1
|
Guo Y, Wang Y, Duan J, Wan R, Chang G, Zhang X, Ma Z, Bai H, Wang J. Deciphering the predictive value of senescence-related signature in lung adenocarcinoma: Implications for antitumor immunity and immunotherapy efficacy. Heliyon 2024; 10:e35940. [PMID: 39211916 PMCID: PMC11357763 DOI: 10.1016/j.heliyon.2024.e35940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Objective The senescence process is pivotal in both the onset and advancement of lung adenocarcinoma (LUAD), influencing cell growth, immune evasion, the potential for metastasis, and resistance to treatments. Senescent cells' dual nature, both harmful and advantageous, adds complexity to understanding their expression patterns and clinical relevance in LUAD. In this study, we sought to evaluate the predictive value of the senescence-related signature in survival outcomes and immunotherapy efficacy in patients with LUAD. Materials and methods We integrated data from 1449 LUAD cases sourced from different publicly accessible datasets and a clinical cohort of Chinese LUAD patients. The Cox regression analysis employing the least absolute shrinkage and selection operator (LASSO) was performed on 156 senescence-associated genes to develop the senescence-related signature. Kaplan-Meier analysis and time-dependent receiver operating characteristic curves were utilizaed to assess the prognostic significance of the senescence-related signature. Functional annotation, immune infiltration analysis, and gene set variation analysis were applied to investigate the association of the senescence-related signature with anti-tumor immunity in LUAD. Immunotherapy cohorts of non-small cell lung cancer, urothelial carcinoma, skin cutaneous melanoma, and glioblastoma patients were included to assess the senescence-related signature in predicting immunotherapy efficacy. Results The senescence-related signature, which encompasses seven senescence-related genes, namely, FOXM1, VDAC1, PPP3CA, MAPK13, PIK3CD, RRAS, and CCND3, was identified to have predictive significance across multiple LUAD cohorts and demonstrated a negative association with antitumor immunity and tumor-infiltrating neutrophils. Patients exhibiting low expression levels of the senescence-related signature responded more favorably to immune checkpoint inhibitors in various solid tumors, including LUAD. Inhibiting FOXM1 pharmacologically with thiostrepton produced tumor-suppressive effects and improved immunotherapy responses in a Lewis lung carcinoma mouse model. Conclusions The senescence-related signature demonstrates potential in predicting patient prognosis and immunotherapy efficacy in LUAD.
Collapse
Affiliation(s)
- Yufeng Guo
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rui Wan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Geyun Chang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Xue Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixiao Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
2
|
Xu YJ, Zeng K, Ren Y, Mao CY, Ye YH, Zhu XT, Sun ZY, Cao BY, Zhang ZB, Xu GQ, Huang ZQ, Mao XL. Inhibition of USP10 induces myeloma cell apoptosis by promoting cyclin D3 degradation. Acta Pharmacol Sin 2023; 44:1920-1931. [PMID: 37055530 PMCID: PMC10462714 DOI: 10.1038/s41401-023-01083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/23/2023] [Indexed: 04/15/2023]
Abstract
The cell cycle regulator cyclin D3 (CCND3) is highly expressed in multiple myeloma (MM) and it promotes MM cell proliferation. After a certain phase of cell cycle, CCND3 is rapidly degraded, which is essential for the strict control of MM cell cycle progress and proliferation. In the present study, we investigated the molecular mechanisms regulating CCND3 degradation in MM cells. By utilizing affinity purification-coupled tandem mass spectrometry, we identified the deubiquitinase USP10 interacting with CCND3 in human MM OPM2 and KMS11 cell lines. Furthermore, USP10 specifically prevented CCND3 from K48-linked polyubiquitination and proteasomal degradation, therefore enhancing its activity. We demonstrated that the N-terminal domain (aa. 1-205) of USP10 was dispensable for binding to and deubiquitinating CCND3. Although Thr283 was important for CCND3 activity, it was dispensable for CCND3 ubiquitination and stability modulated by USP10. By stabilizing CCND3, USP10 activated the CCND3/CDK4/6 signaling pathway, phosphorylated Rb, and upregulated CDK4, CDK6 and E2F-1 in OPM2 and KMS11 cells. Consistent with these findings, inhibition of USP10 by Spautin-1 resulted in accumulation of CCND3 with K48-linked polyubiquitination and degradation that synergized with Palbociclib, a CDK4/6 inhibitor, to induce MM cell apoptosis. In nude mice bearing myeloma xenografts with OPM2 and KMS11 cells, combined administration of Spautin-l and Palbociclib almost suppressed tumor growth within 30 days. This study thus identifies USP10 as the first deubiquitinase of CCND3 and also finds that targeting the USP10/CCND3/CDK4/6 axis may be a novel modality for the treatment of myeloma.
Collapse
Affiliation(s)
- Yu-Jia Xu
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China
- Guangdong & Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kun Zeng
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Ying Ren
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Chen-Yu Mao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying-Hui Ye
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiao-Ting Zhu
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zi-Ying Sun
- Guangdong & Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bi-Yin Cao
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Zu-Bin Zhang
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Zhen-Qian Huang
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China.
| | - Xin-Liang Mao
- Department of Hematology, the First Affiliated Hospital & GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 510120, China.
- Guangdong & Guangzhou Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Pharmacology, Soochow University, Suzhou, 215123, China.
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
3
|
Trtkova KS, Luzna P, Drozdkova DW, Cizkova K, Janovska L, Gursky J, Prukova D, Frydrych I, Hajduch M, Minarik J. The epigenetic impact of suberohydroxamic acid and 5‑Aza‑2'‑deoxycytidine on DNMT3B expression in myeloma cell lines differing in IL‑6 expression. Mol Med Rep 2022; 26:321. [PMID: 36043519 PMCID: PMC9471560 DOI: 10.3892/mmr.2022.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/08/2022] [Indexed: 11/06/2022] Open
Abstract
Gene inactivation of the cyclin-dependent kinase inhibitors p16INK4a, p15INK4b and p21WAF is frequently mediated by promoter gene methylation, whereas histone deacetylases (HDACs) control gene expression through their ability to deacetylate proteins. The effect of suberohydroxamic acid (SBHA) and 5-Aza-2′-deoxycytidine (Decitabine) (DAC) treatments on the transcription of CDKN2A, CDKN2B and CDKN1A genes, and their effects on molecular biological behavior were examined in two myeloma cell lines, RPMI8226 and U266, which differ in p53-functionality and IL-6 expression. In both tested myeloma cell lines, a non-methylated state of the CDKN2B gene promoter region was detected with normal gene expression, and the same level of p15INK4b protein was detected by immunocytochemical staining. Furthermore, in myeloma cells treated with SBHA and DAC alone, the expression of both p15INK4b and p21WAF was significantly upregulated in RPMI8226 cells (p53-functional, without IL-6 expression), whereas in the U266 cell line (p53 deleted, expressing IL-6) only p21WAF expression was significantly increased. Moreover, the analysis revealed that treatment with DAC induced DNMT3B enhancement in U266 cells. In conclusion, in myeloma cells with IL-6 expression, significantly increased DNMT3B expression indicated the tumorigenic consequences of 5-Aza-2′deoxycytidine treatment, which requires careful use in diseases involving epigenetic dysregulation, such as multiple myeloma (MM).
Collapse
Affiliation(s)
- Katerina Smesny Trtkova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Petra Luzna
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Denisa Weiser Drozdkova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Lucie Janovska
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Jan Gursky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 777 15 Olomouc, Czech Republic
| | - Dana Prukova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Ivo Frydrych
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 779 00 Olomouc, Czech Republic
| | - Jiri Minarik
- Department of Hemato‑Oncology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
4
|
Fu Y, Zhang Y, Khoo BL. Liquid biopsy technologies for hematological diseases. Med Res Rev 2020; 41:246-274. [PMID: 32929726 DOI: 10.1002/med.21731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Since the discovery of circulating tumor cells in 1869, technological advances in studying circulating biomarkers from patients' blood have made the diagnosis of nonhematologic cancers less invasive. Technological advances in the detection and analysis of biomarkers provide new opportunities for the characterization of other disease types. When compared with traditional biopsies, liquid biopsy markers, such as exfoliated bladder cancer cells, circulating cell-free DNA (cfDNA), and extracellular vesicles (EV), are considered more convenient than conventional biopsies. Liquid biopsy markers undoubtedly have the potential to influence disease management and treatment dynamics. Our main focuses of this review will be the cell-based, gene-based, and protein-based key liquid biopsy markers (including EV and cfDNA) in disease detection, and discuss the research progress of these biomarkers used in conjunction with liquid biopsy. First, we highlighted the key technologies that have been broadly adopted used in hematological diseases. Second, we introduced the latest technological developments for the specific detection of cardiovascular disease, leukemia, and coronavirus disease. Finally, we concluded with perspectives on these research areas, focusing on the role of microfluidic technology and artificial intelligence in point-of-care medical applications. We believe that the noninvasive capabilities of these technologies have great potential in the development of diagnostics and can influence treatment options, thereby advancing precision disease management.
Collapse
Affiliation(s)
- Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Yiyuan Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
5
|
Maura F, Bolli N, Angelopoulos N, Dawson KJ, Leongamornlert D, Martincorena I, Mitchell TJ, Fullam A, Gonzalez S, Szalat R, Abascal F, Rodriguez-Martin B, Samur MK, Glodzik D, Roncador M, Fulciniti M, Tai YT, Minvielle S, Magrangeas F, Moreau P, Corradini P, Anderson KC, Tubio JMC, Wedge DC, Gerstung M, Avet-Loiseau H, Munshi N, Campbell PJ. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun 2019; 10:3835. [PMID: 31444325 PMCID: PMC6707220 DOI: 10.1038/s41467-019-11680-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/23/2019] [Indexed: 01/11/2023] Open
Abstract
The multiple myeloma (MM) genome is heterogeneous and evolves through preclinical and post-diagnosis phases. Here we report a catalog and hierarchy of driver lesions using sequences from 67 MM genomes serially collected from 30 patients together with public exome datasets. Bayesian clustering defines at least 7 genomic subgroups with distinct sets of co-operating events. Focusing on whole genome sequencing data, complex structural events emerge as major drivers, including chromothripsis and a novel replication-based mechanism of templated insertions, which typically occur early. Hyperdiploidy also occurs early, with individual trisomies often acquired in different chronological windows during evolution, and with a preferred order of acquisition. Conversely, positively selected point mutations, whole genome duplication and chromoplexy events occur in later disease phases. Thus, initiating driver events, drawn from a limited repertoire of structural and numerical chromosomal changes, shape preferred trajectories of evolution that are biologically relevant but heterogeneous across patients.
Collapse
Affiliation(s)
- Francesco Maura
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Medical Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Niccoló Bolli
- Department of Medical Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nicos Angelopoulos
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Kevin J Dawson
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Daniel Leongamornlert
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Inigo Martincorena
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Thomas J Mitchell
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Anthony Fullam
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Santiago Gonzalez
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Hinxton, UK
| | - Raphael Szalat
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Federico Abascal
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Bernardo Rodriguez-Martin
- CIMUS - Molecular Medicine and Chronic Diseases Research Centre, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mehmet Kemal Samur
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dominik Glodzik
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marco Roncador
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yu Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Stephane Minvielle
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Florence Magrangeas
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Philippe Moreau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Paolo Corradini
- Department of Medical Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jose M C Tubio
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
- CIMUS - Molecular Medicine and Chronic Diseases Research Centre, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - David C Wedge
- University of Oxford, Big Data Institute, Oxford, UK
| | - Moritz Gerstung
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Hinxton, UK
| | | | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Veterans Administration Boston Healthcare System, West Roxbury, MA, USA.
| | - Peter J Campbell
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
6
|
Expanding the repertoire of miRNAs and miRNA-offset RNAs expressed in multiple myeloma by small RNA deep sequencing. Blood Cancer J 2019; 9:21. [PMID: 30783080 PMCID: PMC6381125 DOI: 10.1038/s41408-019-0184-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/21/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
Microarray analysis of the multiple myeloma (MM) miRNome has unraveled the differential expression of miRNAs in cytogenetic subgroups, their involvement in the tumor biology and their effectiveness in prognostic models. Herein, the small RNA transcriptional landscape in MM has been investigated exploiting the possibilities offered by small RNA-seq, including accurate quantification of known mature species, discovery and characterization of isomiRs, and miRNA-offset RNAs (moRNAs). Matched small RNA-seq and miRNA GeneChip® microarray expression profiles were obtained in a representative panel of 30 primary MM tumors, fully characterized for genomic aberrations and mutations. RNA-seq and microarray gave concordant estimations of known species. Enhanced analysis of RNA-seq data with the miR&moRe pipeline led to the characterization of 655 known and 17 new mature miRNAs and of 74 moRNAs expressed in the considered cohort, 5 of which (moR-150-3p, moR-24-2-5p, moR-421-5p, moR-21-5p, and moR-6724-5p) at high level. Ectopic expression of miR-135a-3p in t(4;14) patients, upregulation of moR-150-3p and moR-21-5p in t(14;16)/t(14;20) samples, and of moR-6724-1-5p in patients overexpressing CCND1 were uncovered and validated by qRT-PCR. Overall, RNA-seq offered a more complete overview of small non-coding RNA in MM tumors, indicating specific moRNAs that demand further investigations to explore their role in MM biology.
Collapse
|
7
|
Qiang YW, Ye S, Huang Y, Chen Y, Van Rhee F, Epstein J, Walker BA, Morgan GJ, Davies FE. MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma. BMC Cancer 2018; 18:724. [PMID: 29980194 PMCID: PMC6035431 DOI: 10.1186/s12885-018-4602-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/18/2018] [Indexed: 11/29/2022] Open
Abstract
Background Multiple myeloma (MM) patients with t(14;20) have a poor prognosis and their outcome has not improved following the introduction of bortezomib (Bzb). The mechanism underlying the resistance to proteasome inhibitors (PIs) for this subset of patients is unknown. Methods IC50 of Bzb and carfilzomib (CFZ) in human myeloma cell lines (HMCLs) were established by MTT assay. Gene Expression profile (GEP) analysis was used to determine gene expression in primary myeloma cells. Immunoblotting analysis was performed for MAFb and caspase family proteins. Immunofluorescence staining was used to detect the location of MAFb protein in MM cells. Lentiviral infections were used to knock-down MAFb expression in two lines. Apoptosis detection by flow cytometry and western blot analysis was performed to determine the molecular mechanism MAFb confers resistance to proteasome inhibitors. Results We found high levels of MAFb protein in cell lines with t(14;20), in one line with t(6;20), in one with Igλ insertion into MAFb locus, and in primary plasma cells from MM patients with t(14;20). High MAFb protein levels correlated with higher IC50s of PIs in MM cells. Inhibition of GSK3β activity or treatment with Bzb or CFZ prevented MAFb protein degradation without affecting the corresponding mRNA level indicating a role for GSK3 and proteasome inhibitors in regulation of MAFb stability. Silencing MAFb restored sensitivity to Bzb and CFZ, and enhanced PIs-induced apoptosis and activation of caspase-3, − 8, − 9, PARP and lamin A/C suggesting that high expression of MAFb protein leads to insensitivity to proteasome inhibitors. Conclusion These results highlight the role of post-translational modification of MAFb in maintaining its protein level, and identify a mechanism by which proteasome inhibitors induced stabilization of MAFb confers resistance to proteasome inhibitors, and provide a rationale for the development of targeted therapeutic strategies for this subset of patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4602-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Wei Qiang
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA.
| | - Shiqiao Ye
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Yuhua Huang
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Yu Chen
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Frits Van Rhee
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Joshua Epstein
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Brian A Walker
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Gareth J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Faith E Davies
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| |
Collapse
|
8
|
Lionetti M, Barbieri M, Manzoni M, Fabris S, Bandini C, Todoerti K, Nozza F, Rossi D, Musto P, Baldini L, Neri A. Molecular spectrum of TP53 mutations in plasma cell dyscrasias by next generation sequencing: an Italian cohort study and overview of the literature. Oncotarget 2017; 7:21353-61. [PMID: 26870891 PMCID: PMC5008290 DOI: 10.18632/oncotarget.7241] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/19/2016] [Indexed: 12/30/2022] Open
Abstract
The prevalence of TP53 mutations greatly varies between tumor types; in multiple myeloma (MM) they were rarely detected at presentation, while increased frequency was reported with disease progression. Using next-generation sequencing, we analyzed TP53 exons 4-9 in a large representative cohort comprising patients with MM at diagnosis and more aggressive forms of plasma cell (PC) dyscrasia, identifying mutations in 4/129 (3%) MM, 6/24 (25%) primary PC leukemia, and 2/10 (20%) secondary PC leukemia cases. A similar increase in prevalence associated with disease aggressiveness (5%, 29.2% and 44%, respectively) was observed for TP53 deletion. Interestingly, in five patients mutations were not concomitant with TP53 deletion. Furthermore, longitudinal analysis revealed the acquisition of TP53 mutations in three of nineteen cases analyzed at relapse. Identified variants were mostly missense mutations concentrated in the DNA binding domain, only partly reflecting the pattern globally observed in human cancers. Our data confirm that TP53 mutations are rare in MM at presentation and rather represent a marker of progression, similarly to del(17p); however, their occurrence even in absence of deletions supports the importance of their assessment in patients with PC dyscrasia, in terms of both risk stratification and therapeutic implications.
Collapse
Affiliation(s)
- Marta Lionetti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marzia Barbieri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Manzoni
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia Bandini
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Filomena Nozza
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Davide Rossi
- Department of Translational Medicine, Division of Hematology, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Pellegrino Musto
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Luca Baldini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
9
|
Disentangling the microRNA regulatory milieu in multiple myeloma: integrative genomics analysis outlines mixed miRNA-TF circuits and pathway-derived networks modulated in t(4;14) patients. Oncotarget 2016; 7:2367-78. [PMID: 26496024 PMCID: PMC4823041 DOI: 10.18632/oncotarget.6151] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/30/2015] [Indexed: 12/30/2022] Open
Abstract
The identification of overexpressed miRNAs in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. miRNA and gene expression profiles of two large representative MM datasets, available from retrospective and prospective series and encompassing a total of 249 patients at diagnosis, were analyzed by means of in silico integrative genomics methods, based on MAGIA2 and Micrographite computational procedures. We first identified relevant miRNA/transcription factors/target gene regulation circuits in the disease and linked them to biological processes. Members of the miR-99b/let-7e/miR-125a cluster, or of its paralog, upregulated in t(4;14), were connected with the specific transcription factors PBX1 and CEBPA and several target genes. These results were validated in two additional independent plasma cell tumor datasets. Then, we reconstructed a non-redundant miRNA-gene regulatory network in MM, linking miRNAs, such as let-7g, miR-19a, mirR-20a, mir-21, miR-29 family, miR-34 family, miR-125b, miR-155, miR-221 to pathways associated with MM subtypes, in particular the ErbB, the Hippo, and the Acute myeloid leukemia associated pathways.
Collapse
|
10
|
MAF protein mediates innate resistance to proteasome inhibition therapy in multiple myeloma. Blood 2016; 128:2919-2930. [PMID: 27793878 DOI: 10.1182/blood-2016-03-706077] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/12/2016] [Indexed: 11/20/2022] Open
Abstract
Multiple myeloma (MM) patients with the t(14;16) translocation have a poor prognosis, and unlike other molecular subgroups, their outcome has not improved with the introduction of bortezomib (Bzb). The mechanism underlying innate resistance of MM to Bzb is unknown. In the present study, we have investigated how MAF overexpression impacts resistance to proteasome inhibitor (PI) therapy (Bzb and carfilzomib). High levels of MAF protein were found in t(14;16) cell lines; cell lines from the t(4;14) subgroup had intermediate levels, whereas cell lines from the other subgroups had low levels. High expression of MAF protein in t(14;16) was associated with significantly higher PI half-maximum inhibitory concentration values compared with other molecular subgroups. PI exposure abrogated glycogen synthase kinase 3β (GSK3β)-mediated degradation of MAF protein, resulting in increased MAF protein stability and PI resistance. Subsequent studies using loss-of-function and gain-of-function models showed that silencing MAF led to increased sensitivity to PIs, enhanced apoptosis, and activation of caspase-3, -7, -8, -9, poly (ADP-ribose) polymerase, and lamin A/C. In contrast, overexpression of MAF resulted in increased resistance to PIs and reduced apoptosis. These results define the role of MAF and GSK3 in the resistance of t(14;16) MM to PIs and identifies a novel mechanism by which MAF protein levels are regulated by PIs, which in turn confers resistance to PIs.
Collapse
|
11
|
Lionetti M, Barbieri M, Todoerti K, Agnelli L, Marzorati S, Fabris S, Ciceri G, Galletti S, Milesi G, Manzoni M, Mazzoni M, Greco A, Tonon G, Musto P, Baldini L, Neri A. Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation. Oncotarget 2016; 6:24205-17. [PMID: 26090869 PMCID: PMC4695180 DOI: 10.18632/oncotarget.4434] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/31/2015] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a clinically and genetically heterogeneous plasma cell (PC) malignancy. Whole-exome sequencing has identified therapeutically targetable mutations such as those in the mitogen-activated protein kinase (MAPK) pathway, which are the most prevalent MM mutations. We used deep sequencing to screen 167 representative patients with PC dyscrasias [132 with MM, 24 with primary PC leukemia (pPCL) and 11 with secondary PC leukemia (sPCL)] for mutations in BRAF, NRAS and KRAS, which were respectively found in 12%, 23.9% and 29.3% of cases. Overall, the MAPK pathway was affected in 57.5% of the patients (63.6% of those with sPCL, 59.8% of those with MM, and 41.7% of those with pPCL). The majority of BRAF variants were comparably expressed at transcript level. Additionally, gene expression profiling indicated the MAPK pathway is activated in mutated patients. Finally, we found that vemurafenib inhibition of BRAF activation in mutated U266 cells affected the expression of genes known to be associated with MM. Our data confirm and extend previous published evidence that MAPK pathway activation is recurrent in myeloma; the finding that it is mediated by BRAF mutations in a significant fraction of patients has potentially immediate clinical implications.
Collapse
Affiliation(s)
- Marta Lionetti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marzia Barbieri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Luca Agnelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Simona Marzorati
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriella Ciceri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Serena Galletti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Milesi
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Manzoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mara Mazzoni
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Angela Greco
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Pellegrino Musto
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Luca Baldini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonino Neri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
A compendium of DIS3 mutations and associated transcriptional signatures in plasma cell dyscrasias. Oncotarget 2016; 6:26129-41. [PMID: 26305418 PMCID: PMC4694891 DOI: 10.18632/oncotarget.4674] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
DIS3 is a catalytic subunit of the human exosome complex, containing exonucleolytic (RNB) and endonucleolytic (PIN) domains, recently found mutated in multiple myeloma (MM), a clinically and genetically heterogeneous form of plasma cell (PC) dyscrasia. We analyzed by next-generation sequencing (NGS) the DIS3 PIN and RNB domains in purified bone marrow PCs from 164 representative patients, including 130 cases with MM, 24 with primary PC leukemia and 10 with secondary PC leukemia. DIS3 mutations were found respectively in 18.5%, 25% and 30% of cases. Identified variants were predominantly missense mutations localized in the RNB domain, and were often detected at low allele frequency. DIS3 mutations were preferentially carried by IGH-translocated/nonhyperdiploid patients. Sequential analysis at diagnosis and relapse in a subset of cases highlighted some instances of increasing DIS3 mutation burden during disease progression. NGS also revealed that the majority of DIS3 variants in mutated cases were comparably detectable at transcriptional level. Furthermore, gene expression profiling analysis in DIS3-mutated patients identified a transcriptional signature suggestive for impaired RNA exosome function. In conclusion, these data further support the pathological relevance of DIS3 mutations in plasma cell dyscrasias and suggest that DIS3 may represent a potential tumor suppressor gene in such disorders.
Collapse
|
13
|
Verdelli D, Nobili L, Todoerti K, Mosca L, Fabris S, D'Anca M, Pellegrino E, Piva R, Inghirami G, Capelli C, Introna M, Baldini L, Chiaramonte R, Lombardi L, Neri A. Molecular events underlying interleukin-6 independence in a subclone of the CMA-03 multiple myeloma cell line. Genes Chromosomes Cancer 2013; 53:154-67. [PMID: 24327544 DOI: 10.1002/gcc.22127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 11/08/2022] Open
Abstract
We explored the molecular mechanisms involved in the establishement of CMA-03/06, an IL-6-independent variant of the multiple myeloma cell line CMA-03 previously generated in our Institution. CMA-03/06 cells grow in the absence of IL-6 with a doubling time comparable with that of CMA-03 cells; neither the addition of IL6 (IL-6) to the culture medium nor co-culture with multipotent mesenchymal stromal cells increases the proliferation rate, although they maintain the responsiveness to IL-6 stimulation as demonstrated by STAT1, STAT3, and STAT5 induction. IL-6 independence of CMA-03/06 cells is not apparently due to the development of an autocrine IL-6 loop, nor to the observed moderate constitutive activation of STAT5 and STAT3, since STAT3 silencing does not affect cell viability or proliferation. When compared to the parental cell line, CMA-03/06 cells showed an activated pattern of the NF-κB pathway. This finding is supported by gene expression profiling (GEP) analysis identifying an appreciable fraction of modulated genes (28/308) in the CMA-03/06 subclone reported to be involved in this pathway. Furthermore, although more resistant to apoptotic stimuli compared to the parental cell line, CMA-03/06 cells display a higher sensibility to NF-κB inhibition induced by bortezomib. Finally, GEP analysis suggests an involvement of a number of cytokines, which might contribute to IL-6 independence of CMA-03/06 by stimulating growth and antiapoptotic processes. In conclusion, the parental cell-line CMA-03 and its variant CMA-03/06 represent a suitable model to further investigate molecular mechanisms involved in the IL-6-independent growth of myeloma cells.
Collapse
Affiliation(s)
- Donata Verdelli
- Department of Clinical Sciences and Community Health, University of Milano and Hematology-CTMO, Fondazione Cà Granda, IRCCS Policlinico, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ripamonti F, Albano L, Rossini A, Borrelli S, Fabris S, Mantovani R, Neri A, Balsari A, Magnifico A, Tagliabue E. EGFR through STAT3 modulates ΔN63α expression to sustain tumor-initiating cell proliferation in squamous cell carcinomas. J Cell Physiol 2013; 228:871-8. [PMID: 23018838 DOI: 10.1002/jcp.24238] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/24/2012] [Indexed: 01/01/2023]
Abstract
Many squamous cell carcinomas (SCCs) are characterized by high levels of EGFR and by overexpression of the ΔNp63α isoform. Here, we investigated the regulation of ΔNp63α expression upon EGFR activation and the role of the EGFR-ΔNp63α axis in proliferation of SCC tumor-initiating cells (TICs). SCC cell lines A-431, Cal-27, and SCC-25 treated with EGF showed a time-dependent increase in ΔNp63α expression at the protein and mRNA levels, which was blocked by the tyrosine kinase inhibitor (TKI) Lapatinib. RNA interference experiments suggested the role of STAT3 in regulating ΔNp63α expression downstream of EGFR. Inactivation of EGFR by the monoclonal antibody Cetuximab and RNA interference against STAT3 or ΔNp63α impaired the TICs ability to grow under non-differentiating conditions. Radiation treatment, which triggers EGFR activation, induced ΔNp63α accumulation without affecting TICs proliferation, whereas the combination Cetuximab plus radiation significantly reduced TICs growth under non-differentiating conditions. Together, our findings provide evidence that ΔNp63α expression is regulated by EGFR activation through STAT3 and that the EGFR-ΔNp63α axis is crucial for proliferation of TICs present in SCCs.
Collapse
Affiliation(s)
- Francesca Ripamonti
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Agnelli L, Tassone P, Neri A. Molecular profiling of multiple myeloma: from gene expression analysis to next-generation sequencing. Expert Opin Biol Ther 2013; 13 Suppl 1:S55-68. [PMID: 23614397 DOI: 10.1517/14712598.2013.793305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Multiple myeloma is a fatal malignant proliferation of clonal bone marrow Ig-secreting plasma cells, characterized by wide clinical, biological, and molecular heterogeneity. AREAS COVERED Herein, global gene and microRNA expression, genome-wide DNA profilings, and next-generation sequencing technology used to investigate the genomic alterations underlying the bio-clinical heterogeneity in multiple myeloma are discussed. EXPERT OPINION High-throughput technologies have undoubtedly allowed a better comprehension of the molecular basis of the disease, a fine stratification, and early identification of high-risk patients, and have provided insights toward targeted therapy studies. However, such technologies are at risk of being affected by laboratory- or cohort-specific biases, and are moreover influenced by high number of expected false positives. This aspect has a major weight in myeloma, which is characterized by large molecular heterogeneity. Therefore, meta-analysis as well as multiple approaches are desirable if not mandatory to validate the results obtained, in line with commonly accepted recommendation for tumor diagnostic/prognostic biomarker studies.
Collapse
Affiliation(s)
- Luca Agnelli
- University of Milan, Department of Clinical Sciences and Community Health, F. Sforza, 35 - 20122 Milan, Italy
| | | | | |
Collapse
|
16
|
Martin LD, Harizanova J, Righolt CH, Zhu G, Mai S, Belch AR, Pilarski LM. Differential nuclear organization of translocation-prone genes in nonmalignant B cells from patients with t(14;16) as compared with t(4;14) or t(11;14) myeloma. Genes Chromosomes Cancer 2013; 52:523-37. [PMID: 23460268 DOI: 10.1002/gcc.22049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 01/08/2013] [Indexed: 11/08/2022] Open
Abstract
Gene organization in nonmalignant B cells from t(4;14) and t(11;14) multiple myeloma (MM) patients differs from that of healthy donors. Among recurrent IGH translocations in MM, the frequency of t(4;14) (IGH and FGFR3) or t(11;14) (IGH and CCND1) is greater than the frequency of t(14;16) (IGH and MAF). Gene organization in t(14;16) patients may influence translocation potential of MAF with IGH. In patients, three-dimensional FISH revealed the positions of IGH, CCND1, FGFR3, and MAF in nonmalignant B cells that are likely similar to those when MM first arose, compared with B cells from healthy donors. Overall, IGH occupies a more central nuclear position while MAF is more peripherally located. However, for B cells from t(4;14) and t(11;14) patients, IGH and FGFR3, or IGH and CCND1 are found in spatial proximity: IGH and MAF are not. This differs in B cells from t(14;16) patients and healthy donors where IGH is approximately equidistant to FGFR3, CCND1, and MAF, suggesting that gene organization in t(14;16) patients is different from that in t(4;14) or t(11;14) patients. Translocations between IGH and MAF may arise only in the absence of close proximity to the more frequent partners, as appears to be the case for individuals who develop t(14;16) MM.
Collapse
Affiliation(s)
- Lorri D Martin
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Fabris S, Mosca L, Cutrona G, Lionetti M, Agnelli L, Ciceri G, Barbieri M, Maura F, Matis S, Colombo M, Gentile M, Recchia AG, Anna Pesce E, Di Raimondo F, Musolino C, Gobbi M, Di Renzo N, Mauro FR, Brugiatelli M, Ilariucci F, Lipari MG, Angrilli F, Consoli U, Fragasso A, Molica S, Festini G, Vincelli I, Cortelezzi A, Federico M, Morabito F, Ferrarini M, Neri A. Chromosome 2p gain in monoclonal B-cell lymphocytosis and in early stage chronic lymphocytic leukemia. Am J Hematol 2013; 88:24-31. [PMID: 23044996 DOI: 10.1002/ajh.23340] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/03/2012] [Accepted: 09/05/2012] [Indexed: 12/17/2022]
Abstract
Recent studies have described chromosome 2p gain as a recurrent lesion in chronic lymphocytic leukemia (CLL). We investigated the 2p gain and its relationship with common prognostic biomarkers in a prospective series of 69 clinical monoclonal B-cell lymphocytosis (cMBL) and 218 early stage (Binet A) CLL patients. The 2p gain was detected by FISH in 17 patients (6%, 16 CLL, and 1 cMBL) and further characterized by single nucleotide polymorphism-array. Overall, unfavorable cytogenetic deletions, i.e., del(11)(q23) and del(17)(p13) (P = 0.002), were significantly more frequent in 2p gain cases, as well as unmutated status of IGHV (P < 1 × 10(-4) ) and CD38 (P < 1 × 10(-4) ) and ZAP-70 positive expression (P = 0.003). Furthermore, 2p gain patients had significantly higher utilization of stereotyped B-cell receptors compared with 2p negative patients (P = 0.009), and the incidence of stereotyped subset #1 in 2p gain patients was significantly higher than that found in the remaining CLLs (P = 0.031). Transcriptional profiling analysis identified several genes significantly upregulated in 2p gain CLLs, most of which mapped to 2p. Among these, NCOA1 and ROCK2 are known for their involvement in tumor progression in several human cancers, whereas among those located in different chromosomes, CAV1 at 7q31.1 has been recently identified to play a critical role in CLL progression. Thus, 2p gain can be present since the early stages of the disease, particularly in those cases characterized by other poor prognosis markers. The finding of genes upregulated in the cells with 2p gain provides new insights to define the pathogenic role of this lesion.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 2/metabolism
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 7/metabolism
- Female
- Gene Expression Regulation, Leukemic
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphocytosis/diagnosis
- Lymphocytosis/genetics
- Lymphocytosis/metabolism
- Male
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Staging
- Prognosis
- Prospective Studies
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Sonia Fabris
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano e Ematologia 1 CTMO, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mosca L, Musto P, Todoerti K, Barbieri M, Agnelli L, Fabris S, Tuana G, Lionetti M, Bonaparte E, Sirchia SM, Grieco V, Bianchino G, D'Auria F, Statuto T, Mazzoccoli C, De Luca L, Petrucci MT, Morabito F, Offidani M, Di Raimondo F, Falcone A, Caravita T, Omedè P, Boccadoro M, Palumbo A, Neri A. Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles. Am J Hematol 2013; 88:16-23. [PMID: 23044976 DOI: 10.1002/ajh.23339] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 02/02/2023]
Abstract
Primary plasma cell leukemia (pPCL) is a rare, yet aggressive form of de novo plasma cell tumor, distinct from secondary PCL (sPCL) which represents a leukemic transformation of pre-existing multiple myeloma (MM). Herein, we performed a comprehensive molecular analysis of a prospective series of pPCLs by means of FISH, single nucleotide polymorphism (SNP) array and gene expression profiling (GEP). IGH@ translocations were identified in 87% of pPCL cases, with prevalence of t(11;14) (40%) and t(14;16) (30.5%), whereas the most frequent numerical alterations involved 1p (38%), 1q (48%), 6q (29%), 8p (42%), 13q (74%), 14q (71%), 16q (53%), and 17p (35%). We identified a minimal biallelic deletion (1.5 Mb) in 8p21.2 encompassing the PPP2R2A gene, belonging to a family of putative tumor suppressors and found to be significantly down-regulated in deleted cases. Mutations of TP53 were identified in four cases, all but one associated with a monoallelic deletion of the gene, whereas activating mutations of the BRAF oncogene occurred in one case and were absent in N- and K-RAS. To evaluate the influence of allelic imbalances in transcriptional expression we performed an integrated genomic analysis with GEP data, showing a significant dosage effect of genes involved in transcription, translation, methyltransferase activity, apoptosis as well as Wnt and NF-kB signaling pathways. Overall, we provide a compendium of genomic alterations in a prospective series of pPCLs which may contribute to improve our understanding of the pathogenesis of this aggressive form of plasma cell dyscrasia and the mechanisms of tumor progression in MM.
Collapse
Affiliation(s)
- Laura Mosca
- Department of Clinical Sciences and Community Health, University of Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ronchetti D, Todoerti K, Tuana G, Agnelli L, Mosca L, Lionetti M, Fabris S, Colapietro P, Miozzo M, Ferrarini M, Tassone P, Neri A. The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma. Blood Cancer J 2012. [PMID: 23178508 PMCID: PMC3511933 DOI: 10.1038/bcj.2012.41] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs involved in the maturation of other RNA molecules and generally located in the introns of host genes. It is now emerging that altered sno/scaRNAs expression may have a pathological role in cancer. This study elucidates the patterns of sno/scaRNAs expression in multiple myeloma (MM) by profiling purified malignant plasma cells from 55 MMs, 8 secondary plasma cell leukemias (sPCLs) and 4 normal controls. Overall, a global sno/scaRNAs downregulation was found in MMs and, even more, in sPCLs compared with normal plasma cells. Whereas SCARNA22 resulted the only sno/scaRNA characterizing the translocation/cyclin D4 (TC4) MM, TC2 group displayed a distinct sno/scaRNA signature overexpressing members of SNORD115 and SNORD116 families located in a region finely regulated by an imprinting center at 15q11, which, however, resulted overall hypomethylated in MMs independently of the SNORD115 and SNORD116 expression levels. Finally, integrative analyses with available gene expression and genome-wide data revealed the occurrence of significant sno/scaRNAs/host genes co-expression and the putative influence of allelic imbalances on specific snoRNAs expression. Our data extend the current view of sno/scaRNAs deregulation in cancer and add novel information to the bio-molecular complexity of plasma cell dyscrasias.
Collapse
Affiliation(s)
- D Ronchetti
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Durak BA, Akay OM, Sungar G, Bademci G, Aslan V, Caferler J, Ozdemir M, Cilingir O, Artan S, Gülbaş Z. Conventional and molecular cytogenetic analyses in Turkish patients with multiple myeloma. Turk J Haematol 2012; 29:135-42. [PMID: 24744644 PMCID: PMC3986951 DOI: 10.5152/tjh.2011.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 06/13/2011] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Multiple myeloma (MM) is characterized by the accumulation and proliferation of malignant plasma cells, secreting monoclonal immunoglobulins and genetic abnormalities in MM have implications for disease progression and survival. In the present study, we investigated the frequency of chromosomal abnormalities (CA) in Turkish patients with MM, using interphase FISH and CC and evaluated the relationship between the rearrangements detected, prognosis and stage of disease. MATERIAL AND METHODS We performed conventional cytogenetic and FISH studies in 50 patients to detect chromosome anomalies associated with MM. FISH probes were used to detect 13q14, 13q34, 17p13 deletions, IGH rearrangements, and monosomy and/or trisomy of chromosomes 5, 9, and 15. RESULTS CC studies could be performed in 32 of 50 cases and five patients (15.6%) showed chromosomal aberrations while 27 (84.3%) had normal karyotypes. By FISH, eighteen percent (9/50) of cases were found to be normal for all parameters evaluated. Eighty-two percent (41/50) of the patients were positive for at least one abnormality. Chromosome 13 anomalies were detected in 54% (27/50) of cases. The second most common aberration observed is chromosome 15 aberrations (50%). CONCLUSION Median survival rate was shorter in patients with one of the abnormalities including chromosome 13 aberrations, IGH rearrangements or P53 deletions. Chromosome 15 aberrations were significantly higher in patients with stage III disease (p=0.02). We conclude that FISH studies should be performed in conjunction with conventional cytogenetic analysis for prognosis in multiple myeloma patients.
Collapse
Affiliation(s)
- Beyhan Aras Durak
- Eskisehir Osmangazi University, Medical Faculty, Department of Medical Genetics, Eskisehir, Turkey
| | - Olga Meltem Akay
- Eskisehir Osmangazi University, Medical Faculty, Department of Hematology, Eskisehir, Turkey
| | - Gülçin Sungar
- Eskisehir Osmangazi University, Medical Faculty, Department of Medical Genetics, Eskisehir, Turkey
| | - Güney Bademci
- Eskisehir Osmangazi University, Medical Faculty, Department of Medical Genetics, Eskisehir, Turkey
| | - Vahap Aslan
- Yunus Emre State Hospital, Department of Hematology, Eskisehir, Turkey
| | | | - Muhsin Ozdemir
- Eskisehir Osmangazi University, Medical Faculty, Department of Medical Genetics, Eskisehir, Turkey
| | - Oğuz Cilingir
- Eskisehir Osmangazi University, Medical Faculty, Department of Medical Genetics, Eskisehir, Turkey
| | - Sevilhan Artan
- Eskisehir Osmangazi University, Medical Faculty, Department of Medical Genetics, Eskisehir, Turkey
| | - Zafer Gülbaş
- Eskisehir Osmangazi University, Medical Faculty, Department of Hematology, Eskisehir, Turkey
| |
Collapse
|
21
|
Johnson SK, Heuck CJ, Albino AP, Qu P, Zhang Q, Barlogie B, Shaughnessy JD. The use of molecular-based risk stratification and pharmacogenomics for outcome prediction and personalized therapeutic management of multiple myeloma. Int J Hematol 2011; 94:321-333. [PMID: 22002477 DOI: 10.1007/s12185-011-0948-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022]
Abstract
Despite improvement in therapeutic efficacy, multiple myeloma (MM) remains incurable with a median survival of approximately 10 years. Gene-expression profiling (GEP) can be used to elucidate the molecular basis for resistance to chemotherapy through global assessment of molecular alterations that exist at diagnosis, after therapeutic treatment and that evolve during tumor progression. Unique GEP signatures associated with recurrent chromosomal translocations and ploidy changes have defined molecular classes with differing clinical features and outcomes. When compared to other stratification systems the GEP70 test remained a significant predictor of outcome, reduced the number of patients classified with a poor prognosis, and identified patients at increased risk of relapse despite their standard clinico-pathologic and genetic findings. GEP studies of serial samples showed that risk increases over time, with relapsed disease showing GEP shifts toward a signature of poor outcomes. GEP signatures of myeloma cells after therapy were prognostic for event-free and overall survival and thus may be used to identify novel strategies for overcoming drug resistance. This brief review will focus on the use of GEP of MM to define high-risk myeloma, and elucidate underlying mechanisms that are beginning to change clinical decision-making and inform drug design.
Collapse
Affiliation(s)
- Sarah K Johnson
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christoph J Heuck
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA
| | | | - Pingping Qu
- Cancer Research and Biostatistics, Seattle, WA, USA
| | - Qing Zhang
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA
| | - John D Shaughnessy
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA. .,Donna D and Donald M Lambert Laboratory for Myeloma Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
22
|
Moreaux J, Klein B, Bataille R, Descamps G, Maïga S, Hose D, Goldschmidt H, Jauch A, Rème T, Jourdan M, Amiot M, Pellat-Deceunynck C. A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines. Haematologica 2010; 96:574-82. [PMID: 21173094 DOI: 10.3324/haematol.2010.033456] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Multiple myeloma is a plasma-cell tumor with heterogeneity in molecular abnormalities and treatment response. DESIGN AND METHODS We have assessed whether human myeloma cell lines have kept patients' heterogeneity using Affymetrix gene expression profiling of 40 human myeloma cell lines obtained with or without IL6 addition and could provide a signature for stratification of patient risk. RESULTS Human myeloma cell lines, especially those derived in the presence of IL6, displayed a heterogeneity that overlaps that of the patients with multiple myeloma. Human myeloma cell lines segregated into 6 groups marked by overexpression of MAF, MMSET, CCND1, FRZB with or without overexpression of cancer testis antigens (CTA). Cell lines of CTA/MAF and MAF groups have a translocation involving C-MAF or MAFB, cell lines of groups CCND1-1 and CCND1-2like have a t(11;14) and cell lines of group MMSET have a t(4;14). The CTA/FRZB group comprises cell lines that had no or no recurrent 14q32 translocation. Expression of 248 genes accounted for human myeloma cell line molecular heterogeneity. Human myeloma cell line heterogeneity genes comprise genes with prognostic value for survival of patients making it possible to build a powerful prognostic score involving a total of 13 genes. CONCLUSIONS Human myeloma cell lines derived in the presence of IL6 recapitulate the molecular diversity of multiple myeloma that made it possible to design, using human myeloma cell line heterogeneity genes, a high-risk signature for patients at diagnosis. We propose this classification to be used when addressing the physiopathology of multiple myeloma with human myeloma cell lines.
Collapse
|
23
|
Martin LD, Belch AR, Pilarski LM. Promiscuity of translocation partners in multiple myeloma. J Cell Biochem 2010; 109:1085-94. [DOI: 10.1002/jcb.22499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Agnelli L, Mosca L, Fabris S, Lionetti M, Andronache A, Kwee I, Todoerti K, Verdelli D, Battaglia C, Bertoni F, Deliliers GL, Neri A. A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect. Genes Chromosomes Cancer 2009; 48:603-14. [PMID: 19396863 DOI: 10.1002/gcc.20668] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma (MM) is characterized by marked genomic heterogeneity. Beyond structural rearrangements, a relevant role in its biology is represented by allelic imbalances leading to significant variations in ploidy status. To elucidate better the genomic complexity of MM, we analyzed a panel of 45 patients using combined FISH and microarray approaches. We firstly generated genome-wide profiles of 41 MMs and four plasma cell leukemias, using a self-developed procedure to infer exact local copy numbers (CNs) for each sample. Our analysis allowed the identification of a significant fraction of patients showing near-tetraploidy. Furthermore, a conventional hierarchical clustering analysis showed that near-tetraploidy, 1q gain, hyperdiploidy, and recursive deletions at 1p and chromosomes 13, 14, and 22 were the main aberrations driving samples grouping. Moreover, mapping information was integrated with gene expression profiles of the tumor samples. A multiclass analysis of transcriptional profiles characterizing the different clusters showed marked gene-dosage effects, particularly concerning 1q transcripts; this finding was also confirmed by a nonparametric analysis between normalized gene expression levels and local CN variations (1027 highly-significant correlated genes). Finally, we identified several loci in which gene expression correlated with the occurrence of loss of heterozygosity. Our results provide insights into the composite network linking genome structure and transcriptional features in MM.
Collapse
Affiliation(s)
- Luca Agnelli
- Department of Medical Sciences, University of Milano and Hematology 1-CTMO, Fondazione IRCCS Ospedale Maggiore Policlinico Mangiagalli Regina Elena, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Natkunam Y, Tedoldi S, Paterson JC, Zhao S, Rodriguez-Justo M, Beck AH, Siebert R, Mason DY, Marafioti T. Characterization of c-Maf transcription factor in normal and neoplastic hematolymphoid tissue and its relevance in plasma cell neoplasia. Am J Clin Pathol 2009; 132:361-71. [PMID: 19687312 DOI: 10.1309/ajcpeagdklwdmb1o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
c-Maf, a leucine zipper-containing transcription factor, is involved in the t(14;16)(q32;q23) translocation found in 5% of myelomas. A causal role for c-Maf in myeloma pathogenesis has been proposed, but data on c-Maf protein expression are lacking. We therefore studied the expression of c-Maf protein by immunohistochemical analysis in myelomas and in a wide variety of hematopoietic tissue. c-Maf protein was detected in a small minority (4.3%) of myelomas, including a t(14;16)(q32;q22-23)/IgH-Maf+ case, suggesting that c-Maf protein is not expressed in the absence of c-Maf rearrangement. In contrast, c-Maf was strongly expressed in hairy cell leukemia (4/4) and in a significant proportion of T-cell (24/42 [57%]) and NK/T-cell (49/97 [51%]) lymphomas, which is in keeping with prior gene expression profiling and transgenic mouse studies. Up-regulation of c-Maf protein occurs in a small subset of myelomas, in hairy cell leukemia, and in T- and NK-cell neoplasms. Its detection may be of particular value in the differential diagnosis of small cell lymphomas.
Collapse
Affiliation(s)
- Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Sara Tedoldi
- Leukemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, England
| | - Jennifer C. Paterson
- Leukemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, England
| | - Shuchun Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | | | - Andrew H. Beck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Y. Mason
- Leukemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, England
| | - Teresa Marafioti
- Leukemia Research Fund Immunodiagnostics Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, England
| |
Collapse
|
26
|
Bollati V, Fabris S, Pegoraro V, Ronchetti D, Mosca L, Deliliers GL, Motta V, Bertazzi PA, Baccarelli A, Neri A. Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcinogenesis 2009; 30:1330-5. [PMID: 19531770 DOI: 10.1093/carcin/bgp149] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is characterized by a wide spectrum of genetic changes. Global hypomethylation of repetitive genomic sequences such as long interspersed nuclear element 1 (LINE-1), Alu and satellite alpha (SAT-alpha) sequences has been associated with chromosomal instability in cancer. Methylation status of repetitive elements in MM has never been investigated. In the present study, we used a quantitative bisulfite-polymerase chain reaction pyrosequencing method to evaluate the methylation patterns of LINE-1, Alu and SAT-alpha in 23 human myeloma cell lines (HMCLs) and purified bone marrow plasma cells from 53 newly diagnosed MM patients representative of different molecular subtypes, 7 plasma cell leukemias (PCLs) and 11 healthy controls. MMs showed a decrease of Alu [median: 21.1 %5-methylated cytosine (%5mC)], LINE-1 (70.0%5mC) and SAT-alpha (77.9%5mC) methylation levels compared with controls (25.2, 79.5and 89.5%5mC, respectively). Methylation levels were lower in PCLs and HMCLs compared with MMs (16.7 and 14.8%5mC for Alu, 45.5 and 42.4%5mC for LINE-1 and 33.3 and 43.3%5mC for SAT-alpha, respectively). Notably, LINE-1 and SAT-alpha methylation was significantly lower in the non-hyperdiploid versus hyperdiploid MMs (P = 0.01 and 0.02, respectively), whereas Alu and SAT-alpha methylation was significantly lower in MMs with t(4;14) (P = 0.02 and 0.004, respectively). Finally, we correlated methylation patterns with DNA methyltransferases (DNMTs) messenger RNA levels showing in particular a progressive and significant increase of DNMT1 expression from controls to MMs, PCLs and HMCLs (P < 0.001). Our results indicate that global hypomethylation of repetitive elements is significantly associated with tumor progression in MM and may contribute toward a more extensive stratification of the disease.
Collapse
Affiliation(s)
- Valentina Bollati
- Center of Molecular and Genetic Epidemiology, EPOCA, Epidemiology Research Center, Università degli Studi di Milano and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, 20122 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jensen K, Makins GD, Kaliszewska A, Hulme MJ, Paxton E, Glass EJ. The protozoan parasite Theileria annulata alters the differentiation state of the infected macrophage and suppresses musculoaponeurotic fibrosarcoma oncogene (MAF) transcription factors. Int J Parasitol 2009; 39:1099-108. [PMID: 19303416 PMCID: PMC2723921 DOI: 10.1016/j.ijpara.2009.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 12/24/2022]
Abstract
The tick-borne protozoan parasite Theileria annulata causes a debilitating disease of cattle called Tropical Theileriosis. The parasite predominantly invades bovine macrophages (m phi) and induces host cell transformation by a mechanism that has not been fully elucidated. Infection is associated with loss of characteristic m phi functions and phenotypic markers, indicative of host cell de-differentiation. We have investigated the effect of T. annulata infection on the expression of the m phi differentiation marker c-maf. The up-regulation of c-maf mRNA levels observed during bovine monocyte differentiation to m phi was suppressed by T. annulata infection. Furthermore, mRNA levels for c-maf and the closely related transcription factor mafB were significantly lower in established T. annulata-infected cell-lines than in bovine monocyte-derived m phi. Treatment of T. annulata-infected cells with the theileriacidal drug buparvaquone induced up-regulation of c-maf and mafB, which correlated with altered expression of down-stream target genes, e.g. up-regulation of integrin B7 and down-regulation of IL12A. Furthermore, T. annulata infection is associated with the suppression of the transcription factors, Pu.1 and RUNX1, and colony stimulating factor 1 receptor (CSF1R) which are also involved in the regulation of monocyte/m phi differentiation. We believe these results provide the first direct evidence that T. annulata modulates the host m phi differentiation state, which may diminish the defence capabilities of the infected cell and/or promote cell proliferation. Musculoaponeurotic fibrosarcoma oncogene (MAF) transcription factors play an important role in cell proliferation, differentiation and survival; therefore, regulation of these genes may be a major mechanism employed by T. annulata to survive within the infected m phi.
Collapse
Affiliation(s)
- Kirsty Jensen
- Division of Genetics & Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin Biocentre, Midlothian EH25 9PS, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Fabris S, Mosca L, Todoerti K, Cutrona G, Lionetti M, Intini D, Matis S, Colombo M, Agnelli L, Gentile M, Spriano M, Callea V, Festini G, Molica S, Lambertenghi Deliliers G, Morabito F, Ferrarini M, Neri A. Molecular and transcriptional characterization of 17p loss in B-cell chronic lymphocytic leukemia. Genes Chromosomes Cancer 2008; 47:781-93. [DOI: 10.1002/gcc.20579] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
29
|
Fabris S, Todoerti K, Mosca L, Agnelli L, Intini D, Lionetti M, Guerneri S, Lambertenghi-Deliliers G, Bertoni F, Neri A. Molecular and transcriptional characterization of the novel 17p11.2-p12 amplicon in multiple myeloma. Genes Chromosomes Cancer 2007; 46:1109-18. [PMID: 17823926 DOI: 10.1002/gcc.20494] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy of clonal bone marrow plasma cells characterized by a high genomic instability increasing with disease progression. We describe here a genomic amplification at 17p11.2-p12, an unstable chromosomal region characterized by a large number of low-copy repeats, which have been proven to mediate deletion and duplication in several genomic disorders and amplifications in solid tumors. An approximately 5 Mb 17p11.2-p12 amplified region was detected in the KMS-26 myeloma cell line by SNP microarray analysis. Further fluorescence in situ hybridization mapping showed two unidentified amplified chromosomes as well as a complex pattern of rearranged chromosomes 17. The analysis of transcriptional profiles in a proprietary database of myeloma cell lines identified 12 significantly overexpressed genes in the KMS-26 amplified region, including TNFRSF13B/TACI, COPS3, and NCOR1. The evaluation of their expression levels in a database including 141 plasma cell dyscrasia primary tumors showed a significant overexpression of at least one gene in 13 patients. FISH analyses of these patients identified one MM carrying a 3.8 Mb amplified region and two MMs with gains specifically involving the TACI locus. Interestingly, the complete inactivation of TP53 at 17p13.1 was found in the KMS-26, whereas a monoallelic loss was identifiable in two of the three patients carrying gain/amplification. Our data suggest that, similarly to solid tumors, amplification/gain of the 17p11.2-p12 region in MM could be mediated by the presence of repeats located in this region and may provide insights for defining novel candidate myeloma-associated genes.
Collapse
Affiliation(s)
- Sonia Fabris
- Centro di Genetica Molecolare ed Espressione Genica, Fondazione IRCCS Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mao X, Stewart AK, Hurren R, Datti A, Zhu X, Zhu Y, Shi C, Lee K, Tiedemann R, Eberhard Y, Trudel S, Liang S, Corey SJ, Gillis LC, Barber DL, Wrana JL, Ezzat S, Schimmer AD. A chemical biology screen identifies glucocorticoids that regulate c-maf expression by increasing its proteasomal degradation through up-regulation of ubiquitin. Blood 2007; 110:4047-54. [PMID: 17875808 DOI: 10.1182/blood-2007-05-088666] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe oncogene c-maf is frequently overexpressed in multiple myeloma cell lines and patient samples and contributes to increased cellular proliferation in part by inducing cyclin D2 expression. To identify regulators of c-maf, we developed a chemical screen in NIH3T3 cells stably overexpressing c-maf and the cyclin D2 promoter driving luciferase. From a screen of 2400 off-patent drugs and chemicals, we identified glucocorticoids as c-maf–dependent inhibitors of cyclin D2 transactivation. In multiple myeloma cell lines, glucocorticoids reduced levels of c-maf protein without influencing corresponding mRNA levels. Subsequent studies demonstrated that glucocorticoids increased ubiquitination-dependent degradation of c-maf and up-regulated ubiquitin C mRNA. Moreover, ectopic expression of ubiquitin C recapitulated the effects of glucocorticoids, demonstrating regulation of c-maf protein through the abundance of the ubiquitin substrate. Thus, using a chemical biology approach, we identified a novel mechanism of action of glucocorticoids and a novel mechanism by which levels of c-maf protein are regulated by the abundance of the ubiquitin substrate.
Collapse
Affiliation(s)
- Xinliang Mao
- Princess Margaret Hospital, Ontario Cancer Institute, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Intini D, Agnelli L, Ciceri G, Ronchetti D, Fabris S, Nobili L, Lambertenghi-Deliliers G, Lombardi L, Neri A. Relevance of Ras gene mutations in the context of the molecular heterogeneity of multiple myeloma. Hematol Oncol 2007; 25:6-10. [PMID: 17036375 DOI: 10.1002/hon.801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ras gene mutations are a recurrent genetic lesion in multiple myeloma (MM). Here, we report a mutation analysis of N- and K-Ras genes in purified plasma cell populations from a panel of 81 newly diagnosed MM patients stratified according to the most frequent genetic and molecular features associated with the neoplasia. Ras gene mutations, mostly involving the N-Ras gene, were detected in 20% of the patients. Ras mutations did not correlate with the presence of chromosome 13q deletion, trisomy of chromosome 11, 1q amplification or hyperdiploidy. In addition, despite an appreciable association with tumours overexpressing Cyclin D1, Ras mutations did not correlate at significant levels with any of the proposed groups in the TC classification, based on the presence of the major IgH chromosomal translocations and expression of Cyclin D genes. Finally, transcription analyses revealed the presence of differentially expressed transcripts in human multiple myeloma cell lines carrying the Ras gene mutations but not in primary tumours. Overall, these data suggest that Ras gene mutations are not likely to represent a master lesion in MM but its relevance needs to be considered in the context of other genetic abnormalities.
Collapse
Affiliation(s)
- Daniela Intini
- Centro di Genetica Molecolare ed Espressione Genica, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Agnelli L, Fabris S, Bicciato S, Basso D, Baldini L, Morabito F, Verdelli D, Todoerti K, Lambertenghi-Deliliers G, Lombardi L, Neri A. Upregulation of translational machinery and distinct genetic subgroups characterise hyperdiploidy in multiple myeloma. Br J Haematol 2007; 136:565-73. [PMID: 17367409 DOI: 10.1111/j.1365-2141.2006.06467.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Karyotypic instability, including numerical and structural chromosomal aberrations, represents a distinct feature of multiple myeloma (MM). About 40-50% of patients display hyperdiploidy, defined by recurrent trisomies of non-random chromosomes. To molecularly characterise hyperdiploid (H) and nonhyperdiploid (NH) MM, we analysed the gene expression profiles of 66 primary tumours, and used fluorescence in situ hybridisation to investigate the major chromosomal alterations. The differential expression of 225 genes mainly involved in protein biosynthesis, transcriptional machinery and oxidative phosphorylation distinguished the 28 H-MM from the 38 NH-MM cases. The 204 upregulated genes in H-MM mapped mainly to the chromosomes involved in hyperdiploidy, and the 29% upregulated genes in NH-MM mapped to 16q. The identified transcriptional fingerprint was robustly validated on a publicly available gene expression dataset of 64 MM cases; and the global expression modulation of regions on the chromosomes involved in hyperdiploidy was verified using a self-developed non-parametric statistical method. H-MM could be further divided into two distinct molecular and transcriptional entities, characterised by the presence of trisomy 11 and 1q-extracopies/chromosome 13 deletion respectively. These data reinforce the importance of combining molecular cytogenetics and gene expression profiling to define a genomic framework for the study of MM pathogenesis and clinical management.
Collapse
Affiliation(s)
- Luca Agnelli
- Centro di Genetica Molecolare ed Espressione Genica, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lombardi L, Poretti G, Mattioli M, Fabris S, Agnelli L, Bicciato S, Kwee I, Rinaldi A, Ronchetti D, Verdelli D, Lambertenghi-Deliliers G, Bertoni F, Neri A. Molecular characterization of human multiple myeloma cell lines by integrative genomics: Insights into the biology of the disease. Genes Chromosomes Cancer 2007; 46:226-38. [PMID: 17171682 DOI: 10.1002/gcc.20404] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To investigate the patterns of genetic lesions in a panel of 23 human multiple myeloma cell lines (HMCLs), we made a genomic integrative analysis involving FISH, and both gene expression and genome-wide profiling approaches. The expression profiles of the genes targeted by the main IGH translocations showed that the WHSC1/MMSET gene involved in t(4;14)(p16;q32) was expressed at different levels in all of the HMCLs, and that the expression of the MAF gene was not restricted to the HMCLs carrying t(14;16)(q32;q23). Supervised analyses identified a limited number of genes specifically associated with t(4;14) and involved in different biological processes. The signature related to MAF/MAFB expression included the known MAF target genes CCND2 and ITGB7, as well as genes controlling cell shape and cell adhesion. Genome-wide DNA profiling allowed the identification of a gain on chromosome arm 1q in 88% of the analyzed cell lines, together with recurrent gains on 8q, 18q, 7q, and 20q; the most frequent deletions affected 1p, 13q, 17p, and 14q; and almost all of the cell lines presented LOH on chromosome 13. Two hundred and twenty-two genes were found to be simultaneously overexpressed and amplified in our panel, including the BCL2 locus at 18q21.33. Our data further support the evidence of the genomic complexity of multiple myeloma and reinforce the role of an integrated genomic approach in improving our understanding of the molecular pathogenesis of the disease. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Luigia Lombardi
- Centro di Genetica Molecolare ed Espressione Genica, Fondazione IRCCS Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Keats JJ, Reiman T, Belch AR, Pilarski LM. Ten years and counting: so what do we know about t(4;14)(p16;q32) multiple myeloma. Leuk Lymphoma 2007; 47:2289-300. [PMID: 17107900 DOI: 10.1080/10428190600822128] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Multiple myeloma is a genetically heterogenous disease with a wide variety of characterized genetic aberrations. Until recently, the impact of these aberrations on patient outcome was not known. However, in the last 5-10 years, several genetic markers have been linked to patient outcome. One of the strongest predictors of outcome identified to date is t(4;14)(p16;q32). Although this translocation is tightly linked to chromosome 13 deletions, another poor prognosis marker, it is becoming apparent that the translocation and not the deletion of 13 is the important factor. Unfortunately, despite the known association with outcome, an understanding of the mechanism(s) whereby the translocation contributes to developing and maintaining this aggressive form of myeloma remains elusive.
Collapse
Affiliation(s)
- Jonathan J Keats
- Department of Oncology, University of Alberta & Cross Cancer Institute, Edmonton, Canada.
| | | | | | | |
Collapse
|
35
|
Gabrea A, Leif Bergsagel P, Michael Kuehl W. Distinguishing primary and secondary translocations in multiple myeloma. DNA Repair (Amst) 2006; 5:1225-33. [PMID: 16829212 DOI: 10.1016/j.dnarep.2006.05.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Multiple myeloma (MM) is a malignant post-germinal center tumor of somatically-mutated, isotype-switched plasma cells that accumulate in the bone marrow. It often is preceded by a stable pre-malignant tumor called monoclonal gammopathy of undetermined significance (MGUS), which can sporadically progress to MM. Five recurrent primary translocations involving the immunoglobulin heavy chain (IgH) locus on chromosome 14q32 have been identified in MGUS and MM tumors. The five partner loci include 11q13, 6p21, 4p16, 16q23, and 20q12, with corresponding dysregulation of CYCLIN D1, CYCLIN D3, FGFR3/MMSET, c-MAF, and MAFB, respectively, by strong enhancers in the IgH locus. The five recurrent translocations, which are present in 40% of MM tumors, typically are simple reciprocal translocations, mostly having breakpoints within or near IgH switch regions but sometimes within or near VDJ or JH sequences. It is thought that these translocations are caused by aberrant IgH switch recombination, and possibly by aberrant somatic hypermutation in germinal center B cells, thus providing an early and perhaps initiating event in transformation. A MYC gene is dysregulated by complex translocations and insertions as a very late event during the progression of MM tumors. Since the IgH switch recombination and somatic hypermutation mechanism are turned off in plasma cells and plasma cell tumors, the MYC rearrangements are thought to be mediated by unknown mechanisms that contribute to structural genomic instability in all kinds of tumors. These rearrangements, which often but not always juxtapose MYC near one of the strong immunoglobulin enhancers, provide a paradigm for secondary translocations. It is hypothesized that secondary translocations not involving a MYC gene can occur at any stage of tumorigenesis, including in pre-malignant MGUS tumor cells.
Collapse
Affiliation(s)
- Ana Gabrea
- National Cancer Institute, Bethesda, MD 20889-5105, USA
| | | | | |
Collapse
|
36
|
Bagnara D, Callea V, Stelitano C, Morabito F, Fabris S, Neri A, Zanardi S, Ghiotto F, Ciccone E, Grossi CE, Fais F. IgV gene intraclonal diversification and clonal evolution in B-cell chronic lymphocytic leukaemia. Br J Haematol 2006; 133:50-8. [PMID: 16512828 DOI: 10.1111/j.1365-2141.2005.05974.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intraclonal diversification of immunoglobulin (Ig) variable (V) genes was evaluated in leukaemic cells from a B-cell chronic lymphocytic leukaemia (B-CLL) case over a 2-year period at four time points. Intraclonal heterogeneity was analysed by sequencing 305 molecular clones derived from polymerase chain reaction amplification of B-CLL cell IgV heavy (H) and light (C) chain gene rearrangements. Sequences were compared with evaluating intraclonal variation and the nature of somatic mutations. Although IgV intraclonal variation was detected at all time points, its level decreased with time and a parallel emergence of two more represented V(H)DJ(H) clones was observed. They differed by nine nucleotide substitutions one of which only caused a conservative replacement aminoacid change. In addition, one V(L)J(L) rearrangement became more represented over time. Analyses of somatic mutations suggest antigen selection and impairment of negative selection of neoplastic cells. In addition, a genealogical tree representing a model of clonal evolution of the neoplastic cells was created. It is of note that, during the period of study, the patient showed clinical progression of disease. We conclude that antigen stimulation and somatic hypermutation may participate in disease progression through the selection and expansion of neoplastic subclone(s).
Collapse
Affiliation(s)
- Davide Bagnara
- Department of Experimental Medicine, Human Anatomy Section, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Agnelli L, Bicciato S, Mattioli M, Fabris S, Intini D, Verdelli D, Baldini L, Morabito F, Callea V, Lombardi L, Neri A. Molecular Classification of Multiple Myeloma: A Distinct Transcriptional Profile Characterizes Patients Expressing CCND1 and Negative for 14q32 Translocations. J Clin Oncol 2005; 23:7296-306. [PMID: 16129847 DOI: 10.1200/jco.2005.01.3870] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose The deregulation of CCND1, CCND2 and CCND3 genes represents a common event in multiple myeloma (MM). A recently proposed classification grouped MM patients into five classes on the basis of their cyclin D expression profiles and the presence of the main translocations involving the immunoglobulin heavy chain locus (IGH) at 14q32. In this study, we provide a molecular characterization of the identified translocations/cyclins (TC) groups. Materials and Methods The gene expression profiles of purified plasma cells from 50 MM cases were used to stratify the samples into the five TC classes and identify their transcriptional fingerprints. The cyclin D expression data were validated by means of real-time quantitative polymerase chain reaction analysis; fluorescence in situ hybridization was used to investigate the cyclin D loci arrangements, and to detect the main IGH translocations and the chromosome 13q deletion. Results Class-prediction analysis identified 112 probe sets as characterizing the TC1, TC2, TC4 and TC5 groups, whereas the TC3 samples showed heterogeneous phenotypes and no marker genes. The TC2 group, which showed extra copies of the CCND1 locus and no IGH translocations or the chromosome 13q deletion, was characterized by the overexpression of genes involved in protein biosynthesis at the translational level. A meta-analysis of published data sets validated the identified gene expression signatures. Conclusion Our data contribute to the understanding of the molecular and biologic features of distinct MM subtypes. The identification of a distinctive gene expression pattern in TC2 patients may improve risk stratification and indicate novel therapeutic targets.
Collapse
Affiliation(s)
- Luca Agnelli
- UO Ematologia 2, Centro G. Marcora, Ospedale Maggiore Policlinico IRCCS, Dipartimento Scienze Mediche, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mattioli M, Agnelli L, Fabris S, Baldini L, Morabito F, Bicciato S, Verdelli D, Intini D, Nobili L, Cro L, Pruneri G, Callea V, Stelitano C, Maiolo AT, Lombardi L, Neri A. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene 2005; 24:2461-73. [PMID: 15735737 DOI: 10.1038/sj.onc.1208447] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiple myeloma (MM) is the most common form of plasma cell dyscrasia, characterized by a marked heterogeneity of genetic lesions and clinical course. It may develop from a premalignant condition (monoclonal gammopathy of undetermined significance, MGUS) or progress from intramedullary to extramedullary forms (plasma cell leukemia, PCL). To provide insights into the molecular characterization of plasma cell dyscrasias and to investigate the contribution of specific genetic lesions to the biological and clinical heterogeneity of MM, we analysed the gene expression profiles of plasma cells isolated from seven MGUS, 39 MM and six PCL patients by means of DNA microarrays. MMs resulted highly heterogeneous at transcriptional level, whereas the differential expression of genes mainly involved in DNA metabolism and proliferation distinguished MGUS from PCLs and the majority of MM cases. The clustering of MM patients was mainly driven by the presence of the most recurrent translocations involving the immunoglobulin heavy-chain locus. Distinct gene expression patterns have been found to be associated with different lesions: the overexpression of CCND2 and genes involved in cell adhesion pathways was observed in cases with deregulated MAF and MAFB, whereas genes upregulated in cases with the t(4;14) showed apoptosis-related functions. The peculiar finding in patients with the t(11;14) was the downregulation of the alpha-subunit of the IL-6 receptor. In addition, we identified a set of cancer germline antigens specifically expressed in a subgroup of MM patients characterized by an aggressive clinical evolution, a finding that could have implications for patient classification and immunotherapy.
Collapse
Affiliation(s)
- Michela Mattioli
- Laboratorio di Ematologia Sperimentale e Genetica Molecolare and U.O. Ematologia 1, Dipartimento di Scienze Mediche, Università degli Studi di Milano, Ospedale Maggiore IRCCS, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|