1
|
Song J, Zhang L, Moon S, Fang A, Wang G, Gheshm N, Loeb SA, Cao P, Wallace JR, Alfajaro MM, Strine MS, Beatty WL, Jamieson AM, Orchard RC, Robinson BA, Nice TJ, Wilen CB, Orvedahl A, Reese TA, Lee S. Norovirus co-opts NINJ1 for selective protein secretion. SCIENCE ADVANCES 2025; 11:eadu7985. [PMID: 40020060 PMCID: PMC11870086 DOI: 10.1126/sciadv.adu7985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Plasma membrane rupture by Ninjurin-1 (NINJ1) executes programmed cell death, releasing large cellular damage-associated molecular patterns (DAMPs). However, the regulation and selectivity of NINJ1-mediated DAMP release remain unexplored. Here, we uncover that murine norovirus (MNoV) strategically co-opts NINJ1 to selectively release the intracellular viral protein NS1, while NINJ1-mediated plasma membrane rupture simultaneously bulk-releases various cellular DAMPs. Host caspase-3 cleaves the precursor NS1/2, leading to NS1 secretion via an unconventional pathway. An unbiased CRISPR screen identifies NINJ1 as an essential factor for NS1 secretion. During infection, NINJ1 is recruited to the viral replication site, where it oligomerizes and forms speckled bodies, directly interacting with NS1. Subsequent mutagenesis studies identify critical amino acid residues of NS1 necessary for its interaction with NINJ1 and selective secretion. Genetic ablation or pharmaceutical inhibition of caspase-3 inhibits oral MNoV infection in mice. This study underscores the co-option of NINJ1 for controlled release of an intracellular viral protein.
Collapse
Affiliation(s)
- Jaewon Song
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Li Zhang
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Seokoh Moon
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Ariana Fang
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Newsha Gheshm
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Skylar A. Loeb
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Paul Cao
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Joselynn R. Wallace
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA
| | - Madison S. Strine
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Amanda M. Jamieson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bridget A. Robinson
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Timothy J. Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tiffany A. Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sanghyun Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Wright AP, Harris S, Madden S, Reyes BR, Mulamula E, Gibson A, Rauch I, Constant DA, Nice TJ. Interferon regulatory factor 6 (IRF6) determines intestinal epithelial cell development and immunity. Mucosal Immunol 2024; 17:633-650. [PMID: 38604478 PMCID: PMC11323225 DOI: 10.1016/j.mucimm.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
Intestinal epithelial cell (IEC) responses to interferon (IFN) favor antiviral defense with minimal cytotoxicity, but IEC-specific factors that regulate these responses remain poorly understood. Interferon regulatory factors (IRFs) are a family of nine related transcription factors, and IRF6 is preferentially expressed by epithelial cells, but its roles in IEC immunity are unknown. In this study, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) screens found that Irf6 deficiency enhanced IFN-stimulated antiviral responses in transformed mouse IECs but not macrophages. Furthermore, knockout (KO) of Irf6 in IEC organoids resulted in profound changes to homeostasis and immunity gene expression. Irf6 KO organoids grew more slowly, and single-cell ribonucleic acid sequencing indicated reduced expression of genes in epithelial differentiation and immunity pathways. IFN-stimulated gene expression was also significantly different in Irf6 KO organoids, with increased expression of stress and apoptosis-associated genes. Functionally, the transcriptional changes in Irf6 KO organoids were associated with increased cytotoxicity upon IFN treatment or inflammasome activation. These data indicate a previously unappreciated role for IRF6 in IEC biology, including regulation of epithelial development and moderation of innate immune responses to minimize cytotoxicity and maintain barrier function.
Collapse
Affiliation(s)
- Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Sydney Harris
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Shelby Madden
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Bryan Ramirez Reyes
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Ethan Mulamula
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Alexis Gibson
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
3
|
Wu WR, Shi XD, Zhang FP, Zhu K, Zhang R, Yu XH, Qin YF, He SP, Fu HW, Zhang L, Zeng H, Zhu MS, Xu LB, Wong PP, Liu C. Activation of the Notch1-c-myc-VCAM1 signalling axis initiates liver progenitor cell-driven hepatocarcinogenesis and pulmonary metastasis. Oncogene 2022; 41:2340-2356. [DOI: 10.1038/s41388-022-02246-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
|
4
|
Grau KR, Zhu S, Peterson ST, Helm EW, Philip D, Phillips M, Hernandez A, Turula H, Frasse P, Graziano VR, Wilen CB, Wobus CE, Baldridge MT, Karst SM. The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon. Nat Microbiol 2020; 5:84-92. [PMID: 31768030 PMCID: PMC6925324 DOI: 10.1038/s41564-019-0602-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/03/2019] [Indexed: 01/07/2023]
Abstract
Evidence has accumulated to demonstrate that the intestinal microbiota enhances mammalian enteric virus infections1. For example, we and others previously reported that commensal bacteria stimulate acute and persistent murine norovirus infections2-4. However, in apparent contradiction of these results, the virulence of murine norovirus infection was unaffected by antibiotic treatment. This prompted us to perform a detailed investigation of murine norovirus infection in microbially deplete mice, revealing a more complex picture in which commensal bacteria inhibit viral infection of the proximal small intestine while simultaneously stimulating the infection of distal regions of the gut. Thus, commensal bacteria can regulate viral regionalization along the intestinal tract. We further show that the mechanism underlying bacteria-dependent inhibition of norovirus infection in the proximal gut involves bile acid priming of type III interferon. Finally, the regional effects of the microbiota on norovirus infection may result from distinct regional expression profiles of key bile acid receptors that regulate the type III interferon response. Overall, these findings reveal that the biotransformation of host metabolites by the intestinal microbiota directly and regionally impacts infection by a pathogenic enteric virus.
Collapse
Affiliation(s)
- Katrina R Grau
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Shu Zhu
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Stefan T Peterson
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
| | - Emily W Helm
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Drake Philip
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Matthew Phillips
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Abel Hernandez
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Holly Turula
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Philip Frasse
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
| | - Vincent R Graziano
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Craig B Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA.
| | - Stephanie M Karst
- Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Yang BH, Yu MX, Xu J, Su Y, Ai ZH. The Value of DNA Quantitative Cytology Test for the Screening of Endometrial Cancer. Cancer Manag Res 2019; 11:10383-10391. [PMID: 31849527 PMCID: PMC6912003 DOI: 10.2147/cmar.s225672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023] Open
Abstract
Objective To evaluate the accuracy, sensitivity, and specificity of DNA quantitative cytology test for the diagnosis of endometrial cancer or precancerous lesions and then discuss the value of DNA quantitative cytology as a screening tool for endometrial cancer. Methods The study enrolled 575 patients from September 2013 to January 2017 in Shanghai Minhang Central Hospital. Endometrial hysteroscopy plus dilation and curettage and DNA quantitative cytology tests were conducted as a method for the diagnosis of endometrial cancer. The accuracy, sensitivity, and specificity of this method were calculated according to histopathologic diagnoses which were used as the gold standard for diagnosis confirmation. Results For the DNA quantitative cytology diagnosis of endometrial cancer, accuracy was estimated at 85.57%, sensitivity at 87.01%, specificity at 85.34%, positive predictive value (PPV) at 47.86%, and negative predictive value (NPV) at 97.07%. For the DNA quantitative cytology diagnosis of endometrial cancer in menopausal patients: accuracy was estimated at 89.95%, sensitivity at 97.73%, specificity at 87.59%, positive predictive value (PPV) at 70.49%, negative predictive value (NPV) at 99.22%. For the DNA quantitative cytology diagnosis of endometrial cancer in non-menopausal patients, accuracy was estimated at 83.42%, sensitivity at 72.73%, specificity at 84.42%, positive predictive value (PPV) at 30.38%, and negative predictive value (NPV) at 97.07%. Conclusion DNA heteroploidy can be tested for the occurrence and the development of endometrial cancer. A small number of non-endometrial cancer cases may also appear DNA heteroploidy, but the number of >5c cells is less than 3. DNA quantitative analysis is a useful tool for the screening of endometrial cancer, worthy of being popularized and applied in endometrial cancer diagnosis.
Collapse
Affiliation(s)
- Bao-Hua Yang
- Department of Obstetrics and Gynecology, Shanghai Minhang Central Hospital, Shanghai 201199, People's Republic of China
| | - Ming-Xia Yu
- Department of Obstetrics and Gynecology, Shanghai Minhang Central Hospital, Shanghai 201199, People's Republic of China
| | - Jun Xu
- Department of Obstetrics and Gynecology, Shanghai Minhang Central Hospital, Shanghai 201199, People's Republic of China
| | - Yan Su
- Department of Obstetrics and Gynecology, Shanghai Minhang Central Hospital, Shanghai 201199, People's Republic of China
| | - Zhi-Hong Ai
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| |
Collapse
|
6
|
Felts SJ, Tang X, Willett B, Van Keulen VP, Hansen MJ, Kalari KR, Pease LR. Stochastic changes in gene expression promote chaotic dysregulation of homeostasis in clonal breast tumors. Commun Biol 2019; 2:206. [PMID: 31240244 PMCID: PMC6570763 DOI: 10.1038/s42003-019-0460-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/09/2019] [Indexed: 01/21/2023] Open
Abstract
Cells within tumors vary in phenotype as a result of changes in gene expression caused by a variety of mechanisms, permitting cancers to evolve under selective pressures from immune and other homeostatic processes. Earlier, we traced apparent losses in heterozygosity (LOH) of spontaneous breast tumors from first generation (F1) intercrossed mice to atypical epigenetic modifications in the structure of DNA across the tumor genomes. Here, we describe a parallel pattern of LOH in gene expression, revealed through quantitation of parental alleles across a population of clonal tumors. We found variegated patterns of LOH, based on allelic ratio outliers in hundreds of genes, enriched in regulatory pathways typically co-opted by tumors. The frequency of outliers was correlated with transcriptional repression of a large set of homozygous genes. These findings suggest stochastic losses in gene expression across the genome of tumors generate phenotypic variation among cells, allowing clonal selection during tumor development.
Collapse
Affiliation(s)
- Sara J. Felts
- Department of Immunology, Mayo Clinic, Rochester, MN 55905 USA
| | - Xiaojia Tang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | | | - Krishna R. Kalari
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905 USA
| | - Larry R. Pease
- Department of Immunology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
7
|
Fajka-Boja R, Marton A, Tóth A, Blazsó P, Tubak V, Bálint B, Nagy I, Hegedűs Z, Vizler C, Katona RL. Increased insulin-like growth factor 1 production by polyploid adipose stem cells promotes growth of breast cancer cells. BMC Cancer 2018; 18:872. [PMID: 30185144 PMCID: PMC6126028 DOI: 10.1186/s12885-018-4781-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023] Open
Abstract
Background Adipose-tissue stem cells (ASCs) are subject of intensive research since their successful use in regenerative therapy. The drawback of ASCs is that they may serve as stroma for cancer cells and assist tumor progression. It is disquieting that ASCs frequently undergo genetic and epigenetic changes during their in vitro propagation. In this study, we describe the polyploidization of murine ASCs and the accompanying phenotypical, gene expressional and functional changes under long term culturing. Methods ASCs were isolated from visceral fat of C57BL/6 J mice, and cultured in vitro for prolonged time. The phenotypical changes were followed by microscopy and flow cytometry. Gene expressional changes were determined by differential transcriptome analysis and changes in protein expression were shown by Western blotting. The tumor growth promoting effect of ASCs was examined by co-culturing them with 4 T1 murine breast cancer cells. Results After five passages, the proliferation of ASCs decreases and cells enter a senescence-like state, from which a proportion of cells escape by polyploidization. The resulting ASC line is susceptible to adipogenic, osteogenic and chondrogenic differentiation, and expresses the stem cell markers CD29 and Sca-1 on an upregulated level. Differential transcriptome analysis of ASCs with normal and polyploid karyotype shows altered expression of genes that are involved in regulation of cancer, cellular growth and proliferation. We verified the increased expression of Klf4 and loss of Nestin on protein level. We found that elevated production of insulin-like growth factor 1 by polyploid ASCs rendered them more potent in tumor growth promotion in vitro. Conclusions Our model indicates how ASCs with altered genetic background may support tumor progression. Electronic supplementary material The online version of this article (10.1186/s12885-018-4781-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberta Fajka-Boja
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Genetics, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Annamária Marton
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Anna Tóth
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Genetics, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Péter Blazsó
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Genetics, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Vilmos Tubak
- Creative Laboratory Ltd, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Balázs Bálint
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - István Nagy
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Zoltán Hegedűs
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biophysics, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Csaba Vizler
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Robert L Katona
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Genetics, H-6726 Temesvári krt. 62, Szeged, Hungary.
| |
Collapse
|
8
|
Lee S, Wilen CB, Orvedahl A, McCune BT, Kim KW, Orchard RC, Peterson ST, Nice TJ, Baldridge MT, Virgin HW. Norovirus Cell Tropism Is Determined by Combinatorial Action of a Viral Non-structural Protein and Host Cytokine. Cell Host Microbe 2017; 22:449-459.e4. [PMID: 28966054 PMCID: PMC5679710 DOI: 10.1016/j.chom.2017.08.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/19/2017] [Accepted: 08/29/2017] [Indexed: 01/24/2023]
Abstract
Cellular tropism during persistent viral infection is commonly conferred by the interaction of a viral surface protein with a host receptor complex. Norovirus, the leading global cause of gastroenteritis, can be persistently shed during infection, but its in vivo cellular tropism and tropism determinants remain unidentified. Using murine norovirus (MNoV), we determine that a small number of intestinal epithelial cells (IECs) serve as the reservoir for fecal shedding and persistence. The viral non-structural protein NS1, rather than a viral surface protein, determines IEC tropism. Expression of NS1 from a persistent MNoV strain is sufficient for an acute MNoV strain to target IECs and persist. In addition, interferon-lambda (IFN-λ) is a key host determinant blocking MNoV infection in IECs. The inability of acute MNoV to shed and persist is rescued in Ifnlr1-/- mice, suggesting that NS1 evades IFN-λ-mediated antiviral immunity. Thus, NS1 and IFN-λ interactions govern IEC tropism and persistence of MNoV.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig B Wilen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony Orvedahl
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Broc T McCune
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert C Orchard
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stefan T Peterson
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Kidder BL, He R, Wangsa D, Padilla-Nash HM, Bernardo MM, Sheng S, Ried T, Zhao K. SMYD5 Controls Heterochromatin and Chromosome Integrity during Embryonic Stem Cell Differentiation. Cancer Res 2017; 77:6729-6745. [PMID: 28951459 DOI: 10.1158/0008-5472.can-17-0828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/10/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Epigenetic regulation of chromatin states is thought to control gene expression programs during lineage specification. However, the roles of repressive histone modifications, such as trimethylated histone lysine 20 (H4K20me3), in development and genome stability are largely unknown. Here, we show that depletion of SET and MYND domain-containing protein 5 (SMYD5), which mediates H4K20me3, leads to genome-wide decreases in H4K20me3 and H3K9me3 levels and derepression of endogenous LTR- and LINE-repetitive DNA elements during differentiation of mouse embryonic stem cells. SMYD5 depletion resulted in chromosomal aberrations and the formation of transformed cells that exhibited decreased H4K20me3 and H3K9me3 levels and an expression signature consistent with multiple human cancers. Moreover, dysregulated gene expression in SMYD5 cancer cells was associated with LTR and endogenous retrovirus elements and decreased H4K20me3. In addition, depletion of SMYD5 in human colon and lung cancer cells results in increased tumor growth and upregulation of genes overexpressed in colon and lung cancers, respectively. These findings implicate an important role for SMYD5 in maintaining chromosome integrity by regulating heterochromatin and repressing endogenous repetitive DNA elements during differentiation. Cancer Res; 77(23); 6729-45. ©2017 AACR.
Collapse
Affiliation(s)
- Benjamin L Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. .,Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Runsheng He
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Darawalee Wangsa
- Cancer Genomics Section, National Cancer Institute, NIH, Bethesda, Maryland
| | | | - M Margarida Bernardo
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Shijie Sheng
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Thomas Ried
- Cancer Genomics Section, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
10
|
Turker MS, Grygoryev D, Lasarev M, Ohlrich A, Rwatambuga FA, Johnson S, Dan C, Eckelmann B, Hryciw G, Mao JH, Snijders AM, Gauny S, Kronenberg A. Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change. PLoS One 2017; 12:e0180412. [PMID: 28683078 PMCID: PMC5500326 DOI: 10.1371/journal.pone.0180412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/15/2017] [Indexed: 11/19/2022] Open
Abstract
Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.
Collapse
Affiliation(s)
- Mitchell S. Turker
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Dmytro Grygoryev
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael Lasarev
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Anna Ohlrich
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Furaha A. Rwatambuga
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Sorrel Johnson
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Cristian Dan
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Bradley Eckelmann
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gwen Hryciw
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Antoine M. Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Stacey Gauny
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
11
|
Williams BO, Warman ML. CRISPR/CAS9 Technologies. J Bone Miner Res 2017; 32:883-888. [PMID: 28230927 PMCID: PMC5413371 DOI: 10.1002/jbmr.3086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/28/2016] [Accepted: 01/11/2017] [Indexed: 11/07/2022]
Abstract
The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) pathway is revolutionizing biological research. Modifications to this primitive prokaryotic immune system now enable scientists to efficiently edit DNA or modulate gene expression in living eukaryotic cells and organisms. Thus, many laboratories can now perform important experiments that previously were considered scientifically risky or too costly. Here, we describe the components of the CRISPR/Cas system that have been engineered for use in eukaryotes. We also explain how this system can be used to genetically modify cell lines and model organisms, or regulate gene expression in order to search for new participants in biological pathways. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bart O Williams
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
12
|
McNeil NE, Padilla-Nash HM, Buishand FO, Hue Y, Ried T. Novel mouse model recapitulates genome and transcriptome alterations in human colorectal carcinomas. Genes Chromosomes Cancer 2016; 56:199-213. [PMID: 27750367 DOI: 10.1002/gcc.22426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/21/2016] [Accepted: 10/10/2016] [Indexed: 11/11/2022] Open
Abstract
Human colorectal carcinomas are defined by a nonrandom distribution of genomic imbalances that are characteristic for this disease. Often, these imbalances affect entire chromosomes. Understanding the role of these aneuploidies for carcinogenesis is of utmost importance. Currently, established transgenic mice do not recapitulate the pathognonomic genome aberration profile of human colorectal carcinomas. We have developed a novel model based on the spontaneous transformation of murine colon epithelial cells. During this process, cells progress through stages of pre-immortalization, immortalization and, finally, transformation, and result in tumors when injected into immunocompromised mice. We analyzed our model for genome and transcriptome alterations using ArrayCGH, spectral karyotyping (SKY), and array based gene expression profiling. ArrayCGH revealed a recurrent pattern of genomic imbalances. These results were confirmed by SKY. Comparing these imbalances with orthologous maps of human chromosomes revealed a remarkable overlap. We observed focal deletions of the tumor suppressor genes Trp53 and Cdkn2a/p16. High-level focal genomic amplification included the locus harboring the oncogene Mdm2, which was confirmed by FISH in the form of double minute chromosomes. Array-based global gene expression revealed distinct differences between the sequential steps of spontaneous transformation. Gene expression changes showed significant similarities with human colorectal carcinomas. Pathways most prominently affected included genes involved in chromosomal instability and in epithelial to mesenchymal transition. Our novel mouse model therefore recapitulates the most prominent genome and transcriptome alterations in human colorectal cancer, and might serve as a valuable tool for understanding the dynamic process of tumorigenesis, and for preclinical drug testing. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicole E McNeil
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hesed M Padilla-Nash
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Floryne O Buishand
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Yue Hue
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Felts SJ, Van Keulen VP, Hansen MJ, Bell MP, Allen K, Belachew AA, Vile RG, Cunningham JM, Hoskin TL, Pankratz VS, Pease LR. Widespread Non-Canonical Epigenetic Modifications in MMTV-NeuT Breast Cancer. Neoplasia 2016; 17:348-57. [PMID: 25925377 PMCID: PMC4415121 DOI: 10.1016/j.neo.2015.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 11/26/2022] Open
Abstract
Breast tumors in (FVB × BALB-NeuT) F1 mice have characteristic loss of chromosome 4 and sporadic loss or gain of other chromosomes. We employed the Illumina GoldenGate genotyping platform to quantitate loss of heterozygosity (LOH) across the genome of primary tumors, revealing strong biases favoring chromosome 4 alleles from the FVB parent. While allelic bias was not observed on other chromosomes, many tumors showed concerted LOH (C-LOH) of all alleles of one or the other parent on sporadic chromosomes, a pattern consistent with cytogenetic observations. Surprisingly, comparison of LOH in tumor samples relative to normal unaffected tissues from these animals revealed significant variegated (stochastic) deviations from heterozygosity (V-LOH) in every tumor genome. Sequence analysis showed expected changes in the allelic frequency of single nucleotide polymorphisms (SNPs) in cases of C-LOH. However, no evidence of LOH due to mutations, small deletions, or gene conversion at the affected SNPs or surrounding DNA was found at loci with V-LOH. Postulating an epigenetic mechanism contributing to V-LOH, we tested whether methylation of template DNA impacts allele detection efficiency using synthetic oligonucleotide templates in an assay mimicking the GoldenGate genotyping format. Methylated templates were systematically over-scored, suggesting that the observed patterns of V-LOH may represent extensive epigenetic DNA modifications across the tumor genomes. As most of the SNPs queried do not contain standard (CpG) methylation targets, we propose that widespread, non-canonical DNA modifications occur during Her2/neuT-driven tumorigenesis.
Collapse
Affiliation(s)
- Sara J Felts
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Michael J Hansen
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Michael P Bell
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kathleen Allen
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alem A Belachew
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Richard G Vile
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tanya L Hoskin
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - V Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
14
|
Development of a cell line from the American eel brain expressing endothelial cell properties. In Vitro Cell Dev Biol Anim 2015; 52:395-409. [DOI: 10.1007/s11626-015-9986-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022]
|
15
|
ATM deficiency promotes development of murine B-cell lymphomas that resemble diffuse large B-cell lymphoma in humans. Blood 2015; 126:2291-301. [PMID: 26400962 DOI: 10.1182/blood-2015-06-654749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022] Open
Abstract
The serine-threonine kinase ataxia-telangiectasia mutated (ATM) plays a central role in maintaining genomic integrity. In mice, ATM deficiency is exclusively associated with T-cell lymphoma development, whereas B-cell tumors predominate in human ataxia-telangiectasia patients. We demonstrate in this study that when T cells are removed as targets for lymphomagenesis and as mediators of immune surveillance, ATM-deficient mice exclusively develop early-onset immunoglobulin M(+) B-cell lymphomas that do not transplant to immunocompetent mice and that histologically and genetically resemble the activated B cell-like (ABC) subset of human diffuse large B-cell lymphoma (DLBCL). These B-cell lymphomas show considerable chromosomal instability and a recurrent genomic amplification of a 4.48-Mb region on chromosome 18 that contains Malt1 and is orthologous to a region similarly amplified in human ABC DLBCL. Of importance, amplification of Malt1 in these lymphomas correlates with their dependence on nuclear factor (NF)-κB, MALT1, and B-cell receptor (BCR) signaling for survival, paralleling human ABC DLBCL. Further, like some human ABC DLBCLs, these mouse B-cell lymphomas also exhibit constitutive BCR-dependent NF-κB activation. This study reveals that ATM protects against development of B-cell lymphomas that model human ABC DLBCL and identifies a potential role for T cells in preventing the emergence of these tumors.
Collapse
|
16
|
Abstract
Chromosome missegregation leads to aneuploidy which is defined as the cellular state of having a chromosome count that is not an exact multiple of the haploid number. Aneuploidy is associated with human diseases including mental retardation, neurodegenerative diseases and cancer. In addition, aneuploidy is the major cause of spontaneous abortions and its occurrence increases with aging. Therefore, it is important to understand the molecular mechanisms by which cells respond and adapt to aneuploidy. Saccharomyces cerevisiae has proven to be a good model to study the effects aneuploidy elicits on cellular homeostasis and physiology. This chapter focuses on the current understanding of how the yeast S. cerevisiae responds to the acquisition of extra chromosomes and highlights how studies in aneuploid yeasts provide insights onto the effects of aneuploidy in human cells.
Collapse
|
17
|
Lazebnik Y. The shock of being united and symphiliosis. Another lesson from plants? Cell Cycle 2015; 13:2323-9. [PMID: 25483182 DOI: 10.4161/cc.29704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yuri Lazebnik
- a Yale Cardiovascular Research Center; New Haven, CT USA
| |
Collapse
|
18
|
Duarte CEM, Carvalho CR, Silva-Filho ALD. Adaptation of image cytometry methodology for DNA ploidy analysis of cervical epithelium samples: a pilot study. Taiwan J Obstet Gynecol 2015; 53:227-31. [PMID: 25017273 DOI: 10.1016/j.tjog.2014.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To determine DNA ploidy in the cervical specimens of patients revealing a suspicion of cancer by image analysis performed by using a combination of commercial analysis software, conventional microscopy, and certified filters. MATERIALS AND METHODS This study followed a prospective design. Cervical samples were obtained from 20 patients undergoing routine screening in the Gynecologic-Oncology Unit of the University Hospital of the Federal University of Minas Gerais, Brazil. Three slides were prepared for each case and the DNA content was determined by image cytometry, post Feulgen staining. DNA ploidy, as well as events exceeding 5C and 9C, was assessed according to the guidelines and algorithms prescribed for diagnostic interpretation by the European Society for Analytical Cellular Pathology. RESULTS By employing the adapted tool, identification of the lesions with euploid and aneuploid profiles was possible. Abnormal DNA content was found in 65% of the cases (13/20), with 45% (9/20) presenting nuclei with >5C content and 20% (4/20) with >9C content. In the analyses conducted in this study, the coefficient of variation with respect to DNA quantity was lower than the 5% threshold recommended by the European Society for Analytical Cellular Pathology. CONCLUSION Image cytometry of the cervical specimens revealed DNA aneuploidy, most probably resulting from chromosomal alterations and appearing as precancerous lesions in 65% of the cases. The adaptations implemented in this study, enabled the DNA-image cytometry to become more accessible, enhancing its extended use as an adjuvant strategy for the early screening of the cervical epithelium samples during routine analyses.
Collapse
Affiliation(s)
- Christiane Eliza Motta Duarte
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carlos Roberto Carvalho
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Agnaldo Lopes da Silva-Filho
- Departamento de Obstetrícia e Ginecologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
19
|
Padilla-Nash HM, McNeil NE, Yi M, Nguyen QT, Hu Y, Wangsa D, Mack DL, Hummon AB, Case C, Cardin E, Stephens R, Difilippantonio MJ, Ried T. Aneuploidy, oncogene amplification and epithelial to mesenchymal transition define spontaneous transformation of murine epithelial cells. Carcinogenesis 2013; 34:1929-39. [PMID: 23619298 DOI: 10.1093/carcin/bgt138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human epithelial cancers are defined by a recurrent distribution of specific chromosomal aneuploidies, a trait less typical for murine cancer models induced by an oncogenic stimulus. After prolonged culture, mouse epithelial cells spontaneously immortalize, transform and become tumorigenic. We assessed genome and transcriptome alterations in cultures derived from bladder and kidney utilizing spectral karyotyping, array CGH, FISH and gene expression profiling. The results show widespread aneuploidy, yet a recurrent and tissue-specific distribution of genomic imbalances, just as in human cancers. Losses of chromosome 4 and gains of chromosome 15 are common and occur early during the transformation process. Global gene expression profiling revealed early and significant transcriptional deregulation. Chromosomal aneuploidy resulted in expression changes of resident genes and consequently in a massive deregulation of the cellular transcriptome. Pathway interrogation of expression changes during the sequential steps of transformation revealed enrichment of genes associated with DNA repair, centrosome regulation, stem cell characteristics and aneuploidy. Genes that modulate the epithelial to mesenchymal transition and genes that define the chromosomal instability phenotype played a dominant role and were changed in a directionality consistent with loss of cell adhesion, invasiveness and proliferation. Comparison with gene expression changes during human bladder and kidney tumorigenesis revealed remarkable overlap with changes observed in the spontaneously transformed murine cultures. Therefore, our novel mouse models faithfully recapitulate the sequence of genomic and transcriptomic events that define human tumorigenesis, hence validating them for both basic and preclinical research.
Collapse
Affiliation(s)
- Hesed M Padilla-Nash
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xiao Z, Jiang Q, Willette-Brown J, Xi S, Zhu F, Burkett S, Back T, Song NY, Datla M, Sun Z, Goldszmid R, Lin F, Cohoon T, Pike K, Wu X, Schrump DS, Wong KK, Young HA, Trinchieri G, Wiltrout RH, Hu Y. The pivotal role of IKKα in the development of spontaneous lung squamous cell carcinomas. Cancer Cell 2013; 23:527-40. [PMID: 23597566 PMCID: PMC3649010 DOI: 10.1016/j.ccr.2013.03.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/21/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023]
Abstract
Here, we report that kinase-dead IKKα knockin mice develop spontaneous lung squamous cell carcinomas (SCCs) associated with IKKα downregulation and marked pulmonary inflammation. IKKα reduction upregulated the expression of p63, Trim29, and keratin 5 (K5), which serve as diagnostic markers for human lung SCCs. IKKα(low)K5(+)p63(hi) cell expansion and SCC formation were accompanied by inflammation-associated deregulation of oncogenes, tumor suppressors, and stem cell regulators. Reintroducing transgenic K5.IKKα, depleting macrophages, and reconstituting irradiated mutant animals with wild-type bone marrow (BM) prevented SCC development, suggesting that BM-derived IKKα mutant macrophages promote the transition of IKKα(low)K5(+)p63(hi) cells to tumor cells. This mouse model resembles human lung SCCs, sheds light on the mechanisms underlying lung malignancy development, and identifies targets for therapy of lung SCCs.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation/physiology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Humans
- I-kappa B Kinase/genetics
- I-kappa B Kinase/metabolism
- I-kappa B Kinase/physiology
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mice
- Mice, Transgenic
- Phosphoproteins/biosynthesis
- Trans-Activators/biosynthesis
- Transcription Factors/biosynthesis
Collapse
Affiliation(s)
- Zouxiang Xiao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Qun Jiang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Jami Willette-Brown
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Sichuan Xi
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Feng Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Timothy Back
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Na-Young Song
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Mahesh Datla
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Zhonghe Sun
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Romina Goldszmid
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Fanching Lin
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Travis Cohoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | - Kristen Pike
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xiaolin Wu
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - David S. Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | - Howard A. Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Robert H. Wiltrout
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| |
Collapse
|
21
|
Achyut BR, Bader DA, Robles AI, Wangsa D, Harris CC, Ried T, Yang L. Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling. PLoS Genet 2013; 9:e1003251. [PMID: 23408900 PMCID: PMC3567148 DOI: 10.1371/journal.pgen.1003251] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/02/2012] [Indexed: 12/14/2022] Open
Abstract
Deletion of tumor suppressor genes in stromal fibroblasts induces epithelial cancer development, suggesting an important role of stroma in epithelial homoeostasis. However, the underlying mechanisms remain to be elucidated. Here we report that deletion of the gene encoding TGFβ receptor 2 (Tgfbr2) in the stromal fibroblasts (Tgfbr2fspKO) induces inflammation and significant DNA damage in the neighboring epithelia of the forestomach. This results in loss or down-regulation of cyclin-dependent kinase inhibitors p15, p16, and p21, which contribute to the development of invasive squamous cell carcinoma (SCC). Anti-inflammation treatment restored p21 expression, delayed tumorigenesis, and increased survival of Tgfbr2fspKO mice. Our data demonstrate for the first time that inflammation is a critical player in the epigenetic silencing of p21 in tumor progression. Examination of human esophageal SCC showed a down-regulation of TGFβ receptor 2 (TβRII) in the stromal fibroblasts, as well as increased inflammation, DNA damage, and loss or decreased p15/p16 expression. Our study suggests anti-inflammation may be a new therapeutic option in treating human SCCs with down-regulation of TβRII in the stroma. Cancer is no longer regarded as a problem of solely cancer cells. The development and metastasis of cancers clearly involves many aspects of the host. We sought to identify the molecular mechanisms underlying epithelial cancer development due to alterations in stromal cells. Using an animal model in which TGF-β signaling is deleted in stromal fibroblasts, we found that inflammation and DNA damage are induced in the epithelial compartment and are responsible for the loss of cell cycle–dependent kinase inhibitors, leading to the compromise of epithelial cell cycle control. These results are important in understanding the stromal-tumor cross talk which has been an important focus in cancer biology in recent years. Our findings suggest that careful examination of the stromal compartment is important and that anti-inflammation therapy may be a new chemoprevention option for epithelial cancer development.
Collapse
Affiliation(s)
- B. R. Achyut
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David A. Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ana I. Robles
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Boilève A, Senovilla L, Vitale I, Lissa D, Martins I, Métivier D, van den Brink S, Clevers H, Galluzzi L, Castedo M, Kroemer G. Immunosurveillance against tetraploidization-induced colon tumorigenesis. Cell Cycle 2013; 12:473-9. [PMID: 23324343 DOI: 10.4161/cc.23369] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Circumstantial evidence suggests that colon carcinogenesis can ensue the transient tetraploidization of (pre-)malignant cells. In line with this notion, the tumor suppressors APC and TP53, both of which are frequently inactivated in colon cancer, inhibit tetraploidization in vitro and in vivo. Here, we show that-contrarily to their wild-type counterparts- Tp53 (-/-) colonocytes are susceptible to drug-induced or spontaneous tetraploidization in vitro. Colon organoids generated from tetraploid Tp53 (-/-) cells exhibit a close-to-normal morphology as compared to their diploid Tp53 (-/-) counterparts, yet the colonocytes constituting these organoids are characterized by an increased cell size and an elevated expression of the immunostimulatory protein calreticulin on the cell surface. The subcutaneous injection of tetraploid Tp53 (-/-) colon organoids led to the generation of proliferating tumors in immunodeficient, but not immunocompetent, mice. Thus, tetraploid Tp53 (-/-) colonocytes fail to survive in immunocompetent mice and develop neoplastic lesions in immunocompromised settings only. These results suggest that tetraploidy is particularly oncogenic in the context of deficient immunosurveillance.
Collapse
|
23
|
Abstract
Deviation from a balanced genome by either gain or loss of entire chromosomes is generally tolerated poorly in all eukaryotic systems studied to date. Errors in mitotic or meiotic cell division lead to aneuploidy, which places a burden of additional or insufficient gene products from the missegregated chromosomes on the daughter cells. The burden of aneuploidy often manifests itself as impaired fitness of individual cells and whole organisms, in which abnormal development is also characteristic. However, most human cancers, noted for their rapid growth, also display various levels of aneuploidy. Here we discuss the detrimental, potentially beneficial, and sometimes puzzling effects of aneuploidy on cellular and organismal fitness and tissue function as well as its role in diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Jake J Siegel
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
24
|
Ried T, Hu Y, Difilippantonio MJ, Ghadimi BM, Grade M, Camps J. The consequences of chromosomal aneuploidy on the transcriptome of cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:784-93. [PMID: 22426433 DOI: 10.1016/j.bbagrm.2012.02.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 01/09/2023]
Abstract
Chromosomal aneuploidies are a defining feature of carcinomas, i.e., tumors of epithelial origin. Such aneuploidies result in tumor specific genomic copy number alterations. The patterns of genomic imbalances are tumor specific, and to a certain extent specific for defined stages of tumor development. Genomic imbalances occur already in premalignant precursor lesions, i.e., before the transition to invasive disease, and their distribution is maintained in metastases, and in cell lines derived from primary tumors. These observations are consistent with the interpretation that tumor specific genomic imbalances are drivers of malignant transformation. Naturally, this precipitates the question of how such imbalances influence the expression of resident genes. A number of laboratories have systematically integrated copy number alterations with gene expression changes in primary tumors and metastases, cell lines, and experimental models of aneuploidy to address the question as to whether genomic imbalances deregulate the expression of one or few key genes, or rather affect the cancer transcriptome more globally. The majority of these studies showed that gene expression levels follow genomic copy number. Therefore, gross genomic copy number changes, including aneuploidies of entire chromosome arms and chromosomes, result in a massive deregulation of the transcriptome of cancer cells. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute/NIH, USA.
| | | | | | | | | | | |
Collapse
|