1
|
Balian A, Hernandez FJ. Nucleases as molecular targets for cancer diagnosis. Biomark Res 2021; 9:86. [PMID: 34809722 PMCID: PMC8607607 DOI: 10.1186/s40364-021-00342-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Early cancer diagnosis is a crucial element to improved treatment options and survival. Great research efforts have been made in the search for better performing cancer diagnostic biomarkers. However, the quest continues as novel biomarkers with high accuracy for an early diagnosis remain an unmet clinical need. Nucleases, which are enzymes capable of cleaving nucleic acids, have been long considered as potential cancer biomarkers. The implications of nucleases are key for biological functions, their presence in different cellular counterparts and catalytic activity led the enthusiasm towards investigating the role of nucleases as promising cancer biomarkers. However, the most essential feature of these proteins, which is their enzymatic activity, has not been fully exploited. This review discusses nucleases interrogated as cancer biomarkers, providing a glimpse of their physiological roles. Moreover, it highlights the potential of harnessing the enzymatic activity of cancer-associated nucleases as a novel diagnostic biomarker using nucleic acid probes as substrates.
Collapse
Affiliation(s)
- Alien Balian
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Linköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Linköping, Sweden.
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Bowen C, Ju JH, Lee JH, Paull TT, Gelmann EP. Functional activation of ATM by the prostate cancer suppressor NKX3.1. Cell Rep 2013; 4:516-29. [PMID: 23890999 DOI: 10.1016/j.celrep.2013.06.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/29/2013] [Accepted: 06/25/2013] [Indexed: 01/21/2023] Open
Abstract
The prostate tumor suppressor NKX3.1 augments response to DNA damage and enhances survival after DNA damage. Within minutes of DNA damage, NKX3.1 undergoes phosphorylation at tyrosine 222, which is required for a functional interaction with ataxia telangiectasia mutated (ATM) kinase. NKX3.1 binds to the N-terminal region of ATM, accelerates ATM activation, and hastens the formation of γhistone2AX. NKX3.1 enhances DNA-dependent ATM kinase activation by both the MRN complex and H2O2 in a DNA-damage-independent manner. ATM, bound to the NKX3.1 homeodomain, phosphorylates NKX3.1, leading to ubiquitination and degradation. Thus, NKX3.1 and ATM have a functional interaction leading to ATM activation and then NKX3.1 degradation in a tightly regulated DNA damage response specific to prostate epithelial cells. These findings demonstrate a mechanism for the tumor-suppressor properties of NKX3.1, demonstrate how NKX3.1 may enhance DNA integrity in prostate stem cells and may help to explain how cells differ in their sensitivity to DNA damage.
Collapse
Affiliation(s)
- Cai Bowen
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University, 177 Fort Washington Avenue, MHB 6N-435, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
3
|
Agalliu I, Leanza SM, Smith L, Trent JM, Carpten JD, Bailey-Wilson JE, Burk RD. Contribution of HPC1 (RNASEL) and HPCX variants to prostate cancer in a founder population. Prostate 2010; 70:1716-27. [PMID: 20564318 PMCID: PMC3404133 DOI: 10.1002/pros.21207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Prostate cancer is a genetically complex disease with locus and disease heterogeneity. The RNASEL gene and HPCX locus have been implicated in hereditary prostate cancer; however, their contributions to sporadic forms of this malignancy remain uncertain. METHODS Associations of prostate cancer with two variants in the RNASEL gene (a founder mutation, 471delAAAG, and a non-synonymous SNP, rs486907), and with five microsatellite markers in the HPCX locus, were examined in 979 cases and 1,251 controls of Ashkenazi Jewish descent. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression models. RESULTS There was an inverse association between RNASEL rs486907 and prostate cancer in younger men (<65 years) and those with a first-degree relative with prostate cancer; men with AA genotype had ORs of 0.64 and 0.47 (both P < 0.05), respectively, in comparison to men with GG genotype. Within the HPCX region, there were positive associations for allele 135 of bG82i1.1 marker (OR = 1.77, P = 0.01) and allele 188 of DXS1205 (OR = 1.65, P = 0.02). In addition, allele 248 of marker D33 was inversely associated (OR = 0.65, P = 0.05) with Gleason score ≥7 tumors. CONCLUSIONS Results suggest that variants in RNASEL contribute to susceptibility to early onset and familial forms of prostate cancer, whereas HPCX variants are associated with prostate cancer risk and tumor aggressiveness. The observation that a mutation predicted to completely inactivate RNASEL protein was not associated with prostate cancer, but that a missense variant was associated, suggests that the effect is due to either partial inactivation of the protein, and/or acquisition of a new protein activity.
Collapse
Affiliation(s)
- Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Suzanne M. Leanza
- Department of Pediatrics (Genetics), Albert Einstein College of Medicine, Bronx, New York
| | - Lorrie Smith
- Department of Pediatrics (Genetics), Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey M. Trent
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - John D. Carpten
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Joan E. Bailey-Wilson
- Inherited Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
- Department of Pediatrics (Genetics), Albert Einstein College of Medicine, Bronx, New York
- Departments of Microbiology and Immunology; and Obstetrics, Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
4
|
FitzGerald LM, Patterson B, Thomson R, Polanowski A, Quinn S, Brohede J, Thornton T, Challis D, Mackey DA, Dwyer T, Foote S, Hannan GN, Stankovich J, McKay JD, Dickinson JL. Identification of a prostate cancer susceptibility gene on chromosome 5p13q12 associated with risk of both familial and sporadic disease. Eur J Hum Genet 2008; 17:368-77. [PMID: 18830231 DOI: 10.1038/ejhg.2008.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genetic heterogeneity is a difficulty frequently encountered in the search for genes conferring susceptibility to prostate cancer. To circumvent this issue, we selected a large prostate cancer pedigree for genome-wide linkage analysis from a population that is genetically homogeneous. Selected cases and first-degree relatives were genotyped with Affymetrix 10K SNP arrays, identifying a 14 Mb haplotype on chromosome 5 (5p13-q12) inherited identical-by-descent (IBD) by multiple cases. Microsatellite genotyping of additional deceased case samples confirmed that a total of eight cases inherited the common haplotype (P=0.0017). Re-sequencing of eight prioritised candidate genes in the region in six selected individuals identified 15 SNPs segregating with the IBD haplotype, located within the ITGA2 gene. Three of these polymorphisms were selected for genotyping in an independent Tasmanian data set comprising 127 cases with familial prostate cancer, 412 sporadic cases and 319 unaffected controls. Two were associated with prostate cancer risk: rs3212649 (OR=1.67 (1.07-2.6), P=0.0009) and rs1126643 (OR=1.52 (1.01-2.28), P=0.0088). Significant association was observed in both familial and sporadic prostate cancer. Although the functional SNP remains to be identified, considerable circumstantial evidence, provided by in vivo and in vitro studies, supports a role for ITGA2 in tumour development.
Collapse
Affiliation(s)
- Liesel M FitzGerald
- Genetics Unit, Menzies Research Institute, University of Tasmania, Hobart, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Prevalence of human gammaretrovirus XMRV in sporadic prostate cancer. J Clin Virol 2008; 43:277-83. [PMID: 18823818 DOI: 10.1016/j.jcv.2008.04.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/21/2008] [Accepted: 04/25/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND We previously identified a novel exogenous gammaretrovirus (xenotropic murine leukemia virus-related gammaretrovirus (XMRV)) using a pan-viral microarray. XMRV is the first MLV-related virus found in human infection. Forty percent (8/20) of familial prostate cancer patients homozygous for a mutation in RNase L (R462Q) were positive for XMRV, while the virus was rarely (1/66) detected in familial prostate cancer patients heterozygous for R462Q or carrying the wild type allele. OBJECTIVES To determine the presence of XMRV in non-familial prostate cancer samples. STUDY DESIGN RNA from prostate tissue was analyzed for XMRV using nested RT-PCR. In all samples, RNase L (R462Q) genotyping was performed using an allele-specific PCR. RESULTS XMRV-specific sequences were detected in one of 105 tissue samples from non-familial prostate cancer patients and from one of 70 tissue samples from men without prostate cancer. The two XMRV-positive patients were wild type or heterozygous for the R462Q mutation and thus carried at least one fully functional RNase L allele. CONCLUSIONS XMRV was rarely detected in non-familial prostate cancer samples from Northern European patients. The homozygous mutation R462Q (QQ) was significantly underrepresented (<6%) in this cohort when compared to other studies (11-17%).
Collapse
|
6
|
Halvorsen OJ. Molecular and prognostic markers in prostate cancer. APMIS 2008. [DOI: 10.1111/j.1600-0463.2008.0s123.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Chen YC, Giovannucci E, Kraft P, J Hunter D. Sequence variants of elaC homolog 2 (Escherichia coli) (ELAC2) gene and susceptibility to prostate cancer in the Health Professionals Follow-Up Study. Carcinogenesis 2008; 29:999-1004. [PMID: 18375959 DOI: 10.1093/carcin/bgn081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two non-synonymous single-nucleotide polymorphisms (SNPs), Ser217Leu and Ala541Thr, in the elaC homolog 2 (Escherichia coli) (ELAC2) gene have been related to prostate cancer risk in previous studies, though with inconsistent results. The association of ELAC2 haplotypes with prostate cancer risk has not yet been explored. We assessed whether sequence variants in ELAC2 were associated with the risk of total or aggressive prostate cancer. In a nested case-control design within the Health Professionals Follow-Up Study, we identified 659 participants with prostate cancer diagnosed after they provided a blood specimen in 1993 and before January 2000. Controls were 656 age-matched men without prostate cancer who had had a prostate-specific antigen test after providing a blood specimen. We genotyped eight tagging SNPs in ELAC2 to test for the association between sequence variances in ELAC2 and prostate cancer. No individual SNP (including Ser217Leu) was associated with the risk of prostate cancer. Ala541Thr is a rare SNP in this population. One common haplotype (hap4) was statistically significantly associated with an increased risk of prostate cancer [odds ratio (OR) = 1.39, 95% confidence interval = 1.05-1.85]. Two common promoter SNPs and three common haplotypes were statistically significantly associated with aggressive prostate cancer (carriers versus non-carriers-snp2: OR = 1.43, snp3: OR = 0.69, hap1: OR = 1.47, hap2: OR = 0.72, hap4: OR = 1.51; global P-value for all common haplotypes = 0.11). Common SNPs and haplotypes of ELAC2 were associated with risk of aggressive prostate cancer.
Collapse
Affiliation(s)
- Yen-Ching Chen
- Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
8
|
Compagno D, Merle C, Morin A, Gilbert C, Mathieu JRR, Bozec A, Mauduit C, Benahmed M, Cabon F. SIRNA-directed in vivo silencing of androgen receptor inhibits the growth of castration-resistant prostate carcinomas. PLoS One 2007; 2:e1006. [PMID: 17925854 PMCID: PMC1994591 DOI: 10.1371/journal.pone.0001006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 09/18/2007] [Indexed: 11/30/2022] Open
Abstract
Background Prostate carcinomas are initially dependent on androgens, and castration or androgen antagonists inhibit their growth. After some time though, tumors become resistant and recur with a poor prognosis. The majority of resistant tumors still expresses a functional androgen receptor (AR), frequently amplified or mutated. Methodology/Principal Findings To test the hypothesis that AR is not only expressed, but is still a key therapeutic target in advanced carcinomas, we injected siRNA targeting AR into mice bearing exponentially growing castration-resistant tumors. Quantification of siRNA into tumors and mouse tissues demonstrated their efficient uptake. This uptake silenced AR in the prostate, testes and tumors. AR silencing in tumors strongly inhibited their growth, and importantly, also markedly repressed the VEGF production and angiogenesis. Conclusions/Significance Our results demonstrate that carcinomas resistant to hormonal manipulations still depend on the expression of the androgen receptor for their development in vivo. The siRNA-directed silencing of AR, which allows targeting overexpressed as well as mutated isoforms, triggers a strong antitumoral and antiangiogenic effect. siRNA-directed silencing of this key gene in advanced and resistant prostate tumors opens promising new therapeutic perspectives and tools.
Collapse
Affiliation(s)
- Daniel Compagno
- CNRS, University Paris-Sud, FRE2944, Epigenetics and Cancer, Institut André Lwoff, Villejuif, France
| | - Carole Merle
- CNRS, University Paris-Sud, FRE2944, Epigenetics and Cancer, Institut André Lwoff, Villejuif, France
| | - Aurélie Morin
- CNRS, University Paris-Sud, FRE2944, Epigenetics and Cancer, Institut André Lwoff, Villejuif, France
| | - Cristèle Gilbert
- CNRS, University Paris-Sud, FRE2944, Epigenetics and Cancer, Institut André Lwoff, Villejuif, France
| | - Jacques R. R. Mathieu
- CNRS, University Paris-Sud, FRE2944, Epigenetics and Cancer, Institut André Lwoff, Villejuif, France
| | | | | | | | - Florence Cabon
- CNRS, University Paris-Sud, FRE2944, Epigenetics and Cancer, Institut André Lwoff, Villejuif, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
D'Amico F, Biancolella M, Margiotti K, Reichardt JK, Novelli G. Genomic biomarkers, androgen pathway and prostate cancer. Pharmacogenomics 2007; 8:645-61. [PMID: 17559353 DOI: 10.2217/14622416.8.6.645] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prostate cancer is the most frequent male malignancy diagnosed in western countries and the second leading cause of cancer-related deaths. The growth and function of the prostate gland depends on androgens. Owing to the importance of androgens in prostate development, genes involved in androgen biosynthesis and metabolism have been extensively studied. In this review, we address recent progress toward the use of inherited and acquired genetic variants to predict susceptibility and clinical outcomes of prostate cancer patients. Many of these genetic variants involve several genes related to the biosynthesis and metabolism of androgens, such as steroid-5-α-reductase, α polypeptide 2 (SRD5A2), cytochrome P450 (CYP)19A1, CYP17A1, hydroxy-δ-5-steroid dehydrogenase, 3 β- and steroid δ-isomerase 2 (HSD3B2) and androgen receptor (AR). With increasing knowledge, it may be possible to distinguish indolent from aggressive prostate tumors by molecular fingerprinting. Furthermore, with the emergence of new investigative tools, such as microarray platforms and comparative genomic hybridization (CGH) array, a variety of new genomic biomarkers will be available in the future to provide accurate prognostic and monitoring solutions for individualized patient care.
Collapse
Affiliation(s)
- Franca D'Amico
- Dipartimento di Biopatologia e Diagnostica per Immagini, Università di Roma Tor Vergata, 00133 Roma, Italy
| | | | | | | | | |
Collapse
|
10
|
Abstract
Identification of genes responsible for rare familial cases of cancer provides genetic and biochemical insight into the mechanisms of carcinogenesis at work in the more common, sporadic occurrences of the corresponding malignancy. Hematopoietic malignancy is no exception, and considerable evidence substantiates the role of genetic factors in the risk for leukemia. In a few instances, leukemia runs in families as a single gene, Mendelian disorder. Only a few genes conferring heritable risk for leukemia are known, however, and most are responsible for bone marrow failure syndromes. Thus, the identification of additional genetic risk factors for leukemia represents both a challenge and an opportunity. The high frequency of leukemia and transient leukemia in Down syndrome is beginning to yield the secrets of its unique clinical properties. The apparent phenomenon of anticipation (a declining of age of onset with each passing generation) in familial forms of bone marrow failure and leukemia is now affirmed through its association with mutations in genes responsible for maintaining telomere length. And, for the majority of leukemia cases, as with other common diseases that are not under the influence of a single, major gene, but rather result from the additive interactions of complex genetic and environmental factors, common variants in metabolic enzymes, and other genes awaiting discovery, are being teased out.
Collapse
Affiliation(s)
- Kathleen F Benson
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Box 357720, Seattle, WA 98195, USA
| | | |
Collapse
|
11
|
Noonan-Wheeler FC, Wu W, Roehl KA, Klim A, Haugen J, Suarez BK, Kibel AS. Association of hereditary prostate cancer gene polymorphic variants with sporadic aggressive prostate carcinoma. Prostate 2006; 66:49-56. [PMID: 16114055 DOI: 10.1002/pros.20320] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND ELAC2, MSR1, and RNASEL are candidate genes for hereditary prostate carcinoma (HPC). While, studies have demonstrated that single nucleotide polymorphisms (SNPs) in these genes are associated with sporadic disease as well as HPC, these results are often not replicated in follow-up studies. Given that the majority of patients studied had localized disease and up to 50% of localized prostate cancer is clinically insignificant, the inability to replicate the initial findings may reflect that some subjects had indolent tumors. Herein, we examine patients with metastatic disease to determine if an association exists between HPC SNPs and unambiguously significant prostate cancer. METHODS We examined polymorphisms within ELAC2 (S217L, A541T, E622V), MSR1 (P275A, R293X, aIVS5-59c), and RNASEL (E265X, R462Q, D541E) in 150 European-Americans with metastatic prostate cancer and 170 prostate cancer-free controls using pyrosequencing assays. RESULTS Only ELAC2 217L (37% cases vs. 29% controls (P=0.034)) and RNASEL 541E (61% cases vs. 53% controls (P=0.045)) were over-represented. Analysis of genotypes revealed that presence of the leucine ELAC2 allele (OR 1.54: 95% CI=0.99-2.41, SS vs. SL, LL) and homozygosity for the glutamic acid RNASEL allele (OR 1.68: 95% CI=1.04-2.70, EE vs. DE, DD) were associated with increased risk. Patients with both genotypes were of particularly high-risk (OR 2.66: 95% CI=1.36-5.19). CONCLUSIONS These results suggest that, in a European-American population, ELAC2 217L and RNASEL 541E are associated with metastatic sporadic disease. ELAC2 and RNASEL SNP analysis may prove useful in determining which patients are at risk for developing clinically significant prostate carcinoma.
Collapse
Affiliation(s)
- Ferrin C Noonan-Wheeler
- Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Malathi K, Paranjape JM, Ganapathi R, Silverman RH. HPC1/RNASEL mediates apoptosis of prostate cancer cells treated with 2',5'-oligoadenylates, topoisomerase I inhibitors, and tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2005; 64:9144-51. [PMID: 15604285 DOI: 10.1158/0008-5472.can-04-2226] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hereditary prostate cancer 1 (HPC1) allele maps to the RNASEL gene encoding a protein (RNase L) implicated in the antiviral activity of interferons. To investigate the possible role of RNase L in apoptosis of prostate cancer cells, we decreased levels of RNase L by severalfold in the DU145 human prostate cancer cell line through the stable expression of a small interfering RNA (siRNA). Control cells expressed siRNA with three mismatched nucleotides to the RNase L sequence. Cells deficient in RNase L, but not the control cells, were highly resistant to apoptosis by the RNase L activator, 2',5'-oligoadenylate (2-5A). Surprisingly, the RNase L-deficient cells were also highly resistant to apoptosis by combination treatments with a topoisomerase (Topo) I inhibitor (camptothecin, topotecan, or SN-38) and tumor necrosis factor-related apoptosis-inducing ligand [TRAIL (Apo2L)]. In contrast, cells expressing siRNA to the RNase L inhibitor RLI (HP68) showed enhanced apoptosis in response to Topo I inhibitor alone or in combination with TRAIL. An inhibitor of c-Jun NH(2)-terminal kinases reduced apoptosis induced by treatment with either 2-5A or the combination of camptothecin and TRAIL, thus implicating c-Jun NH(2)-terminal kinase in the apoptotic signaling pathway. Furthermore, prostate cancer cells were sensitive to apoptosis from the combination of 2-5A with either TRAIL or Topo I inhibitor, whereas normal prostate epithelial cells were partially resistant to apoptosis. These findings indicate that RNase L integrates and amplifies apoptotic signals generated during treatment of prostate cancer cells with 2-5A, Topo I inhibitors, and TRAIL.
Collapse
Affiliation(s)
- Krishnamurthy Malathi
- Department of Cancer Biology, Lerner Research Institute, and Experimental Therapeutics Program, Taussig Cancer Center, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
13
|
Koochekpour S, Zhuang YJ, Beroukhim R, Hsieh CL, Hofer MD, Zhau HE, Hiraiwa M, Pattan DY, Ware JL, Luftig RB, Sandhoff K, Sawyers CL, Pienta KJ, Rubin MA, Vessella RL, Sellers WR, Sartor O. Amplification and overexpression of prosaposin in prostate cancer. Genes Chromosomes Cancer 2005; 44:351-64. [PMID: 16080200 DOI: 10.1002/gcc.20249] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We identified prosaposin (PSAP) as a secreted protein expressed in androgen-independent (AI) prostate cancer cells by cloning/sequencing, after probing a PC-3 cDNA library expressed in the lambdaTriplEx phagemid expression vector with a polyclonal rabbit antibody generated against pooled human seminal plasma. PSAP is a neurotrophic molecule; its deficiency or inactivation has proved to be lethal in man and mice, and in mice, it leads to abnormal development and atrophy of the prostate gland, despite normal testosterone levels. We used Southern hybridization, quantitative real-time polymerase chain reaction, and/or single nucleotide polymorphism (SNP) array analysis, and we now report the genomic amplification of PSAP in the metastatic AI prostate cancer cell lines, PC-3, DU-145, MDA-PCa 2b, M-12, and NCI-H660. In addition, by using SNP arrays and a set of 25 punch biopsy samples of human prostate cancer xenografts (LAPC3, LuCaP 23.1, 35, 49, 58, 73, 77, 81, 86.2, 92.1, 93, 96, 105, and 115), lymph nodes, and visceral-organ metastases, we detected amplification of the PSAP locus (10q22.1) in LuCaP 58 and 96 xenografts and two lymph node metastases. In addition, AI metastatic prostate cancer cell lines C4-2B and IA8-ARCaP over-expressed PSAP mRNA without evidence of genomic amplification. Taken together with prior data that demonstrated the growth-, migration-, and invasion-promoting activities, the activation of multiple signal transduction pathways, and the antiapoptotic effect of PSAP (or one of its active domains, saposin C) in prostate cancer cells, our current observation of PSAP amplification or overexpression in prostate cancer suggests, for the first time, a role for this molecule in the process of carcinogenesis or cancer progression in the prostate.
Collapse
Affiliation(s)
- Shahriar Koochekpour
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
During the last ten years our knowledge of genetic alterations in prostate cancer has significantly increased. For example, several chromosomal loci possibly harboring predisposing or somatically mutated genes have been suggested. Still, we lack the comprehensive molecular model for the development and progression of prostate cancer. Only a few genes have been found to be aberrant in a significant proportion of prostate cancer. These include GSTP1, PTEN, TP53, and AR. Thus, they are natural targets for new treatment strategies.
Collapse
Affiliation(s)
- Kati P Porkka
- Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere, and Tampere University Hospital, Biokatu 6, FIN-33520 Tampere, Finland
| | | |
Collapse
|
15
|
Novelli G, Margiotti K, Chiocca AM, Spera E, Micali F, Reichardt JKV. Pharmacogenetics of human androgens and prostate cancer – an update. Pharmacogenomics 2004; 5:283-94. [PMID: 15102543 DOI: 10.1517/phgs.5.3.283.29828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the most common non-skin cancer in the US; it is the second leading cause of death from cancer among US men, and the seventh leading cause of death in the US. This review examines the recent biochemical and pharmacogenetic literature related to prostate cancer, specifically that which focused on constitutional (‘germline’) single nucleotide polymorphisms at ‘functional candidate’ genes for prostate cancer. The investigations summarized in this review demonstrate the need to study the molecular genetics at these loci to rationally develop personalized medicine. In addition, the identification of somatic pharmacogenetic alterations in one of these loci suggests that this may also be a fruitful field of investigations with important clinical applications. Pharmacogenomic investigations of constitutional and tumor DNA may lead to significant advances in chemoprevention, presymptomatic diagnosis and improved treatment of prostate cancer.
Collapse
|