1
|
Li YP, Huang ZJ, He QK, Li YX, Zhao XP, Ma ZQ, Qin MJ, Chen AW, Wei Q, Wang Y, Lu CH. Pirin Promotes the Progression of Non-Small-Cell Lung Cancer by Increasing ODC1 to Suppress Autophagy. J Proteome Res 2024; 23:1713-1724. [PMID: 38648079 DOI: 10.1021/acs.jproteome.3c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Non-small-cell lung cancer (NSCLC), a common malignant tumor, requires deeper pathogenesis investigation. Autophagy is an evolutionarily conserved lysosomal degradation process that is frequently blocked during cancer progression. It is an urgent need to determine the novel autophagy-associated regulators in NSCLC. Here, we found that pirin was upregulated in NSCLC, and its expression was positively correlated with poor prognosis. Overexpression of pirin inhibited autophagy and promoted NSCLC proliferation. We then performed data-independent acquisition-based quantitative proteomics to identify the differentially expressed proteins (DEPs) in pirin-overexpression (OE) or pirin-knockdown (KD) cells. Among the pirin-regulated DEPs, ornithine decarboxylase 1 (ODC1) was downregulated in pirin-KD cells while upregulated along with pirin overexpression. ODC1 depletion reversed the pirin-induced autophagy inhibition and pro-proliferation effect in A549 and H460 cells. Immunohistochemistry showed that ODC1 was highly expressed in NSCLC cancer tissues and positively related with pirin. Notably, NSCLC patients with pirinhigh/ODC1high had a higher risk in terms of overall survival. In summary, we identified pirin and ODC1 as a novel cluster of prognostic biomarkers for NSCLC and highlighted the potential oncogenic role of the pirin/ODC1/autophagy axis in this cancer type. Targeting this pathway represents a possible therapeutic approach to treat NSCLC.
Collapse
Affiliation(s)
- Yan-Ping Li
- Research Laboratory of Zhuang & Yao Medicine, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China
| | - Zi-Jia Huang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Kuo He
- Medical College of Guangxi University, Nanning, 530004 China
| | - Yi-Xiang Li
- Medical College of Guangxi University, Nanning, 530004 China
| | - Xiang-Pei Zhao
- Research Laboratory of Zhuang & Yao Medicine, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China
| | - Zhong-Qi Ma
- Medical College of Guangxi University, Nanning, 530004 China
| | - Mei-Jing Qin
- Medical Experimental Center, The First People's Hospital of Nanning, Nanning Institute of Respiratory Diseases, Nanning, 530022 China
| | - Ai-Wen Chen
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiu Wei
- Medical Experimental Center, The First People's Hospital of Nanning, Nanning Institute of Respiratory Diseases, Nanning, 530022 China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chun-Hua Lu
- Medical Experimental Center, The First People's Hospital of Nanning, Nanning Institute of Respiratory Diseases, Nanning, 530022 China
| |
Collapse
|
2
|
Wilkinson M, Sinclair P, Dellatorre-Teixeira L, Swan P, Brennan E, Moran B, Wedekind D, Downey P, Sheahan K, Conroy E, Gallagher WM, Docherty N, le Roux C, Brennan DJ. The Molecular Effects of a High Fat Diet on Endometrial Tumour Biology. Life (Basel) 2020; 10:life10090188. [PMID: 32927694 PMCID: PMC7554710 DOI: 10.3390/life10090188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023] Open
Abstract
We sought to validate the BDII/Han rat model as a model for diet-induced obesity in endometrial cancer (EC) and determine if transcriptomic changes induced by a high fat diet (HFD) in an EC rat model can be used to identify novel biomarkers in human EC. Nineteen BDII/Han rats were included. Group A (n = 7) were given ad lib access to a normal calorie, normal chow diet (NCD) while Group B (n = 12) were given ad lib access to a calorie rich HFD for 15 months. RNAseq was performed on endometrial tumours from both groups. The top-ranking differentially expressed genes (DEGs) were examined in the human EC using The Cancer Genome Atlas (TCGA) to assess if the BDII/Han rat model is an appropriate model for human obesity-induced carcinogenesis. Weight gain in HFD rats was double the weight gain of NCD rats (50 g vs. 25 g). The incidence of cancer was similar in both groups (4/7-57% vs. 4/12-33%; p = 0.37). All tumours were equivalent to a Stage 1A, Grade 2 human endometrioid carcinoma. A total of 368 DEGs were identified between the tumours in the HFD group compared to the NCD group. We identified two upstream regulators of the DEGs, mir-33 and Brd4, and a pathway analysis identified downstream enrichment of the colorectal cancer metastasis and ovarian cancer metastasis pathways. Top-ranking DEGs included Tex14, A2M, Hmgcs2, Adamts5, Pdk4, Crabp2, Capn12, Npw, Idi1 and Gpt. A2M expression was decreased in HFD tumours. Consistent with these findings, we found a significant negative correlation between A2M mRNA expression levels and BMI in the TCGA cohort (Spearman's Rho = -0.263, p < 0.001). A2M expression was associated with improved overall survival (HR = 0.45, 95% CI 0.23-0.9, p = 0.024). Crabp2 expression was increased in HFD tumours. In human EC, CRABP2 expression was associated with reduced overall survival (HR = 3.554, 95% CI 1.875-6.753, p < 0.001). Diet-induced obesity can alter EC transcriptomic profiles. The BDII/Han rat model is a suitable model of diet-induced obesity in endometrial cancer and can be used to identify clinically relevant biomarkers in human EC.
Collapse
Affiliation(s)
- Michael Wilkinson
- Department of Gynaecological Oncology, UCD School of Medicine, Mater Misericordiae Universtity Hospital, Eccles Street, Dublin 7, D07 AX57 Dublin, Ireland;
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
| | - Piriyah Sinclair
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
| | - Ludmilla Dellatorre-Teixeira
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
| | - Patrick Swan
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
| | - Bruce Moran
- Department of Pathology, St Vincent’s University Hospital, Elm Park, Dublin 4, D04 YN63 Dublin, Ireland; (B.M.); (K.S.)
| | - Dirk Wedekind
- Biomedical Facility, Hanover Medical School, 30625 Hanover, Germany;
| | - Paul Downey
- Department of Pathology, National Maternity Hospital, Holles Street, Dublin 2, D02 YH21 Dublin, Ireland;
| | - Kieran Sheahan
- Department of Pathology, St Vincent’s University Hospital, Elm Park, Dublin 4, D04 YN63 Dublin, Ireland; (B.M.); (K.S.)
| | - Emer Conroy
- Cancer Biology and Therapeutic Laboratory, UCD School of Biomolecular and Biomedical Science Ireland, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (E.C.); (W.M.G.)
| | - William M. Gallagher
- Cancer Biology and Therapeutic Laboratory, UCD School of Biomolecular and Biomedical Science Ireland, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (E.C.); (W.M.G.)
| | - Neil Docherty
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
| | - Carel le Roux
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
- Department of Pathology, St Vincent’s University Hospital, Elm Park, Dublin 4, D04 YN63 Dublin, Ireland; (B.M.); (K.S.)
- Correspondence: (C.l.R.); (D.J.B.)
| | - Donal J. Brennan
- Department of Gynaecological Oncology, UCD School of Medicine, Mater Misericordiae Universtity Hospital, Eccles Street, Dublin 7, D07 AX57 Dublin, Ireland;
- UCD Diabetes Complications Research Centre, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (P.S.); (L.D.-T.); (P.S.); (E.B.); (N.D.)
- Cancer Biology and Therapeutic Laboratory, UCD School of Biomolecular and Biomedical Science Ireland, UCD Conway Institute, University College Dublin, D14 NN96 Dublin, Ireland; (E.C.); (W.M.G.)
- Systems Biology Ireland, UCD School of Medicine, Belfield, Dublin 4, D14 NN96 Dublin, Ireland
- Correspondence: (C.l.R.); (D.J.B.)
| |
Collapse
|
3
|
Ye Z, Zeng Z, Shen Y, Yang Q, Chen D, Chen Z, Shen S. ODC1 promotes proliferation and mobility via the AKT/GSK3β/β-catenin pathway and modulation of acidotic microenvironment in human hepatocellular carcinoma. Onco Targets Ther 2019; 12:4081-4092. [PMID: 31239700 PMCID: PMC6553997 DOI: 10.2147/ott.s198341] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/29/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Ornithine decarboxylase 1 (ODC1)–an oncogene involved in the biosynthesis of polyamines–is commonly upregulated and associated with poor prognosis in numerous cancers. However, the role and mechanism of ODC1 in hepatocellular carcinoma (HCC) remains unclear. The aim of the present study was to investigate the role of ODC1 in HCC and clarify the latent molecular mechanisms. Material and methods: We used samples obtained from The Cancer Genome Atlas. The expression of ODC1 was also assessed in our additional HCC samples and HCC cell lines. The roles of ODC1 in HCC cell proliferation, migration and invasion in vitro were investigated using the cell-counting kit-8 assay, 5-ethynyl-2´-deoxyuridine assay, colony formation assay, flow cytometry, wound healing assay and transwell assay, respectively. The effect of ODC1 on HCC cell proliferation in vivo was investigated by constructing a xenotransplanted tumor model in nude mice. Quantitative real-time polymerase chain and western blotting were used to detect the expression levels of ODC1 in mimetic hypoxia, nutrient depleted, and acidotic microenvironment. The relationships between ODC1, the AKT/GSK3β/β-catenin pathway, and acidotic microenvironment were further investigated through western blotting, immunohistochemical staining, and immunofluorescence. Results: ODC1 was upregulated in HCC tissues and cell lines, and co-expressed with KI67 and PCNA (P<0.05). A decrease in the expression of ODC1 inhibits proliferation, migration, invasion, and induces cell cycle arrest in HCC cell lines in vitro, while suppressing HCC cell proliferation in vivo (P<0.05). Furthermore, the expression of ODC1 was increased in the mimetic acidotic microenvironment, while the interference with the expression of ODC1 reversed the effect of the acidotic microenvironment through regulation of AKT/GSK3β/β-catenin and related downstream proteins. Conclusion: ODC1 is an unfavorable gene in HCC patients,promoting HCC cell proliferation, migration and invasion via the AKT/GSK3β/β-catenin pathway and modulation of the acidotic microenvironment.
Collapse
Affiliation(s)
- Zi Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, Guizhou 550009, People's Republic of China.,Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, People's Republic of China
| | - Yiyi Shen
- Department of Liver-Biliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People's Republic of China
| | - Qiang Yang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Duidui Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Zubing Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Shiqiang Shen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
4
|
Kim HI, Schultz CR, Buras AL, Friedman E, Fedorko A, Seamon L, Chandramouli GVR, Maxwell GL, Bachmann AS, Risinger JI. Ornithine decarboxylase as a therapeutic target for endometrial cancer. PLoS One 2017; 12:e0189044. [PMID: 29240775 PMCID: PMC5730160 DOI: 10.1371/journal.pone.0189044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/19/2017] [Indexed: 12/13/2022] Open
Abstract
Ornithine Decarboxylase (ODC) a key enzyme in polyamine biosynthesis is often overexpressed in cancers and contributes to polyamine-induced cell proliferation. We noted ubiquitous expression of ODC1 in our published endometrial cancer gene array data and confirmed this in the cancer genome atlas (TCGA) with highest expression in non-endometrioid, high grade, and copy number high cancers, which have the worst clinical outcomes. ODC1 expression was associated with worse overall survival and increased recurrence in three endometrial cancer gene expression datasets. Importantly, we confirmed these findings using quantitative real-time polymerase chain reaction (qRT-PCR) in a validation cohort of 60 endometrial cancers and found that endometrial cancers with elevated ODC1 had significantly shorter recurrence-free intervals (KM log-rank p = 0.0312, Wald test p = 5.59e-05). Difluoromethylornithine (DFMO) a specific inhibitor of ODC significantly reduced cell proliferation, cell viability, and colony formation in cell line models derived from undifferentiated, endometrioid, serous, carcinosarcoma (mixed mesodermal tumor; MMT) and clear cell endometrial cancers. DFMO also significantly reduced human endometrial cancer ACI-98 tumor burden in mice compared to controls (p = 0.0023). ODC-regulated polyamines (putrescine [Put] and/or spermidine [Spd]) known activators of cell proliferation were strongly decreased in response to DFMO, in both tumor tissue ([Put] (p = 0.0006), [Spd] (p<0.0001)) and blood plasma ([Put] (p<0.0001), [Spd] (p = 0.0049)) of treated mice. Our study indicates that some endometrial cancers appear particularly sensitive to DFMO and that the polyamine pathway in endometrial cancers in general and specifically those most likely to suffer adverse clinical outcomes could be targeted for effective treatment, chemoprevention or chemoprevention of recurrence.
Collapse
Affiliation(s)
- Hong Im Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Chad R. Schultz
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Andrea L. Buras
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America
- Spectrum Health, Grand Rapids, Michigan, United States of America
| | | | - Alyssa Fedorko
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America
- Spectrum Health, Grand Rapids, Michigan, United States of America
| | - Leigh Seamon
- Spectrum Health, Grand Rapids, Michigan, United States of America
| | | | - G. Larry Maxwell
- Department of Obsteterics and Gynecology, Inova Fairfax Women’s Hospital, Falls Church, Virginia, United States of America
| | - André S. Bachmann
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, United States of America
- * E-mail: (JR); (AB)
| | - John I. Risinger
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America
- Spectrum Health, Grand Rapids, Michigan, United States of America
- * E-mail: (JR); (AB)
| |
Collapse
|
5
|
Mahgoub A, Steer CJ. MicroRNAs in the Evaluation and Potential Treatment of Liver Diseases. J Clin Med 2016; 5:E52. [PMID: 27171116 PMCID: PMC4882481 DOI: 10.3390/jcm5050052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 02/07/2023] Open
Abstract
Acute and chronic liver disease continue to result in significant morbidity and mortality of patients, along with increasing burden on their families, society and the health care system. This in part is due to increased incidence of liver disease associated factors such as metabolic syndrome; improved survival of patients with chronic predisposing conditions such as HIV; as well as advances in the field of transplantation and associated care leading to improved survival. The fact that one disease can result in different manifestations and outcomes highlights the need for improved understanding of not just genetic phenomenon predisposing to a condition, but additionally the role of epigenetic and environmental factors leading to the phenotype of the disease. It is not surprising that providers continue to face daily challenges pertaining to diagnostic accuracy, prognostication of disease severity, progression, and response to therapies. A number of these challenges can be addressed by incorporating a personalized approach of management to the current paradigm of care. Recent advances in the fields of molecular biology and genetics have paved the way to more accurate, individualized and precise approach to caring for liver disease. The study of microRNAs and their role in both healthy and diseased livers is one example of such advances. As these small, non-coding RNAs work on fine-tuning of cellular activities and organ function in a dynamic and precise fashion, they provide us a golden opportunity to advance the field of hepatology. The study of microRNAs in liver disease promises tremendous improvement in hepatology and is likely to lay the foundation towards a personalized approach in liver disease.
Collapse
Affiliation(s)
- Amar Mahgoub
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Veterans of Foreign Wars Cancer Research Center, 406 Harvard Street, S.E., Minneapolis, MN 55455, USA.
| | - Clifford J Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Veterans of Foreign Wars Cancer Research Center, 406 Harvard Street, S.E., Minneapolis, MN 55455, USA.
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Veterans of Foreign Wars Cancer Research Center, 406 Harvard Street, S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Willson CJ, Herbert RA, Cline JM. Hormone Receptor Expression in Spontaneous Uterine Adenocarcinoma in Fischer 344 Rats. Toxicol Pathol 2015; 43:865-71. [PMID: 26157037 PMCID: PMC11714728 DOI: 10.1177/0192623315591839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most uterine cancers, the most common gynecological malignancies in women in developed countries, are hormone-dependent endometrial adenocarcinomas (EACs) that express estrogen and progesterone receptors. Although rat strains exist with a high spontaneous incidence of EAC, the Fischer 344 (F344) strain, previously one of the most commonly used strains in carcinogenicity testing, is not a high-incidence strain. To better understand the biology of this neoplasm, we assessed estrogen receptor α (ER), progesterone receptor (PR), and Ki-67 expression using immunohistochemistry in spontaneous EAC in 18 F344 rats used as control animals in 2-year National Toxicology Program bioassays. Of the 18 tumors, 9 were well-differentiated and 9 were poorly differentiated. Most tumors, 7/18, were ER+PR+, as observed in women. Of the remainder, 6/18 were ER+PR-, 2/18 were ER-PR+, and 3/18 were ER-PR-. Well-differentiated tumors were ER+ (8/9) more often than poorly differentiated tumors (5/9). The percentage of ER+ tumors (72%) in rats was similar to that seen in women, but rats less frequently had PR+ (50%) tumors than women. The heterogeneous estrogen and progesterone receptor immunophenotypes observed in F344 rats in this study highlight the importance of evaluating hormone receptor expression in animal models used for chemical evaluations.
Collapse
Affiliation(s)
- Cynthia J Willson
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| | - Ronald A Herbert
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - J Mark Cline
- Department of Pathology/Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
7
|
Samuelson E, Karlsson S, Partheen K, Nilsson S, Szpirer C, Behboudi A. BAC CGH-array identified specific small-scale genomic imbalances in diploid DMBA-induced rat mammary tumors. BMC Cancer 2012; 12:352. [PMID: 22894538 PMCID: PMC3488521 DOI: 10.1186/1471-2407-12-352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 08/08/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Development of breast cancer is a multistage process influenced by hormonal and environmental factors as well as by genetic background. The search for genes underlying this malignancy has recently been highly productive, but the etiology behind this complex disease is still not understood. In studies using animal cancer models, heterogeneity of the genetic background and environmental factors is reduced and thus analysis and identification of genetic aberrations in tumors may become easier. To identify chromosomal regions potentially involved in the initiation and progression of mammary cancer, in the present work we subjected a subset of experimental mammary tumors to cytogenetic and molecular genetic analysis. METHODS Mammary tumors were induced with DMBA (7,12-dimethylbenz[a]anthrazene) in female rats from the susceptible SPRD-Cu3 strain and from crosses and backcrosses between this strain and the resistant WKY strain. We first produced a general overview of chromosomal aberrations in the tumors using conventional kartyotyping (G-banding) and Comparative Genome Hybridization (CGH) analyses. Particular chromosomal changes were then analyzed in more details using an in-house developed BAC (bacterial artificial chromosome) CGH-array platform. RESULTS Tumors appeared to be diploid by conventional karyotyping, however several sub-microscopic chromosome gains or losses in the tumor material were identified by BAC CGH-array analysis. An oncogenetic tree analysis based on the BAC CGH-array data suggested gain of rat chromosome (RNO) band 12q11, loss of RNO5q32 or RNO6q21 as the earliest events in the development of these mammary tumors. CONCLUSIONS Some of the identified changes appear to be more specific for DMBA-induced mammary tumors and some are similar to those previously reported in ACI rat model for estradiol-induced mammary tumors. The later group of changes is more interesting, since they may represent anomalies that involve genes with a critical role in mammary tumor development. Genetic changes identified in this work are at very small scales and thus may provide a more feasible basis for the identification of the target gene(s). Identification of the genes underlying these chromosome changes can provide new insights to the mechanisms of mammary carcinogenesis.
Collapse
Affiliation(s)
- Emma Samuelson
- Department of Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Göteborg, Sweden
| | - Sara Karlsson
- Department of Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Göteborg, Sweden
| | - Karolina Partheen
- Department of Oncology, University of Gothenburg, SE-413 45, Göteborg, Sweden
| | - Staffan Nilsson
- Department of Mathematical Statistics, Chalmers University of Technology, SE-412 96, Göteborg, Sweden
| | - Claude Szpirer
- IBMM, Université Libre de Bruxelles, B-6041, Gosselies, Charleroi, Belgium
| | - Afrouz Behboudi
- Department of Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Göteborg, Sweden
- Systems Biology Research Centre, School of Life Sciences, University of Skövde, SE-54128, Skövde, Sweden
| |
Collapse
|
8
|
Louzada S, Adega F, Chaves R. Defining the sister rat mammary tumor cell lines HH-16 cl.2/1 and HH-16.cl.4 as an in vitro cell model for Erbb2. PLoS One 2012; 7:e29923. [PMID: 22253826 PMCID: PMC3254647 DOI: 10.1371/journal.pone.0029923] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/06/2011] [Indexed: 11/18/2022] Open
Abstract
Cancer cell lines have been shown to be reliable tools in genetic studies of breast cancer, and the characterization of these lines indicates that they are good models for studying the biological mechanisms underlying this disease. Here, we describe the molecular cytogenetic/genetic characterization of two sister rat mammary tumor cell lines, HH-16 cl.2/1 and HH-16.cl.4, for the first time. Molecular cytogenetic analysis using rat and mouse chromosome paint probes and BAC/PAC clones allowed the characterization of clonal chromosome rearrangements; moreover, this strategy assisted in revealing detected breakpoint regions and complex chromosome rearrangements. This comprehensive cytogenetic analysis revealed an increase in the number of copies of the Mycn and Erbb2 genes in the investigated cell lines. To analyze its possible correlation with expression changes, relative RNA expression was assessed by real-time reverse transcription quantitative PCR and RNA FISH. Erbb2 was found to be overexpressed in HH-16.cl.4, but not in the sister cell line HH-16 cl.2/1, even though these lines share the same initial genetic environment. Moreover, the relative expression of Erbb2 decreased after global genome demethylation in the HH-16.cl.4 cell line. As these cell lines are commercially available and have been used in previous studies, the present detailed characterization improves their value as an in vitro cell model. We believe that the development of appropriate in vitro cell models for breast cancer is of crucial importance for revealing the genetic and cellular pathways underlying this neoplasy and for employing them as experimental tools to assist in the generation of new biotherapies.
Collapse
MESH Headings
- Animals
- Azacitidine/pharmacology
- Cell Line, Tumor
- Cell Shape/drug effects
- Chromosome Breakage/drug effects
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Mammalian/genetics
- Clone Cells
- Computational Biology
- Cytogenetic Analysis
- DNA Methylation/drug effects
- DNA Methylation/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Neoplasm/genetics
- In Situ Hybridization, Fluorescence
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/pathology
- Mice
- Models, Biological
- N-Myc Proto-Oncogene Protein
- Ploidies
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
Collapse
Affiliation(s)
- Sandra Louzada
- Center of Genomics and Biotechnology, Institute for Biotechnology and Bioengineering, University of Trás-os-Montes and Alto Douro (IBB/CGB-UTAD), Vila Real, Portugal
| | - Filomena Adega
- Center of Genomics and Biotechnology, Institute for Biotechnology and Bioengineering, University of Trás-os-Montes and Alto Douro (IBB/CGB-UTAD), Vila Real, Portugal
| | - Raquel Chaves
- Center of Genomics and Biotechnology, Institute for Biotechnology and Bioengineering, University of Trás-os-Montes and Alto Douro (IBB/CGB-UTAD), Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- * E-mail:
| |
Collapse
|
9
|
Zhu XL, Ai ZH, Wang J, Xu YL, Teng YC. Weighted gene co-expression network analysis in identification of endometrial cancer prognosis markers. Asian Pac J Cancer Prev 2012; 13:4607-11. [PMID: 23167388 DOI: 10.7314/apjcp.2012.13.9.4607] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Endometrial cancer (EC) is the most common gynecologic malignancy. Identification of potential biomarkers of EC would be helpful for the detection and monitoring of malignancy, improving clinical outcomes. METHODS The Weighted Gene Co-expression Network Analysis method was used to identify prognostic markers for EC in this study. Moreover, underlying molecular mechanisms were characterized by KEGG pathway enrichment and transcriptional regulation analyses. RESULTS Seven gene co-expression modules were obtained, but only the turquoise module was positively related with EC stage. Among the genes in the turquoise module, COL5A2 (collagen, type V, alpha 2) could be regulated by PBX (pre-B-cell leukemia homeobox 1)1/2 and HOXB1(homeobox B1) transcription factors to be involved in the focal adhesion pathway; CENP-E (centromere protein E, 312kDa) by E2F4 (E2F transcription factor 4, p107/p130-binding); MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived [avian]) by PAX5 (paired box 5); and BCL-2 (B-cell CLL/ lymphoma 2) and IGFBP-6 (insulin-like growth factor binding protein 6) by GLI1. They were predicted to be associated with EC progression via Hedgehog signaling and other cancer related-pathways. CONCLUSIONS These data on transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of EC.
Collapse
Affiliation(s)
- Xiao-Lu Zhu
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
10
|
Abstract
Rat has been the major model species used in several biomedical fields, notably in drug development and toxicology, including carcinogenicity testing. Rat is also a useful model in basic cancer research. Several rat models of monogenic (Mendelian) human hereditary cancers are available. Some were obtained spontaneously, while others were generated either by mutagenesis of tumor suppressor genes or by transgenesis of activated oncogenes (transgenesis can be performed efficiently in the rat). In addition, among the hundreds of inbred rat strains that have been isolated, some are highly susceptible or resistant to certain types of cancer, and these divergent phenotypes were shown to be polygenic. Numerous quantitative trait loci (QTLs) controlling cancer susceptibility/resistance have been defined in linkage analyses, and several of these QTLs were physically demonstrated in congenic strains. These studies led, in particular, to rapid translation to the human, with the identification of loci controlling susceptibility to a form of multiple endocrine neoplasia (monogenic trait) and to breast cancer (polygenic disease). The biology of cancer resistance has also been analyzed, and in some (but not all) cases, it was linked to regression of preneoplasic lesions. Rat tumors have been the subject of various types of analyses, and these studies led to important conclusions, including that tumors can be classified on the basis of the identity of the inducing agent, thereby suggesting that analyses of human tumors may be valuable in determining retrospectively the role of specific carcinogens in the formation of human cancers, and of human breast cancer in particular.
Collapse
Affiliation(s)
- Claude Szpirer
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Charleroi, Belgium
| |
Collapse
|
11
|
Samuelson E, Levan K, Adamovic T, Levan G, Horvath G. Recurrent gene amplifications in human type I endometrial adenocarcinoma detected by fluorescence in situ hybridization. ACTA ACUST UNITED AC 2008; 181:25-30. [PMID: 18262049 DOI: 10.1016/j.cancergencyto.2007.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/30/2007] [Accepted: 11/12/2007] [Indexed: 11/19/2022]
Abstract
Determining what genes are actively involved in tumor development is important, because they may provide targets for directed therapy. Human tumors are greatly heterogeneous with respect to etiology and genetic background, which complicates the identification of common genetic aberrations. In contrast, genetic and environmental variation can be in part controlled in experimental animals, which facilitates identification of the important changes. In inbred BDII rats, which are genetically predisposed to endometrial adenocarcinomas (EAC), certain chromosome regions exhibit recurrent amplification in the tumors. Previous CGH analysis had shown that a subset of human EAC tumors exhibited increased copy numbers in the homologous chromosomal regions, located in human 2p21 approximately p25 and 7q21 approximately q31. Using fluorescence in situ hybridization analysis on imprints from 13 human EAC tumors, we determined the average copy numbers of each of 15 probes derived from cancer-related genes situated in these chromosome regions. Among the genes analyzed, those most often targeted by amplification were SDC1 and CYP1B1 in 2p21 approximately p25 and CDK6 and MET in 7q21 approximately q31, but all of the 15 genes tested were found to be amplified in at least two tumors.
Collapse
Affiliation(s)
- Emma Samuelson
- CMB-Genetics, Lundberg Laboratory, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Amplification Studies of MET and Cdk6 in a Rat Endometrial Tumor Model and Their Correlation to Human Type I Endometrial Carcinoma Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 617:511-7. [DOI: 10.1007/978-0-387-69080-3_51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
13
|
Hamta A, Adamovic T, Samuelson E, Helou K, Behboudi A, Levan G. Chromosome ideograms of the laboratory rat (Rattus norvegicus) based on high-resolution banding, and anchoring of the cytogenetic map to the DNA sequence by FISH in sample chromosomes. Cytogenet Genome Res 2006; 115:158-68. [PMID: 17065798 DOI: 10.1159/000095237] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/02/2006] [Indexed: 11/19/2022] Open
Abstract
A detailed banded ideogram representation of the rat chromosomes was constructed based on actual G-banded prometaphase chromosomes. The approach yielded 535 individual bands, a significant increase compared to previously presented ideograms. The new ideogram was adapted to the existing band nomenclature. The gene locus positions in the rat draft DNA sequence were compared to the chromosomal positions as determined by dual-color FISH, using rat (RNO) chromosomes 6 and 15 and a segment of RNO4 as sample regions. It was found that there was generally an excellent correlation in the chromosome regions tested between the relative gene position in the DNA molecules and the sub-chromosomal localization by FISH and subsequent information transfer on ideograms from measurements of chromosomal images. However, in the metacentric chromosome (RNO15), the correlation was much better in the short arm than in the long arm, suggesting that the centromeric region may distort the linear relationship between the chromosomal image and the corresponding DNA molecule.
Collapse
Affiliation(s)
- A Hamta
- CMB-Genetics, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Adamovic T, Trossö F, Roshani L, Andersson L, Petersen G, Rajaei S, Helou K, Levan G. Oncogene amplification in the proximal part of chromosome 6 in rat endometrial adenocarcinoma as revealed by combined BAC/PAC FISH, chromosome painting, zoo-FISH, and allelotyping. Genes Chromosomes Cancer 2005; 44:139-53. [PMID: 15942940 DOI: 10.1002/gcc.20220] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The inbred BDII rat is a valuable experimental model for the genetic analysis of endometrial adenocarcinoma (EAC). One common aberration detected by comparative genomic hybridization in rat EAC was gain/amplification affecting the proximal part of rat chromosome 6 (RNO6). We applied rat and mouse chromosome painting probes onto tumor cell metaphase preparations in order to detect and characterize gross RNO6 aberrations. In addition, the RNO6q11-q16 segment was analyzed by fluorescence in situ hybridization with probes representing 12 cancer-related genes in the region. The analysis revealed that seven tumors contained large RNO6-derived homogeneously staining regions (HSRs) in addition to several normal or near-normal RNO6 chromosomes. Five tumors (two of which also had HSRs) exhibited a selective increase of the RNO6q11-q16 segment, sometimes in conjunction with moderate amplification of one or a few genes. Most commonly, the amplification affected the region centered around band 6q16 and included the Mycn, Ddx1, and Rrm2 genes. A second region, centering around Slc8a1 and Xdh, also was affected by gene amplification but to a lesser extent. The aberrations in the proximal part of RNO6 were further analyzed using allelotyping of microsatellite markers in all tumors from animals that were heterozygous in the proximal RNO6 region. We could detect allelic imbalance (AI) in 12 of 20 informative tumors, 6 of which were in addition to those already analyzed by molecular cytogenetic methods as described. Our findings suggest that increase/amplification of genes in this chromosome region contribute to the development of this hormone-dependent tumor.
Collapse
Affiliation(s)
- Tatjana Adamovic
- Department of Pathology, CMB-Genetics, Lundberg Laboratory for Cancer Research, Göteborg University, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hamta A, Adamovic T, Heloua K, Levan G. Cytogenetic aberrations in spontaneous endometrial adenocarcinomas in the BDII rat model as revealed by chromosome banding and comparative genome hybridization. ACTA ACUST UNITED AC 2005; 159:123-8. [PMID: 15899383 DOI: 10.1016/j.cancergencyto.2004.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 09/22/2004] [Accepted: 09/28/2004] [Indexed: 11/21/2022]
Abstract
Female rats of the inbred strain BDII are genetically predisposed to endometrial estrogen-dependent adenocarcinomas (EAC). More than 90% of them spontaneously develop this tumor type before the age of 24 months. In order to dissect out the genetic components behind these tumors we have made crosses between BDII females and rats from 2 other strains that are nonsusceptible to EAC. It was found that EAC tumors developed in a subset of intercross and backcross animals from both interstrain crosses. The chromosomal changes in the developing tumors were studied using cytogenetic and molecular cytogenetic methods. From these studies, we conclude that certain chromosome regions were recurrently engaged in chromosomal changes such as increases in copy number (e.g., trisomy, amplification) or decreases (e.g., deletion). Based on the analysis of 56 tumors, 8 regions were found to be particularly often involved: RNO4prx, gain=34 (61%) (amplification 12 cases); RNO5mid, loss=15 (27%); RNO6prx, gain=25 (45%) (amplification 8 cases); RNO10 loss, prx-mid/gain dst=25 (45%) (amplification 1 case); RNO12q, gain=23 (41%); RNO15p loss/RNO15q gain=29 (52%) (amplification 1 case) [RNO, rat chromosome; prx, proximal; mid, middle; dst, distal; p, short arm; q, long arm]. We begun to analyze these regions in detail using various molecular methods and within them there are certain possible target genes, such as MET (RNO4q21), CDKN2A/2B (RNO5q32), MYCN (RNO6q15 approximately q16), and TP53 (RNO10q24 approximately q25), but it is clear that several other genes, still unidentified, must also be involved.
Collapse
Affiliation(s)
- Ahmad Hamta
- CMB-Genetics, Lundberg Laboratory, Göteborg University, Box 462, SE 40530, Gothenburg, Sweden
| | | | | | | |
Collapse
|
16
|
Abdelhaleem M. Do human RNA helicases have a role in cancer? Biochim Biophys Acta Rev Cancer 2004; 1704:37-46. [PMID: 15238243 DOI: 10.1016/j.bbcan.2004.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 05/06/2004] [Indexed: 11/24/2022]
Abstract
Human RNA helicases (HRH) represent a large family of enzymes that play important roles in RNA processing. The biochemical characteristics and biological functions of the majority of HRH are still to be determined. However, there are examples of dysregulation of HRH expression in various types of cancer. In addition, some HRH have been shown to be involved in the regulation of, or the molecular interaction with, molecules implicated in cancer. Other helicases take part in fusion transcripts resulting from cancer-associated chromosomal translocation. These findings raise the question of whether HRH can contribute to cancer development/progression. In this review, I summarize the cancer-related features of HRH.
Collapse
Affiliation(s)
- Mohamed Abdelhaleem
- Division of Haematopathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Room 3691 Atrium, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
17
|
Abstract
Cancers of the reproductive system are a major source of morbidity and mortality among women worldwide. Because the uterus, ovaries, and cervix are hormonally responsive tissues, exposure to endogenous or exogenous sex steroids can profoundly affect the carcinogenic process. Animal models developed to date provide valuable but imperfect systems in which to study neoplasms of the reproductive tract. Nonhuman primate models share the unique primate-specific endometrial physiology of humans, but rarely develop neoplasms of the reproductive tract. Therefore a surrogate marker approach is required for the study of hormonally induced cancer risk in primates. Rodents provide practical models in which tumorigenesis can be assayed in a short time and, with appropriate interpretation, can be used for assessment of risk, prevention, and therapeutic strategies. In addition to the spontaneous strain-dependent incidence of female reproductive cancers, the classical chemical and hormonal carcinogenesis models, and the use of xenograft approaches, novel genetically modified animals provide unique insights into relevant molecular mechanisms. Caveats in the use of rodent models include anatomical differences from the human reproductive tract, the greater possibility of different metabolic responses to hormonal agents than humans, strain variations in tumor type and hormonal responsiveness, and unexpected tumor phenotypes in genetically modified animals. Reported nonmammalian models are limited primarily to the study of ovarian carcinogenesis. Recent progress in the understanding of cervical carcinogenesis is encouraging. Unmet needs in this area of research include models of early events in ovarian carcinogenesis and strongly predictive models of endometrial cancer risk. Nonhuman primates remain indispensable for the study of some aspects of reproductive pathophysiology, but the best understanding of carcinogenesis in the reproductive tract requires a broad approach using complementary human, nonhuman primate, and nonprimate studies.
Collapse
Affiliation(s)
- J Mark Cline
- Wake Forest University, School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
18
|
Yu H, Pandit B, Klett E, Lee MH, Lu K, Helou K, Ikeda I, Egashira N, Sato M, Klein R, Batta A, Salen G, Patel SB. The rat STSL locus: characterization, chromosomal assignment, and genetic variations in sitosterolemic hypertensive rats. BMC Cardiovasc Disord 2003; 3:4. [PMID: 12783625 PMCID: PMC165443 DOI: 10.1186/1471-2261-3-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Accepted: 06/03/2003] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Elevated plant sterol accumulation has been reported in the spontaneously hypertensive rat (SHR), the stroke-prone spontaneously hypertensive rat (SHRSP) and the Wistar-Kyoto (WKY) rat. Additionally, a blood pressure quantitative trait locus (QTL) has been mapped to rat chromosome 6 in a New Zealand genetically hypertensive rat strain (GH rat). ABCG5 and ABCG8 (encoding sterolin-1 and sterolin-2 respectively) have been shown to be responsible for causing sitosterolemia in humans. These genes are organized in a head-to-head configuration at the STSL locus on human chromosome 2p21. METHODS To investigate whether mutations in Abcg5 or Abcg8 exist in SHR, SHRSP, WKY and GH rats, we initiated a systematic search for the genetic variation in coding and non-coding region of Abcg5 and Abcg8 genes in these strains. We isolated the rat cDNAs for these genes and characterized the genomic structure and tissue expression patterns, using standard molecular biology techniques and FISH for chromosomal assignments. RESULTS Both rat Abcg5 and Abcg8 genes map to chromosome band 6q12. These genes span ~40 kb and contain 13 exons and 12 introns each, in a pattern identical to that of the STSL loci in mouse and man. Both Abcg5 and Abcg8 were expressed only in liver and intestine. Analyses of DNA from SHR, SHRSP, GH, WKY, Wistar, Wistar King A (WKA) and Brown Norway (BN) rat strains revealed a homozygous G to T substitution at nucleotide 1754, resulting in the coding change Gly583Cys in sterolin-1 only in rats that are both sitosterolemic and hypertensive (SHR, SHRSP and WKY). CONCLUSIONS The rat STSL locus maps to chromosome 6q12. A non-synonymous mutation in Abcg5, Gly583Cys, results in sitosterolemia in rat strains that are also hypertensive (WKY, SHR and SHRSP). Those rat strains that are hypertensive, but not sitosterolemic (e.g. GH rat) do not have mutations in Abcg5 or Abcg8. This mutation allows for expression and apparent apical targeting of Abcg5 protein in the intestine. These rat strains may therefore allow us to study the pathophysiological mechanisms involved in the human disease of sitosterolemia.
Collapse
Affiliation(s)
- Hongwei Yu
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, STR 541, 114 Doughty Street, Charleston, SC 29403, USA
| | - Bhaswati Pandit
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, STR 541, 114 Doughty Street, Charleston, SC 29403, USA
| | - Eric Klett
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, STR 541, 114 Doughty Street, Charleston, SC 29403, USA
| | - Mi-Hye Lee
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, STR 541, 114 Doughty Street, Charleston, SC 29403, USA
| | - Kangmo Lu
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, STR 541, 114 Doughty Street, Charleston, SC 29403, USA
| | - Khalil Helou
- Genetics Branch, Center for Cancer Research, National Cancer, Institute/NIH, Bethesda, Maryland 20892, USA
- Department of Oncology, Institute of Selected Clinical Sciences, Goteborg University, SE 413 45, Gothenburg, Sweden
| | - Ikuo Ikeda
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, Fukuoka, 812-8581, Japan
| | - Nami Egashira
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, Fukuoka, 812-8581, Japan
| | - Masao Sato
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, Fukuoka, 812-8581, Japan
| | - Richard Klein
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, STR 541, 114 Doughty Street, Charleston, SC 29403, USA
| | - Ashok Batta
- Research Service and Medical Service, Department of Veterans Affairs Medical Center, East Orange, NJ, USA
| | - Gerald Salen
- Research Service and Medical Service, Department of Veterans Affairs Medical Center, East Orange, NJ, USA
| | - Shailendra B Patel
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, STR 541, 114 Doughty Street, Charleston, SC 29403, USA
| |
Collapse
|
19
|
Helou K, Walentinsson A, Beckmann B, Johansson A, Hedrich HJ, Szpirer C, Klinga-Levan K, Levan G. Analysis of genetic changes in rat endometrial carcinomas by means of comparative genomic hybridization. CANCER GENETICS AND CYTOGENETICS 2001; 127:118-27. [PMID: 11425450 DOI: 10.1016/s0165-4608(00)00435-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Animals of the BDII inbred rat strain are known to be genetically predisposed to endometrial adenocarcinoma (EAC). Using them as models of human EACs, we studied tumors arising in F1 and F2 progeny from BDII animals crossed to animals from two other inbred strains, in which EACs were quite rare. In order to identify chromosomal regions exhibiting DNA copy number changes, comparative genomic hybridization (CGH) was applied in a series corresponding to 27 different solid tumors, most of which were classified as EACs, from these animals. The main findings from the study were that, although many different chromosomes were involved in copy number variation, some of the changes detected were recurrent and quite specific. Among specific changes found were gains in rat chromosome (RNO) regions 4q12 approximately q22, 6q14 approximately q16, and whole chromosome arms in some of the small metacentric chromosomes (e.g., RNO14, 16, and 18). RNO10 was involved in gain in the terminal and proximal regions. Each of these regions contains previously identified cancer-related genes representing possible candidates to be involved in the development of EAC. Furthermore, it was observed that there were clear differences in the pattern of copy number changes between tumors occurring in the two different crosses, and also between solid tumors and cell cultures. Endometrial cancer is the most common human gynecological cancer, but not much is known about specific genetic changes influencing this disease. Two genetic alterations that have been reported from human endometrial cancer are amplification of the ERBB2 gene and mutations in the 12 codon of the KRAS gene. One case of Erbb2 amplification was found but there were no Kras mutations in the rat material studied. We conclude that molecular genetic analysis of the rat BDII model will provide important new information about EAC in mammals.
Collapse
Affiliation(s)
- K Helou
- Department of Cell and Molecular Biology--Genetics, Göteborg University, Box 462, SE-405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|