbushin N, Truskinovsky L. Peristalsis by pulses of activity. Phys Rev E 2021; 103:042411. [PMID: 34006010 DOI: 10.1103/physreve.103.042411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/23/2021] [Indexed: 12/30/2022]
Abstract
Peristalsis by actively generated waves of muscle contraction is one of the most fundamental ways of producing motion in living systems. We show that peristalsis can be modeled by a train of rectangular-shaped solitary waves of localized activity propagating through otherwise passive matter. Our analysis is based on the Fermi-Pasta-Ulam (FPU) type discrete model accounting for active stresses and we reveal the existence in this problem of a critical regime which we argue to be physiologically advantageous.
Collapse
Affiliation(s)
- N Gorbushin
- PMMH, CNRS-UMR 7636, CNRS, ESPCI Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France
| | - L Truskinovsky
- PMMH, CNRS-UMR 7636, CNRS, ESPCI Paris, PSL Research University, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
36
|
Sensoy I. A review on the food digestion in the digestive tract and the used in vitro models. Curr Res Food Sci 2021; 4:308-319. [PMID: 34027433 PMCID: PMC8134715 DOI: 10.1016/j.crfs.2021.04.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
It is crucial to replicate or mimic the human digestive system conditions closely in model systems to have the food digestion-related data as accurate as possible. Thus, the data obtained could contribute to studies like those on the relationship between health and nutrition. This review aims to express the human digestion system's role in food digestion and compare the capability of the models used in simulations, especially the dynamic in vitro models. Activities of the human digestive system governing food digestion and the food matrix's disintegration mechanism in the digestive system were discussed. Dynamic in vitro models and their relevance to the human digestive system were described. Advancements in the last 20 years, as well as limitations of those artificial systems, with prospects, were discussed. Extensive use and improvement on these models will extend our knowledge of the food matrix and digestive system's complex interaction. Thus, it will be possible to design next-generation foods with improved health benefits.
Collapse
Affiliation(s)
- Ilkay Sensoy
- Department of Food Engineering, Middle East Technical University, Universiteler Mahallesi, Cankaya, 06800, ANKARA, Turkey
| |
Collapse
|
37
|
Fluid-Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics. BIOLOGY 2021; 10:biology10030185. [PMID: 33801566 PMCID: PMC8001855 DOI: 10.3390/biology10030185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Due to the inherent complexity of biological applications that more often than not include fluids and structures interacting together, the development of computational fluid-structure interaction models is necessary to achieve a quantitative understanding of their structure and function in both health and disease. The functions of biological structures usually include their interactions with the surrounding fluids. Hence, we contend that the use of fluid-structure interaction models in computational studies of biological systems is practical, if not necessary. The ultimate goal is to develop computational models to predict human biological processes. These models are meant to guide us through the multitude of possible diseases affecting our organs and lead to more effective methods for disease diagnosis, risk stratification, and therapy. This review paper summarizes computational models that use smoothed-particle hydrodynamics to simulate the fluid-structure interactions in complex biological systems.
Collapse
|
38
|
Thompson CL, Fu S, Knight MM, Thorpe SD. Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models. Front Bioeng Biotechnol 2020; 8:602646. [PMID: 33363131 PMCID: PMC7758201 DOI: 10.3389/fbioe.2020.602646] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Organ-on-chip (OOC) systems recapitulate key biological processes and responses in vitro exhibited by cells, tissues, and organs in vivo. Accordingly, these models of both health and disease hold great promise for improving fundamental research, drug development, personalized medicine, and testing of pharmaceuticals, food substances, pollutants etc. Cells within the body are exposed to biomechanical stimuli, the nature of which is tissue specific and may change with disease or injury. These biomechanical stimuli regulate cell behavior and can amplify, annul, or even reverse the response to a given biochemical cue or drug candidate. As such, the application of an appropriate physiological or pathological biomechanical environment is essential for the successful recapitulation of in vivo behavior in OOC models. Here we review the current range of commercially available OOC platforms which incorporate active biomechanical stimulation. We highlight recent findings demonstrating the importance of including mechanical stimuli in models used for drug development and outline emerging factors which regulate the cellular response to the biomechanical environment. We explore the incorporation of mechanical stimuli in different organ models and identify areas where further research and development is required. Challenges associated with the integration of mechanics alongside other OOC requirements including scaling to increase throughput and diagnostic imaging are discussed. In summary, compelling evidence demonstrates that the incorporation of biomechanical stimuli in these OOC or microphysiological systems is key to fully replicating in vivo physiology in health and disease.
Collapse
Affiliation(s)
- Clare L Thompson
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Su Fu
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Martin M Knight
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D Thorpe
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Hosseini S, Avci R, Paskaranandavadivel N, Palmada N, Suresh V, Cheng LK. A Novel Method for Time-Dependent Numerical Modeling of Gastric Motility Directly from Magnetic Resonance Imaging .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2384-2387. [PMID: 33018486 DOI: 10.1109/embc44109.2020.9175607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gastric motility has a critical role in disintegration and mixing of the ingested food inside the stomach. Several studies have been conducted to quantify and analyze the effect of the contractions of gastric musculature on the stomach contents. Despite the anatomical variation in stomach shape and motility patterns, previous numerical studies employed generalized geometries of the stomach as the computational domain for simulations. To model realistic gastric muscular contractions, the variation in stomach geometries need to be accounted for in numerical simulations. In the current study, a novel method was developed to utilize the recent advances in magnetic resonance imaging (MRI) technology and computational power expansion to build anatomically and physiologically realistic subject specific models of human gastric motility. In this method, MRI scans of the stomach were used to construct two and three dimensional geometry models of gastric motility. MRI was performed on 4 healthy participants. Using the developed method, dynamic numerical geometry models of gastric motility for each participant were constructed and related geometrical calculations were presented. Different combinations of solid and liquid test meals were consumed prior to the scans. The volume of the stomach ranged between 0.36 - 1.10 L in the fed state. The stomach models had an average length of 184 to 226 mm and a maximum diameter of 65 to 102 mm. Contraction propagation speed calculated from the models and MRI data were in good agreement, measuring around 2 mm/s.Clinical relevance- Clinicians can benefit from the proposed method for diagnostic purposes as the method is semi-automatic and can provide dynamic three-dimensional visualization of gastric motility of patients.
Collapse
|
40
|
Agrusa AS, Allegra AB, Kunkel DC, Coleman TP. Robust Methods to Detect Abnormal Initiation in the Gastric Slow Wave from Cutaneous Recordings. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:225-231. [PMID: 33017970 DOI: 10.1109/embc44109.2020.9176634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Upper gastrointestinal (GI) disorders are highly prevalent, with gastroparesis (GP) and functional dyspepsia (FD) affecting 3% and 10% of the US population, respectively. Despite overlapping symptoms, differing etiologies of GP and FD have distinct optimal treatments, thus making their management a challenge. One such cause, that of gastric slow wave abnormalities, affects the electromechanical coordination of pacemaker cells and smooth muscle cells in propelling food through the GI tract. Abnormalities in gastric slow wave initiation location and propagation patterns can be treated with novel pacing technologies but are challenging to identify with traditional spectral analyses from cutaneous recordings due to their occurrence at the normal slow wave frequency. This work advances our previous work in developing a 3D convolutional neural network to process multi-electrode cutaneous recordings and successfully classify, in silico, normal versus abnormal slow wave location and propagation patterns. Here, we use transfer learning to build a method that is robust to heterogeneity in both the location of the abnormal initiation on the stomach surface as well as the recording start times with respect to slow wave cycles. We find that by starting with training lowest-complexity models and building complexity in training sets, transfer learning one model to the next, the final network exhibits, on average, 80% classification accuracy in all but the most challenging spatial abnormality location, and below 5% Type-I error probabilities across all locations.
Collapse
|
41
|
Deptuła P, Łysik D, Pogoda K, Cieśluk M, Namiot A, Mystkowska J, Król G, Głuszek S, Janmey PA, Bucki R. Tissue Rheology as a Possible Complementary Procedure to Advance Histological Diagnosis of Colon Cancer. ACS Biomater Sci Eng 2020; 6:5620-5631. [PMID: 33062848 PMCID: PMC7549092 DOI: 10.1021/acsbiomaterials.0c00975] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
![]()
In recent years,
rheological measurements of cells and tissues
at physiological and pathological stages have become an essential
method to determine how forces and changes in mechanical properties
contribute to disease development and progression, but there is no
standardization of this procedure so far. In this study, we evaluate
the potential of nanoscale atomic force microscopy (AFM) and macroscopic
shear rheometry to assess the mechanical properties of healthy and
cancerous human colon tissues. The direct comparison of tissue mechanical
behavior under uniaxial and shear deformation shows that cancerous
tissues not only are stiffer compared to healthy tissue but also respond
differently when shear and compressive stresses are applied. These
results suggest that rheological parameters can be useful measures
of colon cancer mechanopathology. Additionally, we extend the list
of biological materials exhibiting compressional stiffening and shear
weakening effects to human colon tumors. These mechanical responses
might be promising mechanomarkers and become part of the new procedures
in colon cancer diagnosis. Enrichment of histopathological grading
with rheological assessment of tissue mechanical properties will potentially
allow more accurate colon cancer diagnosis and improve prognosis.
Collapse
Affiliation(s)
- Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Dawid Łysik
- Institute of Biomedical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Andrzej Namiot
- Department of Human Anatomy, Medical University of Bialystok, 15-230 Bialystok, Poland
| | - Joanna Mystkowska
- Institute of Biomedical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Grzegorz Król
- Department of Microbiology and Immunology, Jan Kochanowski University, 25-516 Kielce, Poland
| | - Stanisław Głuszek
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, 25-369 Kielce, Poland.,Clinic for General, Oncologic and Endocrine Surgery, Regional Hospital, 25-736 Kielce, Poland
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Departments of Physiology and Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
42
|
Vogt CD, Panoskaltsis-Mortari A. Tissue engineering of the gastroesophageal junction. J Tissue Eng Regen Med 2020; 14:855-868. [PMID: 32304170 DOI: 10.1002/term.3045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
The gastroesophageal junction has been of clinical interest for some time due to its important role in preventing reflux of caustic stomach contents upward into the esophagus. Failure of this role has been identified as a key driver in gastroesophageal reflux disease, cancer of the lower esophagus, and aspiration-induced lung complications. Due to the large population burden and significant morbidity and mortality related to reflux barrier dysfunction, there is a pressing need to develop tissue engineering solutions which can replace diseased junctions. While good progress has been made in engineering the bodies of the esophagus and stomach, little has been done for the junction between the two. In this review, we discuss pertinent topics which should be considered as tissue engineers begin to address this anatomical region. The embryological development and adult anatomy and histology are discussed to provide context about the native structures which must be replicated. The roles of smooth muscle structures in the esophagus and stomach, as well as the contribution of the diaphragm to normal anti-reflux function are then examined. Finally, engineering considerations including mechanics and current progress in the field of tissue engineering are presented.
Collapse
Affiliation(s)
- Caleb D Vogt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
43
|
Le Feunteun S, Mackie AR, Dupont D. In silico trials of food digestion and absorption: how far are we? Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|