1
|
The kinesin KIF14 is overexpressed in medulloblastoma and downregulation of KIF14 suppressed tumor proliferation and induced apoptosis. J Transl Med 2017; 97:946-961. [PMID: 28504687 DOI: 10.1038/labinvest.2017.48] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/07/2017] [Accepted: 03/25/2017] [Indexed: 12/30/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in childhood. At present, there is no well-established targeted drug for majority of patients. The kinesin family member 14 (KIF14) is a novel oncogene located on chromosome 1q and is dysregulated in multiple cancers. The objectives of this study were to evaluate KIF14 expression and chromosome 1q copy number in MB, and to delineate its biological functions in MB pathogenesis. By quantitative RT-PCR and immunohistochemistry, we found KIF14 was overexpressed in MB. Increased KIF14 expression at protein level was strongly associated with shorter progression-free survival (P=0.0063) and overall survival (P=0.0083). Fluorescence in situ hybridization (FISH) analysis confirmed genomic gain of chromosome 1q in 17/93 (18.3%) of MB. Combined genetic and immunohistochemical analyses revealed that 76.5% of MB with 1q gain showed consistent overexpression of KIF14, and a tight link between chromosome 1q gain and KIF14 overexpression (P=0.03). Transient, siRNAs-mediated downregulation of KIF14 suppressed cell proliferation and induced apoptosis in two MB cell lines. Stably KIF14 knockdown by shRNAs inhibited cell viability, colony formation, migration and invasion, and tumor sphere formation in MB cells. We conclude that KIF14 is dysregulated in MB and is an adverse prognostic factor for survival. Furthermore, KIF14 is part of MB biology and is a potential therapeutic target for MB.
Collapse
|
2
|
Aldape K, Pfister SM. Next-generation molecular diagnostics. HANDBOOK OF CLINICAL NEUROLOGY 2016; 134:121-130. [PMID: 26948351 DOI: 10.1016/b978-0-12-802997-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The classification of brain tumors is based on the time-honored tradition of histologic examination, coupled with clinicopathologic correlation, and is based on the fundamental importance of microscopic morphologic interpretation. Supplementation by immunohistochemical markers is of substantial value to distinguish related entities and to confirm morphologic impressions. The use of techniques such as fluorescent in situ hybridization (FISH) is also critical in specific situations. However, with these practices, it is clear that the use of state-of-the-art molecular techniques has great promise to add to classification to (1) reduce the subjectivity inherent in interobserver discordance, particularly with specific entities; and (2) elucidate the biologic diversity of entities that are not resolvable by routine methods. In this chapter, we discuss these possibilities, focusing on several tumor types affecting the central nervous system, including diffuse glioma and ependymoma.
Collapse
Affiliation(s)
- Kenneth Aldape
- Department of Pathology, University Health Network and Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany; Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Alentorn A, Sanson M, Mokhtari K, Marie Y, Hoang-Xuan K, Delattre JY, Idbaih A. Insights revealed by high-throughput genomic arrays in nonglial primary brain tumors. Expert Rev Mol Diagn 2014; 12:265-77. [DOI: 10.1586/erm.12.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Comprehensive high-resolution genomic profiling and cytogenetics of two pediatric and one adult medulloblastoma. Pathol Res Pract 2013; 209:541-7. [PMID: 23896263 DOI: 10.1016/j.prp.2013.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Medulloblastoma (WHO grade IV) is a rare, malignant, invasive, embryonal tumor which mainly occurs in children and represents less than 1% of all adult brain tumors. Systematic comprehensive genetic analyses on medulloblastomas are rare but necessary to provide more detailed information. Therefore, we performed comprehensive cytogenetic analyses (blood and tissue) of two pediatric and one adult medulloblastoma, using trypsin-Giemsa staining, spectral karyotyping (tissues only), SNP-arrays, and gene expression analyses. We confirmed frequently detected chromosomal aberrations in medulloblastoma, such as +7q, -8p/q, -9q, -11q, -12q, and +17q and identified novel genetic events. Applying SNP-array, we identified constitutional de novo losses 5q21.1, 15q11.2, 17q21.31, 19p12 (pediatric medulloblastoma), 9p21.1, 19p12, 19q13.3, 21q11.2 (adult medulloblastoma) and gains 16p11.1-16p11.2, 18p11.32, Yq11.223-Yq11.23 (pediatric medulloblastoma), Xp22.31 (adult medulloblastoma) possibly representing inherited causal events for medulloblastoma formation. We show evidence for somatic segmental uniparental disomy in regions 1p36, 6q16.3, 6q24.1, 14q21.2, 17p13.3, and 17q22 not previously described for primary medulloblastoma. Gene expression analysis supported classification of the adult medulloblastoma to the WNT-subgroup and classification of pediatric medulloblastomas to group 3 tumors. Analyses of tumors and matched normal tissues (blood) with a combination of complementary techniques will help to further elucidate potentially causal genetic events for medulloblastomas.
Collapse
|
5
|
Response to bevacizumab, irinotecan, and temozolomide in children with relapsed medulloblastoma: a multi-institutional experience. Childs Nerv Syst 2013; 29:589-96. [PMID: 23296323 PMCID: PMC3963487 DOI: 10.1007/s00381-012-2013-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Chemotherapy for relapsed medulloblastoma has been inadequate, and most patients succumb to disease. METHODS We retrospectively reviewed nine cases of relapsed medulloblastoma treated with bevacizumab, irinotecan, ± temozolomide. Patients received one to three prior therapeutic regimens. Five patients received 10 mg/kg bevacizumab and 125-150 mg/m(2) irinotecan IV every 2 weeks, with temozolomide, starting at a median dose of 150 mg/m(2) orally for 5 days monthly. Two patients received bevacizumab and irinotecan, but not temozolomide, due to provider preference. Two of nine patients received 15 mg/kg bevacizumab IV, 90 mg/m(2) irinotecan orally for five consecutive days, 100 mg/m(2)/day temozolomide IV for 5 days, and 1.5 mg/m(2) vincristine IV, each administered every 21 days. RESULTS Median time to progression was 11 months. Median overall survival was 13 months. Objective tumor response at 3 months was 67 %, including six patients with partial response (PR) and three patients with stable disease (SD). At 6 months, objective response was 55 %, with two patients with PR and three with complete response. Additionally, one patient had SD and three had PD. Two patients remain alive and progression free at 15 and 55 months; another is alive with disease at 20 months. Toxicities included two patients with grade III neutropenia, two with grade III thrombocytopenia, one with grade III elevation of liver function tests, and one patient with grade III diarrhea. CONCLUSIONS The combination of bevacizumab and irinotecan, with or without temozolomide, produces objective responses with minimal toxicity in children with recurrent medulloblastoma. Prospective clinical trials are needed to evaluate the efficacy of this strategy.
Collapse
|
6
|
An interferon response gene expression signature is activated in a subset of medulloblastomas. Transl Oncol 2012; 5:297-304. [PMID: 22937182 DOI: 10.1593/tlo.12214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 01/02/2023] Open
Abstract
Recent evidence suggests that cytomegalovirus infection contributes to the development of medulloblastomas. Differential activation of antiviral expression programs in medulloblastomas has not been investigated yet. In this study, we assess the relevance of an antiviral transcriptional response in medulloblastomas. We analyzed a gene expression signature of type I interferon response in three public gene expression data sets of medulloblastomas. Interferon response genes were found to be significantly coordinately regulated in two independent studies. We distilled a signature of 10 interferon response genes from two data sets. This signature exhibited strongly significant gene-versus-gene correlation of expression levels across samples in a third external medulloblastoma data set. Our medulloblastoma IFN signature identified a previously unrecognized patient subgroup partially overlapping the WNT and SHH subtypes proposed by others. We conclude that significant traces of differential activation of antiviral transcriptional response can be found in three independent medulloblastoma patient cohorts. This IFN activation signal often coincides with reduced proliferation scores. Our proposed 10-gene type I IFN response gene signature could help to assess antiviral states in further gene expression data sets of medulloblastomas or other cancers.
Collapse
|
7
|
Buss MC, Read TA, Schniederjan MJ, Gandhi K, Castellino RC. HDM2 promotes WIP1-mediated medulloblastoma growth. Neuro Oncol 2012; 14:440-58. [PMID: 22379189 DOI: 10.1093/neuonc/nos001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Medulloblastoma is the most common malignant childhood brain tumor. The protein phosphatase and oncogene WIP1 is over-expressed or amplified in a significant number of primary human medulloblastomas and cell lines. In the present study, we examine an important mechanism by which WIP1 promotes medulloblastoma growth using in vitro and in vivo models. Human cell lines and intracerebellar xenografted animal models were used to study the role of WIP1 and the major TP53 regulator, HDM2, in medulloblastoma growth. Stable expression of WIP1 enhances growth of TP53 wild-type medulloblastoma cells, compared with cells with stable expression of an empty-vector or mutant WIP1. In an animal model, WIP1 enhances proliferation and reduces the survival of immunodeficient mice bearing intracerebellar xenografted human medulloblastoma cells. Cells with increased WIP1 expression also exhibit increased expression of HDM2. HDM2 knockdown or treatment with the HDM2 inhibitor Nutlin-3a, the active enantomer of Nutlin-3, specifically inhibits the growth of medulloblastoma cells with increased WIP1 expression. Nutlin-3a does not affect growth of medulloblastoma cells with stable expression of an empty vector or of mutant WIP1. Knockdown of WIP1 or treatment with the WIP1 inhibitor CCT007093 results in increased phosphorylation of known WIP1 targets, reduced HDM2 expression, and reduced growth specifically in WIP1 wild-type and high-expressing medulloblastoma cells. Combined WIP1 and HDM2 inhibition is more effective than WIP1 inhibition alone in blocking growth of WIP1 high-expressing medulloblastoma cells. Our preclinical study supports a role for therapies that target WIP1 and HDM2 in the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Meghan C Buss
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
8
|
Miller S, Rogers HA, Lyon P, Rand V, Adamowicz-Brice M, Clifford SC, Hayden JT, Dyer S, Pfister S, Korshunov A, Brundler MA, Lowe J, Coyle B, Grundy RG. Genome-wide molecular characterization of central nervous system primitive neuroectodermal tumor and pineoblastoma. Neuro Oncol 2011; 13:866-79. [PMID: 21798848 DOI: 10.1093/neuonc/nor070] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Central nervous system primitive neuroectodermal tumor (CNS PNET) and pineoblastoma are highly malignant embryonal brain tumors with poor prognoses. Current therapies are based on the treatment of pediatric medulloblastoma, even though these tumors are distinct at both the anatomical and molecular level. CNS PNET and pineoblastoma have a worse clinical outcome than medulloblastoma; thus, improved therapies based on an understanding of the underlying biology of CNS PNET and pineoblastoma are needed. To this end, we characterized the genomic alterations of 36 pediatric CNS PNETs and 8 pineoblastomas using Affymetrix single nucleotide polymorphism arrays. Overall, the majority of CNS PNETs contained a greater degree of genomic imbalance than pineoblastomas, with gain of 19p (8 [27.6%] of 29), 2p (7 [24.1%] of 29), and 1q (6 [20.7%] of 29) common events in primary CNS PNETs. Novel gene copy number alterations were identified and corroborated by Genomic Identification of Significant Targets In Cancer (GISTIC) analysis: gain of PCDHGA3, 5q31.3 in 62.1% of primary CNS PNETs and all primary pineoblastomas and FAM129A, 1q25 in 55.2% of primary CNS PNETs and 50% of primary pineoblastomas. Comparison of our GISTIC data with publically available data for medulloblastoma confirmed these CNS PNET-specific copy number alterations. With use of the collection of 5 primary and recurrent CNS PNET pairs, we found that gain of 2p21 was maintained at relapse in 80% of cases. Novel gene copy number losses included OR4C12, 11p11.12 in 48.2% of primary CNS PNETs and 50% of primary pineoblastomas. Loss of CDKN2A/B (9p21.3) was identified in 14% of primary CNS PNETs and was significantly associated with older age among children (P = .05). CADPS, 3p14.2 was lost in 27.6% of primary CNS PNETs and was associated with poor prognosis (P = .043). This genome-wide analysis revealed the marked molecular heterogeneity of CNS PNETs and enabled the identification of novel genes and clinical associations potentially involved in the pathogenesis of these tumors.
Collapse
Affiliation(s)
- Suzanne Miller
- Children’s Brain Tumour Research Centre, School of Clinical Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Park AK, Lee SJ, Phi JH, Wang KC, Kim DG, Cho BK, Haberler C, Fattet S, Dufour C, Puget S, Sainte-Rose C, Bourdeaut F, Grill J, Delattre O, Kim SK, Park WY. Prognostic classification of pediatric medulloblastoma based on chromosome 17p loss, expression of MYCC and MYCN, and Wnt pathway activation. Neuro Oncol 2011; 14:203-14. [PMID: 22090452 DOI: 10.1093/neuonc/nor196] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pediatric medulloblastoma is considered a highly heterogeneous disease and a new strategy of risk stratification to optimize therapeutic outcomes is required. We aimed to investigate a new risk-stratification approach based on expression profiles of medulloblastoma cohorts. We analyzed gene expression profiles of 30 primary medulloblastomas and detected strong evidence that poor survival outcome was significantly associated with mRNA expression profiles of 17p loss. However, it was not supported in independent cohorts from previously published data (n = 100). We speculated that this discrepancy might come from complex conditions of two important prognostic determinants: loss of tumor suppressors (chromosome 17p) and high expression of oncogenes c-myc (MYCC) or N-myc (MYCN). When patients were stratified into 5 or 7 subgroups based on simultaneous consideration of these 2 factors while defining the Wnt group as independent, obviously different survival expectancies were detected between the subgroups. For instance, predicted 5-year survival probabilities ranged from 19% to 81% in the 5 subgroups. We also found that age became a significant prognostic marker after adjusting for 17p, MYCC, and MYCN status. Diminished survival in age <3 years was more substantial in subgroups with high expression of MYCC, MYCN, or 17p loss but not in other subgroups, indicating that poor survival outcome might be synergistically affected by these 3 factors. Here we suggest a more tailored subgrouping system based on expression profiles of chromosome 17p, MYCC, and MYCN, which could provide the basis for a novel risk-stratification strategy in pediatric medulloblastoma.
Collapse
Affiliation(s)
- Ae Kyung Park
- College of Pharmacy, Sunchon National University, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Novel amplifications in pediatric medulloblastoma identified by genome-wide copy number profiling. J Neurooncol 2011; 107:37-49. [PMID: 21979893 DOI: 10.1007/s11060-011-0716-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 09/16/2011] [Indexed: 12/21/2022]
Abstract
Medulloblastoma (MB) is a WHO grade IV, invasive embryonal CNS tumor that mainly affects children. The aggressiveness and response to therapy can vary considerably between cases, and despite treatment, ~30% of patients die within 2 years from diagnosis. Furthermore, the majority of survivors suffer long-term side-effects due to severe management modalities. Several distinct morphological features have been associated with differences in biological behavior, but improved molecular-based criteria that better reflect the underlying tumor biology are in great demand. In this study, we profiled a series of 25 MB with a 32K BAC array covering 99% of the current assembly of the human genome for the identification of genetic copy number alterations possibly important in MB. Previously known aberrations as well as several novel focally amplified loci could be identified. As expected, the most frequently observed alteration was the combination of 17p loss and 17q gain, which was detected in both high- and standard-risk patients. We also defined minimal overlapping regions of aberrations, including 16 regions of gain and 18 regions of loss in various chromosomes. A few noteworthy narrow amplified loci were identified on autosomes 1 (38.89-41.97 and 84.89-90.76 Mb), 3 (27.64-28.20 and 35.80-43.50 Mb), and 8 (119.66-139.79 Mb), aberrations that were verified with an alternative platform (Illumina 610Q chips). Gene expression levels were also established for these samples using Affymetrix U133Plus2.0 arrays. Several interesting genes encompassed within the amplified regions and presenting with transcript upregulation were identified. These data contribute to the characterization of this malignant childhood brain tumor and confirm its genetic heterogeneity.
Collapse
|
11
|
Dahlback HSS, Brandal P, Gorunova L, Widing E, Meling TR, Krossnes BK, Heim S. Genomic aberrations in pediatric gliomas and embryonal tumors. Genes Chromosomes Cancer 2011; 50:788-99. [DOI: 10.1002/gcc.20898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/29/2011] [Accepted: 05/11/2011] [Indexed: 12/15/2022] Open
|
12
|
Pezzolo A, Coco S, Raso A, Parodi F, Pistorio A, Valdora F, Capra V, Zollo M, Aschero S, Basso E, Cama A, Nozza P, Gambini C, Cinalli G, Garrè ML, Iolascon A, Pistoia V, Tonini GP. Loss of 10q26.1-q26.3 in association with 7q34-q36.3 gain or 17q24.3-q25.3 gain predict poor outcome in pediatric medulloblastoma. Cancer Lett 2011; 308:215-24. [PMID: 21652146 DOI: 10.1016/j.canlet.2011.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 11/28/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor of childhood. We have investigated for novel chromosomal imbalances and prognostic markers of pediatric MB. Forty MBs out of 64, were analyzed using high resolution prometaphase comparative genomic hybridization. Chromosome 10q26.1-q26.3 loss combined with 17q24.3-q25.3 gain and/or 7q34-q36.3 gain in tumors predicted poor patient's survival. A minimal deleted region of 14.12cM at 10q26.1-q26.3 was refined by LOH analysis. We propose a new prognostic marker for pediatric MB patient risk stratification based on the presence of 10q26.1-q26.3 loss plus 17q24.3-q25.3 gain and/or 7q34-q36.3 gain associations.
Collapse
Affiliation(s)
- Annalisa Pezzolo
- Department of Experimental and Laboratory Medicine, IRCCS G. Gaslini Hospital, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Miecznikowski JC, Gaile DP, Liu S, Shepherd L, Nowak N. A new normalizing algorithm for BAC CGH arrays with quality control metrics. J Biomed Biotechnol 2011; 2011:860732. [PMID: 21403910 PMCID: PMC3043322 DOI: 10.1155/2011/860732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/23/2010] [Accepted: 12/18/2010] [Indexed: 11/17/2022] Open
Abstract
The main focus in pin-tip (or print-tip) microarray analysis is determining which probes, genes, or oligonucleotides are differentially expressed. Specifically in array comparative genomic hybridization (aCGH) experiments, researchers search for chromosomal imbalances in the genome. To model this data, scientists apply statistical methods to the structure of the experiment and assume that the data consist of the signal plus random noise. In this paper we propose "SmoothArray", a new method to preprocess comparative genomic hybridization (CGH) bacterial artificial chromosome (BAC) arrays and we show the effects on a cancer dataset. As part of our R software package "aCGHplus," this freely available algorithm removes the variation due to the intensity effects, pin/print-tip, the spatial location on the microarray chip, and the relative location from the well plate. removal of this variation improves the downstream analysis and subsequent inferences made on the data. Further, we present measures to evaluate the quality of the dataset according to the arrayer pins, 384-well plates, plate rows, and plate columns. We compare our method against competing methods using several metrics to measure the biological signal. With this novel normalization algorithm and quality control measures, the user can improve their inferences on datasets and pinpoint problems that may arise in their BAC aCGH technology.
Collapse
|
14
|
Onvani S, Etame AB, Smith CA, Rutka JT. Genetics of medulloblastoma: clues for novel therapies. Expert Rev Neurother 2010; 10:811-23. [PMID: 20420498 DOI: 10.1586/ern.10.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Current medulloblastoma therapy entails surgery, radiation and chemotherapy. The 5-year survival rate for patients ranges from 40 to 70%, with most survivors suffering from serious long-term treatment-related sequelae. Additional research on the molecular biology and genetics of medulloblastoma is needed to identify robust prognostic markers for disease-risk stratification, to improve current treatment regimes and to discover novel and more effective molecular-targeted therapies. Recent advances in molecular biology have led to the development of powerful tools for the study of medulloblastoma tumorigenesis, which have revealed new insights into the molecular underpinnings of this disease. Here we discuss the signaling pathway alterations implicated in medulloblastoma pathogenesis, the techniques used in molecular profiling of these tumors and recent molecular subclassification schemes. Particular emphasis is given to the identification of novel molecular targets for less toxic, patient-tailored therapeutic approaches.
Collapse
Affiliation(s)
- Sara Onvani
- The Hospital for Sick Children, Ontario, Canada
| | | | | | | |
Collapse
|
15
|
Minichromosome maintenance proteins 2, 3 and 7 in medulloblastoma: overexpression and involvement in regulation of cell migration and invasion. Oncogene 2010; 29:5475-89. [DOI: 10.1038/onc.2010.287] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Sharma S, Free A, Mei Y, Peiper SC, Wang Z, Cowell JK. Distinct molecular signatures in pediatric infratentorial glioblastomas defined by aCGH. Exp Mol Pathol 2010; 89:169-74. [PMID: 20621092 DOI: 10.1016/j.yexmp.2010.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 06/29/2010] [Indexed: 01/16/2023]
Abstract
Glioblastomas (GBM) are rare in children, but reportedly have more varied outcome which suggests differences in tumor etiology compared to typical GBM of adults. To investigate this we performed high resolution array comparative genomic hybridization (aCGH) analysis on three pediatric infratentorial GBM, ages 3.5, 7 and 14 years. Two of these tumors occurred in the brainstem and one in the spinal cord. While histologically typical, one brainstem tumor showed mainly pleomorphic astrocytic cells, whereas the other brainstem and spinal tumors showed a GFAP positive small cell component. Whole chromosomal gains (#1 and #2) and loss (#20) were seen only in the pleomorphic brainstem GBM, which also showed a high level of segmental genomic copy number changes. Segmental loss involving chromosome 8 was seen in all three tumors (Chr8;133039446-136869494, Chr8;pter-3581577, and Chr8;pter-30480019 respectively), whereas loss involving chromosome 16 was seen in only 2 cases with small cell components (Chr16;31827239-qter and Chr16;pter-29754532). Segmental gain of chromosome 7 was shared only between the 2 brainstem cases (Chr7;17187166-qter and Chr7;69824947-qter). Chromosome 17 showed segmental gain of 17q in the backdrop of loss of 17p only in case 1. Segmental gain of chromosome 1q was seen only in case 2. The spinal GBM showed a relatively stable karyotype with a unique loss of Chr19;32848902-qter. None of the frequent losses, gains and amplifications known to occur in adult GBM were identified, suggesting that pediatric infratentorial glioblastomas show a molecular karyotype that was more characteristic of pediatric embryonal tumors than adult GBM.
Collapse
Affiliation(s)
- S Sharma
- Department of Pathology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Manor E, Bodner L, Kachko P, Kapelushnik J. Derivative (22)t(3;22)(q12;p11.1) in desmoplastic medulloblastoma. ACTA ACUST UNITED AC 2010; 196:175-8. [PMID: 20082855 DOI: 10.1016/j.cancergencyto.2009.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 09/12/2009] [Indexed: 11/19/2022]
Abstract
Medulloblastoma is a malignant invasive embryonal tumor of the cerebellum, representing 15-30% of pediatric brain tumors. An i(17q) abnormality appears in 40% of medulloblastomas, and usually not as a sole aberration; however, cytogenetic data for medulloblastoma are limited. Cytogenetic work-up of tumors is an important tool for diagnosis and prognosis, and in some cases has led to the development of new therapeutic modalities. In the present case, cytogenetic analysis of a medulloblastoma revealed an unbalanced karyotype in all cells analyzed: 46,XY,der(22)t(3;22)(q12;p11.1). This sole unbalanced translocation led to partial trisomy of 3q. The significance of this finding and its role in the pathogenesis of medulloblastoma need further clarification.
Collapse
Affiliation(s)
- Esther Manor
- Genetics Institute, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 151, Be'er Sheva, 84501 Israel.
| | | | | | | |
Collapse
|
18
|
Northcott PA, Rutka JT, Taylor MD. Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. Neurosurg Focus 2010; 28:E6. [DOI: 10.3171/2009.10.focus09218] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Advances in the field of genomics have recently enabled the unprecedented characterization of the cancer genome, providing novel insight into the molecular mechanisms underlying malignancies in humans. The application of high-resolution microarray platforms to the study of medulloblastoma has revealed new oncogenes and tumor suppressors and has implicated changes in DNA copy number, gene expression, and methylation state in its etiology. Additionally, the integration of medulloblastoma genomics with patient clinical data has confirmed molecular markers of prognostic significance and highlighted the potential utility of molecular disease stratification. The advent of next-generation sequencing technologies promises to greatly transform our understanding of medulloblastoma pathogenesis in the next few years, permitting comprehensive analyses of all aspects of the genome and increasing the likelihood that genomic medicine will become part of the routine diagnosis and treatment of medulloblastoma.
Collapse
Affiliation(s)
- Paul A. Northcott
- 1Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre
- 2Program in Developmental and Stem Cell Biology, The Hospital for Sick Children; and
- 3Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - James T. Rutka
- 1Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre
- 3Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Michael D. Taylor
- 1Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre
- 2Program in Developmental and Stem Cell Biology, The Hospital for Sick Children; and
- 3Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
19
|
Abstract
In recent years, brain tumors have become the single most frequent cause of cancer-related mortality in children, although their frequency is approximately 50% less than leukemia. According to the classification of the World Health Organization, histopathological diagnosis is of paramount importance for clinicians to choose the most appropriate treatment option and tailor treatment intensity to disease risk. However, histopathological assessment is often difficult, and adding molecular information to classic neuropathological analyses may help ensure diagnostic accuracy, improve risk stratification of patients within a given tumor entity, and help in identifying novel therapeutic targets for an individualized treatment approach. Therefore, this review focuses both on established histopathology as well as on molecular features in the most important brain tumors in children.
Collapse
Affiliation(s)
- Stefan Pfister
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | | | | |
Collapse
|
20
|
Holthouse DJ, Dallas PB, Ford J, Fabian V, Murch AR, Watson M, Wong G, Bertram C, Egli S, Baker DL, Kees UR. Classic and desmoplastic medulloblastoma: Complete case reports and characterizations of two new cell lines. Neuropathology 2009; 29:398-409. [DOI: 10.1111/j.1440-1789.2008.00989.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
The evolution and application of techniques in molecular biology to human brain tumors: a 25 year perspective. J Neurooncol 2009; 92:261-73. [PMID: 19357954 DOI: 10.1007/s11060-009-9829-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/23/2009] [Indexed: 12/19/2022]
Abstract
Since the establishment of the AANS/CNS Section on Tumors in 1984, neurosurgeons have been actively involved in basic science research of human brain tumors that has moved the field forward considerably. Here, we chronicle the major advances that have been made with respect to our understanding of the concepts guiding the biology of human malignant brain tumors. Numerous technical advances in science, such as the development of gene transfer techniques, the polymerase chain reaction, the discovery of oncogenes and tumor suppressor genes, and the refinement of approaches to cancer cytogenetics have enabled researchers to identify many of the non-random genetic alterations associated with brain tumor growth, invasion, immunology, angiogenesis and apoptosis. These data led to some astounding progress, for example with the use of gene therapy, whereby in the 1990s several human clinical trials were conducted for patients with brain tumors. More recently, the human genome project has been completed providing a blueprint for the human species. What has followed are exciting new techniques in molecular biology such as transcriptional profiling, single nucleotide polymorphism (SNP)-arrays, array comparative genomic hybridization (array-CGH), microRNA profiling, and detection of epigenetic silencing of tumor suppressor genes. The cancer genome is now being sequenced at break neck speed using advanced DNA sequencing techniques. We are on the threshold of cataloguing the major genetic alterations observed in all human brain tumors. What will follow is modeling of these genetic alterations in systems that will allow for the development of novel pharmacotherapeutics and translational research therapies.
Collapse
|
22
|
McCabe MG, Ichimura K, Pearson DM, Liu L, Clifford SC, Ellison DW, Collins VP. Novel mechanisms of gene disruption at the medulloblastoma isodicentric 17p11 breakpoint. Genes Chromosomes Cancer 2009; 48:121-31. [DOI: 10.1002/gcc.20625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Le médulloblastome de l’enfant. Arch Pediatr 2008; 15:1794-804. [DOI: 10.1016/j.arcped.2008.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 06/24/2008] [Accepted: 09/15/2008] [Indexed: 11/21/2022]
|
24
|
Targeting the PI3K p110α Isoform Inhibits Medulloblastoma Proliferation, Chemoresistance, and Migration. Clin Cancer Res 2008; 14:6761-9. [DOI: 10.1158/1078-0432.ccr-08-0385] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Puces à ADN (CGH-array) : application pour le diagnostic de déséquilibres cytogénétiques cryptiques. ACTA ACUST UNITED AC 2008; 56:368-74. [DOI: 10.1016/j.patbio.2008.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/16/2008] [Indexed: 01/05/2023]
|
26
|
Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NSV, Caron HN, Cloos J, Mrsić A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 2008; 3:e3088. [PMID: 18769486 PMCID: PMC2518524 DOI: 10.1371/journal.pone.0003088] [Citation(s) in RCA: 537] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 07/29/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements in cure rates, prediction of disease outcome remains a major challenge and survivors suffer from serious therapy-related side-effects. Recent data showed that patients with WNT-activated tumors have a favorable prognosis, suggesting that these patients could be treated less intensively, thereby reducing the side-effects. This illustrates the potential benefits of a robust classification of medulloblastoma patients and a detailed knowledge of associated biological mechanisms. METHODS AND FINDINGS To get a better insight into the molecular biology of medulloblastoma we established mRNA expression profiles of 62 medulloblastomas and analyzed 52 of them also by comparative genomic hybridization (CGH) arrays. Five molecular subtypes were identified, characterized by WNT signaling (A; 9 cases), SHH signaling (B; 15 cases), expression of neuronal differentiation genes (C and D; 16 and 11 cases, respectively) or photoreceptor genes (D and E; both 11 cases). Mutations in beta-catenin were identified in all 9 type A tumors, but not in any other tumor. PTCH1 mutations were exclusively identified in type B tumors. CGH analysis identified several fully or partly subtype-specific chromosomal aberrations. Monosomy of chromosome 6 occurred only in type A tumors, loss of 9q mostly occurred in type B tumors, whereas chromosome 17 aberrations, most common in medulloblastoma, were strongly associated with type C or D tumors. Loss of the inactivated X-chromosome was highly specific for female cases of type C, D and E tumors. Gene expression levels faithfully reflected the chromosomal copy number changes. Clinicopathological features significantly different between the 5 subtypes included metastatic disease and age at diagnosis and histology. Metastatic disease at diagnosis was significantly associated with subtypes C and D and most strongly with subtype E. Patients below 3 yrs of age had type B, D, or E tumors. Type B included most desmoplastic cases. We validated and confirmed the molecular subtypes and their associated clinicopathological features with expression data from a second independent series of 46 medulloblastomas. CONCLUSIONS The new medulloblastoma classification presented in this study will greatly enhance the understanding of this heterogeneous disease. It will enable a better selection and evaluation of patients in clinical trials, and it will support the development of new molecular targeted therapies. Ultimately, our results may lead to more individualized therapies with improved cure rates and a better quality of life.
Collapse
Affiliation(s)
- Marcel Kool
- Department of Human Genetics, Academic Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R. Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro Oncol 2008; 10:1040-60. [PMID: 18676356 DOI: 10.1215/15228517-2008-059] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Survival rates of pediatric brain tumor patients have significantly improved over the years due to developments in diagnostic techniques, neurosurgery, chemotherapy, radiotherapy, and supportive care. However, brain tumors are still an important cause of cancer-related deaths in children. Prognosis is still highly dependent on clinical characteristics, such as the age of the patient, tumor type, stage, and localization, but increased knowledge about the genetic and biological features of these tumors is being obtained and might be useful to further improve outcome for these patients. It has become clear that the deregulation of signaling pathways essential in brain development, for example, sonic hedgehog (SHH), Wnt, and Notch pathways, plays an important role in pathogenesis and biological behavior, especially for medulloblastomas. More recently, data have become available about the cells of origin of brain tumors and the possible existence of brain tumor stem cells. Newly developed array-based techniques for studying gene expression, protein expression, copy number aberrations, and epigenetic events have led to the identification of other potentially important biological abnormalities in pediatric medulloblastomas and ependymomas.
Collapse
Affiliation(s)
- Judith M de Bont
- Department of Pediatric Oncology and Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
Faussillon M, Murakami I, Bichat M, Telvi L, Jeanpierre C, Nezelof C, Jaubert F, Gogusev J. Molecular cytogenetic anomalies and phenotype alterations in a newly established cell line from Wilms tumor with diffuse anaplasia. ACTA ACUST UNITED AC 2008; 184:22-30. [DOI: 10.1016/j.cancergencyto.2008.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/18/2008] [Accepted: 02/22/2008] [Indexed: 12/13/2022]
|
29
|
The molecular genetics of medulloblastoma: an assessment of new therapeutic targets. Neurosurg Rev 2008; 31:359-68; discussion 368-9. [DOI: 10.1007/s10143-008-0146-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/03/2008] [Accepted: 04/06/2008] [Indexed: 10/22/2022]
|
30
|
Identification of genes involved in squamous cell carcinoma of the lung using synchronized data from DNA copy number and transcript expression profiling analysis. Lung Cancer 2008; 59:315-31. [DOI: 10.1016/j.lungcan.2007.08.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/16/2007] [Accepted: 08/22/2007] [Indexed: 12/12/2022]
|
31
|
Lo KC, Ma C, Bundy BN, Pomeroy SL, Eberhart CG, Cowell JK. Gain of 1q Is a Potential Univariate Negative Prognostic Marker for Survival in Medulloblastoma. Clin Cancer Res 2007; 13:7022-8. [DOI: 10.1158/1078-0432.ccr-07-1420] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
O’Keefe CL, Tiu R, Gondek LP, Powers J, Theil KS, Kalaycio M, Lichtin A, Sekeres MA, Maciejewski JP. High-resolution genomic arrays facilitate detection of novel cryptic chromosomal lesions in myelodysplastic syndromes. Exp Hematol 2007; 35:240-51. [PMID: 17258073 PMCID: PMC2613764 DOI: 10.1016/j.exphem.2006.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/20/2006] [Accepted: 09/22/2006] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Unbalanced chromosomal aberrations are common in myelodysplastic syndromes and have prognostic implications. An increased frequency of cytogenetic changes may reflect an inherent chromosomal instability due to failure of DNA repair. Therefore, it is likely that chromosomal defects in myelodysplastic syndromes may be more frequent than predicted by metaphase cytogenetics and new cryptic lesions may be revealed by precise analysis methods. METHODS We used a novel high-resolution karyotyping technique, array-based comparative genomic hybridization, to investigate the frequency of cryptic chromosomal lesions in a cohort of 38 well-characterized myelodysplastic syndromes patients; results were confirmed by microsatellite quantitative PCR or single nucleotide polymorphism analysis. RESULTS As compared to metaphase karyotyping, chromosomal abnormalities detected by array-based analysis were encountered more frequently and in a higher proportion of patients. For example, chromosomal defects were found in patients with a normal karyotype by traditional cytogenetics. In addition to verifying common abnormalities, previously cryptic defects were found in new regions of the genome. Cryptic changes often overlapped chromosomes and regions frequently identified as abnormal by metaphase cytogenetics. CONCLUSION The results underscore the instability of the myelodysplastic syndromes genome and highlight the utility of array-based karyotyping to study cryptic chromosomal changes which may provide new diagnostic information.
Collapse
Affiliation(s)
- Christine L. O’Keefe
- Experimental Hematology and Hematopoiesis Section, Cleveland Clinic, Cleveland OH
| | - Ramon Tiu
- Department of Internal Medicine, Cleveland Clinic, Cleveland OH
| | - Lukasz P. Gondek
- Experimental Hematology and Hematopoiesis Section, Cleveland Clinic, Cleveland OH
| | - Jennifer Powers
- Experimental Hematology and Hematopoiesis Section, Cleveland Clinic, Cleveland OH
| | - Karl S. Theil
- Department of Clinical Pathology, Cleveland Clinic, Cleveland OH
| | - Matt Kalaycio
- Department of Hematologic Malignancy and Blood Disorders, Cleveland Clinic, Cleveland OH
| | - Alan Lichtin
- Department of Hematologic Malignancy and Blood Disorders, Cleveland Clinic, Cleveland OH
| | - Mikkael A. Sekeres
- Department of Hematologic Malignancy and Blood Disorders, Cleveland Clinic, Cleveland OH
| | - Jaroslaw P. Maciejewski
- Experimental Hematology and Hematopoiesis Section, Cleveland Clinic, Cleveland OH
- Department of Hematologic Malignancy and Blood Disorders, Cleveland Clinic, Cleveland OH
| |
Collapse
|
33
|
Raso A, Negri F, Gregorio A, Nozza P, Mascelli S, De Marco P, Merello E, Milanaccio C, Ravegnani M, Cama A, Garrè ML, Capra V. Successful isolation and long-term establishment of a cell line with stem cell-like features from an anaplastic medulloblastoma. Neuropathol Appl Neurobiol 2007; 34:306-15. [PMID: 17995922 DOI: 10.1111/j.1365-2990.2007.00896.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Herein we report on the successful isolation and establishment of a novel, long-term, primary, neurosphere-like cell line called 1603-MED from a 5-year-old boy affected by a highly aggressive anaplastic medulloblastoma. METHODS Elaboration of the new protocol for neurosphere assay is extensively discussed, together with a complete immuno-histochemical and cytogenetic characterization of 1603-MED. RESULTS Clinical course and histopathology are briefly discussed. The 1603-MED possesses a high capacity for proliferation, CD133 expression, self-renewal and differentiation, thus indicating that anaplastic medulloblastoma contains a subpopulation of cancer stem cells as observed in classic medulloblastoma. CONCLUSIONS 1603-MED provides us with the first in vitro model of anaplastic medulloblastoma that may be suitable for studying both tumour progression and the genetic mechanisms related to therapy resistance, and may lead to the development and testing of chemosensitivity and new therapeutic targets.
Collapse
Affiliation(s)
- A Raso
- Unità Operativa di Neurochirurgia, Istituto Giannina Gaslini, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nowak NJ, Miecznikowski J, Moore SR, Gaile D, Bobadilla D, Smith DD, Kernstine K, Forman SJ, Mhawech-Fauceglia P, Reid M, Stoler D, Loree T, Rigual N, Sullivan M, Weiss LM, Hicks D, Slovak ML. Challenges in array comparative genomic hybridization for the analysis of cancer samples. Genet Med 2007; 9:585-95. [PMID: 17873646 DOI: 10.1097/gim.0b013e3181461c4a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PURPOSE To address some of the challenges facing the incorporation of array comparative genomic hybridization technology as a clinical tool, including archived tumor tissue, tumor heterogeneity, DNA quality and quantity, and array comparative genomic hybridization platform selection and performance. METHODS Experiments were designed to assess the impact of DNA source (e.g., archival material), quantity, and amplification on array comparative genomic hybridization results. Two microdissection methods were used to isolate tumor cells to minimize heterogeneity. These data and other data sets were used in a further performance comparison of two commonly used array comparative genomic hybridization platforms: bacterial artificial chromosome (Roswell Park Cancer Institute) and oligonucleotide (Agilent Technologies, Santa Clara, CA). RESULTS Array comparative genomic hybridization data from as few as 100 formalin-fixed, paraffin-embedded cells isolated by laser capture microdissection and amplified were remarkably similar to array comparative genomic hybridization copy number alterations detected in the bulk (unamplified) population. Manual microdissection from frozen sections provided a rapid and inexpensive means to isolate tumor from adjacent DNA for amplification and array comparative genomic hybridization. Whole genome amplification introduced no appreciable allele bias on array comparative genomic hybridization. The array comparative genomic hybridization results provided by the bacterial artificial chromosome and Agilent platforms were concordant in general, but bacterial artificial chromosome array comparative genomic hybridization showed far fewer outliers and overall less technical noise, which could adversely affect the statistical interpretation of the data. CONCLUSIONS This study demonstrates that copy number alterations can be robustly and reproducibly detected by array comparative genomic hybridization in DNA isolated from challenging tumor types and sources, including archival materials, low DNA yield, and heterogeneous tissues. Furthermore, bacterial artificial chromosome array comparative genomic hybridization offers the advantage over the Agilent oligonucleotide platform of presenting fewer outliers, which could affect data interpretation.
Collapse
MESH Headings
- Azure Stains
- Cell Line, Tumor
- Chromosome Banding
- Chromosomes, Artificial, Bacterial
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 7
- Chromosomes, Human, Pair 9
- Cohort Studies
- DNA, Neoplasm/analysis
- DNA, Neoplasm/genetics
- Female
- Fluorescent Antibody Technique, Direct
- Gene Dosage
- Hodgkin Disease/genetics
- Hodgkin Disease/pathology
- Humans
- Lasers
- Microdissection
- Neoplasms/genetics
- Neoplasms/pathology
- Nucleic Acid Amplification Techniques
- Nucleic Acid Hybridization/methods
- Oligonucleotide Array Sequence Analysis/methods
- Reed-Sternberg Cells/pathology
- Reproducibility of Results
- Spectral Karyotyping
Collapse
Affiliation(s)
- Norma J Nowak
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rossi MR, Laduca J, Cowell JK, Srivastava BIS, Matsui S. Genomic analysis of CD8+ NK/T cell line, 'SRIK-NKL', with array-based CGH (aCGH), SKY/FISH and molecular mapping. Leuk Res 2007; 32:455-63. [PMID: 17640729 PMCID: PMC2855542 DOI: 10.1016/j.leukres.2007.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
We performed aCGH, SKY/FISH, molecular mapping and expression analyses on a permanent CD8+ NK/T cell line, 'SRIK-NKL' established from a lymphoma (ALL) patient, in attempt to define the fundamental genetic profile of its unique NK phenotypes. aCGH revealed hemizygous deletion of 6p containing genes responsible for hematopoietic functions. The SKY demonstrated that a constitutive reciprocal translocation, rcpt(5;14)(p13.2;q11) is a stable marker. Using somatic hybrids containing der(5) derived from SRIK-NKL, we found that the breakpoint in one homologue of no. 5 is located upstream of IL7R and also that the breakpoint in no. 14 is located within TRA@. The FISH analysis using a BAC which contains TRA@ and its flanking region further revealed a approximately 231kb deletion within 14q11 in the der(5) but not in the normal homologue of no. 14. The RT-PCR analysis detected mRNA for TRA@ transcripts which were extending across, but not including, the deleted region. IL7R was detected at least at mRNA levels. These findings were consistent with the immunological findings that TRA@ and IL7R are both expressed at mRNA levels and TRA@ at cytoplasmic protein levels in SRIK-NKL cells. In addition to rcpt(5;14), aCGH identified novel copy number abnormalities suggesting that the unique phenotype of the SRIK-NKL cell line is not solely due to the TRA@ rearrangement. These findings provide supportive evidence for the notion that SRIK-NKL cells may be useful for studying not only the function of NK cells but also genetic deregulations associated with leukemiogenesis.
Collapse
Affiliation(s)
- Michael R Rossi
- SKY Core Facility, Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, United States
| | | | | | | | | |
Collapse
|
36
|
Abstract
The past decades have seen an increase in the survival rates of patients with standard-risk medulloblastoma. Efforts have, therefore, been focused on obtaining better results in the treatment of patients with high-risk tumors. In addition to consolidated therapies, novel approaches such as small molecules, monoclonal antibodies, and antiangiogenic therapies that aim to improve outcomes and quality of life are now available through new breakthroughs in the molecular biology of medulloblastoma. The advent of innovative anticancer drugs tested in brain tumors has important consequences for personalized therapy. Gene expression profiling of medulloblastoma can be used to identify the genes and signaling transduction pathways that are crucial for the tumorigenesis process, thereby revealing both new targets for therapy and sensitive/resistance phenotypes. The interpretation of microarray data for new treatments of patients with high-risk medulloblastoma, as well as other poor prognosis tumors, should be developed through a consensus multidisciplinary approach involving oncologists, neurosurgeons, radiotherapists, biotechnologists, bioinformaticists, and other professionals.
Collapse
Affiliation(s)
- Iacopo Sardi
- Department of Pediatrics, Onco-hematology and Neuro-surgery Units, University of Florence Medical School, A. Meyer Children's Hospital, Florence, Italy.
| | | | | |
Collapse
|
37
|
Lo KC, Rossi MR, Eberhart CG, Cowell JK. Genome wide copy number abnormalities in pediatric medulloblastomas as assessed by array comparative genome hybridization. Brain Pathol 2007; 17:282-96. [PMID: 17465989 PMCID: PMC8095649 DOI: 10.1111/j.1750-3639.2007.00072.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Array-based comparative genomic hybridization was used to characterize 22 medulloblastomas in order to precisely define genetic alterations in these malignant childhood brain tumors. The 17p(-)/17q(+) copy number abnormality (CNA), consistent with the formation of isochromosome 17q, was the most common event (8/22). Amplifications in this series included MYCL, MYCN and MYC previously implicated in medulloblastoma pathogenesis, as well as novel amplicons on chromosomes 2, 4, 11 and 12. Losses involving chromosomes 1, 2, 8, 10, 11, 16 and 19 and gains of chromosomes 4, 7, 8, 9 and 18 were seen in greater than 20% of tumors in this series. A homozygous deletion in 11p15 defines the minimal region of loss on this chromosome arm. In order to map the minimal regions involved in losses, gains and amplifications, we combined aCGH data from this series with that of two others obtained using the same RPCI BAC arrays. As a result of this combined analysis of 72 samples, we have defined specific regions on chromosomes 1, 8p, 10q, 11p and 16q which are frequently involved in CNAs in medulloblastomas. Using high density oligonucleotide expression arrays, candidate genes were identified within these consistently involved regions in a subset of the tumors.
Collapse
Affiliation(s)
- Ken C. Lo
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, N.Y
| | - Michael R. Rossi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, N.Y
| | | | - John K. Cowell
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, N.Y
| |
Collapse
|
38
|
Longo L, Panza E, Schena F, Seri M, Devoto M, Romeo G, Bini C, Pappalardo G, Tonini GP, Perri P. Genetic predisposition to familial neuroblastoma: identification of two novel genomic regions at 2p and 12p. Hum Hered 2007; 63:205-11. [PMID: 17317969 DOI: 10.1159/000099997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 12/15/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The rarity of familial neuroblastoma (NB) has allowed only a few linkage studies, most of which did not show any evidence of linkage to regions involved in somatic alterations or to genes implicated in other neurocristopathies seldom associated with NB. We screened a highly informative family with recurrent NB by genome-wide linkage analysis aimed at identifying chromosomal regions for NB predisposing genes. METHODS A genome-wide screen was performed using 382 microsatellite markers. Multipoint model-based linkage analysis was carried out under a dominant mode of inheritance for the disease using the 'affected only' approach. RESULTS Our analysis identified two haplotypes co-segregating with the disease on chromosomes 2p and 12p, and yielded maximum lod-score values of 3.01 (p < 0.0001) for markers on both intervals. CONCLUSIONS Evidence of linkage was reported at 16p in North American families, whereas our studies excluded this interval and indicated other loci for disease predisposition, thus confirming the remarkable genetic heterogeneity of NB. These results suggest an oligogenic inheritance in NB involving more loci in genetic determination of the disease.
Collapse
Affiliation(s)
- Luca Longo
- Unit of Translational Pediatric Oncology,National Institute for Cancer Research (IST), Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lo KC, Rossi MR, Burkhardt T, Pomeroy SL, Cowell JK. Overlay analysis of the oligonucleotide array gene expression profiles and copy number abnormalities as determined by array comparative genomic hybridization in medulloblastomas. Genes Chromosomes Cancer 2007; 46:53-66. [PMID: 17044047 DOI: 10.1002/gcc.20388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Combined analysis of gene expression array data and array-based comparative genomic hybridization data have been used in a series of 26 pediatric brain tumors to define up- and downregulated genes that coincide with losses, gains, and amplifications involving specific chromosome regions. Frequent losses were defined in chromosome arms 3q, 6q, 8p, 10q, 16q, 17p, and gains were identified in chromosome 7, and chromosome arms 9p and 17q. Amplification of a 2p region was seen in only one tumor, which corresponded to increased expression of the MYCN and DDX1 genes. To facilitate the analysis of the two data sets, we have developed a custom overlay tool that defines genes that are underexpressed in regions of deletions and overexpressed in regions of gain, across the genome and specifically within regions showing recurrent involvement in medulloblastomas.
Collapse
Affiliation(s)
- Ken C Lo
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
40
|
Pfister S, Remke M, Toedt G, Werft W, Benner A, Mendrzyk F, Wittmann A, Devens F, von Hoff K, Rutkowski S, Kulozik A, Radlwimmer B, Scheurlen W, Lichter P, Korshunov A. Supratentorial primitive neuroectodermal tumors of the central nervous system frequently harbor deletions of theCDKN2A locus and other genomic aberrations distinct from medulloblastomas. Genes Chromosomes Cancer 2007; 46:839-51. [PMID: 17592618 DOI: 10.1002/gcc.20471] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Supratentorial primitive neuroectodermal tumors (stPNETs) and medulloblastomas have long been thought to arise from a common cell type in the subventricular germinal matrix. Because of the infrequent occurrence of stPNETs, little is known about their genetic background. Here, we performed a genome-wide screening for DNA copy-number aberrations in 10 supratentorial PNETs using array-based comparative genomic hybridization (array-CGH). Comparing our findings with data from a previous array-CGH study on 47 medulloblastomas, we identified differences in the frequency of copy-number losses at chromosome regions 1p12-22.1 and 9p, and gains at 19p, all of them more frequently occurring in stPNETs. In contrast to previous reports, we detected chromosome 17 aberrations by array-CGH in 2/10 stPNETs. To validate our findings obtained by array-CGH, we analyzed the loci of interest by fluorescence in situ hybridization in an independent set of 11 stPNETs and found deletions of 9p21 in 5/11 tumors of the second set, three of them being homozygous. All 9p21 deletions were associated with loss of CDKN2A protein expression. Altogether, CDKN2A deletions were detected in 7/21 stPNETs including four homozygous deletions, whereas such deletions were only found in 4/112 medulloblastomas, all of these being heterozygous (P < 0.001). Gains of 19p (14% vs. 0% in medulloblastomas, P = 0.02) were found to be significantly more frequent in stPNETs, whereas gains of 17q (14% vs. 45% in medulloblastomas, P = 0.02) were confirmed to be more frequent in medulloblastomas. These data further support the hypothesis of two different tumor entities of embryonal neuroepithelial tumors with characteristic genetic aberrations. (c) 2007 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Stefan Pfister
- Division Molecular Genetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Maher EA, Brennan C, Wen PY, Durso L, Ligon KL, Richardson A, Khatry D, Feng B, Sinha R, Louis DN, Quackenbush J, Black PM, Chin L, DePinho RA. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res 2006; 66:11502-13. [PMID: 17114236 DOI: 10.1158/0008-5472.can-06-2072] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma is classified into two subtypes on the basis of clinical history: "primary glioblastoma" arising de novo without detectable antecedent disease and "secondary glioblastoma" evolving from a low-grade astrocytoma. Despite their distinctive clinical courses, they arrive at an indistinguishable clinical and pathologic end point highlighted by widespread invasion and resistance to therapy and, as such, are managed clinically as if they are one disease entity. Because the life history of a cancer cell is often reflected in the pattern of genomic alterations, we sought to determine whether primary and secondary glioblastomas evolve through similar or different molecular pathogenetic routes. Clinically annotated primary and secondary glioblastoma samples were subjected to high-resolution copy number analysis using oligonucleotide-based array comparative genomic hybridization. Unsupervised classification using genomic nonnegative matrix factorization methods identified three distinct genomic subclasses. Whereas one corresponded to clinically defined primary glioblastomas, the remaining two stratified secondary glioblastoma into two genetically distinct cohorts. Thus, this global genomic analysis showed wide-scale differences between primary and secondary glioblastomas that were previously unappreciated, and has shown for the first time that secondary glioblastoma is heterogeneous in its molecular pathogenesis. Consistent with these findings, analysis of regional recurrent copy number alterations revealed many more events unique to these subclasses than shared. The pathobiological significance of these shared and subtype-specific copy number alterations is reinforced by their frequent occurrence, resident genes with clear links to cancer, recurrence in diverse cancer types, and apparent association with clinical outcome. We conclude that glioblastoma is composed of at least three distinct molecular subtypes, including novel subgroups of secondary glioblastoma, which may benefit from different therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth A Maher
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tamber MS, Bansal K, Liang ML, Mainprize TG, Salhia B, Northcott P, Taylor M, Rutka JT. Current concepts in the molecular genetics of pediatric brain tumors: implications for emerging therapies. Childs Nerv Syst 2006; 22:1379-94. [PMID: 16951964 DOI: 10.1007/s00381-006-0187-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Indexed: 12/18/2022]
Abstract
BACKGROUND The revolution in molecular biology that has taken place over the past 2 decades has provided researchers with new and powerful tools for detailed study of the molecular mechanisms giving rise to the spectrum of pediatric brain tumors. Application of these tools has greatly advanced our understanding of the molecular pathogenesis of these lesions. REVIEW After familiarizing readers with some promising new techniques in the field of oncogenomics, this review will present the current state of knowledge as it pertains to the molecular biology of pediatric brain neoplasms. Along the way, we hope to highlight specific instances where the detailed mechanistic knowledge acquired thus far may be exploited for therapeutic advantage.
Collapse
Affiliation(s)
- Mandeep S Tamber
- Division of Neurosurgery, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sanson M, Laigle-Donadey F, Benouaich-Amiel A. Molecular changes in brain tumors: prognostic and therapeutic impact. Curr Opin Oncol 2006; 18:623-30. [PMID: 16988585 DOI: 10.1097/01.cco.0000245322.11787.72] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW This review focuses on recent advances in the molecular biology of the main primary brain tumors (gliomas, medulloblastomas, and ependymomas), with particular emphasis on prognostic markers and potential therapeutic targets. RECENT FINDINGS Current biologic markers are useful for predicting prognosis (e.g. 1p/19q codeletion in grade 2 and 3 gliomas, nuclear beta-catenin expression in medulloblastoma) or response to the treatment (e.g. the methyl guanyl methyl transferase promoter methylation status). Recent gene profiling studies have identified specific molecular signatures that permit a molecular classification and that also provide new, potentially useful prognostic markers. The studies have also shown a striking parallel between central nervous system ontogenesis and the oncogenesis of brain tumors. By elucidating the underlying activated molecular pathways, these approaches provide the basis for a biologic therapy to target the critically activated pathways. SUMMARY Important advances have been made in the biologic understanding, molecular subclassification, and identification of prognostic markers in brain tumors, thereby improving the current classifications. Such data provide a rational basis for current and future targeted biologically based strategies.
Collapse
Affiliation(s)
- Marc Sanson
- INSERM U711 and Service de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France.
| | | | | |
Collapse
|
44
|
Calhoun ES, Gallmeier E, Cunningham SC, Eshleman JR, Hruban RH, Kern SE. Copy-number methods dramatically underestimate loss of heterozygosity in cancer. Genes Chromosomes Cancer 2006; 45:1070-1. [PMID: 16897743 DOI: 10.1002/gcc.20365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|