1
|
Paes T, Hofland LJ, Iyer AM, Feelders RA. Epigenetic implications in the pathogenesis of corticotroph tumors. Pituitary 2025; 28:51. [PMID: 40257628 PMCID: PMC12011945 DOI: 10.1007/s11102-025-01522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Non-mutational epigenetic reprogramming is considered an important enabling characteristic of neoplasia. Corticotroph tumors and other subtypes of pituitary tumors are characterized by distinct epigenetic profiles. The DNA methylation profile is consistent with disease-specific gene expression, which highlights the importance of epigenetic changes in tumor formation and progression. Elucidating the epigenetic changes underlying tumorigenesis plays an important role in understanding the molecular pathogenesis of corticotroph tumors and may ultimately contribute to improving tumor-specific treatment. Here, we provide an overview of the epigenetic landscape of corticotroph tumors. We also review the role of epigenetics in silencing the expression of tumor suppressor genes and promoting oncogenes expression, which could potentially be involved in the pathogenesis of corticotroph tumors. We briefly discuss microRNAs and epigenetic aspects of POMC regulation. Lastly, since the epigenetic changes are reversible, we discuss drugs that target epigenetic modifiers that could potentially be used in the arsenal of Cushing's disease treatment modalities.
Collapse
Affiliation(s)
- Ticiana Paes
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands
- Department of Internal Medicine, Roger Williams Medical Center, Providence, RI, USA
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands
| | - Anand M Iyer
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands.
- Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Arun D, Rath SL. Structural analysis of the impact of germline mutations of p16 in melanoma prone families. Mol Divers 2025:10.1007/s11030-024-11089-z. [PMID: 39821174 DOI: 10.1007/s11030-024-11089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Cyclin-dependent kinases (CDKs), play essential roles in cell cycle progression. CDK activity is controlled through phosphorylation and inhibition by CDK inhibitors, such as p16. Mutations in p16 can lead to diseases such as cancer. This study examines a series of p16 mutants and their molecular interactions with CDK4 using modelling, molecular dynamics simulations, and docking studies. Despite no significant structural changes in p16 due to mutation, the binding affinity was found to be affected, correlating with conservation scales. Simulations revealed that specific mutations, such as G23D, P114S, and A60V resulted in loss of binding to CDK4, while others like R24Q and G67R showed partial loss. Surface electrostatics emphasised the significance of a positive patch on the binding surface of p16 that faces the CDK4 which was directly impacted due to mutations. Additionally, the partial binding mutants were found to have a lower stability compare to the Wildtype p16/CDK4 complex through the free energy landscape calculations. These findings provide useful insights into the molecular mechanisms by which p16 mutations influence CDK4 binding, potentially informing therapeutic strategies.
Collapse
Affiliation(s)
- D Arun
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, Telangana, India
| | - Soumya Lipsa Rath
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, Telangana, India.
| |
Collapse
|
3
|
Møller MW, Nortvig MJ, Andersen MS, Poulsen FR. DNA Methylation in Pituitary Adenomas: A Scoping Review. Int J Mol Sci 2025; 26:531. [PMID: 39859246 PMCID: PMC11765255 DOI: 10.3390/ijms26020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Pituitary adenomas are a diverse group of neoplasms with variable clinical behavior. Despite advances in genetic analysis, understanding the role of epigenetic modifications, particularly DNA methylation, remains an area under investigation. This scoping review aimed to update and synthesize the current body of literature on DNA methylation in pituitary adenomas, focusing on methodological advancements and clinical correlations. A systematic search conducted across multiple databases, including Embase, Scopus, MEDLINE, and CENTRAL, identified 107 eligible studies. Early methods, such as methylation-restricted digestion and methylation-specific PCR (MSP), have evolved into more comprehensive approaches, such as chip-based DNA methylation analysis. Key findings suggest that genes like POMC, SOCS-1, and RASSF1A show a significant association between methylation and clinical behavior. However, methylation patterns alone are insufficient to fully explain tumorigenesis. Emerging data suggest that DNA methylation might serve as a prognostic marker for invasive growth and recurrence, but further longitudinal studies are needed. This review highlights the need for future research to explore the methylome more thoroughly and to better define the clinical impact of epigenetic modifications in pituitary adenomas.
Collapse
Affiliation(s)
- Morten Winkler Møller
- Department of Neurosurgery, Odense University Hospital, DK-5000 Odense, Denmark; (M.J.N.); (M.S.A.); (F.R.P.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
- BRIDGE (Brain Research-Inter Disciplinary Guided Excellence), University of Southern Denmark, DK-5000 Odense, Denmark
| | - Mathias Just Nortvig
- Department of Neurosurgery, Odense University Hospital, DK-5000 Odense, Denmark; (M.J.N.); (M.S.A.); (F.R.P.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
- BRIDGE (Brain Research-Inter Disciplinary Guided Excellence), University of Southern Denmark, DK-5000 Odense, Denmark
| | - Mikkel Schou Andersen
- Department of Neurosurgery, Odense University Hospital, DK-5000 Odense, Denmark; (M.J.N.); (M.S.A.); (F.R.P.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
- BRIDGE (Brain Research-Inter Disciplinary Guided Excellence), University of Southern Denmark, DK-5000 Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, DK-5000 Odense, Denmark; (M.J.N.); (M.S.A.); (F.R.P.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
- BRIDGE (Brain Research-Inter Disciplinary Guided Excellence), University of Southern Denmark, DK-5000 Odense, Denmark
| |
Collapse
|
4
|
Al-Adwi Y, Westra J, van Goor H, van Kempen LC, Osman M, Gan CT, Timens W, Mulder DJ. Transcriptomic analyses of lung tissues reveal key genes associated with progression of systemic sclerosis-interstitial lung disease (SSc-ILD). J Autoimmun 2024; 148:103297. [PMID: 39098251 DOI: 10.1016/j.jaut.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE Systemic sclerosis-interstitial lung disease (SSc-ILD) is the leading cause of death in SSc, affecting around 50 % of the patients. Lung tissue of patients with early-stage SSc-ILD is characterized by a predominant inflammatory response with inconspicuous fibrosis, which may progress to honeycombing fibrosis. Hence, a better understanding of the molecular mechanisms underpinning SSc-ILD pathogenesis is needed to improve treatment options and progression prediction. This transcriptomic study aims to reveal the differential gene expression between control (ctrl) lung tissue and inflammatory, prefibrotic and fibrotic lung tissue to capture progression of early to late phase SSc-ILD. METHODS Twelve explanted lungs from patients with SSc-ILD were used to analyze gene expression from formalin-fixed paraffin-embedded lung tissues with varying stages of ILD (n = 18) and control lung tissue (n = 6). The SSc-ILD tissues were stratified into three ROIs: inflammatory, prefibrotic, and fibrotic using histological assessments to define a longitudinal simulation of early to late phases of SSc-ILD. The nanoString (nS) nCounter Human Fibrosis Panel was used to profile the transcriptome in the regions of interest. Validation of potential targetswas performed with immunohistochemistry in the same tissues that were used for transcriptome analysis. RESULTS To validate our simulation model, we performed subgroup analysis that showed an incremental increase in pathway scores related to the severity of fibrosis. Ctrl vs SSc-ILD comparison demonstrated 24 differentially expressed genes, two of which had the most pronounced p-values. Cyclin-dependent kinase inhibitor (cdkn2c) was overexpressed (P = 0.00052) in SSc-ILD compared to ctrl, while expression of Pellino E3 ubiquitin-protein ligase 1 (peli1) showed lower expression (P = 0.0012). Additionally, in all four groups, cdkn2c and peli1 gene expression showed an incremental increase and decrease, respectively. Immunohistochemistry of cdkn2c showed consistent results with the nS analysis. CONCLUSION More cdkn2c and less peli1 expression were associated with more advanced stages of SSc-ILD on histologic assessment. We report the potential of the cell cycle inhibitor and senescence marker, cdkn2c (p18) to be associated with fibrosis progression.
Collapse
Affiliation(s)
- Yehya Al-Adwi
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Vascular Medicine, Groningen, The Netherlands.
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, The Netherlands
| | - Harry van Goor
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Leon C van Kempen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Mohammed Osman
- Division of Rheumatology, University of Alberta, Edmonton, Canada
| | - C Tji Gan
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Douwe J Mulder
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Vascular Medicine, Groningen, The Netherlands
| |
Collapse
|
5
|
Atkins D, Rosas JM, Månsson LK, Shahverdi N, Dey SS, Pitenis AA. Survival-Associated Cellular Response Maintained in Pancreatic Ductal Adenocarcinoma (PDAC) Switched Between Soft and Stiff 3D Microgel Culture. ACS Biomater Sci Eng 2024; 10:2177-2187. [PMID: 38466617 PMCID: PMC11005012 DOI: 10.1021/acsbiomaterials.3c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for about 90% of all pancreatic cancer cases. Five-year survival rates have remained below 12% since the 1970s, in part due to the difficulty in detection prior to metastasis (migration and invasion into neighboring organs and glands). Mechanical memory is a concept that has emerged over the past decade that may provide a path toward understanding how invading PDAC cells "remember" the mechanical properties of their diseased ("stiff", elastic modulus, E ≈ 10 kPa) microenvironment even while invading a healthy ("soft", E ≈ 1 kPa) microenvironment. Here, we investigated the role of mechanical priming by culturing a dilute suspension of PDAC (FG) cells within a 3D, rheologically tunable microgel platform from hydrogels with tunable mechanical properties. We conducted a suite of acute (short-term) priming studies where we cultured PDAC cells in either a soft (E ≈ 1 kPa) or stiff (E ≈ 10 kPa) environment for 6 h, then removed and placed them into a new soft or stiff 3D environment for another 18 h. Following these steps, we conducted RNA-seq analyses to quantify gene expression. Initial priming in the 3D culture showed persistent gene expression for the duration of the study, regardless of the subsequent environments (stiff or soft). Stiff 3D culture was associated with the downregulation of tumor suppressors (LATS1, BCAR3, CDKN2C), as well as the upregulation of cancer-associated genes (RAC3). Immunofluorescence staining (BCAR3, RAC3) further supported the persistence of this cellular response, with BCAR3 upregulated in soft culture and RAC3 upregulated in stiff-primed culture. Stiff-primed genes were stratified against patient data found in The Cancer Genome Atlas (TCGA). Upregulated genes in stiff-primed 3D culture were associated with decreased survival in patient data, suggesting a link between patient survival and mechanical priming.
Collapse
Affiliation(s)
- Dixon
J. Atkins
- Department
of Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jonah M. Rosas
- Department
of Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Lisa K. Månsson
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Nima Shahverdi
- Molecular,
Cellular, and Developmental Biology Department, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Siddharth S. Dey
- Department
of Chemical Engineering, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Bioengineering, University of California
Santa Barbara, Santa Barbara, California 93106, United States
| | - Angela A. Pitenis
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
6
|
Kim K, Ku CR, Lee EJ. Multiomics Approach to Acromegaly: Unveiling Translational Insights for Precision Medicine. Endocrinol Metab (Seoul) 2023; 38:463-471. [PMID: 37828709 PMCID: PMC10613768 DOI: 10.3803/enm.2023.1820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
The clinical characteristics and prognoses of acromegaly vary among patients. Assessment of current and novel predictors can lead to multilevel categorization of patients, allowing integration into new clinical guidelines and a reduction in the increased morbidity and mortality associated with acromegaly. Despite advances in the diagnosis and treatment of acromegaly, its pathophysiology remains unclear. Recent advancements in multiomics technologies, including genomics, transcriptomics, proteomics, metabolomics, and radiomics, have offered new opportunities to unravel the complex pathophysiology of acromegaly. This review comprehensively explores the emerging role of multiomics approaches in elucidating the molecular landscape of acromegaly. We discuss the potential implications of multiomics data integration in the development of novel diagnostic tools, identification of therapeutic targets, and the prospects of precision medicine in acromegaly management. By integrating diverse omics datasets, these approaches can provide valuable insights into disease mechanisms, facilitate the identification of diagnostic biomarkers, and identify potential therapeutic targets for precision medicine in the management of acromegaly.
Collapse
Affiliation(s)
- Kyungwon Kim
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Ryong Ku
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Zhu Q, Zhu Z, Renaud SJ, Hu L, Guo Y. The Oncogenic Role of Cyclin-Dependent Kinase Inhibitor 2C in Lower-Grade Glioma. J Mol Neurosci 2023; 73:327-344. [PMID: 37223854 DOI: 10.1007/s12031-023-02120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Lower-grade gliomas (LGGs) are slow-growing, indolent tumors that usually affect younger patients and present a therapeutic challenge due to the heterogeneity of their clinical presentation. Dysregulation of cell cycle regulatory factors is implicated in the progression of many tumors, and drugs that target cell cycle machinery have shown efficacy as promising therapeutic approaches. To date, however, no comprehensive study has examined how cell cycle-related genes affect LGG outcomes. The cancer genome atlas (TCGA) data were used as the training set for differential analysis of gene expression and patient outcomes; the Chinese glioma genome atlas (CGGA) was used for validation. Levels of one candidate protein, cyclin-dependent kinase inhibitor 2C (CDKN2C), and its relationship to clinical prognosis were determined using a tissue microarray containing 34 LGG tumors. A nomogram was constructed to model the putative role of candidate factors in LGG. Cell type proportion analysis was performed to evaluate immune cell infiltration in LGG. Various genes encoding cell cycle regulatory factors showed increased expression in LGG and were significantly related to isocitrate dehydrogenase and chromosome arms 1p and 19q mutation status. CDKN2C expression independently predicted the outcome of LGG patients. High M2 macrophage values along with elevated CDKN2C expression were associated with poorer prognosis in LGG patients. CDKN2C plays an oncogenic role in LGG, which is associated with M2 macrophages.
Collapse
Affiliation(s)
- Qiongni Zhu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhimin Zhu
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Stephen James Renaud
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China.
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| |
Collapse
|
8
|
Mazarico-Altisent I, Capel I, Baena N, Bella-Cueto MR, Barcons S, Guirao X, Albert L, Cano A, Pareja R, Caixàs A, Rigla M. Novel germline variants of CDKN1B and CDKN2C identified during screening for familial primary hyperparathyroidism. J Endocrinol Invest 2023; 46:829-840. [PMID: 36334246 PMCID: PMC10023768 DOI: 10.1007/s40618-022-01948-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE CDKN1B mutations were established as a cause of multiple endocrine neoplasia 4 (MEN4) syndrome in patients with MEN1 phenotype without a mutation in the MEN1 gene. In addition, variants in other cyclin-dependent kinase inhibitors (CDKIs) were found in some MEN1-like cases without the MEN1 mutation. We aimed to describe novel germline mutations of these genes in patients with primary hyperparathyroidism (PHPT). METHODS During genetic screening for familial hyperparathyroidism, three novel CDKIs germline mutations in three unrelated cases between January 2019 and November 2021 were identified. In this report, we describe clinical features, DNA sequence analysis, and familial segregation studies based on these patients and their relatives. Genome-wide DNA study of loss of heterozygosity (LOH), copy number variation (CNV), and p27/kip immunohistochemistry was performed on tumour samples. RESULTS DNA screening was performed for atypical parathyroid adenomas in cases 1 and 2 and for cystic parathyroid adenoma and young age at diagnosis of PHPT in case 3. Genetic analysis identified likely pathogenic variants of CDKN1B in cases 1 and 2 and a variant of the uncertain significance of CDKN2C, with uniparental disomy in the tumour sample, in case 3. Neoplasm screening of probands showed other non-endocrine tumours in case 1 (colon adenoma with dysplasia and atypical lipomas) and case 2 (aberrant T-cell population) and a non-functional pituitary adenoma in case 3. CONCLUSION Germline mutations in CDKIs should be included in gene panels for genetic testing of primary hyperparathyroidism. New germline variants here described can be added to the current knowledge.
Collapse
Affiliation(s)
- I Mazarico-Altisent
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain.
| | - I Capel
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - N Baena
- Genetic Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - M R Bella-Cueto
- Pathology Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - S Barcons
- Surgery Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - X Guirao
- Surgery Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - L Albert
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - A Cano
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - R Pareja
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - A Caixàs
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - M Rigla
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| |
Collapse
|
9
|
Roohollahi K, de Jong Y, van Mil SE, Fabius AW, Moll AC, Dorsman JC. High-Level MYCN-Amplified RB1-Proficient Retinoblastoma Tumors Retain Distinct Molecular Signatures. OPHTHALMOLOGY SCIENCE 2022; 2:100188. [PMID: 36245757 PMCID: PMC9559112 DOI: 10.1016/j.xops.2022.100188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022]
Affiliation(s)
| | - Yvonne de Jong
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands
- Correspondence: Yvonne de Jong, PhD, Department of Human Genetics, Amsterdam UMC, Location VUMC, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands.
| | - Saskia E. van Mil
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Annette C. Moll
- Department of Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Josephine C. Dorsman
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
- Josephine C. Dorsman, PhD, Department of Human Genetics, Amsterdam UMC, Location VUMC, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Marini F, Brandi ML. Role of miR-24 in Multiple Endocrine Neoplasia Type 1: A Potential Target for Molecular Therapy. Int J Mol Sci 2021; 22:ijms22147352. [PMID: 34298972 PMCID: PMC8306915 DOI: 10.3390/ijms22147352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant inherited multiple cancer syndrome of neuroendocrine tissues. Tumors are caused by an inherited germinal heterozygote inactivating mutation of the MEN1 tumor suppressor gene, followed by a somatic loss of heterozygosity (LOH) of the MEN1 gene in target neuroendocrine cells, mainly at parathyroids, pancreas islets, and anterior pituitary. Over 1500 different germline and somatic mutations of the MEN1 gene have been identified, but the syndrome is completely missing a direct genotype-phenotype correlation, thus supporting the hypothesis that exogenous and endogenous factors, other than MEN1 specific mutation, are involved in MEN1 tumorigenesis and definition of individual clinical phenotype. Epigenetic factors, such as microRNAs (miRNAs), are strongly suspected to have a role in MEN1 tumor initiation and development. Recently, a direct autoregulatory network between miR-24, MEN1 mRNA, and menin was demonstrated in parathyroids and endocrine pancreas, showing a miR-24-induced silencing of menin expression that could have a key role in initiation of tumors in MEN1-target neuroendocrine cells. Here, we review the current knowledge on the post-transcriptional regulation of MEN1 and menin expression by miR-24, and its possible direct role in MEN1 syndrome, describing the possibility and the potential approaches to target and silence this miRNA, to permit the correct expression of the wild type menin, and thereby prevent the development of cancers in the target tissues.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antagomirs/pharmacology
- Antagomirs/therapeutic use
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 9/genetics
- DNA Damage
- Feedback, Physiological
- Forecasting
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Genetic Therapy
- Humans
- MicroRNAs/genetics
- Molecular Targeted Therapy
- Multiple Endocrine Neoplasia Type 1/genetics
- Multiple Endocrine Neoplasia Type 1/metabolism
- Multiple Endocrine Neoplasia Type 1/therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Protein Isoforms/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- Rats
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
- F.I.R.M.O., Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O., Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
- Correspondence: or ; Tel.: +39-055-23-36-663
| |
Collapse
|
11
|
Williams EA, Sharaf R, Decker B, Werth AJ, Toma H, Montesion M, Sokol ES, Pavlick DC, Shah N, Williams KJ, Venstrom JM, Alexander BM, Ross JS, Albacker LA, Lin DI, Ramkissoon SH, Elvin JA. CDKN2C-Null Leiomyosarcoma: A Novel, Genomically Distinct Class of TP53/ RB1-Wild-Type Tumor With Frequent CIC Genomic Alterations and 1p/19q-Codeletion. JCO Precis Oncol 2020; 4:PO.20.00040. [PMID: 33015533 PMCID: PMC7529542 DOI: 10.1200/po.20.00040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Leiomyosarcoma (LMS) harbors frequent mutations in TP53 and RB1 but few actionable genomic alterations. Here, we searched for recurrent actionable genomic alterations in LMS that occur in the absence of common untreatable oncogenic drivers. METHODS Tissues from 276,645 unique advanced cancers, including 2,570 uterine and soft tissue LMS, were sequenced by hybrid-capture-based next-generation DNA and RNA sequencing/comprehensive genomic profiling of up to 406 genes. We characterized clinicopathologic features of relevant patient cases. RESULTS Overall, 77 LMS exhibited homozygous copy loss of CDKN2C at chromosome 1p32.3 (3.0% of LMS). Genomic alterations (GAs) in TP53, RB1, and ATRX were rare compared with the remainder of the LMS cohort (11.7% v 73.4%, 0% v 54.5%, 2.6% v 24.5%, respectively; all P < .0001). CDKN2C-null LMS patient cases were significantly enriched for GAs in CIC (40.3% v 1.4%) at 19q13.2, CDKN2A (46.8% v 7.0%), and RAD51B (16.9% v 1.7%; all P < .0001). Chromosome arm-level aneuploidy analysis of available LMS patient cases (n = 1,284) found that 81% (58 of 72) of CDKN2C-null LMS exhibited 1p/19q-codeletion, a significant enrichment compared with 5.1% in the remainder of the LMS cohort (P < .0001). In total, 99% of CDKN2C-null LMS were in women; the median age was 61 years at surgery (range, 36-81 years). Fifty-five patient cases were uterine primary, four were nonuterine, and the remaining 18 were of uncertain primary site. Sixty percent of cases showed at least focal epithelioid variant histology. Most patients had advanced-stage disease, with 62% of confirmed uterine primary LMS at International Federation of Gynecology and Obstetrics stage IVB. We further validated our findings in two publicly available datasets: The Cancer Genome Atlas and the Project GENIE initiative. CONCLUSION CDKN2C-null LMS defines a genomically distinct tumor that may have prognostic and/or therapeutic clinical implications, including possible use of specific cyclin-dependent kinase inhibitors.
Collapse
Affiliation(s)
| | | | - Brennan Decker
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Adrienne J. Werth
- Christiana Hospital, Department of Obstetrics and Gynecology, Newark, DE
| | - Helen Toma
- Christiana Hospital, Department of Obstetrics and Gynecology, Newark, DE
| | | | | | | | | | - Kevin Jon Williams
- Department of Physiology, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | | | | | - Jeffrey S. Ross
- Foundation Medicine, Cambridge, MA
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY
| | | | | | - Shakti H. Ramkissoon
- Foundation Medicine, Cambridge, MA
- Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | | |
Collapse
|
12
|
The Genetics of Pituitary Adenomas. J Clin Med 2019; 9:jcm9010030. [PMID: 31877737 PMCID: PMC7019860 DOI: 10.3390/jcm9010030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022] Open
Abstract
The genetic landscape of pituitary adenomas (PAs) is diverse and many of the identified cases remain of unclear pathogenetic mechanism. Germline genetic defects account for a small percentage of all patients and may present in the context of relevant family history. Defects in AIP (mutated in Familial Isolated Pituitary Adenoma syndrome or FIPA), MEN1 (coding for menin, mutated in Multiple Endocrine Neoplasia type 1 or MEN 1), PRKAR1A (mutated in Carney complex), GPR101 (involved in X-Linked Acrogigantism or X-LAG), and SDHx (mutated in the so called "3 P association" of PAs with pheochromocytomas and paragangliomas or 3PAs) account for the most common familial syndromes associated with PAs. Tumor genetic defects in USP8, GNAS, USP48 and BRAF are some of the commonly encountered tissue-specific changes and may explain a larger percentage of the developed tumors. Somatic (at the tumor level) genomic changes, copy number variations (CNVs), epigenetic modifications, and differential expression of miRNAs, add to the variable genetic background of PAs.
Collapse
|
13
|
Shariq OA, Lines KE. Epigenetic dysregulation in pituitary tumors. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2019. [DOI: 10.2217/ije-2019-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pituitary tumors are common intracranial neoplasms associated with significant morbidity due to hormonal dysregulation and neurologic symptoms. Somatic mutations are uncommon in sporadic pituitary adenomas, and only few monogenic conditions are associated with pituitary tumors. However, increasing evidence suggests that aberrant epigenetic modifications are found in pituitary tumors. In this review, we describe these mechanisms, including DNA methylation, histone modification and microRNA expression, and the evidence supporting their dysregulation in pituitary tumors, as well as their regulation of pro-tumorigenic genes. In addition, we provide an overview of findings from preclinical studies investigating the use of histone deacetylase inhibitors to treat pituitary adenomas and the need for further studies involving epigenetic drugs and functional characterization of epigenetic dysregulation.
Collapse
Affiliation(s)
- Omair A Shariq
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Kate E Lines
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| |
Collapse
|
14
|
Hauser BM, Lau A, Gupta S, Bi WL, Dunn IF. The Epigenomics of Pituitary Adenoma. Front Endocrinol (Lausanne) 2019; 10:290. [PMID: 31139150 PMCID: PMC6527758 DOI: 10.3389/fendo.2019.00290] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background: The vast majority of pituitary tumors are benign and behave accordingly; however, a fraction are invasive and are more aggressive, with a very small fraction being frankly malignant. The cellular pathways that drive transformation in pituitary neoplasms are poorly characterized, and current classification methods are not reliable correlates of clinical behavior. Novel techniques in epigenetics, the study of alterations in gene expression without changes to the genetic code, provide a new dimension to characterize tumors, and may hold implications for prognostication and management. Methods: We conducted a review of primary epigenetic studies of pituitary tumors with a focus on histone modification, DNA methylation, and transcript modification. Results: High levels of methylation have been identified in invasive and large pituitary tumors. DNA methyltransferase overexpression has been detected in pituitary tumors, especially in macroadenomas. Methylation differences at CpG sites in promoter regions may distinguish several types of tumors from normal pituitary tissue. Histone modifications have been linked to increased p53 expression and longer progression-free survival in pituitary tumors; sirtuins are expressed at higher values in GH-expressing compared to nonfunctional adenomas and correlate inversely with size in somatotrophs. Upregulation in citrullinating enzymes may be an early pathogenic marker of prolactinomas. Numerous genes involved with cell growth and signaling show altered methylation status for pituitary tumors, including cell cycle regulators, components of signal transduction pathways, apoptotic regulators, and pituitary developmental signals. Conclusions: The limited clinical predictive capacity of the current pituitary tumor classification system suggests that tumor subclasses likely remain to be discovered. Ongoing epigenetic studies could provide a basis for adding methylation and/or acetylation screening to standard pituitary tumor workups. Identifying robust correlations between tumor epigenetics and corresponding histological, radiographic, and clinical course information could ultimately inform clinical decision-making.
Collapse
Affiliation(s)
- Blake M. Hauser
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ashley Lau
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Saksham Gupta
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Wenya Linda Bi
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Ian F. Dunn
| |
Collapse
|
15
|
Ezzat S, Cheng S, Asa SL. Epigenetics of pituitary tumors: Pathogenetic and therapeutic implications. Mol Cell Endocrinol 2018; 469:70-76. [PMID: 28711607 DOI: 10.1016/j.mce.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/21/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022]
Abstract
Genetic mutations involving oncogenes or tumor suppressor genes are relatively uncommon in human sporadic pituitary tumors. Instead, increasing evidence has highlighted frequent epigenetic alterations including DNA methylation, histone modifications, and enhanced miRNA expression. This review covers some of this evidence as it illuminates mechanisms of tumorigenesis and highlights therapeutic opportunities.
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, University of Toronto, The Endocrine Oncology Site Group, Princess Margaret Cancer Centre, and The Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada.
| | - Sonia Cheng
- Department of Medicine, University of Toronto, The Endocrine Oncology Site Group, Princess Margaret Cancer Centre, and The Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Sylvia L Asa
- Department of Laboratory Medicine & Pathobiology, University of Toronto, The Endocrine Oncology Site Group, Princess Margaret Cancer Centre, and The Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Park SH, Jang JH, Lee YM, Kim JS, Kim KH, Kim YZ. Function of cell-cycle regulators in predicting silent pituitary adenoma progression following surgical resection. Oncol Lett 2017; 14:7121-7130. [PMID: 29344143 PMCID: PMC5754893 DOI: 10.3892/ol.2017.7117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/20/2017] [Indexed: 12/26/2022] Open
Abstract
The present study investigated the use of cell-cycle regulators for predicting the progression of silent pituitary adenoma (SPA) following surgical resection, via immunohistochemical analysis of tumor samples obtained by surgical resection. The medical records of patients diagnosed with SPA between January 2000 and December 2013 in the Samsung Changwon Hospital, Sungkyunkwan University School of Medicine (Changwon, South Korea) were reviewed. Immunohistochemical staining was performed on sections of the archived, paraffin-embedded tissues obtained by surgery, with all tissues stained for cell-cycle regulatory proteins p16, p15, p21, cyclin-dependent kinase (CDK)4, CDK6, retinoblastoma protein (pRb) and cyclin D1, as well as E3 ubiquitin-protein ligase mib1 (MIB-1) antigen and p53. The primary end-point was to investigate the expression of cell-cycle regulatory proteins in SPA. The secondary end-point was to estimate the progression-free survival of patients with SPA following surgical resection and to identify its association with the expression of cell-cycle regulatory proteins. Of the 127 SPA samples, 44 (34.6%) were from patients with progression during a mean follow-up period of 62.4 months (range, 24.2–118.9 months). Immunohistochemical overexpression was identified in 61 samples (48.0%) for p16, 38 samples (29.9%) for p15, 19 samples (15.0%) for p21, 49 samples (38.6%) for CDK4, 17 samples (13.4%) for CDK6, 57 samples (44.9%) for pRb and in 65 samples (51.2%) for cyclin D1. Multivariate analysis revealed that null cell adenoma [95% confidence interval (CI), 0.276–0.808], somatotroph SPAs (95% CI, 1.296–3.121), corticotroph SPAs (95% CI, 1.811–4.078), pluripotent SPAs (95% CI, 2.264–5.194), decreased expression of p16 (95% CI, 2.724–5.588), overexpression of pRb (95% CI, 2.557–5.333), cyclin D1 (95% CI, 1.894–4.122) and MIB-1 (95% CI, 1.561–4.133), increased mitotic index (95% CI, 1.228–4.079), increased p53 expression (95% CI, 1.307–4.065) and invasion into the cavernous sinus (95% CI, 3.842–7.502) predicted SPA progression following resection. The results of the present study suggested that specific cell-cycle regulators, including p16, cyclin D1 and pRb, were associated with SPA progression.
Collapse
Affiliation(s)
- Sung Hyun Park
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Gyeongnam 51353, Republic of Korea
| | - Ji Hwan Jang
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Gyeongnam 51353, Republic of Korea
| | - Young Min Lee
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Gyeongnam 51353, Republic of Korea
| | - Joon Soo Kim
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Gyeongnam 51353, Republic of Korea
| | - Kyu Hong Kim
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Gyeongnam 51353, Republic of Korea
| | - Young Zoon Kim
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Gyeongnam 51353, Republic of Korea
| |
Collapse
|
17
|
Alrezk R, Hannah-Shmouni F, Stratakis CA. MEN4 and CDKN1B mutations: the latest of the MEN syndromes. Endocr Relat Cancer 2017; 24:T195-T208. [PMID: 28824003 PMCID: PMC5623937 DOI: 10.1530/erc-17-0243] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
Abstract
Multiple endocrine neoplasia (MEN) refers to a group of autosomal dominant disorders with generally high penetrance that lead to the development of a wide spectrum of endocrine and non-endocrine manifestations. The most frequent among these conditions is MEN type 1 (MEN1), which is caused by germline heterozygous loss-of-function mutations in the tumor suppressor gene MEN1 MEN1 is characterized by primary hyperparathyroidism (PHPT) and functional or nonfunctional pancreatic neuroendocrine tumors and pituitary adenomas. Approximately 10% of patients with familial or sporadic MEN1-like phenotype do not have MEN1 mutations or deletions. A novel MEN syndrome was discovered, initially in rats (MENX), and later in humans (MEN4), which is caused by germline mutations in the putative tumor suppressor CDKN1B The most common phenotype of the 19 established cases of MEN4 that have been described to date is PHPT followed by pituitary adenomas. Recently, somatic or germline mutations in CDKN1B were also identified in patients with sporadic PHPT, small intestinal neuroendocrine tumors, lymphoma and breast cancer, demonstrating a novel role for CDKN1B as a tumor susceptibility gene for other neoplasms. In this review, we report on the genetic characterization and clinical features of MEN4.
Collapse
Affiliation(s)
- Rami Alrezk
- The National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of Health, Bethesda, Maryland, USA
| | - Fady Hannah-Shmouni
- Section on Endocrinology & Geneticsthe Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Constantine A Stratakis
- Section on Endocrinology & Geneticsthe Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Molecular Mechanisms Underlying Pituitary Pathogenesis. Biochem Genet 2015; 54:107-19. [DOI: 10.1007/s10528-015-9709-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
|
19
|
Köchling M, Ewelt C, Fürtjes G, Peetz-Dienhart S, Koos B, Hasselblatt M, Paulus W, Stummer W, Brokinkel B. hTERT promoter methylation in pituitary adenomas. Brain Tumor Pathol 2015; 33:27-34. [PMID: 26390879 DOI: 10.1007/s10014-015-0230-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Telomerase reverse transcriptase (TERT) expression is a hallmark in tumorigenesis and upregulated due to mutations and methylation of the human (h)TERT promoter. As mutations are rare but methylation is common in pituitary adenomas (PA), we determined promoter methylation and its clinical impact in 85 primary and 15 recurrent PA by methylation-specific PCR. 40 females (47%) and 45 males (53%) with a median age of 53 years harboring micro-, macro-, and giant adenomas in 12, 82, and 6% were included (prolactinomas, corticotroph, somatotroph, gonadotroph, thyreotroph, plurihormonal, and null cell adenomas in 11, 18, 10, 29, 1, 10, and 21%, respectively). In primary diagnosed tumors, methylation rate was 27% and higher in males than in females (40 vs. 13%, p = 0.001) after uni- and multivariate analyses. Methylation differed among PA subtypes (0-42%, p = n.s.) and was not significantly correlated with tumor size, cavernous sinus invasion, or serum hormone levels. Ki67 labeling index and recurrence (N = 16, 19%) were independent of methylation. In recurrent tumors, methylation was similar to primary PA (N = 5/15, 33%) and remained unchanged along follow-up. Thus, while being commonly observed in PA, hTERT promoter methylation is stable along follow-up and independent of most clinical variables, PA subtype, proliferation, and without prognostic value.
Collapse
Affiliation(s)
- Michaela Köchling
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Christian Ewelt
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Gina Fürtjes
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Susanne Peetz-Dienhart
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany
| | - Björn Koos
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
| |
Collapse
|
20
|
DNA methyltransferase 3A promotes cell proliferation by silencing CDK inhibitor p18INK4C in gastric carcinogenesis. Sci Rep 2015; 5:13781. [PMID: 26350239 PMCID: PMC4563369 DOI: 10.1038/srep13781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/05/2015] [Indexed: 01/13/2023] Open
Abstract
Little is known about the roles of DNA methyltransferase 3A (DNMT3A) in gastric carcinogenesis. Here, we reported that the exogenous expression of DNMT3A promoted gastric cancer (GC) cell proliferation by accelerating the G1/S transition. Subsequently, p18INK4C was identified as a downstream target of DNMT3A. The elevated expression of DNMT3A suppressed p18INK4C at least at the transcriptional level. Depletion of p18INK4C expression in GC cells induced cell cycle progression, whereas its re-expression alleviated the effect of DNMT3A overexpression on G1/S transition. Furthermore, we found that DNMT3A modulated p18INK4C by directly binding to and silencing the p18INK4C gene via promoter hypermethylation. In clinical GC tissue specimens analyzed, the level of methylation of p18INK4C detected in tumor tissues was significantly higher than that in paired non-tumor tissues. Moreover, elevated level of DNMT3A expression was associated with the differentiation of GC tissues and was negatively correlated with the p18INK4C expression level. Taken together, our results found that DNMT3A contributes to the dysregulation of the cell cycle by repressing p18INK4C in a DNA methylation-dependent manner, suggesting that DNMT3A-p18INK4C axis involved in GC. These findings provide new insights into gastric carcinogenesis and a potential therapeutic target for GC that may be further investigated in the future.
Collapse
|
21
|
Abstract
Pituitary adenomas are a heterogeneous group of tumors that may occur as part of a complex syndrome or as an isolated endocrinopathy and both forms can be familial or non-familial. Studies of syndromic and non-syndromic pituitary adenomas have yielded important insights about the molecular mechanisms underlying tumorigenesis. Thus, syndromic forms, including multiple endocrine neoplasia type 1 (MEN1), MEN4, Carney Complex and McCune Albright syndrome, have been shown to be due to mutations of the tumor-suppressor protein menin, a cyclin-dependent kinase inhibitor (p27Kip1), the protein kinase A regulatory subunit 1-α, and the G-protein α-stimulatory subunit (Gsα), respectively. Non-syndromic forms, which include familial isolated pituitary adenoma (FIPA) and sporadic tumors, have been shown to be due to abnormalities of: the aryl hydrocarbon receptor-interacting protein; Gsα; signal transducers; cell cycle regulators; transcriptional modulators and miRNAs. The roles of these molecular abnormalities and epigenetic mechanisms in pituitary tumorigenesis, and their therapeutic implications are reviewed.
Collapse
Affiliation(s)
- Christopher J Yates
- a 1 Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, Oxfordshire, OX3 7LJ, UK
- b 2 Department of Diabetes and Endocrinology, Melbourne Health, The Royal Melbourne Hospital, Grattan Street, Parkville, Vic 3050, Australia
| | - Kate E Lines
- a 1 Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, Oxfordshire, OX3 7LJ, UK
| | - Rajesh V Thakker
- a 1 Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, Oxfordshire, OX3 7LJ, UK
| |
Collapse
|
22
|
Cano DA, Soto-Moreno A, Leal-Cerro A. Genetically engineered mouse models of pituitary tumors. Front Oncol 2014; 4:203. [PMID: 25136513 PMCID: PMC4117927 DOI: 10.3389/fonc.2014.00203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
Animal models constitute valuable tools for investigating the pathogenesis of cancer as well as for preclinical testing of novel therapeutics approaches. However, the pathogenic mechanisms of pituitary-tumor formation remain poorly understood, particularly in sporadic adenomas, thus, making it a challenge to model pituitary tumors in mice. Nevertheless, genetically engineered mouse models (GEMMs) of pituitary tumors have provided important insight into pituitary tumor biology. In this paper, we review various GEMMs of pituitary tumors, highlighting their contributions and limitations, and discuss opportunities for research in the field.
Collapse
Affiliation(s)
- David A Cano
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío , Seville , Spain ; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla , Seville , Spain
| | - Alfonso Soto-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío , Seville , Spain ; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla , Seville , Spain
| | - Alfonso Leal-Cerro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla , Seville , Spain
| |
Collapse
|
23
|
Zhou Y, Zhang X, Klibanski A. Genetic and epigenetic mutations of tumor suppressive genes in sporadic pituitary adenoma. Mol Cell Endocrinol 2014; 386:16-33. [PMID: 24035864 PMCID: PMC3943596 DOI: 10.1016/j.mce.2013.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/03/2013] [Indexed: 12/28/2022]
Abstract
Human pituitary adenomas are the most common intracranial neoplasms. Approximately 5% of them are familial adenomas. Patients with familial tumors carry germline mutations in predisposition genes, including AIP, MEN1 and PRKAR1A. These mutations are extremely rare in sporadic pituitary adenomas, which therefore are caused by different mechanisms. Multiple tumor suppressive genes linked to sporadic tumors have been identified. Their inactivation is caused by epigenetic mechanisms, mainly promoter hypermethylation, and can be placed into two groups based on their functional interaction with tumor suppressors RB or p53. The RB group includes CDKN2A, CDKN2B, CDKN2C, RB1, BMP4, CDH1, CDH13, GADD45B and GADD45G; AIP and MEN1 genes also belong to this group. The p53 group includes MEG3, MGMT, PLAGL1, RASSF1, RASSF3 and SOCS1. We propose that the tumor suppression function of these genes is mainly mediated by the RB and p53 pathways. We also discuss possible tumor suppression mechanisms for individual genes.
Collapse
Affiliation(s)
- Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
24
|
Epidemiology and etiopathogenesis of pituitary adenomas. J Neurooncol 2014; 117:379-94. [PMID: 24481996 DOI: 10.1007/s11060-013-1354-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
Pituitary adenomas are usually benign monoclonal tumours presenting either due to hypersecretion of pituitary hormones, and/or due to local space occupying effects and hyposecretion of some or all of the pituitary hormones. Some pituitary adenomas cause prominent symptoms, while others may result in slowly developing, insidious, non-specific complains delaying accurate diagnosis, with a third group remaining symptomless and recognised only incidentally. Therefore, it is a challenge to accurately determine the prevalence and incidence of pituitary adenomas in the general population. The vast majority of pituitary adenomas occur sporadically, but familial cases are now increasingly recognised. Hereditary predisposition, somatic mutations and endocrine factors were shown to have a pathophysiologic role in the initiation and progression of pituitary adenomas, which interestingly almost always remain benign. Here, we summarize the available epidemiological data and the known pathogenesis of the pituitary adenomas.
Collapse
|
25
|
Abstract
Pituitary adenomas are benign intracranial neoplasms that present a major clinical concern due to hormone overproduction and/or tumor mass effects. The majority of pituitary adenomas occur sporadically; however, familial cases are increasingly being recognized, such as multiple endocrine neoplasia type 1 (MEN1), Carney complex (CNC), and familial isolated pituitary adenoma (FIPA). Familial pituitary tumors appear to differ from their sporadic counterparts both in their genetic basis and in clinical characteristics. Evidence suggests that, especially in MEN1 and FIPA, tumors are more aggressive and affect patients at a younger age, therefore justifying the importance of early diagnosis, while in Carney complex pituitary hyperplasia is common. The genetic alterations responsible for the formation of familial pituitary syndromes include the MEN1 gene, responsible for about 80% of MEN1 cases, the regulatory subunit of the protein kinase A, PRKAR1A, responsible for about 70% of Carney complex cases, and AIP, the gene coding the aryl hydrocarbon receptor interacting protein, responsible for about 20% of FIPA cases. Rarely other genes have also been found responsible for familial pituitary adenoma cases. McCune-Albright syndrome (MAS) also has a genetic origin due to mosaic mutations in the G protein-coupled α subunit coded by the GNAS1 gene. In this chapter, we summarize the genetic and clinical characteristics of these familial pituitary syndromes and MAS.
Collapse
Affiliation(s)
- Neda Alband
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK.
| |
Collapse
|
26
|
Lee EH, Kim KH, Kwon JH, Kim HD, Kim YZ. Results of immunohistochemical staining of cell-cycle regulators: the prediction of recurrence of functioning pituitary adenoma. World Neurosurg 2013; 81:563-75. [PMID: 24067736 DOI: 10.1016/j.wneu.2013.09.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/25/2013] [Accepted: 09/18/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study was undertaken primarily to investigate the possible prognostic values of several cell-cycle regulators for the prediction of functioning pituitary adenoma (FPA) recurrence after surgical resection by immunohistochemically analyzing tumor samples obtained by surgical resection. METHODS The medical records of the patients with FPA diagnosed from January 2000 to December 2009 at the Department of Neurosurgery at Samsung Changwon Hospital and Dong-A University Medical Center were selected. Immunohistochemical staining was performed on archived paraffin-embedded tissues obtained by surgical resection for adenohypophysial cells, cell-cycle regulatory proteins (p16, p15, p21, cyclin-dependent kinase [CDK] 4 and 6, phosphorylated retinoblastoma [pRB] protein, and cyclin D1), MIB-1 antigen, and p53. RESULTS Of the 174 FPAs, 62 (35.6%) recurred during follow-up period (mean duration 62.4 months, range 24.2-118.9 months). Immunohistochemically, overstaining for p16 in 89 samples (51.1%), p15 in 27 samples (15.5%), p21 in 20 samples (11.5%), CDK4 in 54 samples (31.0%), CDK6 in 18 samples (10.3%), pRB protein in 69 samples (39.7%), and cyclin D1 in 87 samples (50.0%). Multivariate analysis using the Cox proportional hazard regression model showed that invasion into cavernous sinus (hazard ratio [HR] of 4.02; P < 0.001), immunohistochemical normostaining for p16 (HR of 3.16; P < 0.001), immunohistochemical overstaining for pRB protein (HR of 2.45; P = 0.008), cyclin D1 (HR of 2.13; P = 0.029), MIB-1 antigen (HR of 2.74; P = 0.002), and p53 (HR of 2.21; P = 0.002), predicted the recurrence of FPA after surgical resection. CONCLUSIONS Our findings indicate that p16, pRB protein, and cyclin D1 are associated with recurrence FPA after surgical resection.
Collapse
Affiliation(s)
- Eun Hee Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Kyu Hong Kim
- Division of Neurooncology, Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Jae Hyun Kwon
- Department of Neurosurgery, Dong-A University Medical Center, Dong-A University College of Medicine, Busan, South Korea
| | - Hyung Dong Kim
- Department of Neurosurgery, Dong-A University Medical Center, Dong-A University College of Medicine, Busan, South Korea
| | - Young Zoon Kim
- Division of Neurooncology, Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea.
| |
Collapse
|
27
|
Marinoni I, Lee M, Mountford S, Perren A, Bravi I, Jennen L, Feuchtinger A, Drouin J, Roncaroli F, Pellegata NS. Characterization of MENX-associated pituitary tumours. Neuropathol Appl Neurobiol 2013; 39:256-69. [PMID: 22524684 DOI: 10.1111/j.1365-2990.2012.01278.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this study is to evaluate the pathological features, serum hormone levels and ex vivo cultures of pituitary adenomas that occur in rats affected by MENX syndrome. MENX is multiple endocrine neoplasia syndrome caused by a germline mutation in the cell cycle inhibitor p27. Characterization of MENX adenomas is a prerequisite to exploit this animal model for molecular and translational studies of pituitary adenomas. METHODS We investigated MENX pituitary adenomas with immunohistochemistry, double immunofluorescence, electron microscopy, reverse transcription polymerase chain reaction (RT-PCR), measurement of serum hormone levels and ex vivo cultures. RESULTS Adenomas in MENX rats belong to the gonadotroph lineage. They start from 4 months of age as multiple neoplastic nodules and progress to become large lesions that efface the gland. Adenomas are composed of chromophobic cells predominantly expressing the glycoprotein alpha-subunit (αGSU). They show mitotic activity and high Ki67 labelling. A few neoplastic cells co-express gonadotropins and the transcription factor steroidogenic factor 1, together with growth hormone or prolactin and Pit-1, suggesting that they are not fully committed to one cell lineage. Ex vivo cultures show features similar to the primary tumour. CONCLUSIONS Our results suggest that p27 function is critical to regulate gonadotroph cells growth. The MENX syndrome represents a unique model to elucidate the physiological and molecular mechanisms mediating the pathogenesis of gonadotroph adenomas.
Collapse
Affiliation(s)
- I Marinoni
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T. Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci 2013; 70:4785-94. [PMID: 23880895 PMCID: PMC3830198 DOI: 10.1007/s00018-013-1423-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 02/07/2023]
Abstract
The mammalian cell cycle is precisely controlled by cyclin-dependent kinases (CDKs) and related pathways such as the RB and p53 pathways. Recent research on long non-coding RNAs (lncRNAs) indicates that many lncRNAs are involved in the regulation of critical cell cycle regulators such as the cyclins, CDKs, CDK inhibitors, pRB, and p53. These lncRNAs act as epigenetic regulators, transcription factor regulators, post-transcription regulators, and protein scaffolds. These cell cycle-regulated lncRNAs mainly control cellular levels of cell cycle regulators via various mechanisms, and may provide diversity and reliability to the general cell cycle. Interestingly, several lncRNAs are induced by DNA damage and participate in cell cycle arrest or induction of apoptosis as DNA damage responses. Therefore, deregulations of these cell cycle regulatory lncRNAs may be involved in tumorigenesis, and they are novel candidate molecular targets for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3125, Japan,
| | | | | | | | | |
Collapse
|
29
|
Sachdeva R, Bhardwaj N, Huhtaniemi I, Aggrawal U, Jain SK, Zaidi R, Singh O, Pal R. Transgenesis-mediated reproductive dysfunction and tumorigenesis: effects of immunological neutralization. PLoS One 2012; 7:e51125. [PMID: 23226476 PMCID: PMC3511405 DOI: 10.1371/journal.pone.0051125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/31/2012] [Indexed: 02/01/2023] Open
Abstract
Human chorionic gonadotropin (hCG) was initially thought to be made only during pregnancy, but is now known to also be synthesized by a variety of cancers and is associated with poor patient prognosis. Transgenic expression of βhCG in mice causes hyper-luteinized ovaries, a loss in estrous cyclicity and infertility, increased body weight, prolactinomas and mammary gland tumors. Strategies were devised to generate antibody responses against hCG to investigate whether reversal of the molecular processes driving tumorigenesis would follow. hCG-immunized transgenic mice did not exhibit increases in body weight or serum prolactin levels, and gross ovarian and pituitary morphology remained normal. While non-immunized transgenic animals demonstrated heightened levels of transcripts associated with pituitary tumorigenesis (HMG2A, E2F1, CCND1, PRL, GH, GAL, PTTG1, BMP4) and decreased levels of CDK inhibitors CDKN1B (p27), CDKN2A (p16) and CDKN2c (p18), immunization led to a reversal to levels found in non-transgenic animals. Serum derived from transgenic (but not non-transgenic) mice led to enhanced transcription as well as expression of VEGF, IL-8, KC (murine IL-8) and MMP-9 in tumor cells, effects not seen when sera derived from hCG-immunized transgenic mice was employed. As the definitive indication of the restoration of the reproductive axis, immunization led to the resumption of estrous cyclicity as well as fertility in transgenic mice. These results indicate that hCG may influence cancer pathogenesis and progression via several distinct mechanisms. Using a stringent in vivo system in which βhCG acts both a “self” antigen and a tumor-promoting moiety (putatively akin to the situation in humans), the data builds a case for anti-gonadotropin vaccination strategies in the treatment of gonadotropin-dependent or secreting malignancies that frequently acquire resistance to conventional therapy.
Collapse
Affiliation(s)
- Ruchi Sachdeva
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neetu Bhardwaj
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ilpo Huhtaniemi
- Department of Physiology, University of Turku, Turku, Finland
- Department of Reproductive and Developmental Biology, Imperial College, London, Hammersmith Campus, London, United Kingdom
| | - Usha Aggrawal
- Institute of Pathology, Safdarjung Hospital, New Delhi, India
| | | | - Rana Zaidi
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
- * E-mail: (RZ); (OS); (RP)
| | - Om Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (RZ); (OS); (RP)
| | - Rahul Pal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (RZ); (OS); (RP)
| |
Collapse
|
30
|
Reduced expression of ELAVL4 in male meningioma patients. Brain Tumor Pathol 2012; 30:160-6. [PMID: 22965691 DOI: 10.1007/s10014-012-0117-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 08/23/2012] [Indexed: 12/20/2022]
Abstract
Meningioma is a frequently occurring tumor of the central nervous system. Among many genetic alternations, the loss of the short arm of chromosome 1 is the second most frequent chromosomal abnormality observed in these tumors. Here, we focused on the previously described and well-established minimal deletion regions of chromosome 1. In accordance with the Knudson suppressor theory, we designed an analysis of putative suppressor genes localized in the described minimal deletion regions. The purpose was to determine the molecular background of the gender-specific occurrence of meningiomas. A total of 149 samples were examined for loss of heterozygosity (LOH). In addition, 57 tumor samples were analyzed using real-time polymerase chain reaction. We examined the association between the expression of selected genes and patient age, gender, tumor grade and presence of 1p loss. Furthermore, we performed an analysis of the most stable internal control for real-time analysis in meningiomas. LOH analysis revealed gender-specific discrepancies in the frequency of 1p aberrations. Moreover, statistical correlation between the gene expression level and gender was significant for the ELAVL4 gene as we found it to be lower in males than in females. We conclude that meningiomas present different features depending on patient gender. We suggest that ELAVL4 can be involved in the pathogenesis of meningiomas in male patients.
Collapse
|
31
|
Gagrica S, Brookes S, Anderton E, Rowe J, Peters G. Contrasting behavior of the p18INK4c and p16INK4a tumor suppressors in both replicative and oncogene-induced senescence. Cancer Res 2011; 72:165-75. [PMID: 22080569 DOI: 10.1158/0008-5472.can-11-2552] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cyclin-dependent kinase (CDK) inhibitors, p18(INK4c) and p16(INK4a), both have the credentials of tumor suppressors in human cancers and mouse models. For p16(INK4a), the underlying rationale is its role in senescence, but the selective force for inactivation of p18(INK4c) in incipient cancer cells is less clear. Here, we show that in human fibroblasts undergoing replicative or oncogene-induced senescence, there is a marked decline in the levels of p18(INK4c) protein and RNA, which mirrors the accumulation of p16(INK4a). Downregulation of INK4c is not dependent on p16(INK4a), and RAS can promote the loss of INK4c without cell-cycle arrest. Downregulation of p18(INK4c) correlates with reduced expression of menin and E2F1 but is unaffected by acute cell-cycle arrest or inactivation of the retinoblastoma protein (pRb). Collectively, our data question the idea that p18(INK4c) acts as a backup for loss of p16(INK4a) and suggest that the apparent activation of p18(INK4c) in some settings represents delayed senescence rather than increased expression. We propose that the contrasting behavior of the two very similar INK4 proteins could reflect their respective roles in senescence versus differentiation.
Collapse
Affiliation(s)
- Sladjana Gagrica
- Molecular Oncology Laboratory, CRUK London Research Institute, London, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Diaz-Rodriguez E, García-Lavandeira M, Perez-Romero S, Senra A, Cañibano C, Palmero I, Borrello MG, Dieguez C, Alvarez CV. Direct promoter induction of p19Arf by Pit-1 explains the dependence receptor RET/Pit-1/p53-induced apoptosis in the pituitary somatotroph cells. Oncogene 2011; 31:2824-35. [PMID: 22020338 DOI: 10.1038/onc.2011.458] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Somatotrophs produce growth hormone (GH) and are the most abundant secretory cells of the pituitary. Somatotrophs express the transcription factor Pit-1 and the dependence receptor RET, its co-receptor GFRa1 and ligand GDNF. Pit-1 is a transcription factor essential for somatotroph proliferation and differentiation and for GH expression. GDNF represses excess Pit-1 expression preventing excess GH. In the absence of GDNF, RET behaves as a dependence receptor, becomes intracellularly processed and induces strong Pit-1 expression leading to p53 accumulation and apoptosis. How accumulation of Pit-1 leads to p53 expression is unknown. We have unveiled the relationship of Pit-1 with the p19Arf gene. There is a parallel correlation of RET processing, Pit-1 increase and ARF protein and mRNA expression. Interfering the pathway with RET, Pit-1 or p19Arf siRNA blocked apoptosis. We have found a Pit-1 DNA-binding element within the ARF promoter. Pit-1 directly regulates the CDKN2A locus and binds to the p19Arft promoter inducing p19Arf gene expression. The Pit-1-binding element is conserved in rodents and humans. RET/Pit-1 induces p19Arf/p53 and apoptosis not only in a somatotroph cell line but also in primary cultures of pituitary somatotrophs, where ARF siRNA interference also blocks p53 and apoptosis. Analyses of the somatotrophs in whole pituitaries supported the above findings. Thus Pit-1, a differentiation factor, activates the oncogene-induced apoptosis (OIA) pathway as oncogenes exerting a tight control in somatotrophs to prevent the disease due to excess of GH (insulin-resistance, metabolic disease, acromegaly).
Collapse
Affiliation(s)
- E Diaz-Rodriguez
- IDIS-Neoplasia and Endocrine Differentiation, Department of Physiology, CIMUS, School of Medicine, University of Santiago de Compostela USC, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
According to autopsy and radiological data, pituitary adenomas (PAs) develop in approximately 15% to 20% of the population. The great majority of PAs arise sporadically and affect adults. Rarely they are diagnosed in children and adolescents. Approximately 5% of cases are thought to be familial. Inherited conditions associated with pituitary tumors include multiple endocrine neoplasia type 1 (MEN-1) and type 4 (MEN-4), (CNC) Carney Complex, and familial isolated PA (FIPA) syndrome. FIPA is an autosomal dominant condition, defined by the presence of two or more patients affected by PAs in the same kindred, and no other associated condition. Germline mutations of the aryl hydrocarbon receptor interacting protein gene located on chromosome 11q13 have been reported in 15%-40% of FIPA cases. In the remaining cases, genetic defect are unidentified. This article focuses on FIPA clinical, pathological, genetic features, and therapeutic management.
Collapse
Affiliation(s)
- Federica Guaraldi
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
34
|
Ishida E, Yamada M, Horiguchi K, Taguchi R, Ozawa A, Shibusawa N, Hashimoto K, Satoh T, Yoshida S, Tanaka Y, Yokota M, Tosaka M, Hirato J, Yamada S, Yoshimoto Y, Mori M. Attenuated expression of menin and p27 (Kip1) in an aggressive case of multiple endocrine neoplasia type 1 (MEN1) associated with an atypical prolactinoma and a malignant pancreatic endocrine tumor. Endocr J 2011; 58:287-96. [PMID: 21441703 DOI: 10.1507/endocrj.k10e-158] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tumors in multiple endocrine neoplasia type 1 (MEN1) are generally benign. Since information on the pathogenesis of MEN1 in malignant cases is limited, we conducted genetic analysis and compared the expression of menin, p27(Kip1)(p27)/CDKN1B and p18(Ink4C)(p18)/CDKN2C with levels in benign cases. We describe the case of a 56 year-old male with an atypical prolactinoma and malignant pancreatic neuroenocrine tumor. At age 50, he had undergone transsphenoidal surgery to remove a prolactinoma. However, the tumor relapsed twice. Histological analysis of the recurrent prolactinoma revealed the presence of prolactin, a high MIB-1 index (32.1 %), p53-positive cells (0.2%), and an unusual association with FSH-positive cells. A few years later, he was also found to have a non-functioning pancreatic tumor with probable metastasis to the extradullar region. The metastatic region tested positive for chromogranin and CD56, and negative for prolactin, with 1.2 % of cells p53-positive. Although genetic analyses of the MEN1, p27, and p18 genes demonstrated no mutation, numbers of menin, p27 and p18 immuno-positive cells were significantly down-regulated in the recurrent prolactinoma, but that of p18 was intact in the metastatic region. Furthermore, MEN1 and p27 mRNA levels of the recurrent prolactinoma were down-regulated, particularly the MEN1 mRNA level, compared to levels in 10 cases of benign prolactinoma, while the p18 mRNA level was similar to that of normal pituitary. The tumor in this case may be a subtype of MEN1 showing more aggressive and malignant features probably induced by low levels of menin and p27.
Collapse
Affiliation(s)
- Emi Ishida
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Georgitsi M. MEN-4 and other multiple endocrine neoplasias due to cyclin-dependent kinase inhibitors (p27(Kip1) and p18(INK4C)) mutations. Best Pract Res Clin Endocrinol Metab 2010; 24:425-37. [PMID: 20833334 DOI: 10.1016/j.beem.2010.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cyclin-dependent kinase inhibitors (CDKIs) are known targets to become deregulated in various tumour types, including endocrine tumours. Typically, these cell cycle regulators are somatically inactivated in sporadic endocrine tumours. Recently, it became known that certain CDKI genes cause inherited susceptibility to endocrine neoplasia. Multiple endocrine neoplasia type 4 (MEN4) emerged as a novel form of multiple endocrine neoplasia, caused by mutations in the CDKI gene CDKN1B/p27(Kip1). The MEN4 phenotype remains unclear, but all MEN4 patients identified thus far present with parathyroid involvement, and less typically with pituitary adenomas and other endocrine features. Moreover, the CDKI gene CDKN2C/p18(INK4C) has been also implicated in endocrine neoplasia susceptibility. This review presents the recent advances in these novel MEN-related states and summarises the current knowledge of how these CDKIs may be implicated in endocrine neoplasia. In addition, it briefly presents data from Cdkn1b/p27(Kip1) and Cdkn2c/p18(INK4C) murine models, which strongly support the protective role of these inhibitors against endocrine tumourigenesis.
Collapse
Affiliation(s)
- Marianthi Georgitsi
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rio, Greece.
| |
Collapse
|
36
|
Vandeva S, Jaffrain-Rea ML, Daly AF, Tichomirowa M, Zacharieva S, Beckers A. The genetics of pituitary adenomas. Best Pract Res Clin Endocrinol Metab 2010; 24:461-76. [PMID: 20833337 DOI: 10.1016/j.beem.2010.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pituitary adenomas are one of the most frequent intracranial tumors with a prevalence of clinically-apparent tumors close to 1:1000 of the general population. They are clinically significant because of hormone overproduction and/or tumor mass effects in addition to the need for neurosurgery, medical therapies and radiotherapy. The majority of pituitary adenomas have a sporadic origin with recognized genetic mutations seldom being found; somatotropinomas are an exception, presenting frequent somatic GNAS mutations. In this and other phenotypes, tumorigenesis could possibly be explained by altered function of genes implicated in cell cycle regulation, growth factors or their receptors, cell-signaling pathways, specific hormonal factors or other molecules with still unclear mechanisms of action. Genetic changes, such as allelic loss or gene amplification, and epigenetic changes, usually by promoter methylation, have been implicated in abnormal gene expression, but alternative mechanisms may be present. Familial cases of pituitary adenomas represent 5% of all pituitary tumors. MEN1 mutations cause multiple endocrine neoplasia type 1 (MEN1), while the Carney complex (CNC) is characterized by mutations in the protein kinase A regulatory subunit-1alpha (PRKAR1A) gene or changes in a locus at 2p16. Recently, a MEN1-like condition, MEN4, was found to be related to mutations in the CDKN1B gene. The clinical entity of familial isolated pituitary adenomas (FIPA) is characterized by genetic defects in the aryl hydrocarbon receptor interacting protein (AIP) gene in about 15% of all kindreds and 50% of homogenous somatotropinoma families. Identification of familial cases of pituitary adenomas is important as these tumors may be more aggressive than their sporadic counterparts.
Collapse
Affiliation(s)
- Silvia Vandeva
- Department of Endocrinology, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Molecular genetics of the aip gene in familial pituitary tumorigenesis. PROGRESS IN BRAIN RESEARCH 2010; 182:229-53. [PMID: 20541668 DOI: 10.1016/s0079-6123(10)82010-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pituitary adenomas usually occur as sporadic tumors, but familial cases are now increasingly identified. As opposed to multiple endocrine neoplasia type 1 and Carney complex, in familial isolated pituitary adenoma (FIPA) syndrome no other disease is associated with the familial occurrence of pituitary adenomas. It is an autosomal dominant disease with incomplete variable penetrance. Approximately 20% of patients with FIPA harbour germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene located on 11q13. Patients with AIP mutations have an overwhelming predominance of somatotroph and lactotroph adenomas, which often present in childhood or young adulthood. AIP, originally identified as a molecular co-chaperone of several nuclear receptors, is thought to act as a tumor suppressor gene; overexpression of wild-type, but not mutant AIP, reduces cell proliferation while knockdown of AIP stimulates it. AIP is shown to bind various proteins, including the aryl hydrocarbon receptor, Hsp90, phosphodiesterases, survivin, RET and the glucocorticoid receptor, but currently it is not clear which interaction has the leading role in pituitary tumorigenesis. This chapter summarizes the available clinical and molecular data regarding the role of AIP in the pituitary gland.
Collapse
|
38
|
Abstract
The majority of pituitary adenomas occur sporadically, however, about 5% of all cases occur in a familial setting, of which over half are due to multiple endocrine neoplasia type 1 (MEN-1) and Carney's complex (CNC). Since the late 1990s we have described non-MEN1/CNC familial pituitary tumours that include all tumour phenotypes, a condition named familial isolated pituitary adenomas (FIPA). The clinical characteristics of FIPA vary from those of sporadic pituitary adenomas, as patients with FIPA have a younger age at diagnosis and larger tumours. About 15% of FIPA patients have mutations in the aryl hydrocarbon receptor interacting protein gene (AIP), which indicates that FIPA may have a diverse genetic pathophysiology. This review describes the clinical features of familial pituitary adenomas like MEN1, the MEN 1-like syndrome MEN-4, CNC, FIPA, the tumour pathologies found in this setting and the genetic/molecular data that have been recently reported.
Collapse
Affiliation(s)
- M A Tichomirowa
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, Liège 4000, Belgium
| | | | | |
Collapse
|
39
|
Eguchi T, Itadani H, Shimomura T, Kawanishi N, Hirai H, Kotani H. Expression levels of p18INK4C modify the cellular efficacy of cyclin-dependent kinase inhibitors via regulation of Mcl-1 expression in tumor cell lines. Mol Cancer Ther 2009; 8:1460-72. [PMID: 19509251 DOI: 10.1158/1535-7163.mct-08-1159] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because cyclin-dependent kinases (CDK) play a pivotal role in cancer progression, the development of CDK inhibitors has attracted attention in antitumor therapy. However, despite significant preclinical and clinical developments, CDK inhibition biomarkers for predicting efficacy against certain cancers in individual patients have not been identified. Here, we characterized a macrocyclic quinoxalin-2-one CDK inhibitor, compound A, and identified a gene biomarker for predicting its efficacy. Compound A showed 100-fold selectivity for CDK family proteins over other kinases and inhibited both E2F transcriptional activity and RNA polymerase II phosphorylation. Compound A treatment resulted in decreased proliferation in various tumor cell lines; however, the apoptosis induction rate differed significantly among the cell lines examined, which was consistent with roscovitine. By comparing the mRNA expression profiles of sensitive and resistant cell lines, we found that expression levels of an endogenous CDK inhibitor, p18(INK4C), showed a strong negative correlation to the sensitivity. In fact, p18 status was correlated with the response to CDK inhibitor in an independent data set of multiple myeloma cell lines and silencing p18 expression increased the susceptibility of resistant cells to CDK inhibitors. The analysis of molecular mechanisms revealed that cells with lowered p18 had aberrant CDK6 and E2F activities, which resulted in a transcriptional down-regulation of Mcl-1, a key molecule associated with flavopiridol-induced apoptosis, thereby leading to susceptibility to therapeutic intervention with CDK inhibitors. These results identified a molecular basis for CDK inhibitors to exert an antitumor effect in p18-deficient cancers and support the clinical use of CDK inhibitors.
Collapse
Affiliation(s)
- Tomohiro Eguchi
- Department of Cancer Research, Banyu Tsukuba Research Institute, Merck Research Laboratory, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Hossain MG, Iwata T, Mizusawa N, Qian ZR, Shima SWN, Okutsu T, Yamada S, Sano T, Yoshimoto K. Expression of p18(INK4C) is down-regulated in human pituitary adenomas. Endocr Pathol 2009; 20:114-21. [PMID: 19401813 DOI: 10.1007/s12022-009-9076-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclin-dependent kinase inhibitors represented by the INK4 family comprising p16(INK4A), p15(INK4B), p18(INK4C), and p19(INK4D) are regulators of the cell cycle shown to be aberrant in many types of cancer. Mice lacking p18(Ink4c) exhibit a series of phenotypes including the development of widespread organomegaly and pituitary adenomas. The objective of our study is to examine the role of p18(INK4C) in the pathogenesis of human pituitary tumors. The protein and mRNA levels of p18(INK4C) were examined by immunohistochemistry and real-time reverse transcription-polymerase chain reaction, respectively. The methylation status of the p18(INK4C) gene promoter and somatic mutations of the p18(INK4C) gene were also investigated. p18(INK4C) protein expression was lost or significantly reduced in 64% of pituitary adenomas compared with levels in normal pituitary glands. p18(INK4C) mRNA levels were low in all ACTH adenomas and non-functioning (NF)-FSH and in 42%, 70% and 66% of GH, PRL, and subtype 3 adenomas, respectively. p18(INK4C) mRNA levels were significantly associated with p18(INK4C) protein levels. Neither methylated promoters in pituitary adenomas, except in one NF-FSH adenoma, nor somatic mutations of the p18(INK4C) gene in any pituitary adenomas were detected. The down-regulation of p18(INK4C) expression may contribute to the tumorigenesis of pituitary adenomas.
Collapse
Affiliation(s)
- M Golam Hossain
- Department of Medical Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|