1
|
Kwon AJ, Cantu MD, Madanat YF, Hasserjian RP, Koduru P, Wang S, Tang G, Weinberg OK. Trisomy 8 in De Novo Acute Myeloid Leukemia Lacking MDS-Related Cytogenetics Does Not Significantly Influence Survival. Int J Lab Hematol 2025. [PMID: 40419386 DOI: 10.1111/ijlh.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/13/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025]
Abstract
INTRODUCTION The 2022 WHO and ICC classifications identify MDS-related cytogenetic abnormalities and secondary gene mutations (SM) that in de novo disease are diagnostic of myelodysplasia-related AML, which confers a poorer prognosis. While most MDS-related abnormalities overlap between the two classifications, trisomy 8 (+8) is unique to the ICC and has not been previously included as an MDS-related abnormality. In light of this, we sought to determine the prognostic significance of +8 as an MDS-related abnormality in patients with de novo AML lacking other MDS-related cytogenetics. METHODS We identified 337 patients with de novo AML lacking MDS-related cytogenetics other than +8 and analyzed clinicopathologic outcomes, overall survival (OS), and relapse-free survival (RFS). Two groups were identified: AML with SM (n = 195, 57.9%) and AML without SM (n = 142, 42.1%). Fifty-nine (17.5%) patients had +8; 39 (66.1%) of these had at least one SM, while 20 (33.9%) did not. RESULTS Among patients treated with induction or hypomethylating agents (n = 317), OS and RFS were significantly shorter in patients with SM than without (OS: p = 0.001, RFS: p = 0.0004) but not significantly different between patients with and without +8 (OS: p = 0.15, RFS: p = 0.35). Similarly, when cases were limited to those with SM (n = 179), no significant difference in OS or RFS was observed between patients with and without +8 (OS: p = 0.21, RFS: p = 0.30). There was no significant association between +8 and SM (p = 0.15). CONCLUSION In our cohort, unlike MDS-related SM, trisomy 8 does not influence OS or RFS, despite its inclusion in the ICC as an MDS-related abnormality.
Collapse
Affiliation(s)
- Adelaide J Kwon
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Miguel D Cantu
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Yazan F Madanat
- Department of Hematology and Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Prasad Koduru
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Sa Wang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guilin Tang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
2
|
Poiré X, Labopin M, Polge E, Ganser A, Socié G, Gedde-Dahl T, Forcade E, Finke J, Chalandon Y, Bulabois CE, Yakoub-Agha I, Aljurf M, Kröger N, Blau IW, Nagler A, Esteve J, Mohty M. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia with hyperdiploid complex karyotype. Bone Marrow Transplant 2024; 59:264-269. [PMID: 38092959 DOI: 10.1038/s41409-023-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 02/09/2024]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) remains the best consolidation strategy for acute myeloid leukemia (AML) with complex karyotype (CK). However, CK is a heterogenous and highly diverse entity. Numerical abnormalities have been associated with a controversial prognosis and AML with only multiple numerical abnormalities known as pure hyperdiploid karyotype (HDK) may have a distinct prognosis after allo-HCT compared to non-pure HDK CK AML. A total of 236 patients were identified within the EBMT registry as having HDK comprising 95 pure (pHDK) and 141 with other cytogenetic abnormalities (HDK+). The 2-year probability of leukemia-free survival (LFS) was 50% for pHDK and 31% for HDK+ (p = 0.003). The 2-year probability of overall survival (OS) was 57% for pHDK and 36% for HDK+ (p = 0.007). The 2-year cumulative incidence of relapse (RI) was 22% for pHDK and 44% for HDK+ (p = 0.001). The 2-year probability of graft-versus-host disease (GvHD)-free and relapse-free survival (GRFS) was 36% for pHDK and 21% for HDK+ (p = 0.01). On multivariate analysis, pHDK remained associated with significantly better LFS, OS and GRFS and lower RI (all p-values <0.004). pHDK AML constitutes probably a distinct cytogenetic entity from HDK+ or other non-hyperdiploid CK AML with better outcomes after allo-HCT.
Collapse
Affiliation(s)
- Xavier Poiré
- Section of Hematology, Institut Roi Albert II, Cliniques Universitaires St-Luc, Brussels, Belgium.
| | - Myriam Labopin
- Acute Leukemia Working Party of the EBMT, Paris, France
- Université Pierre et Marie Curie, Paris, France
- INSERM UMR 938, Paris, France
- Service d'Hématologie, Hôpital Saint-Antoine, Paris, France
| | - Emmanuelle Polge
- Acute Leukemia Working Party of the EBMT, Paris, France
- Université Pierre et Marie Curie, Paris, France
- INSERM UMR 938, Paris, France
- Service d'Hématologie, Hôpital Saint-Antoine, Paris, France
| | | | - Gérard Socié
- Department of Hematology, Bone Marrow Transplantation, Hôpital Saint-Louis, Paris, France
| | | | | | - Jürgen Finke
- Universitätsklinikum Freidburg, Department of Medicine, Hematology, Oncology, Freidburg, Germany
| | - Yves Chalandon
- Hôpitaux Universitaires de Genève, Département d'Oncologie, Service d'Hématologie, Genève, Switzerland
| | | | - Ibrahim Yakoub-Agha
- CHU de Lille, Université de Lille, INSERM U1286, Infinite, 5900, Lille, France
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Center, Section of Adult Haematology/BMT, Riyadh, Saudi Arabia
| | - Nicolaus Kröger
- University Hospital Eppendorf, Bone Marrow Transplantation Centre, Hamburg, Germany
| | - Igor Wolfgang Blau
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Charité Universitätsmedizin, Berlin, Germany
| | - Arnon Nagler
- Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Jordi Esteve
- Hematology department, Hospital Clinic, Barcelona, Spain
| | - Mohamad Mohty
- Acute Leukemia Working Party of the EBMT, Paris, France
- Université Pierre et Marie Curie, Paris, France
- INSERM UMR 938, Paris, France
- Service d'Hématologie, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
3
|
Nevone A, Lattarulo F, Russo M, Panno G, Milani P, Basset M, Avanzini MA, Merlini G, Palladini G, Nuvolone M. A Strategy for the Selection of RT-qPCR Reference Genes Based on Publicly Available Transcriptomic Datasets. Biomedicines 2023; 11:1079. [PMID: 37189697 PMCID: PMC10135859 DOI: 10.3390/biomedicines11041079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
In the next-generation sequencing era, RT-qPCR is still widely employed to quantify levels of nucleic acids of interest due to its popularity, versatility, and limited costs. The measurement of transcriptional levels through RT-qPCR critically depends on reference genes used for normalization. Here, we devised a strategy to select appropriate reference genes for a specific clinical/experimental setting based on publicly available transcriptomic datasets and a pipeline for RT-qPCR assay design and validation. As a proof-of-principle, we applied this strategy to identify and validate reference genes for transcriptional studies of bone-marrow plasma cells from patients with AL amyloidosis. We performed a systematic review of published literature to compile a list of 163 candidate reference genes for RT-qPCR experiments employing human samples. Next, we interrogated the Gene Expression Omnibus to assess expression levels of these genes in published transcriptomic studies on bone-marrow plasma cells from patients with different plasma cell dyscrasias and identified the most stably expressed genes as candidate normalizing genes. Experimental validation on bone-marrow plasma cells showed the superiority of candidate reference genes identified through this strategy over commonly employed "housekeeping" genes. The strategy presented here may apply to other clinical and experimental settings for which publicly available transcriptomic datasets are available.
Collapse
Affiliation(s)
- Alice Nevone
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesca Lattarulo
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Monica Russo
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giada Panno
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marco Basset
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Maria Antonietta Avanzini
- Pediatric Hematology Oncology, Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
4
|
Elnaggar MG, Mosad E, Makboul A, Shafik EA. Cytogenetic profile of adult acute myeloid leukemia in Egypt: a single-center experience. Mol Cytogenet 2022; 15:43. [PMID: 36195917 PMCID: PMC9533520 DOI: 10.1186/s13039-022-00621-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a diverse disease characterized by the expansion of blasts of myeloid lineage. Cytogenetic testing is the cornerstone for risk stratification of AML patients. Geographical and environmental factors may play a very important role in the development of leukemia and several differences in genetic profile may be seen among different ethnicities. In our study, we evaluated cytogenetic findings of adult AML patients in South Egypt. Methods Cytogenetic testing (karyotyping and M-FISH) was performed for 120 adult patients with AML. Twenty metaphases were analyzed for each patient. Results In our study, the median age of AML patients was 36.5 years, with an age range between 18 and 86 years. 56.7% of patients had normal karyotypes and 43.3% of patients had clonal cytogenetic abnormalities. t (15;17) was the most detected structural abnormality, and + 8 was the most detected numerical abnormality. Regarding cytogenetic risk stratification, 65% of patients were in the intermediate-risk category. Conclusion The cytogenetic profile of AML patients in our locality showed some differences and some similarities with cytogenetic profiles in different Arab, Asian and Western countries. Further studies are needed using advanced techniques such as next-generation sequencing and optical genome mapping to elucidate more ethnic and geographic genetic heterogeneity among different countries.
Collapse
Affiliation(s)
- Mohamed G Elnaggar
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, 71515, Egypt.
| | - Eman Mosad
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, 71515, Egypt
| | - Ahmed Makboul
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, 71515, Egypt
| | - Engy Adel Shafik
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
5
|
Abstract
Introduction: Trisomy 8 is one of the most common cytogenetic alterations in acute myeloid leukemia (AML), with a frequency between 10% and 15%.Areas covered: The authors summarize the latest research regarding biological, translational and clinical aspects of trisomy 8 in AML.Expert opinion: Trisomy 8 can be found together with other karyotypes, although it also occurs as a sole aberration. The last decade's research has brought attention to molecular genetic alterations as strong contributors of leukemogenesis. AML with trisomy 8 seems to be associated with mutations in DNA methylation genes, spliceosome complex genes, and myeloid transcription factor genes, and these alterations probably have stronger implication for leukemic pathogenesis, treatment and hence prognosis, than the existence of trisomy 8 itself. Especially mutations in the RUNX1 and ASXL1 genes occur in high frequencies, and search for such mutations should be mandatory part of the diagnostic workup. AML with trisomy 8 is classified as intermediate-risk AML after recent European Leukemia Net (ELN) classification, and hence allogenic hematopoietic stem cell transplantation (Allo-HSCT) should be consider as consolidation therapy for this patient group.Trisomy 8 is frequently occurring in AML, although future molecular genetic workup should be performed, to optimize the diagnosis and treatment of these patients.
Collapse
Affiliation(s)
- Anette Lodvir Hemsing
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Galina Tsykunova
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Institute of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Koduru P, Chen W, Haley B, Ho K, Oliver D, Wilson K. Cytogenomic characterization of double minute heterogeneity in therapy related acute myeloid leukemia. Cancer Genet 2019; 238:69-75. [PMID: 31425928 DOI: 10.1016/j.cancergen.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 01/04/2023]
Abstract
Breast cancer patients treated with adjuvant chemotherapy regimens containing alkylating agents and anthracyclines are at an increased risk for secondary myeloid malignancies, either acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Complex genomic changes (karyotypes and/or gene amplification) accompany the development of the secondary neoplasms. Here we present a unique case of a breast cancer patient who developed secondary AML within 18 months of treatment with trastuzumab, pertuzumab, docetaxel, carboplatin (TCHP) and radiation. Leukemia cells had catastrophic alterations in chromosomes 8, 11, and 17. Genetic abnormalities in the leukemia cells included amplification of MYC and KMT2A as double minutes, and deletion and mutational inactivation of TP53 Concurrent amplification of different genes at different levels and on different double minutes, we have named "double minute heterogeneity." Clinically, this case highlights the need to identify genes amplified in secondary myeloid malignancies by cytogenomic microarray (CMA) analysis since these may have therapeutic implications.
Collapse
Affiliation(s)
- Prasad Koduru
- Department of Pathology, and Division of Hematology and Oncology, Department of Medicine, UT Southwestern Medical Center, Dallas, USA.
| | - Weina Chen
- Department of Pathology, and Division of Hematology and Oncology, Department of Medicine, UT Southwestern Medical Center, Dallas, USA
| | - Barbara Haley
- Department of Pathology, and Division of Hematology and Oncology, Department of Medicine, UT Southwestern Medical Center, Dallas, USA
| | - Kevin Ho
- Department of Pathology, and Division of Hematology and Oncology, Department of Medicine, UT Southwestern Medical Center, Dallas, USA
| | - Dwight Oliver
- Department of Pathology, and Division of Hematology and Oncology, Department of Medicine, UT Southwestern Medical Center, Dallas, USA
| | - Kathleen Wilson
- Department of Pathology, and Division of Hematology and Oncology, Department of Medicine, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
7
|
Hiramatsu K, Abe S, Kazuki K, Osaki M, Kajitani N, Yakura Y, Oshimura M, Kazuki Y. Generation of a novel isogenic trisomy panel in human embryonic stem cells via microcell-mediated chromosome transfer. Biochem Biophys Res Commun 2019; 508:603-607. [PMID: 30509488 DOI: 10.1016/j.bbrc.2018.11.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022]
Abstract
Aneuploidy is the gain or loss of a chromosome. Down syndrome or trisomy (Ts) 21 is the most frequent live-born aneuploidy syndrome in humans and extensively studied using model mice. However, there is no available model mouse for other congenital Ts syndromes, possibly because of the lethality of Ts in vivo, resulting in the lack of studies to identify the responsible gene(s) for aneuploid syndromes. Although induced pluripotent stem cells derived from patients are useful to analyse aneuploidy syndromes, there are concerns about differences in the genetic background for comparative studies and clonal variations. Therefore, a model cell line panel with the same genetic background has been strongly desired for sophisticated comparative analyses. In this study, we established isogenic human embryonic stem (hES) cells of Ts8, Ts13, and Ts18 in addition to previously established Ts21 by transferring each single chromosome into parental hES cells via microcell-mediated chromosome transfer. Genes on each trisomic chromosome were globally overexpressed in each established cell line, and all Ts cell lines differentiated into all three embryonic germ layers. This cell line panel is expected to be a useful resource to elucidate molecular and epigenetic mechanisms of genetic imbalance and determine how aneuploidy is involved in various abnormal phenotypes including tumourigenesis and impaired neurogenesis.
Collapse
Affiliation(s)
- Kei Hiramatsu
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Division of Pathological Biochemistry, Department of Biomedical Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Naoyo Kajitani
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yuwna Yakura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
8
|
Drevon L, Marceau A, Maarek O, Cuccuini W, Clappier E, Eclache V, Cluzeau T, Richez V, Berkaoui I, Dimicoli-Salazar S, Bidet A, Vial JP, Park S, Vieira Dos Santos C, Kaphan E, Berthon C, Stamatoullas A, Delhommeau F, Abermil N, Braun T, Sapena R, Lusina D, Renneville A, Adès L, Raynaud S, Fenaux P. Myelodysplastic syndrome (MDS) with isolated trisomy 8: a type of MDS frequently associated with myeloproliferative features? A report by the Groupe Francophone des Myélodysplasies. Br J Haematol 2018; 182:843-850. [DOI: 10.1111/bjh.15490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/25/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Louis Drevon
- Hôpital Saint-Louis; Assistance Publique Hôpitaux de Paris (APHP); University Paris Diderot (Paris 7); Paris France
| | - Alice Marceau
- Centre Hospitalier Régional Universitaire (CHRU) de Lille; Lille France
| | - Odile Maarek
- Hôpital Saint-Louis; Assistance Publique Hôpitaux de Paris (APHP); University Paris Diderot (Paris 7); Paris France
| | - Wendy Cuccuini
- Hôpital Saint-Louis; Assistance Publique Hôpitaux de Paris (APHP); University Paris Diderot (Paris 7); Paris France
| | - Emmanuelle Clappier
- Hôpital Saint-Louis; Assistance Publique Hôpitaux de Paris (APHP); University Paris Diderot (Paris 7); Paris France
| | | | - Thomas Cluzeau
- Centre Hospitalier Universitaire (CHU) de Nice; Nice France
| | | | - Inès Berkaoui
- Centre Hospitalier Universitaire (CHU) de Nice; Nice France
| | | | | | | | | | | | | | - Céline Berthon
- Centre Hospitalier Régional Universitaire (CHRU) de Lille; Lille France
| | | | - François Delhommeau
- Hôpital Saint-Antoine; APHP; University Pierre et Marie Curie (Paris 6); Paris France
| | - Nassera Abermil
- Hôpital Saint-Antoine; APHP; University Pierre et Marie Curie (Paris 6); Paris France
| | - Thorsten Braun
- Hôpital Avicenne; APHP; University Paris 13; Bobigny France
| | - Rosa Sapena
- GFM (Groupe Francophone des Myélodysplasies); Hôpital Saint-Louis; Paris France
| | - Daniel Lusina
- Hôpital Avicenne; APHP; University Paris 13; Bobigny France
| | - Aline Renneville
- Centre Hospitalier Régional Universitaire (CHRU) de Lille; Lille France
| | - Lionel Adès
- Hôpital Saint-Louis; Assistance Publique Hôpitaux de Paris (APHP); University Paris Diderot (Paris 7); Paris France
| | - Sophie Raynaud
- Centre Hospitalier Universitaire (CHU) de Nice; Nice France
| | - Pierre Fenaux
- Hôpital Saint-Louis; Assistance Publique Hôpitaux de Paris (APHP); University Paris Diderot (Paris 7); Paris France
| |
Collapse
|
9
|
Laursen ACL, Sandahl JD, Kjeldsen E, Abrahamsson J, Asdahl P, Ha SY, Heldrup J, Jahnukainen K, Jónsson ÓG, Lausen B, Palle J, Zeller B, Forestier E, Hasle H. Trisomy 8 in pediatric acute myeloid leukemia: A NOPHO-AML study. Genes Chromosomes Cancer 2016; 55:719-26. [PMID: 27153159 DOI: 10.1002/gcc.22373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/11/2023] Open
Abstract
Trisomy 8 (+8) is a common cytogenetic aberration in acute myeloid leukemia (AML); however, the impact of +8 in pediatric AML is largely unknown. We retrospectively investigated 609 patients from the NOPHO-AML database to determine the clinical and cytogenetic characteristics of +8 in pediatric AML and to investigate its prognostic impact. Complete cytogenetic data were available in 596 patients (98%) aged 0-18 years, diagnosed from 1993 to 2012, and treated according to the NOPHO-AML 1993 and 2004 protocols in the Nordic countries and Hong Kong. We identified 86 patients (14%) with +8. Trisomy 8 was combined with other cytogenetic aberrations in 68 patients (11%) (+8 other) and in 18 patients (3%), it was the sole abnormality (+8 alone). Trisomy 8 was associated with FAB M5 (36%) but otherwise clinically comparable with non-trisomy 8 patients. Trisomy 8 was favorable in patients of young age and with t(9;11). Trisomy 8 alone was associated with older age (median age 10.1 years), FAB M2 (33%), and FLT3-ITD mutations (58%). The 5-year event-free survival for patients with +8 alone was 50% and 5-year overall survival was 75%. In conclusion, +8 is one of the most common cytogenetic aberrations in pediatric AML. Trisomy 8 positive AML is a heterogeneous group and the majority of cases have additional cytogenetic aberrations. Patients with +8 alone differed from patients with +8 other and were associated with older age, FAB M2, and FLT3-ITD aberrations. There were no differences in survival despite the more frequent occurrence of FLT3-ITD in +8 alone. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Eigil Kjeldsen
- Cancer Cytogenetics Laboratory, Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Abrahamsson
- Institution for Clinical Sciences, Department of Pediatrics, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Peter Asdahl
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Shau-Yin Ha
- Department of Pediatrics, Queen Mary Hospital and Hong Kong Pediatric Hematology & Oncology Study Group (HKPHOSG), Hong Kong, China
| | - Jesper Heldrup
- Department of Pediatrics, University Hospital, Lund, Sweden
| | - Kirsi Jahnukainen
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | | | - Birgitte Lausen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Josefine Palle
- Department of Woman's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Bernward Zeller
- Department of Pediatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Erik Forestier
- Department of Medical Biosciences, Clinical Genetics, Umeå University Hospital, Umeå, Sweden
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Weber S, Haferlach C, Jeromin S, Nadarajah N, Dicker F, Noël L, Zenger M, Alpermann T, Kern W, Haferlach T, Schnittger S. Gain of chromosome 21 or amplification of chromosome arm 21q is one mechanism for increased ERG expression in acute myeloid leukemia. Genes Chromosomes Cancer 2015; 55:148-57. [PMID: 26542308 DOI: 10.1002/gcc.22321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/19/2023] Open
Abstract
In acute myeloid leukemia (AML), acquired genomic gains and losses are common and lead to altered expression of genes located within or nearby the affected regions. Increased expression of the ETS-related transcription factor gene ERG has been described in myeloid malignancies with chromosomal rearrangements involving chromosome band 21q22, but also in cytogenetically normal AML, where it is associated with adverse prognosis. In this study, fluorescence in situ hybridization on interphase nuclei disclosed an amplification of the ERG gene (more than six copies) in 33 AML patients with structural rearrangements of 21q22. Array comparative genomic hybridization of these cases disclosed a minimal amplified region at the position 39.6-40.0 Mbp from pter that harbors ERG as the only gene. Analysis by quantitative real-time reverse transcription polymerase chain reaction revealed significantly higher ERG mRNA expression in these patients and in a group of 95 AML patients with complete or partial gain of chromosome 21 (three to six copies) compared with 351 AML patients without gain of chromosome 21. Quantification of ERG DNA copy numbers revealed a strong correlation with ERG mRNA expression. Furthermore, in patients with gain of chromosome 21, higher ERG expression was found to be associated with RUNX1 mutations. Our results suggest that acquired gain of chromosome 21 or amplification of chromosome arm 21q is one mechanism contributing to increased ERG expression in AML.
Collapse
Affiliation(s)
| | | | | | | | | | - Louisa Noël
- MLL Munich Leukemia Laboratory, Munich, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Davidsson J. The epigenetic landscape of aneuploidy: constitutional mosaicism leading the way? Epigenomics 2014; 6:45-58. [PMID: 24579946 DOI: 10.2217/epi.13.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of structural genetic changes in human disease has received substantial attention in recent decades, but surprisingly little is known about numerical chromosomal abnormalities, even though they have been recognized since the days of Boveri as partaking in different cellular pathophysiological processes such as cancer and genomic disorders. The current knowledge of the genetic and epigenetic consequences of aneuploidy is reviewed herein, with a special focus on using mosaic genetic syndromes to study the DNA methylation footprints and expressional effects associated with whole-chromosomal gains. Recent progress in understanding the debated role of aneuploidy as a driver or passenger in malignant transformation, as well as how the cell responds to and regulates excess genetic material in experimental settings, is also discussed in detail.
Collapse
Affiliation(s)
- Josef Davidsson
- Division of Molecular Medicine & Gene Therapy, Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
12
|
Duployez N, Willekens C, Marceau-Renaut A, Boudry-Labis E, Preudhomme C. Prognosis and monitoring of core-binding factor acute myeloid leukemia: current and emerging factors. Expert Rev Hematol 2014; 8:43-56. [PMID: 25348871 DOI: 10.1586/17474086.2014.976551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Core-binding factor acute myeloid leukemia (CBF-AML) - including AML with t(8;21) and AML with inv(16) - accounts for about 15% of adult AML and is associated with a relatively favorable prognosis. Nonetheless, relapse incidence may reach 40% in these patients. In this context, identification of prognostic markers is considered of great interest. Due to similarities between their molecular and prognostic features, t(8;21) and inv(16)-AML are usually grouped and reported together in clinical studies. However, considerable experimental evidences have highlighted that they represent two distinct entities and should be considered separately for further studies. This review summarizes recent laboratory and clinical findings in this particular subset of AML and how they could be used to improve management of patients in routine practice.
Collapse
Affiliation(s)
- Nicolas Duployez
- Hematology Laboratory, Biology and Pathology Center, Lille University Hospital, Lille, France
| | | | | | | | | |
Collapse
|
13
|
Morenos L, Chatterton Z, Ng JL, Halemba MS, Parkinson-Bates M, Mechinaud F, Elwood N, Saffery R, Wong NC. Hypermethylation and down-regulation of DLEU2 in paediatric acute myeloid leukaemia independent of embedded tumour suppressor miR-15a/16-1. Mol Cancer 2014; 13:123. [PMID: 24885794 PMCID: PMC4050407 DOI: 10.1186/1476-4598-13-123] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/15/2014] [Indexed: 12/30/2022] Open
Abstract
Background Acute Myeloid Leukaemia (AML) is a highly heterogeneous disease. Studies in adult AML have identified epigenetic changes, specifically DNA methylation, associated with leukaemia subtype, age of onset and patient survival which highlights this heterogeneity. However, only limited DNA methylation studies have elucidated any associations in paediatric AML. Methods We interrogated DNA methylation on a cohort of paediatric AML FAB subtype M5 patients using the Illumina HumanMethylation450 (HM450) BeadChip, identifying a number of target genes with p <0.01 and Δβ >0.4 between leukaemic and matched remission (n = 20 primary leukaemic, n = 13 matched remission). Amongst those genes identified, we interrogate DLEU2 methylation using locus-specific SEQUENOM MassARRAY® EpiTYPER® and an increased validation cohort (n = 28 primary leukaemic, n = 14 matched remission, n = 17 additional non-leukaemic and cell lines). Following methylation analysis, expression studies were undertaken utilising the same patient samples for singleplex TaqMan gene and miRNA assays and relative expression comparisons. Results We identified differential DNA methylation at the DLEU2 locus, encompassing the tumour suppressor microRNA miR-15a/16-1 cluster. A number of HM450 probes spanning the DLEU2/Alt1 Transcriptional Start Site showed increased levels of methylation in leukaemia (average over all probes >60%) compared to disease-free haematopoietic cells and patient remission samples (<24%) (p < 0.001). Interestingly, DLEU2 mRNA down-regulation in leukaemic patients (p < 0.05) was independent of the embedded mature miR-15a/16-1 expression. To assess prognostic significance of DLEU2 DNA methylation, we stratified paediatric AML patients by their methylation status. A subset of patients recorded methylation values for DLEU2 akin to non-leukaemic specimens, specifically patients with sole trisomy 8 and/or chromosome 11 abnormalities. These patients also showed similar miR-15a/16-1 expression to non-leukaemic samples, and potential improved disease prognosis. Conclusions The DLEU2 locus and embedded miRNA cluster miR-15a/16-1 is commonly deleted in adult cancers and shown to induce leukaemogenesis, however in paediatric AML we found the region to be transcriptionally repressed. In combination, our data highlights the utility of interrogating DNA methylation and microRNA in combination with underlying genetic status to provide novel insights into AML biology.
Collapse
Affiliation(s)
- Leah Morenos
- Cancer & Disease Epigenetics, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Prognostic gene mutations and distinct gene- and microRNA-expression signatures in acute myeloid leukemia with a sole trisomy 8. Leukemia 2014; 28:1754-1758. [PMID: 24651097 DOI: 10.1038/leu.2014.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes. BMC Genomics 2013; 14 Suppl 5:S8. [PMID: 24564826 PMCID: PMC3852284 DOI: 10.1186/1471-2164-14-s5-s8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. Results Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. Conclusions Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis.
Collapse
|
16
|
Davidsson J, Veerla S, Johansson B. Constitutional trisomy 8 mosaicism as a model for epigenetic studies of aneuploidy. Epigenetics Chromatin 2013; 6:18. [PMID: 23816241 PMCID: PMC3704342 DOI: 10.1186/1756-8935-6-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 05/30/2013] [Indexed: 12/21/2022] Open
Abstract
Background To investigate epigenetic patterns associated with aneuploidy we used constitutional trisomy 8 mosaicism (CT8M) as a model, enabling analyses of single cell clones, harboring either trisomy or disomy 8, from the same patient; this circumvents any bias introduced by using cells from unrelated, healthy individuals as controls. We profiled gene and miRNA expression as well as genome-wide and promoter specific DNA methylation and hydroxymethylation patterns in trisomic and disomic fibroblasts, using microarrays and methylated DNA immunoprecipitation. Results Trisomy 8-positive fibroblasts displayed a characteristic expression and methylation phenotype distinct from disomic fibroblasts, with the majority (65%) of chromosome 8 genes in the trisomic cells being overexpressed. However, 69% of all deregulated genes and non-coding RNAs were not located on this chromosome. Pathway analysis of the deregulated genes revealed that cancer, genetic disorder, and hematopoiesis were top ranked. The trisomy 8-positive cells displayed depletion of 5-hydroxymethylcytosine and global hypomethylation of gene-poor regions on chromosome 8, thus partly mimicking the inactivated X chromosome in females. Conclusions Trisomy 8 affects genes situated also on other chromosomes which, in cooperation with the observed chromosome 8 gene dosage effect, has an impact on the clinical features of CT8M, as demonstrated by the pathway analysis revealing key features that might explain the increased incidence of hematologic malignancies in CT8M patients. Furthermore, we hypothesize that the general depletion of hydroxymethylation and global hypomethylation of chromosome 8 may be unrelated to gene expression regulation, instead being associated with a general mechanism of chromatin processing and compartmentalization of additional chromosomes.
Collapse
Affiliation(s)
- Josef Davidsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE 221 85, Lund, Sweden.
| | | | | |
Collapse
|
17
|
Hyperdiploidy with 49-65 chromosomes represents a heterogeneous cytogenetic subgroup of acute myeloid leukemia with differential outcome. Leukemia 2013; 28:321-8. [PMID: 23812419 DOI: 10.1038/leu.2013.198] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/07/2013] [Accepted: 06/25/2013] [Indexed: 01/30/2023]
Abstract
Chromosome gain is frequent in acute myeloid leukemia (AML) and is counted alongside structural abnormalities when determining karyotype complexity. However, there are few studies investigating the cytogenetic profile and outcome of patients with a hyperdiploid karyotype (49-65 chromosomes, HK). We identified 221 (14%) patients with HK out of 1563 patients with three or more chromosomal abnormalities. HK was not associated with sex, white cell count and secondary disease status, but was more prevalent among children (22% vs 13%). The pattern of chromosomal gain and loss was non-random and chromosomes 8, 13 and 21 were the most frequently gained. Three distinct subgroups (numerical, structural and adverse) were identified with differential outcome: 5-year cumulative incidence of relapse of 52%, 68% and 76%, respectively (P=0.008). Patients in the adverse subgroup had poorer survival compared with patients with only numerical abnormalities (adjusted hazard ratio: 2.01 (95% confidence interval: 1.43-2.83), P=0.0002). This outcome heterogeneity was similar among children and adults. In conclusion, AML patients with a HK should not automatically be assigned to the adverse cytogenetic risk group on the basis of complexity. Instead they should be assessed for the presence of specific chromosomal abnormalities, which are known to harbour an adverse effect.
Collapse
|
18
|
Duong VH, Jaglal MV, Zhang L, Kale V, Lancet JE, Komrokji RS, List AF. Phase II pilot study of oral dasatinib in patients with higher-risk myelodysplastic syndrome (MDS) who failed conventional therapy. Leuk Res 2012; 37:300-4. [PMID: 23273539 DOI: 10.1016/j.leukres.2012.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
Given evidence for the role of Src family kinases, especially Lyn kinase, in myeloblast proliferation and the in vitro inhibitory activity of dasatinib on Src and Lyn, we conducted a phase II study to assess overall response to 100mg/day dasatinib in patients with higher-risk myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia, or acute myeloid leukemia arising from MDS and who had failed prior treatment with azanucleoside analogs. Among 18 patients treated, 3 responded, 4 had stable disease, and 10 experienced disease progression. Toxicities were limited and consistent with previous reports. Dasatinib appears to be safe but with limited efficacy.
Collapse
Affiliation(s)
- Vu H Duong
- University of Maryland Greenebaum Cancer Center, Baltimore, MD, United States
| | | | | | | | | | | | | |
Collapse
|
19
|
Robanus-Maandag E, Bosch C, Amini-Nik S, Knijnenburg J, Szuhai K, Cervera P, Poon R, Eccles D, Radice P, Giovannini M, Alman BA, Tejpar S, Devilee P, Fodde R. Familial adenomatous polyposis-associated desmoids display significantly more genetic changes than sporadic desmoids. PLoS One 2011; 6:e24354. [PMID: 21931686 PMCID: PMC3170296 DOI: 10.1371/journal.pone.0024354] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/05/2011] [Indexed: 01/30/2023] Open
Abstract
Desmoid tumours (also called deep or aggressive fibromatoses) are potentially life-threatening fibromatous lesions. Hereditary desmoid tumours arise in individuals affected by either familial adenomatous polyposis (FAP) or hereditary desmoid disease (HDD) carrying germline mutations in APC. Most sporadic desmoids carry somatic mutations in CTNNB1. Previous studies identified losses on 5q and 6q, and gains on 8q and 20q as recurrent genetic changes in desmoids. However, virtually all genetic changes were derived from sporadic tumours. To investigate the somatic alterations in FAP-associated desmoids and to compare them with changes occurring in sporadic tumours, we analysed 17 FAP-associated and 38 sporadic desmoids by array comparative genomic hybridisation and multiple ligation-dependent probe amplification. Overall, the desmoids displayed only a limited number of genetic changes, occurring in 44% of cases. Recurrent gains at 8q (7%) and 20q (5%) were almost exclusively found in sporadic tumours. Recurrent losses were observed for a 700 kb region at 5q22.2, comprising the APC gene (11%), a 2 Mb region at 6p21.2-p21.1 (15%), and a relatively large region at 6q15-q23.3 (20%). The FAP-associated desmoids displayed a significantly higher frequency of copy number abnormalities (59%) than the sporadic tumours (37%). As predicted by the APC germline mutations among these patients, a high percentage (29%) of FAP-associated desmoids showed loss of the APC region at 5q22.2, which was infrequently (3%) seen among sporadic tumours. Our data suggest that loss of region 6q15-q16.2 is an important event in FAP-associated as well as sporadic desmoids, most likely of relevance for desmoid tumour progression.
Collapse
Affiliation(s)
- Els Robanus-Maandag
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Andreieva SV, Drozdova VD, Kavardakova NV. Phenomenon of evolution of clonal chromosomal abnormalities in childhood acute myeloid leukemia. CYTOL GENET+ 2010. [DOI: 10.3103/s0095452710030072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
de Oliveira FM, Brandão RA, Leite-Cueva SD, de Paula Careta F, Simões BP, Rego EM, Falcão RP. Tetrasomy 8 in a patient with chronic lymphocytic leukemia. ACTA ACUST UNITED AC 2010; 198:166-9. [PMID: 20362233 DOI: 10.1016/j.cancergencyto.2009.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/28/2009] [Accepted: 12/30/2009] [Indexed: 10/19/2022]
Abstract
We report a case of a 47-year-old man diagnosed with chronic lymphocytic leukemia (CLL) with two extra copies of chromosome 8. Classical cytogenetic analysis by the immunostimulatory combination of DSP30 and interleukin 2 showed tetrasomy of chromosome 8 in 60% of the metaphase cells (48,XY,+8,+8[12]/46,XY[8]). Spectral karyotype analysis confirmed the abnormality previously seen by G banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 8 probe performed on peripheral blood cells without any stimulant agent showed tetrasomy of chromosome 8 in 54% of analyzed cells (108 of 200). To our knowledge, tetrasomy 8 as the sole chromosomal abnormality in CLL has not been previously described. The prognostic significance of tetrasomy 8 in CLL remains to be elucidated. However, the patient has been followed up in the outpatient hospital since 2004 without any therapeutic intervention and has so far remained stable.
Collapse
Affiliation(s)
- Fábio Morato de Oliveira
- Department of Internal Medicine, Division of Hematology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
22
|
Raghavan M, Gupta M, Molloy G, Chaplin T, Young BD. Mitotic recombination in haematological malignancy. ACTA ACUST UNITED AC 2009; 50:96-103. [PMID: 19895835 DOI: 10.1016/j.advenzreg.2009.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Manoj Raghavan
- Cancer Genomics Group, Medical Oncology Centre, Barts and London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Haferlach T, Bacher U, Kohlmann A, Haferlach C. Discussion of the applicability of microarrays: profiling of leukemias. Methods Mol Biol 2009; 509:15-33. [PMID: 19212712 DOI: 10.1007/978-1-59745-372-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Leukemias are classified according to clinical, morphologic, and immunologic phenotypes, caused by specific genetic aberrations in association to distinct prognostic profiles. Usually the subtypes are defined using complementary laboratory methods, such as multiparameter flow cytometry, cytogenetics in combination with fluorescence in situ hybridization, and molecular methods such as the polymerase chain reaction. The genetic variations of the different subtypes lead to distinct changes also in gene expression, which is comprehensively analysed by DNA microarrays. Thus, first gene expression profiling studies showed that analysis with whole-genome DNA microarrays leads to a prediction accuracy of 95.6% with respect to the classical methods, and even allowed a further distinction of subtypes. It is expected that diagnostic strategies can be optimized with this new technology and that the understanding of the molecular pathogenesis of leukemias will be significantly improved. This could also lead to the identification of new targets for future drugs.
Collapse
|
24
|
Nilsson B, Johansson M, Heyden A, Nelander S, Fioretos T. An improved method for detecting and delineating genomic regions with altered gene expression in cancer. Genome Biol 2008; 9:R13. [PMID: 18208590 PMCID: PMC2395254 DOI: 10.1186/gb-2008-9-1-r13] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 01/21/2008] [Indexed: 11/22/2022] Open
Abstract
A method is presented for identifying genomic regions with altered gene expression in gene expression maps. Genomic regions with altered gene expression are a characteristic feature of cancer cells. We present a novel method for identifying such regions in gene expression maps. This method is based on total variation minimization, a classical signal restoration technique. In systematic evaluations, we show that our method combines top-notch detection performance with an ability to delineate relevant regions without excessive over-segmentation, making it a significant advance over existing methods. Software (Rendersome) is provided.
Collapse
Affiliation(s)
- Björn Nilsson
- Department of Clinical Genetics, Lund University Hospital, SE-221 85 Lund, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Udayakumar AM, Pathare AV, Al-Kindi S, Khan H, Rehmen JU, Zia F, Al-Ghazaly A, Nusrut N, Khan MI, Wali YA, Al-Lamki Z, Dennison D, Raeburn JA. Cytogenetic, morphological, and immunophenotypic patterns in Omani patients with de novo acute myeloid leukemia. ACTA ACUST UNITED AC 2007; 177:89-94. [PMID: 17854660 DOI: 10.1016/j.cancergencyto.2007.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/10/2007] [Accepted: 05/02/2007] [Indexed: 11/19/2022]
Abstract
Chromosome aberrations observed at diagnosis are considered to be the most valuable prognostic factors in acute myeloid leukemia (AML). Some specific aberrations vary in frequency among different geographical areas and ethnic groups. There are only limited studies on the role of such variability in AML patients. Here, we report the results of a cytogenetic study on 63 ethnic Omani patients with de novo AML: 18 children (<or=16 years) and 45 adults. By sex, 41 were male and 22 female; median age at diagnosis was 25 years. The morphological diagnosis was based on the French-American-British (FAB) WHO criteria. Chromosome abnormalities were present in 39 of 63 patients (62% overall, or 44% for adults and 18% for children). Karyotypes with a sole abnormality accounted for 20 of 63 patients (32%). Chromosome abnormalities were more common in patients with the FAB-M2 subtype (15 of 22; 68%), which was also the most frequent subtype observed (22 of 63; 35%). Among the normal karyotypes (24 of 63; 38%), M2 subtype was the also most frequent (7 of 24; 29%), followed by M4 (4 of 24; 17%). Balanced translocations, t(8;21) and t(15;17) were observed in 7 of 63 (11%) and 6 of 63 (10%), respectively. Inv(16) was seen in 2 of 63 (3%). Trisomy 8 was the most frequent numerical anomaly, found in 7 of 63 (11%). Monosomy 7 was seen in 3 of 63 (5%). The patterns in our study were similar to those reported from Saudi Arabia and Kuwait, but the frequency of abnormalities varied. Our population differed morphologically, with the M2 subtype as most common, whereas M4 and M3 were more commonly in those reports. A comparison of our findings was made with other geographic and ethnic groups. This is the first systematic cytogenetic study of an ethnic Omani population.
Collapse
Affiliation(s)
- Achandira Muthappa Udayakumar
- Cytogenetics Laboratory, Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Sultanate of Oman.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hyperdiploid karyotypes in acute myeloid leukemia define a novel entity: a study of 38 patients from the Groupe Francophone de Cytogenetique Hematologique (GFCH). Leukemia 2007; 22:132-7. [PMID: 17928884 DOI: 10.1038/sj.leu.2404974] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A series of 38 patients with acute myeloblastic leukemia (AML) with 49 or more chromosomes and without structural abnormalities was selected within the Groupe Francophone de Cytogénétique Hématologique (GFCH) to better define their characteristics. The median age of the patients was 65 years, and all FAB subtypes were represented. Although all chromosomes were gained, some seems to prevail: chromosome 8 (68%), 21 (47%), 19 (37%), and 13 and 14 (34% each). Since MLL rearrangement leads patients in a group with an unfavorable prognosis, search for cryptic rearrangements of MLL was performed in 34 patients and showed abnormalities in 5 (15%). When we applied the most frequent definition of complex karyotypes (three or more abnormalities), all patients with high hyperdiploid AML fall in the unfavorable category. Among the 18 patients without MLL rearrangement receiving an induction therapy, 16 (89%) reached CR and 6 (33%) were still alive after a 31-month median follow-up (14-61 months). Although this study was retrospective, these results suggest that high hyperdiploid AML without chromosome rearrangement seems to be a subgroup of uncommon AML (less than 1%), and may be better classified in the intermediate prognostic group.
Collapse
|
27
|
Stallings RL. Are chromosomal imbalances important in cancer? Trends Genet 2007; 23:278-83. [PMID: 17400327 DOI: 10.1016/j.tig.2007.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 02/12/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
Tumor-specific patterns of large-scale chromosomal imbalances characterize most forms of cancer. Based on evidence primarily from neuroblastomas, it can be argued that large-scale chromosomal imbalances are crucial for tumor pathogenesis and have an impact on the global transcriptional profile of cancer cells, and that some imbalances even initiate cancer. The genes and genetic pathways that have been dysregulated by such imbalances remain surprisingly elusive. Many genes are affected by the regions of gain and loss, and there are complex interactions and relationships that occur between these genes, hindering their identification. The study of untranslated RNA sequences, such as microRNAs, is in its infancy, and it is likely that such sequences are also dysregulated by chromosomal imbalance, contributing to pathogenesis.
Collapse
Affiliation(s)
- Raymond L Stallings
- Children's Cancer Research Institute and Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, MC 7784, San Antonio, TX 78229-3900, USA.
| |
Collapse
|