1
|
Klimov EA, Sobolev VV, Batashkov NA, Kokaeva ZG, Tretiakov AV, Nevozinskaya ZA, Korsunskaya IM, Sukhova TN, Evina OE, Khashukoeva AZ. Transcriptional Activity of Some Genes Involved in Apoptosis in Patients with Vulvar Lichen Sclerosus. Bull Exp Biol Med 2022; 172:734-737. [PMID: 35501640 DOI: 10.1007/s10517-022-05467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 10/18/2022]
Abstract
Lichen sclerosus of the vulva is a common, but poorly studied disease. We assessed the level of transcriptional activity of APAF1, BAX, BCL2, BIRC5, CCND1, DAPK1, MCL1, and MYC genes encoding products that control apoptosis in the samples of tissues affected by vulvar lichen sclerosus and adjacent control tissues (n=24). Analysis of transcriptional activity was performed by real-time PCR using specific primers and SYBR Green intercalating dye. After the total group was divided by the presence of the concomitant gynecological diseases, a significant increase in the transcriptional activity of the CCND1 gene was revealed in patients with concomitant uterine fibroids. This may indicate the possible role of the activation of mitosis during tumor initiation.
Collapse
Affiliation(s)
- E A Klimov
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.,University Diagnostic Laboratory, Moscow, Russia
| | - V V Sobolev
- University Diagnostic Laboratory, Moscow, Russia.,Center of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - N A Batashkov
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Z G Kokaeva
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - A V Tretiakov
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Z A Nevozinskaya
- Moscow Scientific and Practical Center for Dermatovenereology and Cosmetology, Moscow, Russia.,Pirogov Russian National Research Medical University, Ministry of the Health of the Russian Federation, Moscow, Russia
| | - I M Korsunskaya
- Center of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia. .,Moscow Scientific and Practical Center for Dermatovenereology and Cosmetology, Moscow, Russia.
| | - T N Sukhova
- Pirogov Russian National Research Medical University, Ministry of the Health of the Russian Federation, Moscow, Russia
| | | | - A Z Khashukoeva
- Pirogov Russian National Research Medical University, Ministry of the Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
2
|
Torcivia JP, Mazumder R. Scanning window analysis of non-coding regions within normal-tumor whole-genome sequence samples. Brief Bioinform 2021; 22:bbaa203. [PMID: 32940334 PMCID: PMC8138877 DOI: 10.1093/bib/bbaa203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 11/15/2022] Open
Abstract
Genomics has benefited from an explosion in affordable high-throughput technology for whole-genome sequencing. The regulatory and functional aspects in non-coding regions may be an important contributor to oncogenesis. Whole-genome tumor-normal paired alignments were used to examine the non-coding regions in five cancer types and two races. Both a sliding window and a binning strategy were introduced to uncover areas of higher than expected variation for additional study. We show that the majority of cancer associated mutations in 154 whole-genome sequences covering breast invasive carcinoma, colon adenocarcinoma, kidney renal papillary cell carcinoma, lung adenocarcinoma and uterine corpus endometrial carcinoma cancers and two races are found outside of the coding region (4 432 885 in non-gene regions versus 1 412 731 in gene regions). A pan-cancer analysis found significantly mutated windows (292 to 3881 in count) demonstrating that there are significant numbers of large mutated regions in the non-coding genome. The 59 significantly mutated windows were found in all studied races and cancers. These offer 16 regions ripe for additional study within 12 different chromosomes-2, 4, 5, 7, 10, 11, 16, 18, 20, 21 and X. Many of these regions were found in centromeric locations. The X chromosome had the largest set of universal windows that cluster almost exclusively in Xq11.1-an area linked to chromosomal instability and oncogenesis. Large consecutive clusters (super windows) were found (19 to 114 in count) providing further evidence that large mutated regions in the genome are influencing cancer development. We show remarkable similarity in highly mutated non-coding regions across both cancer and race.
Collapse
Affiliation(s)
- J P Torcivia
- The Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - R Mazumder
- The Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC, USA
- McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC, USA
| |
Collapse
|
3
|
Smith J, Kulkarni A, Birkeland AC, McHugh JB, Brenner JC. Whole-Exome Sequencing of Sinonasal Small Cell Carcinoma Arising within a Papillary Schneiderian Carcinoma In Situ. Otolaryngol Head Neck Surg 2018; 159:859-865. [PMID: 29734873 PMCID: PMC6212311 DOI: 10.1177/0194599818774004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The pathogenetic underpinnings of extrapulmonary small cell carcinomas (EPSCCs) of the head and neck are poorly understood. We sought to describe the clinical case and whole-exome DNA sequencing data of a patient with sinonasal Schneiderian carcinoma in situ whose tumor progressed to small cell carcinoma (SCC). STUDY DESIGN Case report and whole-exome sequencing of tumor DNA. SETTING Academic medical center. SUBJECTS AND METHODS A 52-year-old man with sinonasal Schneiderian carcinoma in situ whose tumor progressed to small cell carcinoma. We performed whole-exome genetic sequencing and copy-number variation (CNV) analysis of tumor and normal DNA extracted from flash-frozen, paraffin-embedded (FFPE) samples. RESULTS A total of 93 high-confidence, nonsynonymous somatic mutation events were identified in sinonasal SCC, including loss-of-function mutations in TP53, MAML3, a transcriptional coactivator of the Notch pathway, and GAS6, an activating ligand of the TAM family of tyrosine kinase receptors. Focal amplifications of chromosomal regions 6p25-11.1, containing SOX4 and VEGFA, and 14q32.1-32.3, containing AKT1 and the Notch inhibitory ligand DLK1, were also seen. Further CNV analysis revealed deletions in the critical cell cycle regulators CDKN2A, RB1, RBL1, and RBL2 and the chromatin modifier EP300. CONCLUSIONS Small cell carcinoma may rarely arise from sinonasal Schneiderian carcinoma in situ and exhibits similar genomic aberrations (eg, SOX amplification, Notch pathway inactivation) to pulmonary small cell carcinoma.
Collapse
Affiliation(s)
- Joshua Smith
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Aditi Kulkarni
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Andrew C Birkeland
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Jonathan B. McHugh
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - J. Chad Brenner
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
4
|
Pronina IV, Klimov EA, Burdennyy AM, Beresneva EV, Fridman MV, Ermilova VD, Kazubskaya TP, Karpukhin AV, Braga EA, Loginov VI. Methylation of the genes for the microRNAs miR-129-2 and miR-9-1, changes in their expression, and activation of their potential target genes in clear cell renal cell carcinoma. Mol Biol 2017. [DOI: 10.1134/s0026893316060169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Villacis RAR, Abreu FB, Miranda PM, Domingues MAC, Carraro DM, Santos EMM, Andrade VP, Rossi BM, Achatz MI, Rogatto SR. ROBO1 deletion as a novel germline alteration in breast and colorectal cancer patients. Tumour Biol 2016; 37:3145-53. [PMID: 26427657 DOI: 10.1007/s13277-015-4145-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 01/22/2023] Open
Abstract
Despite one third of breast (BC) and colorectal cancer (CRC) cases having a hereditary component, only a small proportion can be explained by germline mutations. The aim of this study was to identify potential genomic alterations related to cancer predisposition. Copy number variations (CNVs) were interrogated in 113 unrelated cases fulfilling the criteria for hereditary BC/CRC and presenting non-pathogenic mutations in BRCA1, BRCA2, MLH1, MSH2, TP53, and CHEK2 genes. An identical germline deep intronic deletion of ROBO1 was identified in three index patients using two microarray platforms (Agilent 4x180K and Affymetrix CytoScan HD). The ROBO1 deletion was confirmed by quantitative PCR (qPCR). Six relatives were also evaluated by CytoScan HD Array. Genomic analysis confirmed a co-segregation of the ROBO1 deletion with the occurrence of cancer in two families. Direct sequencing revealed no pathogenic ROBO1 point mutations. Transcriptomic analysis (HTA 2.0, Affymetrix) in two breast carcinomas from a single patient revealed ROBO1 down-expression with no splicing events near the intronic deletion. Deeper in silico analysis showed several enhancer regions and a histone methylation mark in the deleted region. The ROBO1 deletion in a putative transcriptional regulatory region, its down-expression in tumor samples, and the results of the co-segregation analysis revealing the presence of the alteration in affected individuals suggest a pathogenic effect of the ROBO1 in cancer predisposition.
Collapse
Affiliation(s)
- Rolando A R Villacis
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil
| | - Francine B Abreu
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil
| | - Priscila M Miranda
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil
| | - Maria A C Domingues
- Department of Pathology, Faculty of Medicine, University of São Paulo State (UNESP), Botucatu, SP, Brazil
| | - Dirce M Carraro
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil
| | | | - Victor P Andrade
- Department of Pathology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Maria I Achatz
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Silvia R Rogatto
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil.
- Department of Urology, Faculty of Medicine, University of São Paulo State (UNESP), CEP: 18618-970, Botucatu, SP, Brazil.
| |
Collapse
|
6
|
Expression and DNA methylation alterations of seven cancer-associated 3p genes and their predicted regulator miRNAs (miR-129-2, miR-9-1) in breast and ovarian cancers. Gene 2015; 576:483-91. [PMID: 26519551 DOI: 10.1016/j.gene.2015.10.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 01/05/2023]
Abstract
The methylation of promoter CpG islands and interactions between microRNAs (miRNAs) and messenger RNAs (mRNAs) of target genes are considered two crucial epigenetic mechanisms for inducing gene and pathway deregulation in tumors. Here, the expression levels of seven cancer-associated 3p genes (RASSF1(isoform A), RARB(isoform 2), SEMA3B, RHOA, GPX1, NKIRAS1, and CHL1) and their predicted regulator miRNAs (miR-129-2, miR-9-1) were analyzed in breast (BC, 40 samples) and ovarian (OC, 14 samples) cancers using RT-PCR and qPCR. We first revealed a negative correlation between the level of the miR-129-2 precursor and RASSF1(A) and GPX1 mRNA levels in BC (Spearman's correlation coefficient (rs) was − 0.26 in both cases). Similar results were observed for the miR-129-2 precursor and the RASSF1(A), GPX1, RARB(2), and CHL1 genes in OC (rs was in the range − 0.48 to − 0.54). Using methylation-specific PCR, a significant correlation was shown between promoter hypermethylation and the down-regulation of the RASSF1(A), GPX1, RARB(2), SEMA3B, MIR-129-2, and MIR-9-1 genes in BC (rs = 0.41 to 0.75) and of the RASSF1(A) gene in OC (rs = 0.67). We first demonstrated a high hypermethylation frequency of MIR-129-2 and SEMA3B (up to 45 to 48%) in both BC (69 samples) and OC (41 samples). Moreover, we observed a positive correlation between the hypermethylation of MIR-129-2 and the up-regulation of the RASSF1(A) and GPX1 genes in BC (rs = 0.38 and 0.42, respectively). QPCR analysis of the expression of RASSF1(A) and mature miR-129-2 in additional BC sample set (24 samples) revealed a negative correlation between them (rs = − 0.41) that strengthened the results obtained during the analysis of miR-129-2 precursor level. In summary, the obtained data indicate the involvement of methylation in the down-regulation of the studied coding and miRNA genes and suggest the involvement of miR-129-2 in the deregulation of RASSF1(A) via a direct interaction or/and mediators in common pathways (according to KEGG, Gene Ontology (FDR < 0.01), and GeneCards data) in the examined gynecological tumors.
Collapse
|
7
|
George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta L, Bosco G, Müller C, Dahmen I, Jahchan NS, Park KS, Yang D, Karnezis AN, Vaka D, Torres A, Wang MS, Korbel JO, Menon R, Chun SM, Kim D, Wilkerson M, Hayes N, Engelmann D, Pützer B, Bos M, Michels S, Vlasic I, Seidel D, Pinther B, Schaub P, Becker C, Altmüller J, Yokota J, Kohno T, Iwakawa R, Tsuta K, Noguchi M, Muley T, Hoffmann H, Schnabel PA, Petersen I, Chen Y, Soltermann A, Tischler V, Choi CM, Kim YH, Massion PP, Zou Y, Jovanovic D, Kontic M, Wright GM, Russell PA, Solomon B, Koch I, Lindner M, Muscarella LA, la Torre A, Field JK, Jakopovic M, Knezevic J, Castaños-Vélez E, Roz L, Pastorino U, Brustugun OT, Lund-Iversen M, Thunnissen E, Köhler J, Schuler M, Botling J, Sandelin M, Sanchez-Cespedes M, Salvesen HB, Achter V, Lang U, Bogus M, Schneider PM, Zander T, Ansén S, Hallek M, Wolf J, Vingron M, Yatabe Y, Travis WD, Nürnberg P, Reinhardt C, Perner S, Heukamp L, Büttner R, Haas SA, Brambilla E, Peifer M, Sage J, Thomas RK. Comprehensive genomic profiles of small cell lung cancer. Nature 2015; 524:47-53. [PMID: 26168399 DOI: 10.1038/nature14664] [Citation(s) in RCA: 1660] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023]
Abstract
We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.
Collapse
Affiliation(s)
- Julie George
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Jing Shan Lim
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Se Jin Jang
- Department of Pathology and Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Yupeng Cun
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Luka Ozretić
- Department of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University. 222 Wangsimniro, Seongdong-gu, Seoul 133-791, Korea
| | - Frauke Leenders
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Xin Lu
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Lynnette Fernández-Cuesta
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Graziella Bosco
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Christian Müller
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ilona Dahmen
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Nadine S Jahchan
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Kwon-Sik Park
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Dian Yang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Anthony N Karnezis
- Vancouver General Hospital, Terry Fox laboratory, Vancouver, British Columbia V5Z 1L3, Canada
| | - Dedeepya Vaka
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Angela Torres
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Maia Segura Wang
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Roopika Menon
- Institute of Pathology, Center of Integrated Oncology Cologne-Bonn, University Hospital of Bonn, 53127 Bonn, Germany
| | - Sung-Min Chun
- Department of Pathology and Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Deokhoon Kim
- Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Matt Wilkerson
- Department of Genetics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, North Carolina 27599-7295, USA
| | - Neil Hayes
- UNC Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, North Carolina 27599-7295, USA
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Marc Bos
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Sebastian Michels
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany
| | - Ignacija Vlasic
- Department of Internal Medicine, University Hospital of Cologne, 50931 Cologne, Germany
| | - Danila Seidel
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Berit Pinther
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Philipp Schaub
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Christian Becker
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- 1] Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany. [2] Institute of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
| | - Jun Yokota
- 1] Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 1040045, Japan. [2] Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona 08916, Spain
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 1040045, Japan
| | - Reika Iwakawa
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 1040045, Japan
| | - Koji Tsuta
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital Chuo-ku, Tokyo 1040045, Japan
| | - Masayuki Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Thomas Muley
- 1] Thoraxklinik at University Hospital Heidelberg, Amalienstrasse 5, 69126 Heidelberg, Germany. [2] Translational Lung Research Center Heidelberg (TLRC-H), Member of German Center for Lung Research (DZL), Amalienstrasse 5, 69126 Heidelberg, Germany
| | - Hans Hoffmann
- Thoraxklinik at University Hospital Heidelberg, Amalienstrasse 5, 69126 Heidelberg, Germany
| | - Philipp A Schnabel
- 1] Translational Lung Research Center Heidelberg (TLRC-H), Member of German Center for Lung Research (DZL), Amalienstrasse 5, 69126 Heidelberg, Germany. [2] Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 220, 69120 Heidelberg, Germany
| | - Iver Petersen
- Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yuan Chen
- Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Alex Soltermann
- Institute of Surgical Pathology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Verena Tischler
- Institute of Surgical Pathology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Chang-min Choi
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Yong-Hee Kim
- Department of Thoracic and Cardiovascular Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Pierre P Massion
- Thoracic Program, Vanderbilt-Ingram Cancer Center PRB 640, 2220 Pierce Avenue, Nashville, Tennessee 37232, USA
| | - Yong Zou
- Thoracic Program, Vanderbilt-Ingram Cancer Center PRB 640, 2220 Pierce Avenue, Nashville, Tennessee 37232, USA
| | - Dragana Jovanovic
- University Hospital of Pulmonology, Clinical Center of Serbia, Medical School, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Kontic
- University Hospital of Pulmonology, Clinical Center of Serbia, Medical School, University of Belgrade, 11000 Belgrade, Serbia
| | - Gavin M Wright
- Department of Surgery, St. Vincent's Hospital, Peter MacCallum Cancer Centre, 3065 Melbourne, Victoria, Australia
| | - Prudence A Russell
- Department of Pathology, St. Vincent's Hospital, Peter MacCallum Cancer Centre, 3065 Melbourne, Victoria, Australia
| | - Benjamin Solomon
- Department of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, 3065 Melbourne, Victoria, Australia
| | - Ina Koch
- Asklepios Biobank für Lungenerkrankungen, Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Asklepios Fachkliniken München-Gauting 82131, Germany
| | - Michael Lindner
- Asklepios Biobank für Lungenerkrankungen, Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Asklepios Fachkliniken München-Gauting 82131, Germany
| | - Lucia A Muscarella
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni, Rotondo, Italy
| | - Annamaria la Torre
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni, Rotondo, Italy
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool Cancer Research Centre, 200 London Road, L69 3GA Liverpool, UK
| | - Marko Jakopovic
- University of Zagreb, School of Medicine, Department for Respiratory Diseases Jordanovac, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Jelena Knezevic
- Laboratory for Translational Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | | | - Luca Roz
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS - Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Odd-Terje Brustugun
- 1] Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0424 Oslo, Norway. [2] Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Marius Lund-Iversen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Jens Köhler
- 1] West German Cancer Center, Department of Medical Oncology, University Hospital Essen, 45147 Essen, Germany. [2] German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Martin Schuler
- 1] West German Cancer Center, Department of Medical Oncology, University Hospital Essen, 45147 Essen, Germany. [2] German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Johan Botling
- Departments of Immunology, Genetics and Pathology, and Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, 75185 Uppsala, Sweden
| | - Martin Sandelin
- Departments of Immunology, Genetics and Pathology, and Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, 75185 Uppsala, Sweden
| | - Montserrat Sanchez-Cespedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Helga B Salvesen
- 1] Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, N-5058 Bergen, Norway. [2] Department of Gynecology and Obstetrics, Haukeland University Hospital, N-5058 Bergen, Norway
| | - Viktor Achter
- Computing Center, University of Cologne, 50931 Cologne, Germany
| | - Ulrich Lang
- 1] Computing Center, University of Cologne, 50931 Cologne, Germany. [2] Department of Informatics, University of Cologne, 50931 Cologne, Germany
| | - Magdalena Bogus
- Institute of Legal Medicine, University of Cologne, 50823 Cologne, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, University of Cologne, 50823 Cologne, Germany
| | - Thomas Zander
- Gastrointestinal Cancer Group Cologne, Center of Integrated Oncology Cologne-Bonn, Department I for Internal Medicine, University Hospital of Cologne, 50937 Cologne, Germany
| | - Sascha Ansén
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany
| | - Michael Hallek
- 1] Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany. [2] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jürgen Wolf
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany
| | - Martin Vingron
- Computational Molecular Biology Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, 464-8681 Nagoya, Japan
| | - William D Travis
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Peter Nürnberg
- 1] Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany. [2] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany. [3] Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Christian Reinhardt
- Department of Internal Medicine, University Hospital of Cologne, 50931 Cologne, Germany
| | - Sven Perner
- Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Lukas Heukamp
- Department of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Reinhard Büttner
- Department of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Stefan A Haas
- Computational Molecular Biology Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Elisabeth Brambilla
- Department of Pathology, CHU Grenoble INSERM U823, University Joseph Fourier, Institute Albert Bonniot 38043, CS10217 Grenoble, France
| | - Martin Peifer
- 1] Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany. [2] Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Roman K Thomas
- 1] Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany. [2] Department of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| |
Collapse
|
8
|
Loginov VI, Dmitriev AA, Senchenko VN, Pronina IV, Khodyrev DS, Kudryavtseva AV, Krasnov GS, Gerashchenko GV, Chashchina LI, Kazubskaya TP, Kondratieva TT, Lerman MI, Angeloni D, Braga EA, Kashuba VI. Tumor Suppressor Function of the SEMA3B Gene in Human Lung and Renal Cancers. PLoS One 2015; 10:e0123369. [PMID: 25961819 PMCID: PMC4427300 DOI: 10.1371/journal.pone.0123369] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/05/2015] [Indexed: 12/26/2022] Open
Abstract
The SEMA3B gene is located in the 3p21.3 LUCA region, which is frequently affected in different types of cancer. The objective of our study was to expand our knowledge of the SEMA3B gene as a tumor suppressor and the mechanisms of its inactivation. In this study, several experimental approaches were used: tumor growth analyses and apoptosis assays in vitro and in SCID mice, expression and methylation assays and other. With the use of the small cell lung cancer cell line U2020 we confirmed the function of SEMA3B as a tumor suppressor, and showed that the suppression can be realized through the induction of apoptosis and, possibly, associated with the inhibition of angiogenesis. In addition, for the first time, high methylation frequencies have been observed in both intronic (32-39%) and promoter (44-52%) CpG-islands in 38 non-small cell lung carcinomas, including 16 squamous cell carcinomas (SCC) and 22 adenocarcinomas (ADC), and in 83 clear cell renal cell carcinomas (ccRCC). Correlations between the methylation frequencies of the promoter and the intronic CpG-islands of SEMA3B with tumor stage and grade have been revealed for SCC, ADC and ccRCC. The association between the decrease of the SEMA3B mRNA level and hypermethylation of the promoter and the intronic CpG-islands has been estimated in renal primary tumors (P < 0.01). Using qPCR, we observed on the average 10- and 14-fold decrease of the SEMA3B mRNA level in SCC and ADC, respectively, and a 4-fold decrease in ccRCC. The frequency of this effect was high in both lung (92-95%) and renal (84%) tumor samples. Moreover, we showed a clear difference (P < 0.05) of the SEMA3B relative mRNA levels in ADC with and without lymph node metastases. We conclude that aberrant expression and methylation of SEMA3B could be suggested as markers of lung and renal cancer progression.
Collapse
MESH Headings
- Animals
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- CpG Islands
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Humans
- Kidney/metabolism
- Kidney/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Lung/metabolism
- Lung/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Membrane Glycoproteins/genetics
- Mice, SCID
- Neoplasms, Squamous Cell/genetics
- Neoplasms, Squamous Cell/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Promoter Regions, Genetic
- Semaphorins/genetics
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/pathology
Collapse
Affiliation(s)
- Vitaly I. Loginov
- Laboratory of Pathogenomics and Transcriptomics, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315, Moscow, Russia
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Center of Medical Genetics, Russian Academy of Medical Sciences, 115478, Moscow, Russia
| | - Alexey A. Dmitriev
- Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Department of Pathomorphology, P.A. Herzen Moscow Cancer Research Institute, Ministry of Healthcare of the Russian Federation, 125284, Moscow, Russia
| | - Vera N. Senchenko
- Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Irina V. Pronina
- Laboratory of Pathogenomics and Transcriptomics, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315, Moscow, Russia
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Center of Medical Genetics, Russian Academy of Medical Sciences, 115478, Moscow, Russia
| | - Dmitry S. Khodyrev
- Laboratory of Genetics, Federal Research Clinical Center of Federal Medical and Biological Agency of Russia, 115682, Moscow, Russia
| | - Anna V. Kudryavtseva
- Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Department of Pathomorphology, P.A. Herzen Moscow Cancer Research Institute, Ministry of Healthcare of the Russian Federation, 125284, Moscow, Russia
| | - George S. Krasnov
- Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
- Laboratory of Biotechnology, Mechnikov Research Institute for Vaccines and Sera, Russian Academy of Medical Sciences, 105064, Moscow, Russia
| | - Ganna V. Gerashchenko
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680, Kiev, Ukraine
| | - Larisa I. Chashchina
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680, Kiev, Ukraine
| | - Tatiana P. Kazubskaya
- Research Institute of Clinical Oncology, N.N. Blokhin Cancer Research Center, Russian Academy of Medical Sciences, 115478, Moscow, Russia
| | - Tatiana T. Kondratieva
- Research Institute of Clinical Oncology, N.N. Blokhin Cancer Research Center, Russian Academy of Medical Sciences, 115478, Moscow, Russia
| | | | - Debora Angeloni
- The Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy
- Istituto Toscano Tumori, 56124, Pisa, Italy
| | - Eleonora A. Braga
- Laboratory of Pathogenomics and Transcriptomics, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315, Moscow, Russia
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Center of Medical Genetics, Russian Academy of Medical Sciences, 115478, Moscow, Russia
- Laboratory of Post Genomic Molecular Genetic Research, Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Vladimir I. Kashuba
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680, Kiev, Ukraine
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-17177, Stockholm, Sweden
| |
Collapse
|
9
|
Braga EA, Loginov VI, Pronina IV, Khodyrev DS, Rykov SV, Burdennyy AM, Friedman MV, Kazubskaya TP, Kubatiev AA, Kushlinskii NE. Upregulation of RHOA and NKIRAS1 genes in lung tumors is associated with loss of their methylation as well as with methylation of regulatory miRNA genes. BIOCHEMISTRY (MOSCOW) 2015; 80:483-94. [DOI: 10.1134/s0006297915040124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Mano Y, Aishima S, Fukuhara T, Tanaka Y, Kubo Y, Motomura T, Toshima T, Iguchi T, Shirabe K, Maehara Y, Oda Y. Decreased roundabout 1 expression promotes development of intrahepatic cholangiocarcinoma. Hum Pathol 2013; 44:2419-26. [PMID: 23953227 DOI: 10.1016/j.humpath.2013.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 01/07/2023]
Abstract
Roundabout 1 (Robo1) is a transmembrane receptor of the immunoglobulin family. Slit2 is one of its ligands. The function of Slit2/Robo1 signaling in the development of intrahepatic cholangiocarcinoma (ICC) remains to be elucidated. We examined the immunohistochemical expression of Robo1 and Slit2 and their clinicopathologic implications in 132 cases of ICC. Also, small interfering RNA of Robo1 was transfected into a high-expression ICC cell line, and a Robo1 vector was transfected into a low-Robo1 expression ICC cell line. The effect of Robo1 suppression and overexpression in cell proliferation and migration of cultured ICC cells with Slit2 stimulation was investigated. Immunohistochemical study of ICC in the low-Robo1 expression group showed larger tumors (P = .015), a higher Ki-67 labeling index (P = .021), and low expression of Slit2 (P = .0005). The low-Slit2 expression group frequently showed perineural invasion (P = .036) and lymph node metastases (P = .013). Low Robo1 expression was associated with a poor prognosis (P = .0207). Robo1 suppression in Huh28 cells tended to promote cell proliferation and migration, whereas Robo1 overexpression in RBE cells significantly suppressed cell proliferation and migration. Low Robo1 expression was associated with cell proliferation and migration in ICC and was one of the adverse prognostic factors in patients with these tumors.
Collapse
Affiliation(s)
- Yohei Mano
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shao C, Yang B, Zhao L, Wang S, Zhang J, Wang K. Tumor suppressor gene RBM5 delivered by attenuated Salmonella inhibits lung adenocarcinoma through diverse apoptotic signaling pathways. World J Surg Oncol 2013; 11:123. [PMID: 23721095 PMCID: PMC3673837 DOI: 10.1186/1477-7819-11-123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/16/2013] [Indexed: 12/31/2022] Open
Abstract
Background RBM5 (RNA-binding motif protein 5, also named H37/LUCA-15) gene from chromosome 3p21.3 has been demonstrated to be a tumor suppressor. Current researches in vitro confirm that RBM5 can suppress the growth of lung adenocarcinoma cells by inducing apoptosis. There is still no effective model in vivo, however, that thoroughly investigates the effect and molecular mechanism of RBM5 on lung adenocarcinoma. Method We established the transplanted tumor model on BALB/c nude mice using the A549 cell line. The mice were treated with the recombinant plasmids carried by attenuated Salmonella to induce the overexpression of RBM5 in tumor tissues. RBM5 overexpression was confirmed by immunohistochemistry staining. H&E staining was performed to observe the histological performance on plasmids-treated A549 xenografts. Apoptosis was assessed by TUNEL staining with a TUNEL detection kit. Apoptosis-regulated genes were detected by Western blot. Results We successful established the lung adenocarcinoma animal model in vivo. The growth of tumor xenografts was significantly retarded on the mice treated with pcDNA3.1-RBM5 carried by attenuated Salmonella compared to that on mice treated with pcDNA3.1. Overexpression of RBM5 enhanced the apoptosis in tumor xenografts. Furthermore, the expression of Bcl-2 protein was decreased significantly, while the expression of BAX, TNF-α, cleaved caspase-3, cleaved caspase-8, cleaved caspase-9 and cleaved PARP proteins was significantly increased in the pcDNA3.1-RBM5-treated mice as compared to that in the control mice. Conclusions In this study, we established a novel animal model to determine RBM5 function in vivo, and concluded that RBM5 inhibited tumor growth in mice by inducing apoptosis. The study suggests that although RBM5’s involvement in the death receptor-mediated apoptotic pathway is still to be investigated, RBM5-mediated growth suppression, at least in part, employs regulation of the mitochondrial apoptotic pathways.
Collapse
Affiliation(s)
- Chen Shao
- Department of Respiratory Medicine, Second Affiliated Hospital of Jilin University, 18 Ziqiang Street, Changchun, Jilin 130041, China
| | | | | | | | | | | |
Collapse
|
12
|
Frese KS, Katus HA, Meder B. Next-generation sequencing: from understanding biology to personalized medicine. BIOLOGY 2013; 2:378-98. [PMID: 24832667 PMCID: PMC4009863 DOI: 10.3390/biology2010378] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 01/21/2013] [Accepted: 02/04/2013] [Indexed: 12/11/2022]
Abstract
Within just a few years, the new methods for high-throughput next-generation sequencing have generated completely novel insights into the heritability and pathophysiology of human disease. In this review, we wish to highlight the benefits of the current state-of-the-art sequencing technologies for genetic and epigenetic research. We illustrate how these technologies help to constantly improve our understanding of genetic mechanisms in biological systems and summarize the progress made so far. This can be exemplified by the case of heritable heart muscle diseases, so-called cardiomyopathies. Here, next-generation sequencing is able to identify novel disease genes, and first clinical applications demonstrate the successful translation of this technology into personalized patient care.
Collapse
Affiliation(s)
- Karen S Frese
- Department of Internal Medicine III, University of Heidelberg, Heidelberg 69120, Germany.
| | - Hugo A Katus
- Department of Internal Medicine III, University of Heidelberg, Heidelberg 69120, Germany.
| | - Benjamin Meder
- Department of Internal Medicine III, University of Heidelberg, Heidelberg 69120, Germany.
| |
Collapse
|
13
|
Khodyrev DS, Pronina IV, Rykov SV, Beresneva EV, Freedman MV, Kazubskaya TP, Loginov VI, Braga EA. Involvement of methylation of group of miRNA genes in regulation of expression of RAR-beta2 and NKIRAS1 target genes in lung cancer. Mol Biol 2012. [DOI: 10.1134/s002689331205007x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Shao C, Zhao L, Wang K, Xu W, Zhang J, Yang B. The tumor suppressor gene RBM5 inhibits lung adenocarcinoma cell growth and induces apoptosis. World J Surg Oncol 2012; 10:160. [PMID: 22866867 PMCID: PMC3502321 DOI: 10.1186/1477-7819-10-160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/15/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The loss of tumor suppressor gene (TSG) function is a critical step in the pathogenesis of human lung cancer. RBM5 (RNA-binding motif protein 5, also named H37/LUCA-15) gene from chromosome 3p21.3 demonstrated tumor suppressor activity. However, the role of RBM5 played in the occurrence and development of lung cancer is still not well understood. METHOD Paired non-tumor and tumor tissues were obtained from 30 adenocarcinomas. The expression of RBM5 mRNA and protein was examined by RT-PCR and Western blot. A549 cell line was used to determine the apoptotic function of RBM5 in vitro. A549 cells were transiently transfected with pcDNA3.1-RBM5. AnnexinV analysis was performed by flow cytometry. Expression of Bcl-2, cleaved caspase-3, caspase-9 and PAPP proteins in A549 lung cancer cells and the A549 xenograft BALB/c nude mice model was determined by Western blot. Tumor suppressor activity of RBM5 was also examined in the A549 xenograft model treated with pcDNA3.1-RBM5 plasmid carried by attenuated Salmonella typhi Ty21a. RESULT The expression of RBM5 mRNA and protein was decreased significantly in adenocarcinoma tissues compared to that in the non-tumor tissues. In addition, as compared to the vector control, a significant growth inhibition of A549 lung cancer cells was observed when transfected with pcDNA3.1-RBM5 as determined by cell proliferation assay. We also found that overexpression of RBM5 induced both early and late apoptosis in A549 cells using AnnexinV/PI staining as determined by flow cytometry. Furthermore, the expression of Bcl-2 protein was decreased, whereas the expression of cleaved caspase-3, caspase-9 and PARP proteins was significantly increased in the RBM5 transfected cells; similarly, expression of decreased Bcl-2 and increased cleaved caspase-3 proteins was also examined in the A549 xenograft model. More importantly, we showed that accumulative and stable overexpression of RBM5 in the A549 xenograft BALB/c nude mice model significantly inhibited the tumor growth rate in vivo as compared to that in the control. CONCLUSION Our study demonstrates that RBM5 can inhibit the growth of lung cancer cells and induce apoptosis both in vitro and in vivo, which suggests that RBM5 might be used as a potential biomarker or target for lung cancer diagnosis and chemotherapy. Moreover, we propose a novel animal model set up in BALB/c nude mice treated with attenuated Salmonella as a vector carrying plasmids to determine RBM5 function in vivo.
Collapse
Affiliation(s)
- Chen Shao
- Department of Pathophysiology, Norman Bethune College of Medicine of Jilin University, Changchun, Jilin 130021, China
| | | | | | | | | | | |
Collapse
|
15
|
Mitra S, Mazumder-Indra D, Mondal RK, Basu PS, Roy A, Roychoudhury S, Panda CK. Inactivation of SLIT2-ROBO1/2 pathway in premalignant lesions of uterine cervix: clinical and prognostic significances. PLoS One 2012; 7:e38342. [PMID: 22719878 PMCID: PMC3374764 DOI: 10.1371/journal.pone.0038342] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/03/2012] [Indexed: 01/24/2023] Open
Abstract
The SLIT2-ROBO1/2 pathways control diverse biological processes, including growth regulation. To understand the role of SLIT2 and ROBO1/2 in cervical carcinogenesis, firstly their RNA expression profiles were screened in 21 primary uterine cervical carcinoma (CACX) samples and two CACX cell lines. Highly reduced expressions of these genes were evident. Concomitant alterations [deletion/methylation] of the genes were then analyzed in 23 cervical intraepithelial neoplasia (CIN) and 110 CACX samples. In CIN, SLIT2 was deleted in 22% samples compared to 9% for ROBO1 and none for ROBO2, whereas comparable methylation was observed for both SLIT2 (30%) and ROBO1 (22%) followed by ROBO2 (9%). In CACX, alteration of the genes were in the following order: Deletion:ROBO1 (48%) > SLIT2 (35%) > ROBO2 (33%), Methylation:SLIT2 (34%) > ROBO1 (29%) > ROBO2 (26%). Overall alterations of SLIT2 and/or ROBO1 (44%) and SLIT2 and/or ROBO2 (39%) were high in CIN followed by significant increase in stage I/II tumors, suggesting deregulation of these interactions in premalignant lesions and early invasive tumors. Immunohistochemical analysis of SLIT2 and ROBO1/2 in CACX also showed reduced expression concordant with molecular alterations. Alteration of all these genes predicted poor patient outcome. Multiparous (≥ 5) women with altered SLIT2 and ROBO1 along with advanced tumor stage (III/IV) and early sexual debut (<19 years) had worst prognosis. Our data suggests the importance of abrogation of SLIT2-ROBO1 and SLIT2-ROBO2 interactions in the initiation and progression of CACX and also for early diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Sraboni Mitra
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Dipanjana Mazumder-Indra
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Ranajit K. Mondal
- Department of Gynaecology Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Partha S. Basu
- Department of Gynaecology Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Anup Roy
- North Bengal Medical College, Siliguri, West Bengal, India
| | - Susanta Roychoudhury
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Chinmay K. Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| |
Collapse
|
16
|
Pronina IV, Loginov VI, Khodyrev DS, Kazubskaya TP, Braga EA. RASSF1A expression level in primary epithelial tumors of various locations. Mol Biol 2012. [DOI: 10.1134/s0026893312010189] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Jarinova O, Ekker M. Regulatory variations in the era of next-generation sequencing: Implications for clinical molecular diagnostics. Hum Mutat 2012; 33:1021-30. [DOI: 10.1002/humu.22083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/06/2012] [Indexed: 01/05/2023]
|
18
|
Abstract
The Slit family of secreted proteins and their transmembrane receptor, Robo, were originally identified in the nervous system where they function as axon guidance cues and branching factors during development. Since their discovery, a great number of additional roles have been attributed to Slit/Robo signaling, including regulating the critical processes of cell proliferation and cell motility in a variety of cell and tissue types. These processes are often deregulated during cancer progression, allowing tumor cells to bypass safeguarding mechanisms in the cell and the environment in order to grow and escape to new tissues. In the past decade, it has been shown that the expression of Slit and Robo is altered in a wide variety of cancer types, identifying them as potential therapeutic targets. Further, studies have demonstrated dual roles for Slits and Robos in cancer, acting as both oncogenes and tumor suppressors. This bifunctionality is also observed in their roles as axon guidance cues in the developing nervous system, where they both attract and repel neuronal migration. The fact that this signaling axis can have opposite functions depending on the cellular circumstance make its actions challenging to define. Here, we summarize our current understanding of the dual roles that Slit/Robo signaling play in development, epithelial tumor progression, and tumor angiogenesis.
Collapse
Affiliation(s)
- Mimmi S. Ballard
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| |
Collapse
|
19
|
Birch AH, Arcand SL, Oros KK, Rahimi K, Watters AK, Provencher D, Greenwood CM, Mes-Masson AM, Tonin PN. Chromosome 3 anomalies investigated by genome wide SNP analysis of benign, low malignant potential and low grade ovarian serous tumours. PLoS One 2011; 6:e28250. [PMID: 22163003 PMCID: PMC3232202 DOI: 10.1371/journal.pone.0028250] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/04/2011] [Indexed: 02/01/2023] Open
Abstract
Ovarian carcinomas exhibit extensive heterogeneity, and their etiology remains unknown. Histological and genetic evidence has led to the proposal that low grade ovarian serous carcinomas (LGOSC) have a different etiology than high grade carcinomas (HGOSC), arising from serous tumours of low malignant potential (LMP). Common regions of chromosome (chr) 3 loss have been observed in all types of serous ovarian tumours, including benign, suggesting that these regions contain genes important in the development of all ovarian serous carcinomas. A high-density genome-wide genotyping bead array technology, which assayed >600,000 markers, was applied to a panel of serous benign and LMP tumours and a small set of LGOSC, to characterize somatic events associated with the most indolent forms of ovarian disease. The genomic patterns inferred were related to TP53, KRAS and BRAF mutations. An increasing frequency of genomic anomalies was observed with pathology of disease: 3/22 (13.6%) benign cases, 40/53 (75.5%) LMP cases and 10/11 (90.9%) LGOSC cases. Low frequencies of chr3 anomalies occurred in all tumour types. Runs of homozygosity were most commonly observed on chr3, with the 3p12-p11 candidate tumour suppressor region the most frequently homozygous region in the genome. An LMP harboured a homozygous deletion on chr6 which created a GOPC-ROS1 fusion gene, previously reported as oncogenic in other cancer types. Somatic TP53, KRAS and BRAF mutations were not observed in benign tumours. KRAS-mutation positive LMP cases displayed significantly more chromosomal aberrations than BRAF-mutation positive or KRAS and BRAF mutation negative cases. Gain of 12p, which harbours the KRAS gene, was particularly evident. A pathology review reclassified all TP53-mutation positive LGOSC cases, some of which acquired a HGOSC status. Taken together, our results support the view that LGOSC could arise from serous benign and LMP tumours, but does not exclude the possibility that HGOSC may derive from LMP tumours.
Collapse
Affiliation(s)
- Ashley H. Birch
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Suzanna L. Arcand
- The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kathleen K. Oros
- Division of Clinical Epidemiology and Segal Cancer Centre, Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
| | - Kurosh Rahimi
- Department of Pathology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
| | - A. Kevin Watters
- Department of Pathology, McGill University and McGill University Health Centre (MUHC), Montréal, Canada
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Institut du cancer de Montréal, Montreal, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montreal, Canada
| | - Celia M. Greenwood
- Division of Clinical Epidemiology and Segal Cancer Centre, Lady Davis Research Institute, Jewish General Hospital, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Institut du cancer de Montréal, Montreal, Canada
- Department of Medicine, Université de Montréal, Montreal, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, Canada
- The Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
20
|
Mattick JS. The central role of RNA in human development and cognition. FEBS Lett 2011; 585:1600-16. [DOI: 10.1016/j.febslet.2011.05.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/03/2011] [Indexed: 12/22/2022]
|
21
|
Cody NAL, Shen Z, Ripeau JS, Provencher DM, Mes-Masson AM, Chevrette M, Tonin PN. Characterization of the 3p12.3-pcen region associated with tumor suppression in a novel ovarian cancer cell line model genetically modified by chromosome 3 fragment transfer. Mol Carcinog 2009; 48:1077-92. [PMID: 19347865 DOI: 10.1002/mc.20535] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The genetic analysis of nontumorigenic radiation hybrids generated by transfer of chromosome 3 fragments into the tumorigenic OV-90 ovarian cancer cell line identified the 3p12.3-pcen region as a candidate tumor suppressor gene (TSG) locus. In the present study, polymorphic microsatellite repeat analysis of the hybrids further defined the 3p12.3-pcen interval to a 16.1 Mb common region containing 12 known or hypothetical genes: 3ptel-ROBO2-ROBO1-GBE1-CADM2-VGLL3-CHMP2B-POU1F1-HTR1F-CGGBP1-ZNF654-C3orf38-EPHA3-3pcen. Seven of these genes, ROBO1, GBE1, VGLL3, CHMP2B, CGGBP1, ZNF654, and C3orf38, exhibited gene expression in the hybrids, placing them as top TSG candidates for further analysis. The expression of all but one (VGLL3) of these genes was also detected in the parental OV-90 cell line. Mutations were not identified in a comparative sequence analysis of the predicted protein coding regions of these candidates in OV-90 and donor normal chromosome 3 contig. However, the nondeleterious sequence variants identified in the transcribed regions distinguished parent of origin alleles for ROBO1, VGLL3, CHMP2B, and CGGBP1 and cDNA sequencing of the hybrids revealed biallelic expression of these genes. Interestingly, underexpression of VGLL3 and ZNF654 were observed in malignant ovarian tumor samples as compared with primary cultures of normal ovarian surface epithelial cells or benign ovarian tumors, and this occurred regardless of allelic content of 3p12.3-pcen. The results taken together suggest that dysregulation of VGLL3 and/or ZNF654 expression may have affected pathways important in ovarian tumorigenesis which was offset by the transfer of chromosome 3 fragments in OV-90, a cell line hemizygous for 3p.
Collapse
Affiliation(s)
- Neal A L Cody
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1A4
| | | | | | | | | | | | | |
Collapse
|
22
|
Dinger ME, Amaral PP, Mercer TR, Mattick JS. Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:407-23. [PMID: 19770204 DOI: 10.1093/bfgp/elp038] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genome-wide analyses of the eukaryotic transcriptome have revealed that the majority of the genome is transcribed, producing large numbers of non-protein-coding RNAs (ncRNAs). This surprising observation challenges many assumptions about the genetic programming of higher organisms and how information is stored and organized within the genome. Moreover, the rapid advances in genomics have given little opportunity for biologists to integrate these emerging findings into their intellectual and experimental frameworks. This problem has been compounded by the perception that genome-wide studies often generate more questions than answers, which in turn has led to confusion and controversy. In this article, we address common questions associated with the phenomenon of pervasive transcription and consider the indices that can be used to evaluate the function (or lack thereof) of the resulting ncRNAs. We suggest that many lines of evidence, including expression profiles, conservation signatures, chromatin modification patterns and examination of increasing numbers of individual cases, argue in favour of the widespread functionality of non-coding transcription. We also discuss how informatic and experimental approaches used to analyse protein-coding genes may not be applicable to ncRNAs and how the general perception that protein-coding genes form the main informational output of the genome has resulted in much of the misunderstanding surrounding pervasive transcription and its potential significance. Finally, we present the conceptual implications of the majority of the eukaryotic genome being functional and describe how appreciating this perspective will provide considerable opportunity to further understand the molecular basis of development and complex diseases.
Collapse
Affiliation(s)
- Marcel E Dinger
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
23
|
Pronina IV, Loginov VI, Prasolov VS, Klimov EA, Khodyrev DS, Kazubskaya TP, Gar’kavtseva RF, Sulimova GE, Braga EA. Altered expression of the SEMA3B gene in epithelial tumors. Mol Biol 2009. [DOI: 10.1134/s002689330903008x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Abstract
The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non-protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses.
Collapse
Affiliation(s)
- John S Mattick
- Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia.
| |
Collapse
|
25
|
Ghosh S, Ghosh A, Maiti GP, Alam N, Roy A, Roychoudhury S, Panda CK. Alterations of ROBO1/DUTT1 and ROBO2 loci in early dysplastic lesions of head and neck: clinical and prognostic implications. Hum Genet 2009; 125:189-98. [PMID: 19104841 DOI: 10.1007/s00439-008-0610-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 12/13/2008] [Indexed: 11/25/2022]
Abstract
Deletion of chromosomal 3p12.3 was suggested to be associated with dysplastic lesions of head and neck. This region harbors two candidate tumor suppressors ROBO1/DUTT1, ROBO2 and two non-coding RNAs (ncRNAs) located at intron 2 of ROBO1/DUTT1. Aim of this study is to understand the role of these genes in development of head and neck squamous cell carcinoma. A collection of 72 dysplastic lesions and 116 HNSCC samples and two oral cancer cell lines were analyzed for ROBO1/DUTT1 and ROBO2 deletion and promoter methylation. ROBO1/DUTT1, ROBO2 and two ncRNAs mRNA expression were analyzed by Q-PCR. Immunohistochemical analysis of ROBO1/DUTT1 and ROBO2 was performed. Alterations of these genes were correlated with different clinicopathological parameters. High frequency of molecular alterations (deletion/methylation) was seen in ROBO1/DUTT1 than ROBO2. In mild dysplastic lesions both of these genes showed high molecular alterations and remained more or less constant in subsequent stages. Q-PCR analysis showed reduced expression of these genes and the two ncRNAs. In vitro demethylation experiment by 5-aza-dC showed upregulation of ROBO1/DUTT1 and ROBO2 while the expression of the ncRNAs remained unchanged. Immunohistochemical analysis of ROBO1/DUTT1 and ROBO2 showed concordance with their mRNA expression and molecular alterations. Poor patients' outcome was predicted in the cases with alteration of ROBO1/DUTT1 along with tobacco addiction and nodal involvement. Our data suggests (a) ROBO1/DUTT1 and the ncRNAs are transcribed from different promoters, and (b) inactivation of ROBO1/DUTT1 could be used as molecular signature for early detection and prognosis of the head and neck cancer.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | | | | | | | | | | | | |
Collapse
|
26
|
Brito GC, Fachel AA, Vettore AL, Vignal GM, Gimba ERP, Campos FS, Barcinski MA, Verjovski-Almeida S, Reis EM. Identification of protein-coding and intronic noncoding RNAs down-regulated in clear cell renal carcinoma. Mol Carcinog 2008; 47:757-67. [PMID: 18348187 DOI: 10.1002/mc.20433] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The clear cell subtype of renal cell carcinoma (RCC) is the most lethal and prevalent cancer of the urinary system. To investigate the molecular changes associated with malignant transformation in clear cell RCC, the gene expression profiles of matched samples of tumor and adjacent non-neoplastic tissue were obtained from six patients. A custom-built cDNA microarray platform was used, comprising 2292 probes that map to exons of genes and 822 probes for noncoding RNAs mapping to intronic regions. Intronic transcription was detected in all normal and neoplastic renal tissues. A subset of 55 transcripts was significantly down-regulated in clear cell RCC relative to the matched nontumor tissue as determined by a combination of two statistical tests and leave-one-out patient cross-validation. Among the down-regulated transcripts, 49 mapped to untranslated or coding exons and 6 were intronic relative to known exons of protein-coding genes. Lower levels of expression of SIN3B, TRIP3, SYNJ2BP and NDE1 (P < 0.02), and of intronic transcripts derived from SND1 and ACTN4 loci (P < 0.05), were confirmed in clear cell RCC by Real-time RT-PCR. A subset of 25 transcripts was deregulated in additional six nonclear cell RCC samples, pointing to common transcriptional alterations in RCC irrespective of the histological subtype or differentiation state of the tumor. Our results indicate a novel set of tumor suppressor gene candidates, including noncoding intronic RNAs, which may play a significant role in malignant transformations of normal renal cells.
Collapse
Affiliation(s)
- Glauber Costa Brito
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Small cell lung carcinoma (SCLC) accounts for approximately 15% of all lung cancer cases. Despite a frequently good response to first-line treatment with chemotherapy and/or radiotherapy, early relapse occurs in the majority of patients and 5-year survival is only about 5%. Therefore, there is a need to develop novel treatments to improve the outcome of patients with SCLC. To fulfil this need, it is critical to gain further understanding on the molecular basis of SCLC and specifically to identify novel therapeutic targets. Clinical trials with molecularly targeted agents have been performed with little success in the past, but recently many promising oncogenic pathways have been discovered and novel targeted therapies are under evaluation. In this review, we summarise the most relevant genetic and signalling pathway alterations reported to date in SCLC and discuss the potential therapeutic implications of such events.
Collapse
|
28
|
Mallardo M, Poltronieri P, D'Urso OF. Non-protein coding RNA biomarkers and differential expression in cancers: a review. J Exp Clin Cancer Res 2008; 27:19. [PMID: 18631387 PMCID: PMC2490676 DOI: 10.1186/1756-9966-27-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/16/2008] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In these years a huge number of human transcripts has been found that do not code for proteins, named non-protein coding RNAs. In most cases, small (miRNAs, snoRNAs) and long RNAs (antisense RNA, dsRNA, and long RNA species) have many roles, functioning as regulators of other mRNAs, at transcriptional and post-transcriptional level, and controlling protein ubiquitination and degradation. Various species of npcRNAs have been found differentially expressed in different types of cancer. This review discusses the published data and new results on the expression of a subset of npcRNAs. CONCLUSION These results underscore the complexity of the RNA world and provide further evidence on the involvement of functional RNAs in cancer cell growth control.
Collapse
Affiliation(s)
- Massimo Mallardo
- University of Napoli Federico II, Department of Biochemistry and Medical Biotechnologies, Via S. Pansini 5, Napoli, Italy
| | - Palmiro Poltronieri
- National Research Council, Institute of Sciences of Food Productions, Ecotekne, via Lecce-Monteroni, Lecce, Italy
| | | |
Collapse
|
29
|
Yazgan O, Krebs JE. Noncoding but nonexpendable: transcriptional regulation by large noncoding RNA in eukaryotes. Biochem Cell Biol 2008; 85:484-96. [PMID: 17713583 DOI: 10.1139/o07-061] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome sequencing and annotation has advanced our understanding of genome organization and gene structure but initially only allowed predictions of how many genes might be present. Mechanisms such as alternative splicing reveal that these predictions only scratch the surface of the true nature of the transcriptome. Several thousand expressed partial gene fragments have been cloned but were considered transcriptional noise or cloning artifacts. We now know that genomes are indeed expressed at much higher levels than was previously predicted, and much of the additional transcription maps to intergenic regions, intron sequences, and untranslated regions of mRNAs. These transcripts are expressed from either the sense or the antisense strand and can be confirmed by conventional techniques. In addition to the already established roles for small RNAs in gene regulation, large noncoding RNAs (ncRNAs) are also emerging as potent regulators of gene expression. In this review, we summarize several illustrative examples of gene regulatory mechanisms that involve large ncRNAs. We describe several distinct regulatory mechanisms that involve large ncRNAs, such as transcriptional interference and promoter inactivation, as well as indirect effects on transcription regulatory proteins and in genomic imprinting. These diverse functions for large ncRNAs are likely to be only the first of many novel regulatory mechanisms emerging from this growing field.
Collapse
Affiliation(s)
- Oya Yazgan
- Department of Biological Sciences, University of AK Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | | |
Collapse
|
30
|
Yoon H, He H, Nagy R, Davuluri R, Suster S, Schoenberg D, Pellegata N, Chapelle ADL. Identification of a novel noncoding RNA gene, NAMA, that is downregulated in papillary thyroid carcinoma with BRAF mutation and associated with growth arrest. Int J Cancer 2007; 121:767-75. [PMID: 17415708 DOI: 10.1002/ijc.22701] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In search of tumor suppressor genes in papillary thyroid carcinoma (PTC), we previously used gene expression profiling to identify genes underexpressed in tumor compared with paired unaffected tissue. While searching for loss of heterozygosity (LOH) in genomic regions harboring candidate tumor suppressor genes, we detected LOH in a approximately 20 kb region around marker D9S176. Several ESTs flanking D9S176 were underexpressed in PTC tumors, and for one of the ESTs, downregulation was highly associated with the activating BRAF mutation V600E, the most common genetic lesion in PTC. A novel gene, NAMA, (noncoding RNA associated with MAP kinase pathway and growth arrest) containing the affected EST was cloned and characterized. NAMA is weakly expressed in several human tissues, and the spliced forms are primarily detected in testis. Several characteristics of NAMA suggest that it is a nonprotein coding but functional RNA; it has no long open reading frames (ORFs); the exons exhibit low sequence identity in the evolutionarily conserved regions; it is inducible by knockdown of BRAF, inhibition of the MAP kinase pathway, growth arrest and DNA damage in cancer cell lines. We suggest that NAMA is a noncoding RNA associated with growth arrest.
Collapse
Affiliation(s)
- Heejei Yoon
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang K, Lott ST, Jin L, Killary AM. Fine mapping of the NRC-1 tumor suppressor locus within chromosome 3p12. Biochem Biophys Res Commun 2007; 360:531-8. [PMID: 17624313 DOI: 10.1016/j.bbrc.2007.06.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 06/04/2007] [Indexed: 11/17/2022]
Abstract
Identification of tumor suppressor genes based on physical mapping exercises has proven to be a challenging endeavor, due to the difficulty of narrowing regions of loss of heterozygosity (LOH), infrequency of homozygous deletions, and the labor-intensive characterization process for screening candidates in a given genomic interval. We previously defined a chromosome 3p12 tumor suppressor locus NRC-1 (Nonpapillary Renal Carcinoma-1) by functional complementation experiments in which renal cell carcinoma microcell hybrids containing introduced normal chromosome 3p fragments were either suppressed or unsuppressed for tumorigenicity following injection into athymic nude mice. We now present the fine-scale physical mapping of NRC-1 using a QPCR-based approach for measuring copy number at sequence tagged sites (STS) which allowed a sub-exon mapping resolution. Using STS-QPCR and a novel statistical algorithm, the NRC-1 locus was narrowed to 4.615-Mb with the distal boundary mapping within a 38-Kb interval between exon 3 and exon 4 of the DUTT1/Robo1 gene, currently the only candidate tumor suppressor gene in the interval. Further mutational screening and gene expression analyses indicate that DUTT1/ROBO1 is not involved in the tumor suppressor activity of NRC-1, suggesting that there are at least two important tumor suppressor genes within the chromosome 3p12 interval.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Cancer Genetics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | |
Collapse
|