1
|
Gao W, Karsa M, Xiao L, Spurling D, Karsa A, Ronca E, Bongers A, Guo X, Mayoh C, Azfar M, Verhelst SHL, Tanaka K, Cheung LC, Kotecha RS, Lock RB, Burns MR, Vangheluwe P, Norris MD, Haber M, Somers K. Polyamine depletion limits progression of acute leukaemia. Int J Cancer 2025; 156:2360-2376. [PMID: 39985426 DOI: 10.1002/ijc.35362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Cancer cells are addicted to polyamines, polycations essential for cellular function. While dual targeting of cellular polyamine biosynthesis and polyamine uptake is under clinical investigation in solid cancers, preclinical and clinical studies into its potential in haematological malignancies are lacking. Here we investigated the preclinical efficacy of polyamine depletion in acute leukaemia. The polyamine biosynthesis inhibitor difluoromethylornithine (DFMO) inhibited growth of a molecularly diverse panel of acute leukaemia cell lines, while non-malignant cells were unaffected. Responsiveness to DFMO was linked to decreased levels of its molecular target, the rate-limiting polyamine biosynthesis enzyme ODC1, and of the polyamine transporters ATP13A2 and ATP13A3. DFMO increased polyamine uptake and upregulated expression of polyamine transporters in acute leukaemia cells, a compensatory effect abolished by treatment with the polyamine transport inhibitor AMXT 1501. This drug, currently in a phase 1 clinical trial in solid tumours in combination with DFMO, potentiated the inhibitory effects of DFMO, and their combination synergistically inhibited the growth of acute leukaemia cell lines by inducing apoptosis. DFMO and AMXT 1501 limited disease progression in highly aggressive xenograft models of infant KMT2A-rearranged leukaemia, even when treatment was initiated at high disease burden. Increased expression of c-MYC was associated with enhanced sensitivity to the combination of DFMO and AMXT 1501, suggesting this oncoprotein as a potential predictive marker of response to the drug combination. In conclusion, targeting polyamine biosynthesis and polyamine uptake limits disease progression in models of acute leukaemia, supporting further preclinical and clinical investigation into this approach for acute leukaemia.
Collapse
Affiliation(s)
- Weiman Gao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Mawar Karsa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Lin Xiao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dayna Spurling
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ayu Karsa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Emma Ronca
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Angelika Bongers
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Xinyi Guo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- Division of Paediatrics, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Mark R Burns
- Aminex Therapeutics, Aminex Therapeutics Inc., Kirkland, Washington, DC, USA
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Klaartje Somers
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Wu X, Liu Y, Hu Y, Su F, Wang Z, Chen Y, Zhuang Z. Leucine rich repeat containing 15 promotes triple-negative breast cancer proliferation and invasion via the ITGB1/FAK/PI3K signalling pathway. Sci Rep 2025; 15:14535. [PMID: 40281111 PMCID: PMC12032112 DOI: 10.1038/s41598-025-98661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Leucine rich repeat containing 15 (LRRC15) is recognized for its intimate association with the extracellular matrix, where it modulates fibroblast function and shapes the immune landscape within the tumour microenvironment. The specific expression patterns and molecular contributions of LRRC15 in triple-negative breast cancer(TNBC) have not been fully elucidated. This study aimed to delineate the clinical relevance and biological implications of LRRC15 in TNBC, and to assess its potential as a novel therapeutic target for this disease. Our findings revealed robust overexpression of LRRC15 in TNBC tumour tissues and cell lines, which was inversely correlated with patient survival outcomes. Notably, the suppression of LRRC15 expression led to pronounced inhibition of TNBC cell proliferation, invasion, and migration both in vitro and in vivo. Mechanistically, we established that LRRC15 interacts with Integrin Beta 1(ITGB1), facilitating the phosphorylation of the T788/T789 residues on ITGB1 and recruiting focal adhesion kinase (FAK) to the site of integrin aggregation. This recruitment promotes the downstream phosphorylation of PI3K and AKT, suggesting that LRRC15 is a key activator of the ITGB1/FAK/PI3K signalling pathway. Collectively, our data indicate that LRRC15 is a critical promoter of TNBC cell proliferation and metastasis through the activation of this signalling pathway, identifying LRRC15 as a promising candidate for therapeutic intervention in TNBC.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Yameng Liu
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Yinxi Hu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fang Su
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zishu Wang
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Yongxia Chen
- Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhixiang Zhuang
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Azfar M, Gao W, Van den Haute C, Xiao L, Karsa M, Pandher R, Karsa A, Spurling D, Ronca E, Bongers A, Guo X, Mayoh C, Fayt Y, Schoofs A, Burns MR, Verhelst SHL, Norris MD, Haber M, Vangheluwe P, Somers K. The polyamine transporter ATP13A3 mediates difluoromethylornithine-induced polyamine uptake in neuroblastoma. Mol Oncol 2025; 19:913-936. [PMID: 39981745 PMCID: PMC11887671 DOI: 10.1002/1878-0261.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 02/22/2025] Open
Abstract
High-risk neuroblastomas, often associated with MYCN protooncogene amplification, are addicted to polyamines, small polycations vital for cellular functioning. We have previously shown that neuroblastoma cells increase polyamine uptake when exposed to the polyamine biosynthesis inhibitor difluoromethylornithine (DFMO), and this mechanism is thought to limit the efficacy of the drug in clinical trials. This finding resulted in the clinical development of polyamine transport inhibitors, including AMXT 1501, which is presently under clinical investigation in combination with DFMO. However, the mechanisms and transporters involved in DFMO-induced polyamine uptake are unknown. Here, we report that knockdown of ATPase 13A3 (ATP13A3), a member of the P5B-ATPase polyamine transporter family, limited basal and DFMO-induced polyamine uptake, attenuated MYCN-amplified and non-MYCN-amplified neuroblastoma cell growth, and potentiated the inhibitory effects of DFMO. Conversely, overexpression of ATP13A3 in neuroblastoma cells increased polyamine uptake, which was inhibited by AMXT 1501, highlighting ATP13A3 as a key target of the drug. An association between high ATP13A3 expression and poor survival in neuroblastoma further supports a role of this transporter in neuroblastoma progression. Thus, this study identified ATP13A3 as a critical regulator of basal and DFMO-induced polyamine uptake and a novel therapeutic target for neuroblastoma.
Collapse
Affiliation(s)
- Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular MedicineKU LeuvenBelgium
| | - Weiman Gao
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| | - Chris Van den Haute
- Group for Neurobiology and Gene TherapyKU LeuvenBelgium
- Leuven Viral Vector CoreKU LeuvenBelgium
| | - Lin Xiao
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| | - Mawar Karsa
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| | - Ruby Pandher
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| | - Ayu Karsa
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
| | - Dayna Spurling
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
| | - Emma Ronca
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
| | - Angelika Bongers
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
| | - Xinyi Guo
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| | - Youri Fayt
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular MedicineKU LeuvenBelgium
| | - Arthur Schoofs
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular MedicineKU LeuvenBelgium
| | - Mark R. Burns
- Aminex TherapeuticsAminex Therapeutics Inc.KirklandWAUSA
| | - Steven H. L. Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular MedicineKU LeuvenBelgium
| | - Murray D. Norris
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
- UNSW Centre for Childhood Cancer ResearchUNSW SydneyAustralia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular MedicineKU LeuvenBelgium
| | - Klaartje Somers
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| |
Collapse
|
4
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
5
|
Lorenzo JP, Molla L, Amro EM, Ibarra IL, Ruf S, Neber C, Gkougkousis C, Ridani J, Subramani PG, Boulais J, Harjanto D, Vonica A, Di Noia JM, Dieterich C, Zaugg JB, Papavasiliou FN. APOBEC2 safeguards skeletal muscle cell fate through binding chromatin and regulating transcription of non-muscle genes during myoblast differentiation. Proc Natl Acad Sci U S A 2024; 121:e2312330121. [PMID: 38625936 PMCID: PMC11047093 DOI: 10.1073/pnas.2312330121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide (APOBEC) family is composed of nucleic acid editors with roles ranging from antibody diversification to RNA editing. APOBEC2, a member of this family with an evolutionarily conserved nucleic acid-binding cytidine deaminase domain, has neither an established substrate nor function. Using a cellular model of muscle differentiation where APOBEC2 is inducibly expressed, we confirmed that APOBEC2 does not have the attributed molecular functions of the APOBEC family, such as RNA editing, DNA demethylation, and DNA mutation. Instead, we found that during muscle differentiation APOBEC2 occupied a specific motif within promoter regions; its removal from those regions resulted in transcriptional changes. Mechanistically, these changes reflect the direct interaction of APOBEC2 with histone deacetylase (HDAC) transcriptional corepressor complexes. We also found that APOBEC2 could bind DNA directly, in a sequence-specific fashion, suggesting that it functions as a recruiter of HDAC to specific genes whose promoters it occupies. These genes are normally suppressed during muscle cell differentiation, and their suppression may contribute to the safeguarding of muscle cell fate. Altogether, our results reveal a unique role for APOBEC2 within the APOBEC family.
Collapse
Affiliation(s)
- J. Paulo Lorenzo
- Division of Immune Diversity, German Cancer Research Center, Heidelberg69120, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg69120, Germany
| | - Linda Molla
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY10065
| | - Elias Moris Amro
- Division of Immune Diversity, German Cancer Research Center, Heidelberg69120, Germany
| | - Ignacio L. Ibarra
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg85764, Germany
| | - Sandra Ruf
- Division of Immune Diversity, German Cancer Research Center, Heidelberg69120, Germany
| | - Cedrik Neber
- Division of Immune Diversity, German Cancer Research Center, Heidelberg69120, Germany
| | - Christos Gkougkousis
- Division of Immune Diversity, German Cancer Research Center, Heidelberg69120, Germany
| | - Jana Ridani
- Institut de Recherches Cliniques de Montréal, Montréal, QCH2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QCH4A 3J1, Canada
| | - Poorani Ganesh Subramani
- Institut de Recherches Cliniques de Montréal, Montréal, QCH2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QCH4A 3J1, Canada
| | - Jonathan Boulais
- Institut de Recherches Cliniques de Montréal, Montréal, QCH2W 1R7, Canada
| | - Dewi Harjanto
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY10065
| | - Alin Vonica
- Department of Biology, Nazareth University, Rochester, NY14618
| | - Javier M. Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, QCH2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QCH4A 3J1, Canada
- Department of Medicine, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg69120, Germany
- German Center for Cardiovascular Research (DZHK) - Partner site Heidelberg/Mannheim, Heidelberg69120, Germany
| | - Judith B. Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
| | - F. Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg69120, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg69120, Germany
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY10065
| |
Collapse
|
6
|
Azfar M, van Veen S, Houdou M, Hamouda NN, Eggermont J, Vangheluwe P. P5B-ATPases in the mammalian polyamine transport system and their role in disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119354. [PMID: 36064065 DOI: 10.1016/j.bbamcr.2022.119354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Polyamines (PAs) are physiologically relevant molecules that are ubiquitous in all organisms. The vitality of PAs to the healthy functioning of a cell is due to their polycationic nature causing them to interact with a vast plethora of cellular players and partake in numerous cellular pathways. Naturally, the homeostasis of such essential molecules is tightly regulated in a strictly controlled interplay between intracellular synthesis and degradation, uptake from and secretion to the extracellular compartment, as well as intracellular trafficking. Not surprisingly, dysregulated PA homeostasis and signaling are implicated in multiple disorders, ranging from cancer to neurodegeneration; leading many to propose rectifying the PA balance as a potential therapeutic strategy. Despite being well characterized in bacteria, fungi and plants, the molecular identity and properties of the PA transporters in animals are poorly understood. This review brings together the current knowledge of the cellular function of the mammalian PA transport system (PTS). We will focus on the role of P5B-ATPases ATP13A2-5 which are PA transporters in the endosomal system that have emerged as key players in cellular PA uptake and organelle homeostasis. We will discuss recent breakthroughs on their biochemical and structural properties as well as their implications for disease and therapy.
Collapse
Affiliation(s)
- Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium
| | - Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium
| | - Marine Houdou
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium
| | - Norin Nabil Hamouda
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
7
|
Choi PW, Liu TL, Wong CW, Liu SK, Lum YL, Ming WK. The Dysregulation of MicroRNAs in the Development of Cervical Pre-Cancer—An Update. Int J Mol Sci 2022; 23:ijms23137126. [PMID: 35806128 PMCID: PMC9266862 DOI: 10.3390/ijms23137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Globally in 2020, an estimated ~600,000 women were diagnosed with and 340,000 women died from cervical cancer. Compared to 2012, the number of cases increased by 7.5% and the number of deaths increased by 17%. MiRNAs are involved in multiple processes in the pathogenesis of cervical cancer. Dysregulation of miRNAs in the pre-stage of cervical cancer is the focus of this review. Here we summarize the dysregulated miRNAs in clinical samples from cervical pre-cancer patients and relate them to the early transformation process owing to human papillomavirus (HPV) infection in the cervical cells. When HPV infects the normal cervical cells, the DNA damage response is initiated with the involvement of HPV’s E1 and E2 proteins. Later, cell proliferation and cell death are affected by the E6 and E7 proteins. We find that the expressions of miRNAs in cervical pre-cancerous tissue revealed by different studies seldom agreed with each other. The discrepancy in sample types, samples’ HPV status, expression measurement, and methods for analysis contributed to the non-aligned results across studies. However, several miRNAs (miR-34a, miR-9, miR-21, miR-145, and miR-375) were found to be dysregulated across multiple studies. In addition, there are hints that the DNA damage response and cell growth response induced by HPV during the early transformation of the cervical cells are related to these miRNAs. Currently, no review articles analyse the relationship between the dysregulated miRNAs in cervical pre-cancerous tissue and their possible roles in the early processes involving HPV’s protein encoded by the early genes and DNA damage response during normal cell transformation. Our review provides insight on spotting miRNAs involved in the early pathogenic processes and pointing out their potential as biomarker targets of cervical pre-cancer.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Tin Lun Liu
- International School, Jinan University, Guangzhou 510632, China;
| | - Chun Wai Wong
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Sze Kei Liu
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Yick-Liang Lum
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Wai-Kit Ming
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
- Correspondence: ; Tel.: +852-3442-6956
| |
Collapse
|
8
|
Kolitz E, Lucas E, Hosler GA, Kim J, Hammer S, Lewis C, Xu L, Day AT, Mauskar M, Lea JS, Wang RC. Human Papillomavirus‒Positive and ‒Negative Vulvar Squamous Cell Carcinoma Are Biologically but Not Clinically Distinct. J Invest Dermatol 2022; 142:1280-1290.e7. [PMID: 34756880 PMCID: PMC9038635 DOI: 10.1016/j.jid.2021.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
Vulvar squamous cell carcinoma pathogenesis is traditionally defined by the presence or absence of human papillomavirus (HPV), but the definition of these groups and their molecular characteristics remain ambiguous across studies. In this study, we present a retrospective cohort analysis of 36 patients with invasive vulvar squamous cell carcinoma where HPV status was determined using RNA in situ hybridization and PCR. Clinical annotation, p16 immunohistochemistry, PD-L1 immunohistochemistry, HPV16 circular E7 RNA detection, and RNA sequencing of the cases were performed. A combination of in situ hybridization and PCR identified 20 cases (55.6%) as HPV positive. HPV status did not impact overall survival (hazard ratio: 1.36, 95% confidence interval = 0.307-6.037, P = 0.6857) or progression-free survival (hazard ratio: 1.12, 95% confidence interval = 0.388-3.22, P = 0.8367), and no significant clinical differences were found between the groups. PD-L1 expression did not correlate with HPV status, but increased expression of PD-L1 correlated with worse overall survival. Transcriptomic analyses (n = 23) revealed distinct groups, defined by HPV status, with multiple differentially expressed genes previously implicated in HPV-induced cancers. HPV-positive tumors showed higher global expression of endogenous circular RNAs, including several circular RNAs that have previously been implicated in the pathogenesis of other cancers.
Collapse
Affiliation(s)
- Elysha Kolitz
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elena Lucas
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gregory A Hosler
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; ProPath Dermatopathology, Dallas, Texas, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suntrea Hammer
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew T Day
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Melissa Mauskar
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Dallas, Texas, USA
| | - Jayanthi S Lea
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Dallas, Texas, USA
| | - Richard C Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
9
|
Ray U, Jung DB, Jin L, Xiao Y, Dasari S, Bhattacharya SS, Thirusangu P, Staub JK, Roy D, Roy B, Weroha SJ, Hou X, Purcell JW, Bakkum-Gamez JN, Kaufmann SH, Kannan N, Mitra AK, Shridhar V. Targeting LRRC15 Inhibits Metastatic Dissemination of Ovarian Cancer. Cancer Res 2022; 82:1038-1054. [PMID: 34654724 PMCID: PMC8930558 DOI: 10.1158/0008-5472.can-21-0622] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Dissemination of ovarian cancer cells can lead to inoperable metastatic lesions in the bowel and omentum that cause patient death. Here we show that LRRC15, a type-I 15-leucine-rich repeat-containing membrane protein, highly overexpressed in ovarian cancer bowel metastases compared with matched primary tumors and acts as a potent promoter of omental metastasis. Complementary models of ovarian cancer demonstrated that LRRC15 expression leads to inhibition of anoikis-induced cell death and promotes adhesion and invasion through matrices that mimic omentum. Mechanistically, LRRC15 interacted with β1-integrin to stimulate activation of focal adhesion kinase (FAK) signaling. As a therapeutic proof of concept, targeting LRRC15 with the specific antibody-drug conjugate ABBV-085 in both early and late metastatic ovarian cancer cell line xenograft models prevented metastatic dissemination, and these results were corroborated in metastatic patient-derived ovarian cancer xenograft models. Furthermore, treatment of 3D-spheroid cultures of LRRC15-positive patient-derived ascites with ABBV-085 reduced cell viability. Overall, these data uncover a role for LRRC15 in promoting ovarian cancer metastasis and suggest a novel and promising therapy to target ovarian cancer metastases. Significance: This study identifies that LRRC15 activates β1-integrin/FAK signaling to promote ovarian cancer metastasis and shows that the LRRC15-targeted antibody-drug conjugate ABBV-085 suppresses ovarian cancer metastasis in preclinical models.
Collapse
Affiliation(s)
- Upasana Ray
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Deok-Beom Jung
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA,ASAN Biomedical Research Center, Seoul, S. Korea
| | - Ling Jin
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yinan Xiao
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Subramanyam Dasari
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Prabhu Thirusangu
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julie K. Staub
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Debarshi Roy
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA,Alcorn State University, Lorman, MS, USA
| | - Bhaskar Roy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - James W. Purcell
- Department of Oncology Drug Discovery, AbbVie, South San Francisco, CA, USA
| | | | - Scott H. Kaufmann
- Division of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Nagarajan Kannan
- Division of Experimental Pathology, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Anirban K. Mitra
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA,Correspondence and requests for materials should be addressed to V.S. , Address: 200 First Street SW, 2-46 Stabile, Rochester, MN55905, Contact: 507-266-2775
| | - Viji Shridhar
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA,Correspondence and requests for materials should be addressed to V.S. , Address: 200 First Street SW, 2-46 Stabile, Rochester, MN55905, Contact: 507-266-2775
| |
Collapse
|
10
|
Ray U, Pathoulas CL, Thirusangu P, Purcell JW, Kannan N, Shridhar V. Exploiting LRRC15 as a novel therapeutic target in cancer. Cancer Res 2022; 82:1675-1681. [PMID: 35260879 DOI: 10.1158/0008-5472.can-21-3734] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
Abstract
Abundant fibrotic stroma is a typical feature of most solid tumors, and stromal activation promotes oncogenesis, therapy resistance, and metastatic dissemination of cancer cells. Therefore, targeting the tumor stroma in combination with standard-of-care therapies has become a promising therapeutic strategy in recent years. The leucine-rich repeat-containing protein (LRRC15) is involved in cell-cell and cell-matrix interactions and came into focus as a promising anti-cancer target owing to its overexpression in mesenchymal-derived tumors such as sarcoma, glioblastoma, and melanoma and in cancer-associated fibroblasts in the microenvironment of breast, head and neck, lung, and pancreatic tumors. Effective targeting of LRRC15 using specific antibody-drug conjugates (ADC) has the potential to improve the outcome of patients with LRRC15-positive cancers of mesenchymal origin or stromal desmoplasia. Moreover, LRRC15 expression may serve as a predictive biomarker that could be utilized in the preclinical assessment of cancer patients to support personalized clinical outcomes. This review focuses on the role of LRRC15 in cancer, including clinical trials involving LRRC15-targeted therapies, such as the ABBV-085 ADC for patients with LRRC15-positive tumors. This review spans perceived knowledge gaps and highlights the clinical avenues that need to be explored to provide better therapeutic outcomes in patients.
Collapse
Affiliation(s)
| | | | | | - James W Purcell
- AbbVie (United States), South San Francisco, CA, United States
| | | | | |
Collapse
|
11
|
Hong C, Thiele R, Feuerbach L. GenomeTornadoPlot: a novel R package for CNV visualization and focality analysis. Bioinformatics 2022; 38:2036-2038. [PMID: 35099519 PMCID: PMC8963283 DOI: 10.1093/bioinformatics/btac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/21/2021] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION Analysis of focal copy number variations (CNVs) is highly relevant for cancer research, as they pinpoint driver genes. More specifically, due to selective pressure oncogenes and tumor suppressor genes are more often affected by these events than neighboring passengers. In cases where multiple candidates co-reside in a genomic locus, careful comparison is required to either identify multigenic minimally deleted regions of synergistic co-mutations, or the true single driver gene. The study of focal CNVs in large cancer genome cohorts requires specialized visualization and statistical analysis. RESULTS We developed the GenomeTornadoPlot R-package which generates gene-centric visualizations of CNV types, locations and lengths from cohortwise NGS data. Furthermore, the software enables the pairwise comparison of proximate genes to identify co-mutation patterns or driver-passenger hierarchies. The visual examination provided by GenomeTornadoPlot is further supported by adaptable local and global focality scoring. Integrated into the GenomeTornadoPlot R-Package is the comprehensive PCAWG database of CNVs, comprising 2976 cancer genome entities from 46 cohorts of the Pan-cancer Analysis of Whole Genomes project. The GenomeTornadoPlot R-package can be used to perform exploratory or hypothesis-driven analyses on the basis of the PCAWG data or in combination with data provided by the user. AVAILABILITY AND IMPLEMENTATION GenomeTornadoPlot is written in R script and released via github: <https://github.com/chenhong-dkfz/GenomeTornadoPlot/>. The package is under the license of GPL-3.0.
Collapse
Affiliation(s)
- Chen Hong
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Robin Thiele
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | | |
Collapse
|
12
|
Mitra T, Elangovan S. Cervical cancer development, chemoresistance, and therapy: a snapshot of involvement of microRNA. Mol Cell Biochem 2021; 476:4363-4385. [PMID: 34453645 DOI: 10.1007/s11010-021-04249-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is one of the leading causes of death in women due to cancer and a major concern in the developing world. Persistent human papilloma virus (HPV) infection is the major causative agent for CC. Besides HPV infection, genetic and epigenetic factors including microRNA (miRNA) also contribute to the malignant transformation. Earlier studies have revealed that miRNAs participate in cell proliferation, invasion and metastasis, angiogenesis, and chemoresistance processes by binding and inversely regulating the target oncogenes or tumor suppressor genes. Based on functions and mechanistic insights, miRNAs have been identified as cellular modulators that have an enormous role in diagnosis, prognosis, and cancer therapy. Signatures of miRNA could be used as diagnostic markers which are necessary for early diagnosis and management of CC. The therapeutic potential of miRNAs has been shown in CC; however, more comprehensive clinical trials are required for the clinical translation of miRNA-based diagnostics and therapeutics. Understanding the molecular mechanism of miRNAs and their target genes has been useful to develop miRNA-based therapeutic strategies for CC and overcome chemoresistance. In this review, we summarize the role of miRNAs in the development, progression, and metastasis of CC as well as chemoresistance. Further, we discuss the diagnostic and therapeutic potential of miRNAs to overcome chemoresistance and treatment of CC.
Collapse
Affiliation(s)
- Tandrima Mitra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
13
|
Wang S, Xu L, Zhang Z, Wang P, Zhang R, He H, Chen L. Overexpressed miR-375-Loaded Restrains Development of Cervical Cancer Through Down-Regulation of Frizzled Class Receptor 4 (FZD4) with Liposome Nanoparticle as a Carrier. J Biomed Nanotechnol 2021; 17:1882-1889. [PMID: 34688334 DOI: 10.1166/jbn.2021.3145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dysregulation expression of miR-375 is noted to correlate with progression of cervical cancer. This study attempted to investigate the impact of overexpressed miR-375-loaded liposome nanoparticles on proliferation of cervical cancer (CC), to provide an insight on pathogenesis of CC disorder. CC cells were co-cultured with pure liposome nanoparticles (empty vector group), miR-375 agonist-loaded liposome nanoparticles, or transfected with miR-375 antagonist. Besides, some cells were exposed to TGF-β/Smads signaling pathway inhibitor or activator whilst cell proliferation was assessed by MTT assay, and expressions of FZD4 and miR-375 were determined. Western blot analysis was carried out to detect the expression of TGF-β pathway factors (TGF-β, Smad2, Smad7, p-Smad2) and its downstream Smads pathway. The interaction between miR-375 and FZD4 was evaluated by dual-luciferase reporter gene assay. Overexpression of miR-375 induced arrest at the G0/G1 phase of cell cycle and elevation of Smad2 protein expression (P <0.05), with lower expressions of TGF-β, Smad7, p-Smad2, and FZD4, while transfection with miR-375 inhibitor exhibited opposite activity. Presence of miR-375 agonist-loaded liposome nanoparticles induced decreased cell proliferation. There was a targeting relationship between miR-375 and FZD4, and administration with TGF-β/Smads agonist resulted in increased miR-375 and Smad2 expressions, as well as decreased TGF-β, Smad7, p-Smad2, FZD4 protein expression, and the number of S phase and G2/M phase cells (P < 0.05). The signaling inhibitor oppositely suppressed cell proliferation decreasing miR-375 expression. miR-375-loaded liposome nanoparticles activated TGF-β/Smads signaling pathway to restrain cell cycle and suppress cell division, and proliferation through targeting FZD4 in CC. Its molecular mechanism is related to activation of TGF-β/Smads signaling pathway.
Collapse
Affiliation(s)
- Suqin Wang
- The First Department of Gynecology of Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Lina Xu
- The First Department of Gynecology of Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Zhiqiang Zhang
- The First Department of Gynecology of Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Ping Wang
- Department of Gynecology, Shanxi Tumour Hospital, Taiyuan, 030013, Shanxi, China
| | - Rong Zhang
- The Second Department of Gynecology of Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Hui He
- The First Department of Gynecology of Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Ling Chen
- The First Department of Gynecology of Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| |
Collapse
|
14
|
Liu Y, Wang Q, Wen J, Wu Y, Man C. MiR-375: A novel multifunctional regulator. Life Sci 2021; 275:119323. [PMID: 33744323 DOI: 10.1016/j.lfs.2021.119323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 01/23/2023]
Abstract
MiR-375, a primitively described beta cell-specific miRNA, is confirmed to function as multi-functional regulator in diverse typical cellular pathways according to the follow-up researches. Based on the existing studies, miR-375 can regulate many functional genes and ectopic expressions of miR-375 are usually associated with pathological changes, and its expression regulation mechanism is mainly related to promoter methylation or circRNA. In this review, the regulatory functions of miR-375 in immunity, such as its relevance with macrophages, T helper cells and autoimmune diseases were briefly discussed. Also, the functions of miR-375 involved in inflammation, development and virus replication were reviewed. Finally, the mechanisms and application prospects of miR-375 in cancers were analyzed. Studies show that the application of miR-375 as therapeutic target and biomarker has a broad developing space in future. We hope this paper can provide reference for its further study.
Collapse
Affiliation(s)
- Yang Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Qiuyuan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yiru Wu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
15
|
Montes-Grajales D, Morelos-Cortes X, Olivero-Verbel J. Discovery of New Protein Targets of BPA Analogs and Derivatives Associated with Noncommunicable Diseases: A Virtual High-Throughput Screening. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37009. [PMID: 33769846 PMCID: PMC7997610 DOI: 10.1289/ehp7466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Bisphenol A analogs and derivatives (BPs) have emerged as new contaminants with little or no information about their toxicity. These have been found in numerous everyday products, from thermal paper receipts to plastic containers, and measured in human samples. OBJECTIVES The objectives of this research were to identify in silico new protein targets of BPs associated with seven noncommunicable diseases (NCDs), and to study their protein-ligand interactions using computer-aided tools. METHODS Fifty BPs were identified by a literature search and submitted to a virtual high-throughput screening (vHTS) with 328 proteins associated with NCDs. Protein-protein interactions between predicted targets were examined using STRING, and the protocol was validated in terms of binding site recognition and correlation between in silico affinities and in vitro data. RESULTS According to the vHTS, several BPs may target proteins associated with NCDs, some of them with stronger affinities than bisphenol A (BPA). The best affinity score (the highest in silico affinity absolute value) was obtained after docking 4,4'-bis(N-carbamoyl-4-methylbenzensulfonamide)diphenylmethane (BTUM) on estradiol 17-beta-dehydrogenase 1 (-13.7 kcal/mol). However, other molecules, such as bisphenol A bis(diphenyl phosphate) (BDP), bisphenol PH (BPPH), and Pergafast 201 also exhibited great affinities (top 10 affinity scores for each disease) with proteins related to NCDs. DISCUSSION Molecules such as BTUM, BDP, BPPH, and Pergafast 201 could be targeting key signaling pathways related to NCDs. These BPs should be prioritized for in vitro and in vivo toxicity testing and to further assess their possible role in the development of these diseases. https://doi.org/10.1289/EHP7466.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Xiomara Morelos-Cortes
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
16
|
Regulation of ZMYND8 to Treat Cancer. Molecules 2021; 26:molecules26041083. [PMID: 33670804 PMCID: PMC7923094 DOI: 10.3390/molecules26041083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
Zinc finger myeloid, nervy, and deformed epidermal autoregulatory factor 1-type containing 8 (Zinc finger MYND-type containing 8, ZMYND8) is a transcription factor, a histone H3-interacting protein, and a putative chromatin reader/effector that plays an essential role in regulating transcription during normal cellular growth. Mutations and altered expression of ZMYND8 are associated with the development and progression of cancer. Increased expression of ZMYND8 is linked to breast, prostate, colorectal, and cervical cancers. It exerts pro-oncogenic effects in breast and prostate cancers, and it promotes angiogenesis in zebrafish, as well as in breast and prostate cancers. In contrast, downregulation of ZMYND8 is also reported in breast, prostate, and nasopharyngeal cancers. ZMYND8 acts as a tumor suppressor in breast and prostate cancers, and it inhibits tumor growth by promoting differentiation; inhibiting proliferation, cell-cycle progression, invasiveness, and metastasis; and maintaining the epithelial phenotype in various types of cancers. These data together suggest that ZMYND8 is important in tumorigenesis; however, the existing data are contradictory. More studies are necessary to clarify the exact role of ZMYND8 in tumorigenesis. In the future, regulation of expression/activity of ZMYND8 and/or its binding partners may become useful in treating cancer.
Collapse
|
17
|
Woo XY, Giordano J, Srivastava A, Zhao ZM, Lloyd MW, de Bruijn R, Suh YS, Patidar R, Chen L, Scherer S, Bailey MH, Yang CH, Cortes-Sanchez E, Xi Y, Wang J, Wickramasinghe J, Kossenkov AV, Rebecca VW, Sun H, Mashl RJ, Davies SR, Jeon R, Frech C, Randjelovic J, Rosains J, Galimi F, Bertotti A, Lafferty A, O’Farrell AC, Modave E, Lambrechts D, ter Brugge P, Serra V, Marangoni E, El Botty R, Kim H, Kim JI, Yang HK, Lee C, Dean DA, Davis-Dusenbery B, Evrard YA, Doroshow JH, Welm AL, Welm BE, Lewis MT, Fang B, Roth JA, Meric-Bernstam F, Herlyn M, Davies MA, Ding L, Li S, Govindan R, Isella C, Moscow JA, Trusolino L, Byrne AT, Jonkers J, Bult CJ, Medico E, Chuang JH, PDXNET Consortium BaileyMatthew H.89RebeccaVito W.11DaviesMichael A.26RobinsonPeter N.1SandersonBrian J.1NeuhauserSteven B.4DobroleckiLacey E.23ZhengXiaofeng10MajidiMourad24ZhangRan24ZhangXiaoshan24AkcakanatArgun25EvansKurt W.25YapTimothy A.25LiDali25YucanErkan25LanierChristopher D.25SaridoganTurcin25KirbyBryce P.25HaMin Jin28ChenHuiqin28KopetzScott29MenterDavid G.29ZhangJianhua30WestinShannon N.31KimMichael P.32DaiBingbing32GibbonsDon L.33TapiaCoya34JensenVanessa B.35BoningGao36MinnaJohn D.36ParkHyunsil36TimmonsBrenda C.36GirardLuc36FingermanDylan11LiuQin11SomasundaramRajasekharan11XiaoMin11Yennu-NandaVashisht G.26TetzlaffMichael T.37XuXiaowei37NathansonKatherine L.38CaoSong12ChenFeng12DiPersioJohn F.12LimKian H.12MaCynthia X.12RodriguezFernanda M.12Van TineBrian A.12Wang-GillamAndrea12WendlMichael C.12WuYige12WyczalkowskiMatthew A.12YaoLijun12JayasingheReyka12AftRebecca L.39FieldsRyan C.39LuoJingqin39FuhKatherine C.40ChinVicki13DiGiovannaJohn13GroverJeffrey13KocSoner13SeepoSara13WallaceTiffany41PanChong-Xian42ChenMoon S.Jr42Carvajal-CarmonaLuis G.43KiraneAmanda R.44ChoMay44GandaraDavid R.44RiessJonathan W.44LeTiffany44deVere WhiteRalph W.44TepperClifford G.44ZhangHongyong45CogginsNicole B.45LottPaul45EstradaAna45ToalTed45AranaAlexa Morales45Polanco-EcheverryGuadalupe45RochaSienna45MaAi-Hong43MitsiadesNicholas4647KaocharSalma46O’MalleyBert W.47EllisMatthew J.23HilsenbeckSusan G.23IttmannMichael48, EurOPDX Consortium de BruijnRoebi5ter BruggePetra5CorsoSimona23FioriAlessandro23GiordanoSilvia23van de VenMarieke5PeeperDaniel S.5MillerIan14BernadóCristina17MoranchoBeatriz17RamírezLorena17ArribasJoaquín17PalmerHéctor G.17Piris-GimenezAlejandro17SoucekLaura17DahmaniAhmed18MontaudonElodie18NematiFariba18Dangles-MarieVirginie18DecaudinDidier18Roman-RomanSergio18AlférezDenis G.49SpenceKatherine49ClarkeRobert B.49Bentires-AljMohamed50ChangDavid K.51BiankinAndrew V.51BrunaAlejandra52O’ReillyMartin52CaldasCarlos52CasanovasOriol53Gonzalez-SuarezEva53MuñozPurificacíon53VillanuevaAlberto53ConteNathalie54MasonJeremy54ThorneRoss54MeehanTerrence F.54ParkinsonHelen54DudovaZdenka55KřenekAles55StuchlíkDalibor55ElementoOlivier56InghiramiGiorgio56GolebiewskaAnna57NiclouSimone P.57WismanG. Bea A.58de JongSteven58KralovaPetra59SedlacekRadislav59ClaeysElisa60LeucciEleonora60BorsaniMassimiliano61LanfranconeLuisa61PelicciPier Giuseppe61MælandsmoGunhild Mari62NorumJens Henrik62VinoloEmilie63. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat Genet 2021; 53:86-99. [PMID: 33414553 PMCID: PMC7808565 DOI: 10.1038/s41588-020-00750-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 11/18/2020] [Indexed: 02/03/2023]
Abstract
Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accuracy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.
Collapse
Grants
- NC/T001267/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research
- P30 CA016672 NCI NIH HHS
- 29567 Cancer Research UK
- U54 CA233223 NCI NIH HHS
- P30 CA034196 NCI NIH HHS
- P01 CA114046 NCI NIH HHS
- HHSN261201400008C NCI NIH HHS
- P30 CA091842 NCI NIH HHS
- U24 CA224067 NCI NIH HHS
- P50 CA196510 NCI NIH HHS
- U54 CA224070 NCI NIH HHS
- U54 CA224076 NCI NIH HHS
- U54 CA224065 NCI NIH HHS
- U54 CA233306 NCI NIH HHS
- P30 CA010815 NCI NIH HHS
- U24 CA204781 NCI NIH HHS
- U54 CA224083 NCI NIH HHS
- HHSN261201500003C NCI NIH HHS
- HHSN261200800001C NCI NIH HHS
- T32 HG008962 NHGRI NIH HHS
- R50 CA211199 NCI NIH HHS
- P30 CA125123 NCI NIH HHS
- P50 CA070907 NCI NIH HHS
- HHSN261201500003I NCI NIH HHS
- HHSN261200800001E NCI NIH HHS
- P30 CA042014 NCI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- KWF Kankerbestrijding (Dutch Cancer Society)
- Oncode Institute
- Fondazione AIRC under 5 per Mille 2018 - ID. 21091 EU H2020 Research and Innovation Programme, grant agreement no. 731105 European Research Council Consolidator Grant 724748
- EU H2020 Research and Innovation Programme, grant Agreement No. 754923
- EU H2020 Research and Innovation Programme, grant agreement no. 731105 ISCIII - Miguel Servet program CP14/00228 GHD-Pink/FERO Foundation grant
- Fondazione Piemontese per la Ricerca sul Cancro-ONLUS 5 per mille Ministero della Salute 2015
- Korean Health Industry Development Institute HI13C2148
- Korean Health Industry Development Institute HI13C2148 The First Affiliated Hospital of Xi’an Jiaotong University Ewha Womans University Research Grant
- CPRIT RP170691
- SCU | Ignatian Center for Jesuit Education, Santa Clara University
- Breast Cancer Research Foundation (BCRF)
- Fashion Footwear Charitable Foundation of New York The Foundation for Barnes-Jewish Hospital’s Cancer Frontier Fund
- My First AIRC Grant 19047
- Fondazione AIRC under 5 per Mille 2018 - ID. 21091 AIRC Investigator Grants 18532 and 20697 AIRC/CRUK/FC AECC Accelerator Award 22795 Fondazione Piemontese per la Ricerca sul Cancro-ONLUS 5 per mille Ministero della Salute 2015, 2014, 2016 EU H2020 Research and Innovation Programme, grant Agreement No. 754923 EU H2020 Research and Innovation Programme, grant agreement no. 731105
- Science Foundation Ireland (SFI)
- EU H2020 Research and Innovation Programme, grant agreement no. 731105 EU H2020 Research and Innovation Programme, grant Agreement No. 754923 Irish Health Research Board grant ILP-POR-2019-066
- Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
- EU H2020 Research and Innovation Programme, grant agreement no. 731105 European Research Council (ERC) Synergy project CombatCancer Oncode Institute
Collapse
Affiliation(s)
- Xing Yi Woo
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Jessica Giordano
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Anuj Srivastava
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Zi-Ming Zhao
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Michael W. Lloyd
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME USA
| | - Roebi de Bruijn
- grid.430814.aNetherlands Cancer Institute, Amsterdam, the Netherlands
| | - Yun-Suhk Suh
- grid.31501.360000 0004 0470 5905College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Rajesh Patidar
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Li Chen
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Sandra Scherer
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Matthew H. Bailey
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA ,grid.223827.e0000 0001 2193 0096Department of Human Genetics, University of Utah, Salt Lake City, UT USA
| | - Chieh-Hsiang Yang
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Emilio Cortes-Sanchez
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Yuanxin Xi
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jing Wang
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | | | | | - Vito W. Rebecca
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Hua Sun
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - R. Jay Mashl
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Sherri R. Davies
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Ryan Jeon
- grid.492568.4Seven Bridges Genomics, Charlestown, MA USA
| | | | | | | | - Francesco Galimi
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Andrea Bertotti
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Adam Lafferty
- grid.4912.e0000 0004 0488 7120Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice C. O’Farrell
- grid.4912.e0000 0004 0488 7120Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elodie Modave
- grid.5596.f0000 0001 0668 7884Center for Cancer Biology, VIB, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- grid.5596.f0000 0001 0668 7884Center for Cancer Biology, VIB, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Petra ter Brugge
- grid.430814.aNetherlands Cancer Institute, Amsterdam, the Netherlands
| | - Violeta Serra
- grid.411083.f0000 0001 0675 8654Vall d´Hebron Institute of Oncology, Barcelona, Spain
| | - Elisabetta Marangoni
- grid.418596.70000 0004 0639 6384Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Rania El Botty
- grid.418596.70000 0004 0639 6384Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Hyunsoo Kim
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Jong-Il Kim
- grid.31501.360000 0004 0470 5905College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han-Kwang Yang
- grid.31501.360000 0004 0470 5905College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Charles Lee
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA ,grid.452438.cPrecision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China ,grid.255649.90000 0001 2171 7754Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Dennis A. Dean
- grid.492568.4Seven Bridges Genomics, Charlestown, MA USA
| | | | - Yvonne A. Evrard
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - James H. Doroshow
- grid.48336.3a0000 0004 1936 8075Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD USA
| | - Alana L. Welm
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Bryan E. Welm
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA ,grid.223827.e0000 0001 2193 0096Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Michael T. Lewis
- grid.39382.330000 0001 2160 926XLester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Bingliang Fang
- grid.240145.60000 0001 2291 4776Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jack A. Roth
- grid.240145.60000 0001 2291 4776Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Funda Meric-Bernstam
- grid.240145.60000 0001 2291 4776Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Meenhard Herlyn
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Michael A. Davies
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Li Ding
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Shunqiang Li
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Ramaswamy Govindan
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Claudio Isella
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Jeffrey A. Moscow
- grid.48336.3a0000 0004 1936 8075Investigational Drug Branch, National Cancer Institute, Bethesda, MD USA
| | - Livio Trusolino
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Annette T. Byrne
- grid.4912.e0000 0004 0488 7120Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jos Jonkers
- grid.430814.aNetherlands Cancer Institute, Amsterdam, the Netherlands
| | - Carol J. Bult
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME USA
| | - Enzo Medico
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Jeffrey H. Chuang
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | | | | |
Collapse
|
18
|
Pisarska J, Baldy-Chudzik K. MicroRNA-Based Fingerprinting of Cervical Lesions and Cancer. J Clin Med 2020; 9:jcm9113668. [PMID: 33203149 PMCID: PMC7698009 DOI: 10.3390/jcm9113668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The regulatory functions of microRNA (miRNA) are involved in all processes contributing to carcinogenesis and response to viral infections. Cervical cancer in most cases is caused by the persistence of high-risk human papillomavirus (HR-HPV) infection. While oncogenic human papillomaviruses induce aberrant expression of many cellular miRNAs, this dysregulation could be harnessed as a marker in early diagnosis of HR-HPV infection, cervical squamous intraepithelial lesions, and cancer. In recent years, growing data indicate that miRNAs show specific patterns at various stages of cervical pathology. The aim of this review is to systematize current reports on miRNA capacity that can be utilized in personalized diagnostics of cervical precancerous and cancerous lesions. The analysis of the resources available in online databases (National Center for Biotechnology Information—NCBI, PubMed, ScienceDirect, Scopus) was performed. To date, no standardized diagnostic algorithm using the miRNA pattern in cervical pathology has been defined. However, the high sensitivity and specificity of the reported assays gives hope for the development of non-invasive diagnostic tests that take into account the heterogeneity of tumor-related changes. Due to this variability resulting in difficult to predict clinical outcomes, precise molecular tools are needed to improve the diagnostic and therapeutic process.
Collapse
|
19
|
Lek SM, Li K, Tan QX, Shannon NB, Ng WH, Hendrikson J, Tan JWS, Lim HJ, Chen Y, Koh KKN, Skanthakumar T, Kwang XL, Chong FT, Leong HS, Tay G, Putri NE, Lim TKH, Hwang JSG, Ang MK, Tan DSW, Tan NC, Tan HK, Kon OL, Soo KC, Iyer NG, Ong CAJ. Pairing a prognostic target with potential therapeutic strategy for head and neck cancer. Oral Oncol 2020; 111:105035. [PMID: 33091845 DOI: 10.1016/j.oraloncology.2020.105035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We have previously identified and validated a panel of molecular prognostic markers (ATP13A3, SSR3, and ANO1) for Head and Neck Squamous Cell Carcinoma (HNSCC). The aim of this study was to investigate the consequence of ATP13A3 dysregulation on signaling pathways, to aid in formulating a therapeutic strategy targeting ATP13A3-overexpressing HNSCC. MATERIALS AND METHODS Gene Set Enrichment Analysis (GSEA) was performed on HNSCC microarray expression data (Internal local dataset [n = 92], TCGA [n = 232], EMBL [n = 81]) to identify pathways associated with high expression of ATP13A3. Validation was performed using immunohistochemistry (IHC) on tissue microarrays (TMAs) of head and neck cancers (n = 333), staining for ATP13A3 and phosphorylated Aurora kinase A (phospho-T288). Short interfering RNA was used to knockdown ATP13A3 expression in patient derived HNSCC cell lines. Protein expression of ATP13A3 and Aurora kinase A was then assessed by immunoblotting. RESULTS GSEA identified Aurora kinase pathway to be associated with high expression of ATP13A3 (p = 0.026). The Aurora kinase pathway was also associated with a trend towards poor prognosis and tumor aggressiveness (p = 0.086, 0.094, respectively). Furthermore, the immunohistochemical staining results revealed a significant association between Aurora kinase activity and high ATP13A3 expression (p < 0.001). Knockdown of ATP13A3 in human head and neck cell lines showed decrease in Aurora kinase A levels. CONCLUSION Tumors with high ATP13A3 are associated with high Aurora kinase activity. This suggests a potential therapeutic role of Aurora kinase inhibitors in a subset of poor prognosis HNSCC patients with overexpression of ATP13A3.
Collapse
Affiliation(s)
- Sze Min Lek
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Ke Li
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Qiu Xuan Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Nicholas B Shannon
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Wai Har Ng
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Josephine Hendrikson
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Joey W S Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Hui Jun Lim
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Yudong Chen
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Kelvin K N Koh
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Thakshayeni Skanthakumar
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Xue Lin Kwang
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Fui Teen Chong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Hui Sun Leong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Gerald Tay
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - Natascha Ekawati Putri
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Jacqueline S G Hwang
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Mei Kim Ang
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Ngian Chye Tan
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - Hiang Khoon Tan
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - Oi Lian Kon
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Khee Chee Soo
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore.
| | - Chin-Ann J Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.
| |
Collapse
|
20
|
Calycosin inhibits viability, induces apoptosis, and suppresses invasion of cervical cancer cells by upregulating tumor suppressor miR-375. Arch Biochem Biophys 2020; 691:108478. [DOI: 10.1016/j.abb.2020.108478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/13/2020] [Accepted: 06/20/2020] [Indexed: 12/24/2022]
|
21
|
Sammarco ML, Tamburro M, Pulliero A, Izzotti A, Ripabelli G. Human Papillomavirus Infections, Cervical Cancer and MicroRNAs: An Overview and Implications for Public Health. Microrna 2020; 9:174-186. [PMID: 31738147 PMCID: PMC7366004 DOI: 10.2174/2211536608666191026115045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/21/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Human Papillomavirus (HPV) is among the most common sexually transmitted infections in both females and males across the world that generally do not cause symptoms and are characterized by high rates of clearance. Persistent infections due at least to twelve well-recognized High-Risk (HR) or oncogenic genotypes, although less frequent, can occur, leading to diseases and malignancies, principally cervical cancer. Three vaccination strategies are currently available for preventing certain HR HPVs-associated diseases, infections due to HPV6 and HPV11 low-risk types, as well as for providing cross-protection against non-vaccine genotypes. Nevertheless, the limited vaccine coverage hampers reducing the burden of HPV-related diseases globally. For HR HPV types, especially HPV16 and HPV18, the E6 and E7 oncoproteins are needed for cancer development. As for other tumors, even in cervical cancer, non-coding microRNAs (miRNAs) are involved in posttranscriptional regulation, resulting in aberrant expression profiles. In this study, we provide a summary of the epidemiological background for HPV occurrence and available immunization programs. In addition, we present an overview of the most relevant evidence of miRNAs deregulation in cervical cancer, underlining that targeting these biomolecules could lead to wide translational perspectives, allowing better diagnosis, prognosis and therapeutics, and with valuable applications in the field of prevention. The literature on this topic is rapidly growing, but advanced investigations are required to achieve more consistent findings on the up-regulated and down-regulated miRNAs in cervical carcinogenesis. Because the expression of miRNAs is heterogeneously reported, it may be valuable to assess factors and risks related to individual susceptibility.
Collapse
Affiliation(s)
| | | | | | | | - Giancarlo Ripabelli
- Address correspondence to this author at the Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy; Tel: +39 0874 404961/743; Fax: +39 0874 404778; E-mail:
| |
Collapse
|
22
|
Jayamohan S, Kannan M, Moorthy RK, Rajasekaran N, Jung HS, Shin YK, Arockiam AJV. Dysregulation of miR-375/AEG-1 Axis by Human Papillomavirus 16/18-E6/E7 Promotes Cellular Proliferation, Migration, and Invasion in Cervical Cancer. Front Oncol 2019; 9:847. [PMID: 31552174 PMCID: PMC6746205 DOI: 10.3389/fonc.2019.00847] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023] Open
Abstract
Cervical Cancer (CC) is a highly aggressive tumor and is one of the leading causes of cancer-related deaths in women. miR-375 was shown to be significantly down-regulated in cervical cancer cells. However, the precise biological functions of miR-375 and the molecular mechanisms underlying its action in CC are largely unknown. miR-375 targets were predicted by bioinformatics target prediction tools and validated using luciferase reporter assay. Herein, we investigated the functional significance of miR-375 and its target gene in CC to identify potential new therapeutic targets. We found that miR-375 expression was significantly downregulated in CC, and astrocyte elevated gene-1 (AEG-1) was identified as a target of miR-375. Our results also showed that ectopic expression of miR-375 suppressed CC cell proliferation, migration, invasion and angiogenesis, and increased the 5-fluorouracil-induced apoptosis and cell cycle arrest in vitro. In contrast, inhibition of miR-375 expression significantly enhanced these functions. Furthermore, HPV - 16 E6/E7 and HPV - 18 E6/E7 significantly down-regulates miR-375 expression in CC. HPV 16/18-E6/E7/miR-375/AEG-1 axis plays an important role in the regulation of cell proliferation, migration, and invasion in CC. Therefore, targeting miR-375/AEG-1 mediated axis could serve as a potential therapeutic target for CC.
Collapse
Affiliation(s)
- Sridharan Jayamohan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Maheshkumar Kannan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Rajesh Kannan Moorthy
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Nirmal Rajasekaran
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Antony Joseph Velanganni Arockiam
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
23
|
Rader JS, Tsaih SW, Fullin D, Murray MW, Iden M, Zimmermann MT, Flister MJ. Genetic variations in human papillomavirus and cervical cancer outcomes. Int J Cancer 2019; 144:2206-2214. [PMID: 30515767 DOI: 10.1002/ijc.32038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
Cervical cancer is driven by persistent infection of human papillomavirus (HPV), which is influenced by HPV type and intratypic variants, yet the impact of HPV type and intratypic variants on patient outcomes is far less understood. Here, we examined the association of cervical cancer stage and survival with HPV type, clade, lineage, and intratypic variants within the HPV E6 locus. Of 1,028 HPV-positive cases recruited through the CerGE study, 301 were in-situ and 727 were invasive cervical cancer (ICC), with an average post-diagnosis follow-up of 4.8 years. HPV sequencing was performed using tumor-isolated DNA to assign HPV type, HPV 16 lineage, clade, and intratypic variants within the HPV 16 E6 locus, of which nonsynonomous variants were functionally annotated by molecular modeling. HPV 18-related types were more prevalent in ICC compared to in-situ disease and associated with significantly worse recurrence-free survival (RFS) compared to HPV 16-related types. The HPV 16 Asian American lineage D3 and Asian lineage A4 associated more frequently with ICC than with in situ disease and women with an intratypic HPV 16 lineage B exhibited a trend toward worse RFS than those with A, C, or D lineages. Participants with intratypic E6 variants predicted to stabilize the E6-E6AP-p53 complex had worse RFS. Variants within the highly immunogenic HPV 16 E6 region (E14-I34) were enriched in ICC compared to in-situ lesions but were not associated with survival. Collectively, our results suggest that cervical cancer outcome is associated with HPV variants that affect virus-host interactions.
Collapse
Affiliation(s)
- Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shirng-Wern Tsaih
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel Fullin
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Miriam W Murray
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marissa Iden
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Medical College of Wisconsin, Clinical and Translational Sciences Institute, Milwaukee, WI, USA
| | - Michael J Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
24
|
Kingsbury TJ, Kim M, Civin CI. Regulation of cancer stem cell properties by SIX1, a member of the PAX-SIX-EYA-DACH network. Adv Cancer Res 2019; 141:1-42. [PMID: 30691681 DOI: 10.1016/bs.acr.2018.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PAX-SIX-EYA-DACH network (PSEDN) is a central developmental transcriptional regulatory network from Drosophila to humans. The PSEDN is comprised of four conserved protein families; including paired box (PAX), sine oculis (SIX), eyes absent (EYA), and dachshund (DACH). Aberrant expression of PSEDN members, particularly SIX1, has been observed in multiple human cancers, where SIX1 expression correlates with increased aggressiveness and poor prognosis. In conjunction with its transcriptional activator EYA, the SIX1 transcription factor increases cancer stem cell (CSC) numbers and induces epithelial-mesenchymal transition (EMT). SIX1 promotes multiple hallmarks and enabling characteristics of cancer via regulation of cell proliferation, senescence, apoptosis, genome stability, and energy metabolism. SIX1 also influences the tumor microenvironment, enhancing recruitment of tumor-associated macrophages and stimulating angiogenesis, to promote tumor development and progression. EYA proteins are multifunctional, possessing a transcriptional activation domain and tyrosine phosphatase activity, that each contributes to cancer stem cell properties. DACH proteins function as tumor suppressors in solid cancers, opposing the actions of SIX-EYA and reducing CSC prevalence. Multiple mechanisms can lead to increased SIX1 expression, including loss of SIX1-targeting tumor suppressor microRNAs (miRs), whose expression correlates inversely with SIX1 expression in cancer patient samples. In this review, we discuss the major mechanisms by which SIX1 confers CSC and EMT features and other important cancer cell characteristics. The roles of EYA and DACH in CSCs and cancer progression are briefly highlighted. Finally, we summarize the clinical significance of SIX1 in cancer to emphasize the potential therapeutic benefits of effective strategies to disrupt PSEDN protein interactions and functions.
Collapse
|
25
|
Cladel NM, Jiang P, Li JJ, Peng X, Cooper TK, Majerciak V, Balogh KK, Meyer TJ, Brendle SA, Budgeon LR, Shearer DA, Munden R, Cam M, Vallur R, Christensen ND, Zheng ZM, Hu J. Papillomavirus can be transmitted through the blood and produce infections in blood recipients: Evidence from two animal models. Emerg Microbes Infect 2019; 8:1108-1121. [PMID: 31340720 PMCID: PMC6713970 DOI: 10.1080/22221751.2019.1637072] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPV) contribute to most cervical cancers and are considered to be sexually transmitted. However, papillomaviruses are often found in cancers of internal organs, including the stomach, raising the question as to how the viruses gain access to these sites. A possible connection between blood transfusion and HPV-associated disease has not received much attention. Here we show, in rabbit and mouse models, that blood infected with papillomavirus yields infections at permissive sites with detectable viral DNA, RNA transcripts, and protein products. The rabbit skin tumours induced via blood infection displayed decreased expression of SLN, TAC1, MYH8, PGAM2, and APOBEC2 and increased expression of SDRC7, KRT16, S100A9, IL36G, and FABP9, as seen in tumours induced by local infections. Furthermore, we demonstrate that blood from infected mice can transmit the infection to uninfected animals. Finally, we demonstrate the presence of papillomavirus infections and virus-induced hyperplasia in the stomach tissues of animals infected via the blood. These results indicate that blood transmission could be another route for papillomavirus infection, implying that the human blood supply, which is not screened for papillomaviruses, could be a potential source of HPV infection as well as subsequent cancers in tissues not normally associated with the viruses.
Collapse
Affiliation(s)
- Nancy M. Cladel
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Pengfei Jiang
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, National Cancer Institute, NIH, Frederick, MD, USA
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jingwei J. Li
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Xuwen Peng
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA , USA
| | - Timothy K. Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, National Cancer Institute, NIH, Frederick, MD, USA
| | - Karla K. Balogh
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sarah A. Brendle
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lynn R. Budgeon
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Debra A. Shearer
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Regina Munden
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA , USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Raghavan Vallur
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Neil D. Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, National Cancer Institute, NIH, Frederick, MD, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
26
|
Identification of small molecule inhibitors for differentially expressed miRNAs in gastric cancer. Comput Biol Chem 2018; 77:442-454. [DOI: 10.1016/j.compbiolchem.2018.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/26/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022]
|
27
|
Zhu X, Chen L, Lin J. miR-219a-5p represses migration and invasion of osteosarcoma cells via targeting EYA2. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S1004-S1010. [PMID: 30449183 DOI: 10.1080/21691401.2018.1525391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
EYA2 is the developmental transcription factor and phosphatase, playing an important role in numerous species in regulating cell death and differentiation. Recent studies showed that EYA2 is dysregulated and involved in the progression of various cancers. However, the expression and role of EYA2 in osteosarcoma remains unclear. Here, we found that EYA2 expression was evidently upregulated osteosarcoma (OS) tissue and cell lines. Next, we predicted EYA2-targeting miRNAs, which was further evaluated using a dual luciferase reporter assay. We found that miR-219a-5p significantly repressed EYA2 expression via binding to the 3'-UTR of EYA2. Furthermore, overexpressed miR-219a-5p significantly repressed OS cell invasion and migration, which was reversed by overexpressed EYA2. While silenced miR-219a-5p induced OS cell invasion and migration, which was reversed by silenced EYA2. In conclusion, our study revealed that miR-219a-5p function as tumour suppressor regulates OS cell invasiveness by repressing EYA2 expression.
Collapse
Affiliation(s)
- Xitian Zhu
- a Department of Orthopaedic , The First Affiliated Hospital of Fujian Medical University , Fuzhou , Fujian Province , China
| | - Lei Chen
- a Department of Orthopaedic , The First Affiliated Hospital of Fujian Medical University , Fuzhou , Fujian Province , China
| | - Jianhua Lin
- a Department of Orthopaedic , The First Affiliated Hospital of Fujian Medical University , Fuzhou , Fujian Province , China
| |
Collapse
|
28
|
Costa RL, Boroni M, Soares MA. Distinct co-expression networks using multi-omic data reveal novel interventional targets in HPV-positive and negative head-and-neck squamous cell cancer. Sci Rep 2018; 8:15254. [PMID: 30323202 PMCID: PMC6189122 DOI: 10.1038/s41598-018-33498-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/19/2018] [Indexed: 12/25/2022] Open
Abstract
The human papillomavirus (HPV) is present in a significant fraction of head-and-neck squamous cell cancer (HNSCC). The main goal of this study was to identify distinct co-expression patterns between HPV+ and HPV- HNSCC and to provide insights into potential regulatory mechanisms/effects within the analyzed networks. We selected cases deposited in The Cancer Genome Atlas database comprising data of gene expression, methylation profiles and mutational patterns, in addition to clinical information. The intersection among differentially expressed and differentially methylated genes showed the negative correlations between the levels of methylation and expression, suggesting that these genes have their expression levels regulated by methylation alteration patterns in their promoter. Weighted correlation network analysis was used to identify co-expression modules and a systematic approach was applied to refine them and identify key regulatory elements integrating results from the other omics. Three distinct co-expression modules were associated with HPV status and molecular signatures. Validation using independent studies reporting biological experimental data converged for the most significant genes in all modules. This study provides insights into complex genetic and epigenetic particularities in the development and progression of HNSCC according to HPV status, and contribute to unveiling specific genes/pathways as novel therapeutic targets in HNSCC.
Collapse
Affiliation(s)
- Raquel L Costa
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
- Bioinformatics and Computational Biology Lab, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
| | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Marcelo A Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Wang X, Han L, Zhou L, Wang L, Zhang LM. Prediction of candidate RNA signatures for recurrent ovarian cancer prognosis by the construction of an integrated competing endogenous RNA network. Oncol Rep 2018; 40:2659-2673. [PMID: 30226545 PMCID: PMC6151886 DOI: 10.3892/or.2018.6707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022] Open
Abstract
Tumor recurrence hinders treatment of ovarian cancer. The present study aimed to identify potential biomarkers for ovarian cancer recurrence prognosis and explore relevant mechanisms. RNA-sequencing of data from the TCGA database and GSE17260 dataset was carried out. Samples of the data were grouped according to tumor recurrence information. Following data normalization, differentially expressed genes/micro RNAs (miRNAs)/long non-coding (lncRNAs) (DEGs/DEMs/DELs) were selected between recurrent and non-recurrent samples. Their correlations with clinical information were analyzed to identify prognostic RNAs. A support vector machine classifier was used to find the optimal gene set with feature genes that could conclusively distinguish different samples. A protein-protein interaction (PPI) network was established for DEGs using relevant protein databases. An integrated ‘lncRNA/miRNA/mRNA’ competing endogenous RNA (ceRNA) network was constructed to reveal potential regulatory relationships among different RNAs. We identified 36 feature genes (e.g. TP53 and RBPMS) for the classification of recurrent and non-recurrent ovarian cancer samples. Prediction with this gene set had a high accuracy (91.8%). Three DELs (WT1-AS, NBR2 and ZNF883) were highly associated with the prognosis of recurrent ovarian cancer. Predominant DEMs with their targets were hsa-miR-375 (target: RBPMS), hsa-miR-141 (target: RBPMS), and hsa-miR-27b (target: TP53). Highlighted interactions in the ceRNA network were ‘WT1-AS-hsa-miR-375-RBPMS’ and ‘WT1-AS-hsa-miR-27b-TP53’. TP53, RBPMS, hsa-miR-375, hsa-miR-141, hsa-miR-27b, and WT1-AS may be biomarkers for recurrent ovarian cancer. The interactions of ‘WT1-AS-hsa-miR-375-RBPMS’ and ‘WT1-AS-hsa-miR-27b-TP53’ may be potential regulatory mechanisms during cancer recurrence.
Collapse
Affiliation(s)
- Xin Wang
- Department of Gynecology and Obstetrics, The 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Lei Han
- Department of Gynecology and Obstetrics, The 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Ling Zhou
- Department of Gynecology and Obstetrics, The 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Li Wang
- Department of Gynecology and Obstetrics, The 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Lan-Mei Zhang
- Department of Gynecology and Obstetrics, The 306 Hospital of PLA, Beijing 100101, P.R. China
| |
Collapse
|
30
|
Zheng J, Cao F, Huang X, Ramen K, Xu X, Zhu Y, Chang W, Shan Y, Guo A. Eyes absent homologue 2 predicts a favorable prognosis in colorectal cancer. Onco Targets Ther 2018; 11:4661-4671. [PMID: 30122957 PMCID: PMC6087027 DOI: 10.2147/ott.s164149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Eyes absent homologue 2 (EYA2), which functions as a transcription activator and phosphatase, plays an important role in several types of cancer. However, the impact of EYA2 in colorectal cancer (CRC) remains elusive. Patients and methods We evaluated the significance of EYA2 expression in the development and progression of CRC in a large cohort, including 922 CRC cases. EYA2 protein expression was determined via immunohistochemistry in colorectal tissues. The correlation between EYA2 expression and CRC occurrence was investigated in tumor tissue and the adjacent normal tissues. Factors contributing to CRC prognosis were evaluated using Kaplan–Meier and Cox model analyses. Results EYA2 expression was progressively lower in the adjacent normal tissue, adenomas, primary tumor and the metastatic CRC (all P<0.05). Furthermore, EYA2 expression had significant associations with disease stage, differentiation grade, and number of resected lymph nodes (all P<0.001). Compared with patients with EYA2-high tumors, those with EYA2-low tumors had shorter disease-free survival (hazard ratio [HR], 2.347; 95% CI, 1.665–3.308) and disease-specific survival (HR, 3.560; 95% CI, 2.055–6.167) in multivariate Cox analysis, after adjusting confounding factors such as tumor-node-metastasis stage and grade. In particular, patients with stage II or III EYA2-low CRC might be harmed by postoperative chemotherapy. Conclusion EYA2 expression was generally reduced in CRC. Higher EYA2 expression can predict a more favorable prognosis for CRC.
Collapse
Affiliation(s)
- Jie Zheng
- Department of General Medicine, Yangpu Hosptial, Tongji University School of Medicine, Shanghai 200090, People's Republic of China, .,Department of General Surgery, First Affiliated Hospital, Wenzhou Medical University, Zhejiang 325015, People's Republic of China,
| | - Fuao Cao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Xiaopei Huang
- Department of Environmental Hygiene, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Kuvaneshan Ramen
- Department of General Surgery, First Affiliated Hospital, Wenzhou Medical University, Zhejiang 325015, People's Republic of China,
| | - Xiaowen Xu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Yan Zhu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Wenjun Chang
- Department of Environmental Hygiene, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Yunfeng Shan
- Department of General Surgery, First Affiliated Hospital, Wenzhou Medical University, Zhejiang 325015, People's Republic of China,
| | - Aizhen Guo
- Department of General Medicine, Yangpu Hosptial, Tongji University School of Medicine, Shanghai 200090, People's Republic of China,
| |
Collapse
|
31
|
Pardini B, De Maria D, Francavilla A, Di Gaetano C, Ronco G, Naccarati A. MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer 2018; 18:696. [PMID: 29945565 PMCID: PMC6020348 DOI: 10.1186/s12885-018-4590-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Invasive cervical cancer (ICC) is caused by high-risk human papillomavirus types (HR-HPVs) and is usually preceded by a long phase of intraepithelial neoplasia (CIN). Before invasion, (epi) genetic changes, potentially applicable as molecular markers within cervical screening, occur in HPV host cells. Epigenetic alterations, such as dysregulation of microRNA (miRNA) expression, are frequently observed in ICC. The mechanisms and role of miRNA dysregulation in cervical carcinogenesis are still largely unknown. METHODS We provide an overview of the studies investigating miRNA expression in relation to ICC progression, highlighting their common outcomes and their weaknesses/strengths. To achieve this, we systematically searched through Pubmed database all articles between January 2010 and December 2017. RESULTS From the 24 studies retrieved, miR-29a and miR-21 are the most frequently down- and up-regulated in ICC progression, respectively. Microarray-based studies show a small overlap, with miR-10a, miR-20b, miR-9, miR-16 and miR-106 found repeatedly dysregulated. miR-34a, miR-125 and miR-375 were also found dysregulated in cervical exfoliated cells in relation to cancer progression. CONCLUSIONS The pivotal role of miRNAs in ICC progression and initial development is becoming more and more relevant. Available studies are essentially based on convenience material, entailing possible selection bias, and frequently of small size: all these points still represent a limitation to a wide comprehension of miRNAs relevant for ICC. The targeted approach instead of a genome-wide investigation still precludes the identification of all the relevant miRNAs in the process. The implementation of deep sequencing on large scale population-based studies will help to discover and validate the relation between altered miRNA expression and CC progression for the identification of biomarkers. Optimally, once explored on a miRNome scale, small specific miRNA signatures maybe used in the context of screening.
Collapse
Affiliation(s)
- Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy.,Department of Medical Sciences, University of Turin, Via Santena 19, 10126, Turin, Italy
| | - Daniela De Maria
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy
| | - Antonio Francavilla
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy
| | - Cornelia Di Gaetano
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy.,Department of Medical Sciences, University of Turin, Via Santena 19, 10126, Turin, Italy
| | - Guglielmo Ronco
- Center for Cancer Epidemiology and Prevention, AO City of Health and Science, Via Cavour, 31 10123, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
32
|
Babion I, Snoek BC, Novianti PW, Jaspers A, van Trommel N, Heideman DAM, Meijer CJLM, Snijders PJF, Steenbergen RDM, Wilting SM. Triage of high-risk HPV-positive women in population-based screening by miRNA expression analysis in cervical scrapes; a feasibility study. Clin Epigenetics 2018; 10:76. [PMID: 29930741 PMCID: PMC5992707 DOI: 10.1186/s13148-018-0509-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/29/2018] [Indexed: 01/17/2023] Open
Abstract
Background Primary testing for high-risk HPV (hrHPV) is increasingly implemented in cervical cancer screening programs. Many hrHPV-positive women, however, harbor clinically irrelevant infections, demanding additional disease markers to prevent over-referral and over-treatment. Most promising biomarkers reflect molecular events relevant to the disease process that can be measured objectively in small amounts of clinical material, such as miRNAs. We previously identified eight miRNAs with altered expression in cervical precancer and cancer due to either methylation-mediated silencing or chromosomal alterations. In this study, we evaluated the clinical value of these eight miRNAs on cervical scrapes to triage hrHPV-positive women in cervical screening. Results Expression levels of the eight candidate miRNAs in cervical tissue samples (n = 58) and hrHPV-positive cervical scrapes from a screening population (n = 187) and cancer patients (n = 38) were verified by quantitative RT-PCR. In tissue samples, all miRNAs were significantly differentially expressed (p < 0.05) between normal, high-grade precancerous lesions (CIN3), and/or cancer. Expression patterns detected in cervical tissue samples were reflected in cervical scrapes, with five miRNAs showing significantly differential expression between controls and women with CIN3 and cancer. Using logistic regression analysis, a miRNA classifier was built for optimal detection of CIN3 in hrHPV-positive cervical scrapes from the screening population and its performance was evaluated using leave-one-out cross-validation. This miRNA classifier consisted of miR-15b-5p and miR-375 and detected a major subset of CIN3 as well as all carcinomas at a specificity of 70%. The CIN3 detection rate was further improved by combining the two miRNAs with HPV16/18 genotyping. Interestingly, both miRNAs affected the viability of cervical cancer cells in vitro. Conclusions This study shows that miRNA expression analysis in cervical scrapes is feasible and enables the early detection of cervical cancer, thus underlining the potential of miRNA expression analysis for triage of hrHPV-positive women in cervical cancer screening. Electronic supplementary material The online version of this article (10.1186/s13148-018-0509-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iris Babion
- 1Cancer Center Amsterdam, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Barbara C Snoek
- 1Cancer Center Amsterdam, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Putri W Novianti
- 1Cancer Center Amsterdam, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,2Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Annelieke Jaspers
- 1Cancer Center Amsterdam, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Nienke van Trommel
- 3Center for Gynaecological Oncology, Antoni van Leeuwenhoek Hospital/Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniëlle A M Heideman
- 1Cancer Center Amsterdam, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Chris J L M Meijer
- 1Cancer Center Amsterdam, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter J F Snijders
- 1Cancer Center Amsterdam, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Renske D M Steenbergen
- 1Cancer Center Amsterdam, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Saskia M Wilting
- 4Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Association of variants of miRNA processing genes with cervical precancerous lesion risk in a southern Chinese population. Biosci Rep 2018; 38:BSR20171565. [PMID: 29853562 PMCID: PMC6435547 DOI: 10.1042/bsr20171565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
The miRNA processing genes play essential roles in the biosynthesis of mammalian miRNAs, and their genetic variants are involved in the development of various cancers. Our study aimed to determine the potential association between miRNA processing gene polymorphisms and cervical precancerous lesions. Five single nucleotide polymorphisms (SNPs), including Ran-GTP (RAN) rs14035, exportin-5 (XPO5) rs11077, DICER1 rs3742330, DICER1 rs13078, and TARBP2 rs784567, were genotyped in a case-control study to estimate risk factors of cervical precancerous lesions. The gene-environment interactions and haplotype association were estimated. We identified a 27% decreased risk of cervical precancerous lesions for individuals with minor G allele in DICER1 rs3742330 (odds ratio (OR) = 0.73, 95% confidence interval (95% CI) = 0.58-0.92, P = 0.009). The AG and AG/GG genotypes in DICER1 rs3742330 were also found to decrease the risk of cervical precancerous lesions (AG compared with AA: OR = 0.51, 95% CI = 0.35-0.73, P <0.001; AG/GG compared with AA: OR = 0.54, 95% CI = 0.39-0.77, P = 0.001). The GT haplotype in DICER1 had a risk effect on cervical precancerous lesions compared with the AT haplotype (OR = 1.36, 95% CI = 1.08-1.73, P = 0.010). A two-factor (DICER1 rs3742330 and human papillomavirus (HPV) infection) and two three-factor (model 1: rs3742330, passive smoking, and HPV infection; model 2: rs3742330, abortion history, and HPV infection) interaction models for cervical precancerous lesions were identified. In conclusion, the genetic variants in the miRNA processing genes and interactions with certain environmental factors might contribute to the risk of cervical precancerous lesions in southern Chinese women.
Collapse
|
34
|
Morel A, Baguet A, Perrard J, Demeret C, Jacquin E, Guenat D, Mougin C, Prétet JL. 5azadC treatment upregulates miR-375 level and represses HPV16 E6 expression. Oncotarget 2018; 8:46163-46176. [PMID: 28521287 PMCID: PMC5542257 DOI: 10.18632/oncotarget.17575] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 04/10/2017] [Indexed: 01/06/2023] Open
Abstract
High-risk human papillomaviruses are the etiological agents of cervical cancer and HPV16 is the most oncogenic genotype. Immortalization and transformation of infected cells requires the overexpression of the two viral oncoproteins E6 and E7 following HPV DNA integration into the host cell genome. Integration often leads to the loss of the E2 open reading frame and the corresponding protein can no longer act as a transcriptional repressor on p97 promoter. Recently, it has been proposed that long control region methylation also contributes to the regulation of E6/E7 expression. To determine which epigenetic mechanism is involved in HPV16 early gene regulation, 5-aza-2′-deoxycytidine was used to demethylate Ca Ski and SiHa cell DNA. Decreased expression of E6 mRNA and protein levels was observed in both cell lines in an E2-independent manner. E6 repression was accompanied by neither a modification of the main cellular transcription factor expression involved in long control region regulation, nor by a modification of the E6 mRNA splicing pattern. In contrast, a pronounced upregulation of miR-375, known to destabilize HPV16 early viral mRNA, was observed. Finally, the use of miR-375 inhibitor definitively proved the involvement of miR-375 in E6 repression. These results highlight that cellular DNA methylation modulates HPV16 early gene expression and support a role for epigenetic events in high-risk HPV associated-carcinogenesis.
Collapse
Affiliation(s)
- Adrien Morel
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France
| | - Aurélie Baguet
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France
| | - Jérôme Perrard
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France
| | - Caroline Demeret
- Département de Virologie, Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, CNRS UMR 3569, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Elise Jacquin
- Signalling Department, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - David Guenat
- Centre Hospitalier Régional Universitaire, Besançon, France.,Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Christiane Mougin
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France.,Centre Hospitalier Régional Universitaire, Besançon, France
| | - Jean-Luc Prétet
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France.,Centre Hospitalier Régional Universitaire, Besançon, France
| |
Collapse
|
35
|
Nunez Lopez YO, Victoria B, Golusinski P, Golusinski W, Masternak MM. Characteristic miRNA expression signature and random forest survival analysis identify potential cancer-driving miRNAs in a broad range of head and neck squamous cell carcinoma subtypes. Rep Pract Oncol Radiother 2018; 23:6-20. [PMID: 29187807 PMCID: PMC5698002 DOI: 10.1016/j.rpor.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/27/2017] [Accepted: 10/22/2017] [Indexed: 12/13/2022] Open
Abstract
AIM To characterize the miRNA expression profile in head and neck squamous cell carcinoma (HNSSC) accounting for a broad range of cancer subtypes and consequently identify an optimal miRNA signature with prognostic value. BACKGROUND HNSCC is consistently among the most common cancers worldwide. Its mortality rate is about 50% because of the characteristic aggressive behavior of these cancers and the prevalent late diagnosis. The heterogeneity of the disease has hampered the development of robust prognostic tools with broad clinical utility. MATERIALS AND METHODS The Cancer Genome Atlas HNSC dataset was used to analyze level 3 miRNA-Seq data from 497 HNSCC patients. Differential expression (DE) analysis was implemented using the limma package and multivariate linear model that adjusted for the confounding effects of age at diagnosis, gender, race, alcohol history, anatomic neoplasm subdivision, pathologic stage, T and N stages, and vital status. Random forest (RF) for survival analysis was implemented using the randomForestSRC package. RESULTS A characteristic DE miRNA signature of HNSCC, comprised of 11 upregulated (i.e., miR-196b-5p, miR-1269a, miR-196a-5p, miR-4652-3p, miR-210-3p, miR-1293, miR-615-3p, miR-503-5p, miR-455-3p, miR-205-5p, and miR-21-5p) and 9 downregulated (miR-376c-3p, miR-378c, miR-29c-3p, miR-101-3p, miR-195-5p, miR-299-5p, miR-139-5p, miR-6510-3p, miR-375) miRNAs was identified. An optimal RF survival model was built from seven variables including age at diagnosis, miR-378c, miR-6510-3p, stage N, pathologic stage, gender, and race (listed in order of variable importance). CONCLUSIONS The joint differential miRNA expression and survival analysis controlling for multiple confounding covariates implemented in this study allowed for the identification of a previously undetected prognostic miRNA signature characteristic of a broad range of HNSCC.
Collapse
Affiliation(s)
- Yury O. Nunez Lopez
- Translational Research Institute for Metabolism & Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
| | - Pawel Golusinski
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
36
|
Wen Z, Liang C, Pan Q, Wang Y. Eya2 overexpression promotes the invasion of human astrocytoma through the regulation of ERK/MMP9 signaling. Int J Mol Med 2017; 40:1315-1322. [PMID: 28901379 PMCID: PMC5627874 DOI: 10.3892/ijmm.2017.3132] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 08/14/2017] [Indexed: 01/09/2023] Open
Abstract
The overexpression of eyes absent (Eya) 2 has been found in several human cancers. However, its biological roles and clinical significance in human astrocytoma have not yet been explored. This study investigated the clinical significance and biological roles of Eya2 in human astrocytoma tissues and cell lines. Using immunohistochemistry, we found Eya2 overexpression in 33 out of 90 (36.7%) astrocytoma specimens. The rate of Eya2 overexpression was higher in grade III-IV (48.1%) than in grade Ⅰ+Ⅱ astrocytomas (21.1%). Transfection with an Eya2 expression plasmid was performed in A172 cells with a low endogenous expression of Eya2 and the knockdown of Eya2 was carried out in U251 cells with a high endogenous expression using siRNA. Eya2 overexpression induced A172 cell proliferation and invasion, while the knockdown of Eya2 using siRNA decreased the proliferation and invasion of U251 cells. In addition, we found that transfection with the Eya2 expression plasmid facilitated cell cycle progression, and that the knockdown of Eya2 inhibited cell cycle progression, accompanied by a change in the expression of cell cycle-related proteins, including cyclin D1 and cyclin E. Eya2 also positively regulated extracellular signal-regulated kinase (ERK) activity and matrix metalloproteinase (MMP)9 expression. The blockade of ERK signaling using an inhibitor abolished the effects of Eya2 on A172 cell invasion and MMP9 production. In addition, we found that there was a positive correlation between Eya2 and Six1 in the astrocytoma cell lines. Immunoprecipitation revealed that Eya2 interacted with Six1 protein in the U251 cell line, which exhibited a high expression of both proteins. Eya2 failed to upregulate MMP expression in the A172 cells in which Six1 was silenced. On the whole, our data indicate that Eya2 may serve as a potential oncoprotein in human astrocytoma. Eya2 regulates astrocytoma cell proliferation and invasion, possibly through the regulation of ERK signaling.
Collapse
Affiliation(s)
- Zhifeng Wen
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chuansheng Liang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qichen Pan
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yunjie Wang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
37
|
Ong CAJ, Shannon NB, Mueller S, Lek SM, Qiu X, Chong FT, Li K, Koh KK, Tay GC, Skanthakumar T, Hwang JS, Hon Lim TK, Ang MK, Tan DS, Tan NC, Tan HK, Soo KC, Iyer NG. A three gene immunohistochemical panel serves as an adjunct to clinical staging of patients with head and neck cancer. Oncotarget 2017; 8:79556-79566. [PMID: 29108335 PMCID: PMC5668068 DOI: 10.18632/oncotarget.18568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Current management of head and neck squamous cell carcinoma (HNSCC) depends on tumor staging. Despite refinements in clinical staging algorithms, outcomes remain unchanged for the last two decades. In this study, we set out to identify a small, clinically applicable molecular panel to aid prognostication of patients with HNSCC. MATERIALS AND METHODS Data from The Cancer Genome Atlas (TCGA) was used to derive copy number aberrations and expression changes to identify putative prognostic genes. To account for cross entity relevance of the biomarkers, HNSCC (n = 276), breast (n = 808) and lung cancer (n = 282) datasets were used to identify robust and reproducible markers with prognostic potential. Validation was performed using immunohistochemistry (IHC) on tissue microarrays of an independent cohort of HNSCC (n = 333). FINDINGS Using GISTIC algorithm together with gene expression analysis, we identified six putative prognostic genes in at least two out of three cancers analyzed, of which four were successfully optimized for automated IHC. Of these, three were successfully validated; each molecular target being significantly prognostic on univariate analysis. Patients were differentially segregated into four prognostic groups based on the number of genes dysregulated (p < 0.001). The IHC panel remained an independent predictor of survival after adjusting for known survival covariates including clinical staging criteria in a multivariate Cox regression model (p < 0.001). . INTERPRETATION We have identified and validated a clinically applicable IHC biomarker panel that is independently associated with overall survival. This panel is readily applicable, serving as a useful adjunct to current staging systems and provides novel targets for future therapeutic strategies.
Collapse
Affiliation(s)
- Chin-Ann J. Ong
- Department of General Surgery, Singapore General Hospital, S169856, Singapore
- Division of Surgical Oncology, National Cancer Centre, S169610, Singapore
| | - Nicholas B. Shannon
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, S169857, Singapore
| | - Stefan Mueller
- Division of Surgical Oncology, National Cancer Centre, S169610, Singapore
- Singhealth Duke-NUS Head and Neck Centre, Singhealth, S169856, Singapore
| | - Sze Min Lek
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, S169857, Singapore
| | - Xuan Qiu
- Department of General Surgery, Singapore General Hospital, S169856, Singapore
| | - Fui Teen Chong
- Cancer Therapeutics Research Laboratory, National Cancer Centre, S169610, Singapore
| | - Ke Li
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, S169857, Singapore
| | - Kelvin K.N. Koh
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, S169857, Singapore
| | - Gerald C.A. Tay
- Department of General Surgery, Singapore General Hospital, S169856, Singapore
- Singhealth Duke-NUS Head and Neck Centre, Singhealth, S169856, Singapore
| | | | | | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, S169856, Singapore
| | - Mei Kim Ang
- Department of Medical Oncology, National Cancer Centre, S169610, Singapore
| | - Daniel S.W. Tan
- Department of Medical Oncology, National Cancer Centre, S169610, Singapore
| | - Ngian-Chye Tan
- Singhealth Duke-NUS Head and Neck Centre, Singhealth, S169856, Singapore
| | - Hiang Khoon Tan
- Singhealth Duke-NUS Head and Neck Centre, Singhealth, S169856, Singapore
| | - Khee Chee Soo
- Singhealth Duke-NUS Head and Neck Centre, Singhealth, S169856, Singapore
| | - N. Gopalakrishna Iyer
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, S169857, Singapore
- Cancer Therapeutics Research Laboratory, National Cancer Centre, S169610, Singapore
- Singhealth Duke-NUS Head and Neck Centre, Singhealth, S169856, Singapore
| |
Collapse
|
38
|
Chatterjee P, Roy D, Bhattacharyya M, Bandyopadhyay S. Biological networks in Parkinson's disease: an insight into the epigenetic mechanisms associated with this disease. BMC Genomics 2017; 18:721. [PMID: 28899360 PMCID: PMC5596942 DOI: 10.1186/s12864-017-4098-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 08/30/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most prevalent neurodegenerative disorders in the world. Studying PD from systems biology perspective involving genes and their regulators might provide deeper insights into the complex molecular interactions associated with this disease. RESULT We have studied gene co-expression network obtained from a PD-specific microarray data. The co-expression network identified 11 hub genes, of which eight genes are not previously known to be associated with PD. Further study on the functionality of these eight novel hub genes revealed that these genes play important roles in several neurodegenerative diseases. Furthermore, we have studied the tissue-specific expression and histone modification patterns of the novel hub genes. Most of these genes possess several histone modification sites those are already known to be associated with neurodegenerative diseases. Regulatory network namely mTF-miRNA-gene-gTF involves microRNA Transcription Factor (mTF), microRNA (miRNA), gene and gene Transcription Factor (gTF). Whereas long noncoding RNA (lncRNA) mediated regulatory network involves miRNA, gene, mTF and lncRNA. mTF-miRNA-gene-gTF regulatory network identified a novel feed-forward loop. lncRNA-mediated regulatory network identified novel lncRNAs of PD and revealed the two-way regulatory pattern of PD-specific miRNAs where miRNAs can be regulated by both the TFs and lncRNAs. SNP analysis of the most significant genes of the co-expression network identified 20 SNPs. These SNPs are present in the 3' UTR of known PD genes and are controlled by those miRNAs which are also involved in PD. CONCLUSION Our study identified eight novel hub genes which can be considered as possible candidates for future biomarker identification studies for PD. The two regulatory networks studied in our work provide a detailed overview of the cellular regulatory mechanisms where the non-coding RNAs namely miRNA and lncRNA, can act as epigenetic regulators of PD. SNPs identified in our study can be helpful for identifying PD at an earlier stage. Overall, this study may impart a better comprehension of the complex molecular interactions associated with PD from systems biology perspective.
Collapse
Affiliation(s)
- Paulami Chatterjee
- Department of Biophysics, Bose Institute, Acharya J.C. Bose Centenary Building, P-1/12 C.I.T. Scheme VII M, Kolkata, 700054 India
| | - Debjani Roy
- Department of Biophysics, Bose Institute, Acharya J.C. Bose Centenary Building, P-1/12 C.I.T. Scheme VII M, Kolkata, 700054 India
| | - Malay Bhattacharyya
- Department of Information Technology, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah, PO 711103 India
| | | |
Collapse
|
39
|
Dual histone reader ZMYND8 inhibits cancer cell invasion by positively regulating epithelial genes. Biochem J 2017; 474:1919-1934. [DOI: 10.1042/bcj20170223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 01/28/2023]
Abstract
Enhanced migratory potential and invasiveness of cancer cells contribute crucially to cancer progression. These phenotypes are achieved by precise alteration of invasion-associated genes through local epigenetic modifications which are recognized by a class of proteins termed a chromatin reader. ZMYND8 [zinc finger MYND (myeloid, Nervy and DEAF-1)-type containing 8], a key component of the transcription regulatory network, has recently been shown to be a novel reader of H3.1K36Me2/H4K16Ac marks. Through differential gene expression analysis upon silencing this chromatin reader, we identified a subset of genes involved in cell proliferation and invasion/migration regulated by ZMYND8. Detailed analysis uncovered its antiproliferative activity through BrdU incorporation, alteration in the expression of proliferation markers, and cell cycle regulating genes and cell viability assays. In addition, performing wound healing and invasion/migration assays, its anti-invasive nature is evident. Interestingly, epithelial–mesenchymal transition (EMT), a key mechanism of cellular invasion, is regulated by ZMYND8 where we identified its selective enrichment on promoters of CLDN1/CDH1 genes, rich in H3K36Me2/H4K16Ac marks, leading to their up-regulation. Thus, the presence of ZMYND8 could be implicated in maintaining the epithelial phenotype of cells. Furthermore, syngeneic mice, injected with ZMYND8-overexpressed invasive breast cancer cells, showed reduction in tumor volume and weight. In concert with this, we observed a significant down-regulation of ZMYND8 in invasive ductal and lobular breast cancer tissues compared with normal tissue. Taken together, our study elucidates a novel function of ZMYND8 in regulating EMT and invasion of cancer cells, possibly through its chromatin reader function.
Collapse
|
40
|
Meijer CJLM, Steenbergen RDM. Gynaecological cancer: Novel molecular subtypes of cervical cancer - potential clinical consequences. Nat Rev Clin Oncol 2017; 14:397-398. [PMID: 28397825 DOI: 10.1038/nrclinonc.2017.52] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chris J L M Meijer
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Renske D M Steenbergen
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| |
Collapse
|
41
|
Calatayud D, Dehlendorff C, Boisen MK, Hasselby JP, Schultz NA, Werner J, Immervoll H, Molven A, Hansen CP, Johansen JS. Tissue MicroRNA profiles as diagnostic and prognostic biomarkers in patients with resectable pancreatic ductal adenocarcinoma and periampullary cancers. Biomark Res 2017; 5:8. [PMID: 28239461 PMCID: PMC5320745 DOI: 10.1186/s40364-017-0087-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to validate previously described diagnostic and prognostic microRNA expression profiles in tissue samples from patients with pancreatic cancer and other periampullary cancers. Methods Expression of 46 selected microRNAs was studied in formalin-fixed paraffin-embedded tissue from patients with resected pancreatic ductal adenocarcinoma (n = 165), ampullary cancer (n=59), duodenal cancer (n = 6), distal common bile duct cancer (n = 21), and gastric cancer (n = 20); chronic pancreatitis (n = 39); and normal pancreas (n = 35). The microRNAs were analyzed by PCR using the Fluidigm platform. Results Twenty-two microRNAs were significantly differently expressed in patients with pancreatic cancer when compared to healthy controls and chronic pancreatitis patients; 17 miRNAs were upregulated (miR-21-5p, −23a-3p, −31-5p, −34c-5p, −93-3p, −135b-3p, −155-5p, −186-5p, −196b-5p, −203, −205-5p, −210, −222-3p, −451, −492, −614, and miR-622) and 5 were downregulated (miR-122-5p, −130b-3p, −216b, −217, and miR-375). MicroRNAs were grouped into diagnostic indices of varying complexity. Ten microRNAs associated with prognosis were identified (let-7 g, miR-29a-5p, −34a-5p, −125a-3p, −146a-5p, −187, −205-5p, −212-3p, −222-5p, and miR-450b-5p). Prognostic indices based on differences in expression of 2 different microRNAs were constructed for pancreatic and ampullary cancer combined and separately (30, 5, and 21 indices). Conclusion The study confirms that pancreatic cancer tissue has a microRNA expression profile that is different from that of other periampullary cancers, chronic pancreatitis, and normal pancreas. We identified prognostic microRNAs and microRNA indices that were associated with shorter overall survival in patients with radically resected pancreatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s40364-017-0087-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Calatayud
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Oncology, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | | | - Mogens K Boisen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Jane Preuss Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai Aagaard Schultz
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, LMU, University of Munich, Munich, Germany
| | - Heike Immervoll
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Ålesund Hospital, Ålesund, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Carsten Palnæs Hansen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Homer, Spikar, and Other Drebrin-Binding Proteins in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:249-268. [PMID: 28865024 DOI: 10.1007/978-4-431-56550-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drebrin is a major F-actin-binding protein in the brain. In the past two decades, many drebrin-binding proteins in addition to F-actin have been identified in several research fields including neuroscience, oncology, and immunology. Among the drebrin-binding proteins, there are various kinds of proteins including scaffold proteins, nuclear proteins, phosphatases, microtubule-binding proteins, G-actin-binding proteins, gap junction proteins, chemokine receptors, and cell-adhesion-related proteins. The interaction between drebrin and its binding partners seems to play important roles in higher brain functions, because drebrin is involved in the pathogenesis of some neurological diseases with cognitive defects. In this chapter, we will first review the interaction of Homer and spikar with drebrin, particularly focusing on spine morphogenesis and synaptic function. Homer contributes to spine morphogenesis by cooperating with shank and activated Cdc42 small GTPase, suggesting a novel signaling pathway comprising Homer, drebrin, shank, and Cdc42 for spine morphogenesis. Drebrin sequesters spikar in the cytoplasm and stabilizes it in dendritic spines, leading to spine formation. Finally, we will introduce some other drebrin-binding proteins including end-binding protein 3 (EB3), profilin, progranulin, and phosphatase and tensin homologue (PTEN). These proteins are involved in Alzheimer's disease and cancer. Therefore, further studies on drebrin and its binding proteins will be of great importance to elucidate the pathologies of various diseases and may contribute to their medical treatment and diagnostics development.
Collapse
|
43
|
Liu S, Song L, Yao H, Zhang L, Xu D, Gao F, Li Q. MiR-375 Is Epigenetically Downregulated by HPV-16 E6 Mediated DNMT1 Upregulation and Modulates EMT of Cervical Cancer Cells by Suppressing lncRNA MALAT1. PLoS One 2016; 11:e0163460. [PMID: 27658300 PMCID: PMC5033370 DOI: 10.1371/journal.pone.0163460] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022] Open
Abstract
Epigenetic modulation is an important mechanism of miRNA dysregulation in cervical cancer. In this study, we firstly studied how this mechanism contributes to miR-375 downregulation in cervical cancer cells. Then, we further studied the association between miR-375 and MALAT1 (metastasis associated lung adenocarcinoma transcript 1) in epithelial mesenchymal transition (EMT) of the cancer cells. HPV-16 positive SiHa and CaSki cells were used as in vitro model. Our data showed that HPV-16 E6 positively modulated DNMT1 expression in both SiHa and CaSki cells. Knockdown of DNMT1 partly restored miR-375 levels in the cells. The following methylation-specific PCR (MSP) assay and qRT-PCR analysis showed that methylation was common in the promoter region of miR-375 in both SiHa and CaSki cells and demethylation partly restored miR-375 levels in the cells. Therefore, we infer that miR-375 is downregulated partly due to promoter hypermethylation mediated by DNMT1 in HPV-16 positive cervical cancer cells. Our bioinformatics analysis showed that MALAT1 has three putative binding sites with miR-375 and the following dual luciferase assay confirmed two of them. QRT-PCR analysis showed that miR-375 overexpression significantly reduced MALAT1 expression, while MALAT1 overexpression reversely suppressed miR-375 levels. Therefore, we infer that there is a reciprocal regulation between miR-375 and MALAT1 in the cells. In SiHa cells, miR-375 overexpression or MALAT1 siRNA partly restored E-cadherin expression, significantly reduced N-cadherin and also reduced invasion capacity of SiHa cells. Therefore, these results suggest that miR-375 and MALAT1 form a functional axis modulating EMT in cervical cancer.
Collapse
Affiliation(s)
- Shikai Liu
- Department of Obstetrics & Gynaecology, Cangzhou Central Hospital, Hebei, 061001, China
| | - Lili Song
- Department of Obstetrics & Gynaecology, Cangzhou Central Hospital, Hebei, 061001, China
- * E-mail:
| | - Hairong Yao
- Department of Obstetrics & Gynaecology, Cangzhou Central Hospital, Hebei, 061001, China
| | - Liang Zhang
- Department of Obstetrics & Gynaecology, Cangzhou Central Hospital, Hebei, 061001, China
| | - Dongkui Xu
- Department of Obstetrics & Gynaecology, Cangzhou Central Hospital, Hebei, 061001, China
| | - Fangyuan Gao
- Department of Obstetrics & Gynaecology, Cangzhou Central Hospital, Hebei, 061001, China
| | - Qian Li
- Department of Obstetrics & Gynaecology, Cangzhou Central Hospital, Hebei, 061001, China
| |
Collapse
|
44
|
Gong F, Chiu LY, Miller KM. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer. PLoS Genet 2016; 12:e1006272. [PMID: 27631103 PMCID: PMC5025232 DOI: 10.1371/journal.pgen.1006272] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.
Collapse
Affiliation(s)
- Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Li-Ya Chiu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kyle M. Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Roychowdhury A, Samadder S, Das P, Mandloi S, Addya S, Chakraborty C, Basu PS, Mondal R, Roy A, Chakrabarti S, Roychoudhury S, Panda CK. Integrative genomic and network analysis identified novel genes associated with the development of advanced cervical squamous cell carcinoma. Biochim Biophys Acta Gen Subj 2016; 1861:2899-2911. [PMID: 27641506 DOI: 10.1016/j.bbagen.2016.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/17/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND CSCC is one of the most common cancer affecting women globally. Though it is caused by the infection of hrHPV but long latency period for malignant outcome in only a subset of hrHPV infected women indicates involvement of additional alterations, primarily CNVs. Here, we showed how CNVs played a crucial role in development of advanced tumors (stage III/IV) in Indian patients. METHODS Initially, high-resolution CGH-SNP microarray analysis pointed out frequent CNVs followed by significantly altered genes. After comparison with TCGA dataset, expressions of the genes were checked in three CSCC datasets to identify key genes followed by Ingenuity® Pathway analysis. Then node effect property analysis was applied on the constructed PPI network to rank the key proteins. Finally, validations in independent samples were performed. RESULTS For the first time, frequent chromosomal amplifications at 3q13.13-3q29, 1p36.11-1p31.1, 1q21.1-1q44 and 5p15.33-5p12 followed by common deletions at 11q14.1-11q25, 2q34-2q37.3, 4p16.3-4p12 and 13q13.3-13q14.3 were identified in Indian CSCC patients. Integrative analysis found 78 key genes including several novel ones, which were mostly associated with 'Cancer' and may regulate DNA repair and metabolic pathways. Analysis showed PARP1 and ATR were among the top ranking protein interactors. CONCLUSIONS Frequent amplification and over-expression of ATR and PARP1 were further confirmed in cervical lesions, indicating their association with poor prognosis of advanced CSCC patients. GENERAL SIGNIFICANCE Our novel approach identified precise CNVs along with several novel genes within these loci and showed that PARP1 and ATR, having biologically significant interactions, may be involved in development of advanced CSCC.
Collapse
Affiliation(s)
- Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sudip Samadder
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Pijush Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sapan Mandloi
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sankar Addya
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Partha Sarathi Basu
- India Screening Group (SCR), Early Detection and Prevention Section (EDP), International Agency for Research on Cancer (IARC), World Health Organization (WHO), Lyon, France
| | - Ranajit Mondal
- Department of Gynaecology Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anup Roy
- North Bengal Medical College and Hospital, West Bengal, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
46
|
5-aza-2'-deoxycytidine (DAC) treatment downregulates the HPV E6 and E7 oncogene expression and blocks neoplastic growth of HPV-associated cancer cells. Oncotarget 2016; 8:52104-52117. [PMID: 28881717 PMCID: PMC5581016 DOI: 10.18632/oncotarget.10631] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
High-risk human papillomaviruses (hr HPVs) may cause various human cancers and associated premalignant lesions. Transformation of the host cells is triggered by overexpression of the viral oncogenes E6 and E7 that deregulate the cell cycle and induce chromosomal instability. This process is accompanied by hypermethylation of distinct CpG sites resulting in silencing of tumor suppressor genes, inhibition of the viral E2 mediated control of E6 and E7 transcription as well as deregulated expression of host cell microRNAs. Therefore, we hypothesized that treatment with demethylating agents might restore those regulatory mechanisms. Here we show that treatment with 5-aza-2′-deoxycytidine (DAC) strongly decreases the expression of E6 and E7 in a panel of HPV-transformed cervical cancer and head and neck squamous cell carcinoma cell lines. Reduction of E6 and E7 further resulted in increased target protein levels including p53 and p21 reducing the proliferation rates and colony formation abilities of the treated cell lines. Moreover, DAC treatment led to enhanced expression of tumor the suppressive miRNA-375 that targets and degrades E6 and E7 transcripts. Therefore, we suggest that DAC treatment of HPV-associated cancers and respective precursor lesions may constitute a targeted approach to subvert HPV oncogene functions that deserves testing in clinical trials.
Collapse
|
47
|
Yu X, Zhao W, Yang X, Wang Z, Hao M. miR-375 Affects the Proliferation, Invasion, and Apoptosis of HPV16-Positive Human Cervical Cancer Cells by Targeting IGF-1R. Int J Gynecol Cancer 2016; 26:851-8. [PMID: 27206217 DOI: 10.1097/igc.0000000000000711] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The aim of this study was to examine the relationship between miR-375 expression and the proliferation, apoptosis, and migration of cervical cancer cells. To further explore the potential target gene of miR-375, insulin-like growth factor 1 receptor (IGF-1R) was detected in miR-375 overexpressed and inhibited cervical cancer cells, which clarified the potential mechanism of miR-375 in the growth and development of cervical cancer. METHODS In a cervical cancer cell line (Caski), miR-375 overexpression and knockdown were achieved by transfection with a synthetic miR-375 mimic or miR-375-targeting inhibitor oligonucleotides, respectively, using siRNA-Mate transfection reagents. Real-time Polymerase Chain Reaction was performed to detect the expression level of miR-375. The functional effects of miR-375 on cell proliferation, migration, and apoptosis were evaluated using a Cell Counting Kit (CCK-8) and through scratch wound tests and apoptosis assays, respectively. Western blotting was performed to detect the expression level of the IGF-1R protein. RESULT Transfection with the miR-375 mimic significantly upregulated the expression of miR-375 by approximately 7.76-fold (P < 0.05), reduced cell proliferation and migration (P < 0.05), increased apoptosis (P < 0.05), and decreased the expression of the IGF-1R protein by 24.73% (P < 0.05) compared with the negative control. In contrast, transfection of the miR-375 inhibitor decreased the expression of miR-375 by 14.39% (P < 0.05), significantly increased cell proliferation and migration (P < 0.05), significantly reduced the cell apoptosis (P < 0.05), and upregulated the expression of the IGF-1R protein by 2.29-fold (P < 0.05). The cells transfected with the negative control showed no significant changes compared with the blank control for each parameter (P > 0.05). CONCLUSIONS miR-375 plays an important role in the tumorigenesis and development of cervical cancer. IGF-1R might represent a target gene of miR-375 in cervical cancer.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | | | | | | | | |
Collapse
|
48
|
Wilting SM, Steenbergen RDM. Molecular events leading to HPV-induced high grade neoplasia. PAPILLOMAVIRUS RESEARCH 2016; 2:85-88. [PMID: 29074190 PMCID: PMC5886901 DOI: 10.1016/j.pvr.2016.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/12/2016] [Indexed: 01/13/2023]
Abstract
Cervical cancer is initiated by high-risk types of the human papillomavirus (hrHPV) and develops via precursor stages, called cervical intraepithelial neoplasia (CIN). High-grade CIN lesions are considered true precancerous lesions when the viral oncogenes E6 and E7 are aberrantly expressed in the dividing cells. This results in abolishment of normal cell cycle control via p53 and pRb degradation. However, it has become clear that these viral oncogenes possess additional oncogenic properties, including interference with the DNA methylation machinery and mitotic checkpoints. Identification of the resulting molecular events leading to high-grade neoplasia will 1) increase our understanding of cervical carcinogenesis, 2) yield biomarkers for early diagnosis, and 3) identify therapeutic targets for HPV-induced (pre) cancerous lesions. This review will briefly summarise current advances in our understanding of the molecular alterations in the host cell genome that occur during HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Saskia M Wilting
- Department of Pathology, VU University Medical Center Amsterdam, The Netherlands
| | | |
Collapse
|
49
|
Yuan Y, Zheng S, Li Q, Xiang X, Gao T, Ran P, Sun L, Huang Q, Xie F, Du J, Xiao C. Overexpression of miR-30a in lung adenocarcinoma A549 cell line inhibits migration and invasion via targeting EYA2. Acta Biochim Biophys Sin (Shanghai) 2016; 48:220-8. [PMID: 26837415 DOI: 10.1093/abbs/gmv139] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs and closely related to the pathogenesis of cancers. Increasing evidence indicates that miR-30a plays a profound role during the development of cancers. However, the functions of miR-30a in non-small-cell lung cancer (NSCLC) are still ambiguous. Here we found that miR-30a was decreased in lung adenocarcinoma A549 cells and in tissue samples from 14 patients by qRT-PCR, and also found that overexpression of miR-30a in A549 cells inhibited migration and invasion but not cell proliferation and cell cycle progression by wound-healing assay, matrigel invasion assay, MTS-based cell proliferation assay, and flow cytometry-based cell cycle analysis, respectively. We further explored the potential mechanism of miR-30a-mediated gene regulation in lung adenocarcinoma cell lines. EYA2 is a predicted target of miR-30a, and it has been found that EYA2 expression is inhibited by miR-30a in breast cancer cells. We demonstrated that EYA2 is a direct target of miR-30a by using the dual-luciferase reporter assay in A549 cells and showed that EYA2 protein levels are inversely correlated with miR-30a expression in A549 and BEAS-2B cells. In addition, we also confirmed the rescue effects of EYA2 overexpression in A549 cells by cotransfection with EYA2 expression vector and miR-30a mimics. Taken together, our results demonstrate that overexpression of miR-30a in lung adenocarcinoma A549 cells can inhibit cell migration and invasion, which is partially attributed to the decrease of EYA2 expression. Our findings suggest that miR-30a may be used as a new potential target for the treatment of lung adenocarcinoma in the future.
Collapse
Affiliation(s)
- Yuncang Yuan
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Shangyong Zheng
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Qian Li
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Xudong Xiang
- Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Tangxin Gao
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Pengzhan Ran
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Lijuan Sun
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Qionglin Huang
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Fei Xie
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Jing Du
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming 650091, China
| |
Collapse
|
50
|
Adhikary S, Sanyal S, Basu M, Sengupta I, Sen S, Srivastava DK, Roy S, Das C. Selective Recognition of H3.1K36 Dimethylation/H4K16 Acetylation Facilitates the Regulation of All-trans-retinoic Acid (ATRA)-responsive Genes by Putative Chromatin Reader ZMYND8. J Biol Chem 2015; 291:2664-81. [PMID: 26655721 DOI: 10.1074/jbc.m115.679985] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/25/2023] Open
Abstract
ZMYND8 (zinc finger MYND (Myeloid, Nervy and DEAF-1)-type containing 8), a newly identified component of the transcriptional coregulator network, was found to interact with the Nucleosome Remodeling and Deacetylase (NuRD) complex. Previous reports have shown that ZMYND8 is instrumental in recruiting the NuRD complex to damaged chromatin for repressing transcription and promoting double strand break repair by homologous recombination. However, the mode of transcription regulation by ZMYND8 has remained elusive. Here, we report that through its specific key residues present in its conserved chromatin-binding modules, ZMYND8 interacts with the selective epigenetic marks H3.1K36Me2/H4K16Ac. Furthermore, ZMYND8 shows a clear preference for canonical histone H3.1 over variant H3.3. Interestingly, ZMYND8 was found to be recruited to several developmental genes, including the all-trans-retinoic acid (ATRA)-responsive ones, through its modified histone-binding ability. Being itself inducible by ATRA, this zinc finger transcription factor is involved in modulating other ATRA-inducible genes. We found that ZMYND8 interacts with transcription initiation-competent RNA polymerase II phosphorylated at Ser-5 in a DNA template-dependent manner and can alter the global gene transcription. Overall, our study identifies that ZMYND8 has CHD4-independent functions in regulating gene expression through its modified histone-binding ability.
Collapse
Affiliation(s)
- Santanu Adhikary
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Sulagna Sanyal
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Moitri Basu
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Isha Sengupta
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Sabyasachi Sen
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Dushyant Kumar Srivastava
- the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Siddhartha Roy
- the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Chandrima Das
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| |
Collapse
|