1
|
de Azevedo ALK, Gomig THB, Ribeiro EMDSF. Stress-induced phosphoprotein 1: how does this co-chaperone influence the metastasis steps? Clin Exp Metastasis 2024; 41:589-597. [PMID: 38581620 DOI: 10.1007/s10585-024-10282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 04/08/2024]
Abstract
In several cancer types, metastasis is associated with poor prognosis, survival, and quality of life, representing a life risk more significant than the primary tumor itself. Metastasis is a multi-step process that spreads tumor cells from primary sites to surrounding or distant organs, originating secondary tumors. The interconnected steps that drive metastasis depend of several capabilities that enable cells to detach from the primary tumor, acquire motility and migrate through the basal membrane; invade and spread through the vascular system, and finally settle and originate a new tumor. Recently, stress-induced phosphoprotein 1 (STIP1) has emerged as a protein capable of driving tumor cells through these metastasis steps by mediating several biological processes and signaling pathways. This protein is mainly known for its function as a co-chaperone, acting as a scaffold for the interaction of its client heat-shock proteins Hsp70/90 chaperones; however, it is also known that STIP1 can act independently of chaperones to activate downstream phosphorylation pathways. The over-expression of STIP1 has been reported across various cancer types, identifying it as a potential biomarker for predicting patient prognosis and monitoring the progression of metastasis. Here, we present a discussion on how this co-chaperone mediates the initial steps of metastasis (cell adhesion loss, epithelial-to-mesenchymal transition, and angiogenesis), highlighting the biological mechanisms in which STIP1 plays a vital role, also presenting an overview of the current knowledge regarding its clinical relevance.
Collapse
Affiliation(s)
- Alexandre Luiz Korte de Azevedo
- Genetics Post-Graduation Program, Genetics Department, Federal University of Paraná, P.O. box 19071, Curitiba, Paraná, CEP: 81531-990, Brazil
| | - Talita Helen Bombardelli Gomig
- Genetics Post-Graduation Program, Genetics Department, Federal University of Paraná, P.O. box 19071, Curitiba, Paraná, CEP: 81531-990, Brazil
| | | |
Collapse
|
2
|
Guo Z, Guo L. Tumor-promoting action of ubiquitin protease 43 in gastric cancer progression through deubiquitination and stabilization of stress-inducible phosphoprotein 1. Exp Cell Res 2023; 430:113714. [PMID: 37442266 DOI: 10.1016/j.yexcr.2023.113714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Gastric cancer (GC) is the 5th most common cancer over the world. Ubiquitin protease 43 (UBP43) is a multifunctional protein with deubiquitinase activities. Abnormal expression of UBP43 has been reported in numerous types of malignancies. Bioinformatic analysis was performed to identify the differentially expressed genes (Fold change ≥2 or ≤ -2 and p < 0.01) in GC from the datasets downloaded from Gene Expression Omnibus and Gene Expression Profiling Interactive Analysis databases, which showed that UBP43 and stress-inducible phosphoprotein 1 (STIP1) were up-regulated in both datasets. Online databases displayed the binding of UBP43 to STIP1 and the positive correlation between the two proteins. This study aims to explore: the role of UBP43 in cell proliferation and apoptosis in GC; the relationship between UBP43 and STIP1; and whether UBP43 exerts its function via STIP1 in GC. Knockdown/overexpression stable GC cell lines were generated by transducing lentivirus carrying coding sequence/short hairpin RNA of UBP43 and puromycin selection. GC patients with higher expressions of UBP43 had poor prognosis. Loss-/gain-of-function experiments revealed that pro-proliferative and anti-apoptotic abilities of UBP43 in GC cells and xenografts. UBP43 could interact with STIP1, inhibit its ubiquitination, and promote its protein stability, thereby enhancing STIP1 expression. Moreover, STIP1 knockdown reversed the pro-proliferative ability of UBP43 in GC cells. Our study uncovers that the pro-proliferative role of UBP43 in GC development is STIP1-dependent and indicates that UBP43 may act as a potent therapeutic target in GC treatment.
Collapse
Affiliation(s)
- Zijun Guo
- Department of Operating Room, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
3
|
Dourado MR, Elseragy A, da Costa BC, Téo FH, Guimarães GN, Machado RA, Risteli M, Wahbi W, Gurgel Rocha CA, Paranaíba LMR, González-Arriagada WA, da Silva SD, Rangel ALCA, Marques MR, Rossa Junior C, Salo T, Coletta RD. Stress induced phosphoprotein 1 overexpression controls proliferation, migration and invasion and is associated with poor survival in oral squamous cell carcinoma. Front Oncol 2023; 12:1085917. [PMID: 36713524 PMCID: PMC9874128 DOI: 10.3389/fonc.2022.1085917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Objective Although there have been remarkable achievements in the molecular landscape of oral squamous cell carcinoma (OSCC) in recent years, bringing advances in the understanding of its pathogenesis, development and progression, little has been applied in the prognosis and choosing the optimal treatment. In this study, we explored the influence of the stress induced phosphoprotein 1 (STIP1), which is frequently reported to be highly expressed in many cancers, in OSCCs. Methods STIP1 expression was assessed in the TCGA database and in two independent cohorts by immunohistochemistry. Knockdown strategy was applied in OSCC cell lines to determine the impact of STIP1 on viability, proliferation, migration and invasion. The zebrafish model was applied for studying tumor formation and metastasis in vivo. The association of STIP1 and miR-218-5p was explored by bioinformatics and mimics transfection. Results STIP1 was highly expressed in OSCCs and significantly associated with shortened survival and higher risk of recurrence. STIP1 down-regulation decreased proliferation, migration and invasion of tumor cells, and reduced the number of metastases in the Zebrafish model. STIP1 and miR-218-5p were inversely expressed, and the transfection of miR-218-5p mimics into OSCC cells decreased STIP1 levels as well as proliferation, migration and invasion. Conclusion Our findings show that STIP1 overexpression, which is inversely associated with miR-218-5p levels, contributes to OSCC aggressiveness by controlling proliferation, migration and invasion and is a determinant of poor prognosis.
Collapse
Affiliation(s)
- Mauricio Rocha Dourado
- Department of Oral Diagnosis, and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Amr Elseragy
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, and Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Bruno Cesar da Costa
- Department of Oral Diagnosis, and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Fábio Haach Téo
- Department of Oral Diagnosis, and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Gustavo Narvaes Guimarães
- Department of Biosciences and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Renato Assis Machado
- Department of Oral Diagnosis, and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil,Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Bauru, São Paulo, Brazil
| | - Maija Risteli
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, and Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, and Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| | - Clarissa Araujo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil,Federal University of Bahia, Salvador, Bahia, Brazil,Center for Biotechnology and Cell Therapy, D’Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Lívia Máris Ribeiro Paranaíba
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Sabrina Daniela da Silva
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, and Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, QC, Canada
| | | | - Marcelo Rocha Marques
- Department of Biosciences and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Carlos Rossa Junior
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, and Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland,Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, and Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland,HUSLAB, Department of Pathology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Ricardo D. Coletta
- Department of Oral Diagnosis, and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil,*Correspondence: Ricardo D. Coletta,
| |
Collapse
|
4
|
Abstract
The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.
Collapse
|
5
|
Li R, Li P, Wang J, Liu J. STIP1 down-regulation inhibits glycolysis by suppressing PKM2 and LDHA and inactivating the Wnt/β-catenin pathway in cervical carcinoma cells. Life Sci 2020; 258:118190. [PMID: 32777299 DOI: 10.1016/j.lfs.2020.118190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/18/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
AIMS Glycolysis is an important process for cervical carcinoma development. Previous studies have indicated that stress-induced phosphoprotein 1 (STIP1) is associated with development of multiple tumors. Nevertheless, the role and mechanism of STIP1 in glycolysis of cervical carcinoma remain unclear. MAIN METHODS The association between STIP1 and survival probability and the correlation between STIP1 expression and pyruvate kinase M2 (PKM2) as well as lactate dehydrogenase isoform A (LDHA) levels in cervical carcinoma were analyzed via The Cancer Genome Atlas (TCGA). The expression of STIP1, PKM2, LDHA, and cytochrome c (Cyt C) was measured via western blot or quantitative reverse transcription polymerase chain reaction. Cell viability and apoptosis were examined via cell counting kit 8 and flow cytometry, respectively. Glycolysis was assessed via detection of glucose consumption and lactate production. The protein involved in the Wnt/β-catenin pathway was measured via western blot. KEY FINDINGS STIP1 abundance was elevated in cervical carcinoma cells. High expression of STIP1 indicated poor survival probability. Knockdown of STIP1 inhibited cervical carcinoma cell viability and promoted apoptosis. STIP1 expression was positively correlated with PKM2 and LDHA levels in cervical carcinoma. Silence of STIP1 inhibited glycolysis and decreased PKM2 and LDHA expression. Down-regulation of STIP1 repressed the Wnt/β-catenin pathway. Overexpression of β-catenin reversed the effect of STIP1 silence on viability, apoptosis, glycolysis, and levels of PKM2 and LDHA. SIGNIFICANCE STIP1 knockdown suppressed glycolysis in cervical carcinoma by inhibiting PKM2 and LDHA expression and activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Rui Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Pin Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China.
| | - Jin Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China
| |
Collapse
|
6
|
Nishimura T, Nakamura H, Tan KT, Zhuo DW, Fujii K, Koizumi H, Naruki S, Takagi M, Furuya N, Kato Y, Chen SJ, Kato H, Saji H. A proteogenomic profile of early lung adenocarcinomas by protein co-expression network and genomic alteration analysis. Sci Rep 2020; 10:13604. [PMID: 32788598 PMCID: PMC7423934 DOI: 10.1038/s41598-020-70578-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The tumourigenesis of early lung adenocarcinomas, including adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and lepidic predominant invasive adenocarcinoma (LPA), remains unclear. This study aimed to capture disease-related molecular networks characterising each subtype and tumorigenesis by assessing 14 lung adenocarcinomas (AIS, five; MIA, five; LPA, four). Protein-protein interaction networks significant to the three subtypes were elucidated by weighted gene co-expression network analysis and pairwise G-statistics based analysis. Pathway enrichment analysis for AIS involved extracellular matrix proteoglycans and neutrophil degranulation pathway relating to tumour growth and angiogenesis. Whereas no direct networks were found for MIA, proteins significant to MIA were involved in oncogenic transformation, epithelial-mesenchymal transition, and detoxification in the lung. LPA was associated with pathways of HSF1-mediated heat shock response regulation, DNA damage repair, cell cycle regulation, and mitosis. Genomic alteration analysis suggested that LPA had both somatic mutations with loss of function and copy number gains more frequent than MIA. Oncogenic drivers were detected in both MIA and LPA, and also LPA had a higher degree of copy number loss than MIA. Our findings may help identifying potential therapeutic targets and developing therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Toshihide Nishimura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan.
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Haruhiko Nakamura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | | | | | - Kiyonaga Fujii
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Hirotaka Koizumi
- Department of Pathology, St. Marianna University Hospital, Kawasaki, Kanagawa, 216-8511, Japan
| | - Saeko Naruki
- Department of Pathology, St. Marianna University Hospital, Kawasaki, Kanagawa, 216-8511, Japan
| | - Masayuki Takagi
- Department of Pathology, St. Marianna University Hospital, Kawasaki, Kanagawa, 216-8511, Japan
| | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yasufumi Kato
- Department of Thoracic Surgery, Kanto Central Hospital, Tokyo, 158-8531, Japan
| | | | - Harubumi Kato
- Tokyo Medical University, Tokyo, 160-0023, Japan
- International University of Health and Welfare, Tokyo, 107-8402, Japan
| | - Hisashi Saji
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
7
|
Sun Z, Jin H, Sun Y, Jiang X, Gui R. Mn-Doping-induced hierarchical petal growth of a flower-like 3D MOF assembled with black phosphorous nanosheets as an electrochemical aptasensor of human stress-induced phosphoprotein 1. NANOSCALE 2020; 12:14538-14548. [PMID: 32614006 DOI: 10.1039/d0nr02342f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we report the preparation of Mn-doped Ni-based metal-organic frameworks (Mn-MOF) with 3D hierarchical flower-like superstructures through solvothermal synthesis. The Mn-MOF was assembled with 2D black phosphorous nanosheets (BPNSs) to achieve novel 2D/3D BPNSs/Mn-MOF nanocomposites, followed by the direct coupling of methylene blue (MB)-labeled DNA aptamer on the interface of the nanocomposites-modified glassy carbon electrode (GCE). The aptamer/BPNSs/Mn-MOF/GCE platform was utilized for the capture and efficient detection of stress-induced phosphoprotein 1 (STIP1). Experimental results confirmed that Mn-doping-induced the hierarchical petal growth of the flower-like 3D MOF and its assembly with BPNSs. GCE surface modifications with various components were studied by measuring electrochemical curves. The morphologies, microstructures and spectra of products were characterized. The optimal conditions used for electrochemical measurements were assessed. A smart aptasensor was explored by the aptamer/BPNSs/Mn-MOF/GCE that had multiple attractive merits, including synergistic effects of components, porous superstructures of hierarchical flower-like 3D Mn-MOF and specific aptamer-target recognition. The merits endowed this aptasensor with selective and sensitive signal responses to STIP1 over interferences. This aptasensor enabled the efficient detection of STIP1 in a broad range of 2 × 10-3-1 × 104 ng mL-1, accompanied by a low limit of detection of 1 pg mL-1. This aptasensor realized the successful determination of STIP1 in practical samples, exhibiting high reliability and practicability.
Collapse
Affiliation(s)
- Zejun Sun
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P.R. China.
| | | | | | | | | |
Collapse
|
8
|
Tumor-associated antigens and their antibodies in the screening, diagnosis, and monitoring of esophageal cancers. Eur J Gastroenterol Hepatol 2020; 32:779-788. [PMID: 32243347 DOI: 10.1097/meg.0000000000001718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite the advances in the treatment and management, esophageal cancers continue to carry a dismal prognosis with an overall 5-year survival rate ranging from 15 to 25%. Delayed onset of symptoms and lack of effective screening methods and guidelines for diagnosis of the early disease contribute to the high mortality rate of esophageal cancers. Detection of esophageal cancer at their early stage is really a challenge for physicians including primary care physicians, gastroenterologists and oncologists. Although imaging, endoscopy and biopsy have been proved to be useful diagnostic tools for esophageal cancers, their diagnostic accuracy is unsatisfactory. In addition, expensive costs, invasiveness and special training operator have limited the clinical application of these tools. Recently, tumor-associated antigens (TAAs) and their antibodies have been reported to be potential markers in esophageal cancer screening, diagnosis, monitoring and prognostication. Because TAAs and their antibodies have the advantages of inexpensive cost, noninvasiveness and easy access, they have attracted much attention as an affordable option for early esophageal cancer diagnosis. In this review, we summarized the advances in TAAs and their antibodies in esophageal cancer screening, diagnosis, monitoring and prognostication.
Collapse
|
9
|
da Fonseca ACC, Matias D, Geraldo LHM, Leser FS, Pagnoncelli I, Garcia C, do Amaral RF, da Rosa BG, Grimaldi I, de Camargo Magalhães ES, Cóppola-Segovia V, de Azevedo EM, Zanata SM, Lima FRS. The multiple functions of the co-chaperone stress inducible protein 1. Cytokine Growth Factor Rev 2020; 57:73-84. [PMID: 32561134 DOI: 10.1016/j.cytogfr.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Stress inducible protein 1 (STI1) is a co-chaperone acting with Hsp70 and Hsp90 for the correct client proteins' folding and therefore for the maintenance of cellular homeostasis. Besides being expressed in the cytosol, STI1 can also be found both in the cell membrane and the extracellular medium playing several relevant roles in the central nervous system (CNS) and tumor microenvironment. During CNS development, in association with cellular prion protein (PrPc), STI1 regulates crucial events such as neuroprotection, neuritogenesis, astrocyte differentiation and survival. In cancer, STI1 is involved with tumor growth and invasion, is undoubtedly a pro-tumor factor, being considered as a biomarker and possibly therapeutic target for several malignancies. In this review, we discuss current knowledge and new findings on STI1 function as well as its role in tissue homeostasis, CNS and tumor progression.
Collapse
Affiliation(s)
| | - Diana Matias
- Molecular Bionics Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Luiz Henrique Medeiros Geraldo
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; Université de Paris, PARCC, INSERM, Paris, 75015, France
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Iohana Pagnoncelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Celina Garcia
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Rackele Ferreira do Amaral
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Barbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Eduardo Sabino de Camargo Magalhães
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; European Research Institute for the Biology of Aging, University of Groningen, Groningen, 9713 AV, Netherlands
| | - Valentín Cóppola-Segovia
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Evellyn Mayla de Azevedo
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Silvio Marques Zanata
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil.
| |
Collapse
|
10
|
STIP1/HOP Regulates the Actin Cytoskeleton through Interactions with Actin and Changes in Actin-Binding Proteins Cofilin and Profilin. Int J Mol Sci 2020; 21:ijms21093152. [PMID: 32365744 PMCID: PMC7246624 DOI: 10.3390/ijms21093152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Cell migration plays a vital role in both health and disease. It is driven by reorganization of the actin cytoskeleton, which is regulated by actin-binding proteins cofilin and profilin. Stress-inducible phosphoprotein 1 (STIP1) is a well-described co-chaperone of the Hsp90 chaperone system, and our findings identify a potential regulatory role of STIP1 in actin dynamics. We show that STIP1 can be isolated in complex with actin and Hsp90 from HEK293T cells and directly interacts with actin in vitro via the C-terminal TPR2AB-DP2 domain of STIP1, potentially due to a region spanning two putative actin-binding motifs. We found that STIP1 could stimulate the in vitro ATPase activity of actin, suggesting a potential role in the modulation of F-actin formation. Interestingly, while STIP1 depletion in HEK293T cells had no major effect on total actin levels, it led to increased nuclear accumulation of actin, disorganization of F-actin structures, and an increase and decrease in cofilin and profilin levels, respectively. This study suggests that STIP1 regulates the cytoskeleton by interacting with actin, or via regulating the ratio of proteins known to affect actin dynamics.
Collapse
|
11
|
Ma XL, Tang WG, Yang MJ, Xie SH, Wu ML, Lin G, Lu RQ. Serum STIP1, a Novel Indicator for Microvascular Invasion, Predicts Outcomes and Treatment Response in Hepatocellular Carcinoma. Front Oncol 2020; 10:511. [PMID: 32426271 PMCID: PMC7212360 DOI: 10.3389/fonc.2020.00511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Previous studies reported that stress-induced phosphoprotein 1 (STIP1) can be secreted by hepatocellular carcinoma (HCC) cells and is increased in the serum of HCC patients. However, the therapy-monitoring and prognostic value of serum STIP1 in HCC remains unclear. Here, we aimed to systemically explore the prognostic significance of serum STIP1 in HCC. Methods: A total of 340 HCC patients were recruited to this study; 161 underwent curative resection and 179 underwent transcatheter arterial chemoembolization (TACE). Serum STIP1 was detected by enzyme-linked immunosorbent assay (ELISA). Optimal cutoff values for serum STIP1 in resection and TACE groups were determined by receiver operating characteristic (ROC) analysis. Prognostic value was assessed by Kaplan-Meier, log-rank, and Cox regression analyses. Predictive values of STIP1 for objective response (OR) to TACE and MVI were evaluated by ROC curves and logistic regression. Results: Serum STIP1 was significantly increased in HCC patients when compared with chronic hepatitis B patients or health donors (both P < 0.05). Optimal cutoff values for STIP1 in resection and TACE groups were 83.43 and 112.06 ng/ml, respectively. High pretreatment STIP1 was identified as an independent prognosticator. Dynamic changes in high STIP1 status were significantly associated with long-term prognosis, regardless of treatment approaches. Moreover, post-TACE STIP1 was identified as an independent predictor for OR, with a higher area under ROC curve (AUC-ROC) than other clinicopathological features. Specifically, pretreatment STIP1 was significantly increased in patients with microvascular invasion (MVI), and was confirmed as a novel, powerful predictor for MVI. Conclusions: Serum STIP1 is a promising biomarker for outcome evaluation, therapeutic response assessment, and MVI prediction in HCC. Integration serum STIP1 detection into HCC management might facilitate early clinical decision making to improve the prognosis of HCC.
Collapse
Affiliation(s)
- Xiao-Lu Ma
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Wei-Guo Tang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Min-Jie Yang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Su-Hong Xie
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Min-Le Wu
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guo Lin
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ren-Quan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Guo X, Yan Z, Zhang G, Wang X, Pan Y, Huang M. STIP1 Regulates Proliferation and Migration of Lung Adenocarcinoma Through JAK2/STAT3 Signaling Pathway. Cancer Manag Res 2019; 11:10061-10072. [PMID: 31819639 PMCID: PMC6890180 DOI: 10.2147/cmar.s233758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/23/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose Recent studies have shown that STIP1 is associated with proliferation and migration in numerous types of tumors; however, the role of STIP1 in lung adenocarcinoma is still poorly understood. Therefore, the aim of this study was to evaluate the role of STIP1 in lung adenocarcinoma, in vitro and in vivo. Methods The expression of STIP1 in lung adenocarcinoma was assessed by immunohistochemistry, RT-qPCR, and Western blot. The effects of STIP1 on the proliferation of lung adenocarcinoma cells were detected by the cell counting kit-8 assay; the effect of STIP1 on adhesion of lung adenocarcinoma cells was detected by Giemsa staining, while the cell scratch and Transwell assays were employed to examine the effect of STIP1 on the migratory ability of lung adenocarcinoma cells. Finally, apoptosis was evaluated by Hoechst staining and flow cytometry. Results The expression level of STIP1 in lung adenocarcinoma tissue was significantly higher than that in adjacent normal tissue (P<0.05). Compared with that in nontransfected controls, cell proliferation, adhesion, and migration, as well as vimentin protein expression and levels of phosphorylated JAK2/STAT3, were significantly decreased (P<0.05) in A549 lung adenocarcinoma cells transfected with STIP1 shRNA, whereas E-cadherin protein expression and rates of apoptosis were significantly increased in these cells (P< 0.05). Conclusion Elevated expression of STIP1 in lung adenocarcinoma may enhance the proliferative, adhesive, and migratory ability, and reduce the apoptosis of lung adenocarcinoma cells through the JAK2/STAT3 signaling pathway and epithelial-mesenchymal transition (EMT), thereby promoting the recurrence and metastatic potential of this cancer. The results indicate that STIP1 may be an effective therapeutic target for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiangjun Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiang su, People's Republic of China
| | - Zhongyi Yan
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiang su, People's Republic of China
| | - Gongming Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiang su, People's Republic of China
| | - Xiang Wang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiang su, People's Republic of China
| | - Yun Pan
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiang su, People's Republic of China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Sun X, Cao N, Mu L, Cao W. RETRACTED: Stress induced phosphoprotein 1 promotes tumor growth and metastasis of melanoma via modulating JAK2/STAT3 pathway. Biomed Pharmacother 2019; 116:108962. [PMID: 31103826 DOI: 10.1016/j.biopha.2019.108962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 02/03/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors, who have informed the Editor-in-Chief that the M14 cells used in this study were contaminated with HeLa cells, identified by short tandem repeat analysis. The regulatory effects of STIP1 on M14 cell proliferation, colony formation, apoptosis, migration, invasion, and the JAK2/STAT3 pathway experimental data contained within this study cannot be fully repeated using non-contaminated M14 cells. Therefore, the authors no longer have confidence in the reliability of the results. The Editor-in-Chief agreed to retract the article.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Dermatology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, Shaanxi Province 710068, China
| | - Ningjia Cao
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, Shaanxi Province 710068, China
| | - Liang Mu
- Ultrasound Diagnosis Center, Shaanxi Provincial People's Hospital,256 Youyi West Road, Xi'an, Shaanxi Province 710068, China
| | - Wei Cao
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, Shaanxi Province 710068, China.
| |
Collapse
|
14
|
Jing Y, Liang W, Liu J, Zhang L, Wei J, Zhu Y, Yang J, Ji K, Zhang Y, Huang Z. Stress-induced phosphoprotein 1 promotes pancreatic cancer progression through activation of the FAK/AKT/MMP signaling axis. Pathol Res Pract 2019; 215:152564. [PMID: 31547977 DOI: 10.1016/j.prp.2019.152564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dependent on the extent of adenosine triphosphate (ATP) hydrolysis and/or ATP/ADP exchange, the stress-induced phosphoprotein 1 (STIP1) mediates molecular interaction and complex formation between the molecular chaperones heat shock protein (Hsp)70 and Hsp90. The overexpression of STIP1 is increasingly being documented in various human malignancies, including ovarian, cholangiocellular, renal and gastric cancers. However, the role of STIP1 in pancreatic cancer (PANC) and probable molecular mechanism remains largely unexplored. METHODS & RESULTS In the present study, using clinical samples (n = 88) and human PANC cell lines PANC-1, Capan-2, SW1990, and BxPC-3, we demonstrated that STIP1 is aberrantly expressed in human PANC tissues or cell lines compared to adjacent non-tumor pancreas samples or human pancreatic duct epithelial cells (HPDEC), respectively. Clinicopathological correlation studies revealed significant positive correlation between high STIP1 expression and lymph node involvement (p = 0.001), cancer metastasis (p = 0.002), microvascular invasion (p = 0.002), advance TNM stage (p = 0.024), perineural invasion (PNI; p = 0.013), and cancer-related death (p = 0.002) among patients with PANC. Univariate and multivariate analyses indicate that STIP1overexpression is an independent prognostic factor of PANC. Furthermore, STIP1 knockdown significantly inhibit the migration and invasive ability of PANC-1 and SW1990 cells, while downregulating N-cadherin and Vimentin, but upregulating E-cadherin mRNA expression levels, concurrently. We also demonstrated that STIP1 knockdown suppressed p-FAK, p-AKT, MMP2, MMP9, and Slug protein and mRNA expression levels, thus, indicating, at least in part, a role for STIP1 in the activation of FAK/AKT/MMP signaling. CONCLUSION Taken together, our results demonstrate a critical role for STIP1 in cancer metastasis, disease progression and poor prognosis, as well as, provide evidence suggestive of the therapeutic efficacy of STIP1-mediated targeting of the FAK/AKT/MMP signaling axis in patients with PANC.
Collapse
Affiliation(s)
- Yuanming Jing
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Wenqing Liang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Jian Liu
- Department of Hepatobiliary Surgery, Shanghai Oriental Hepatobiliary Hospital, Shanghai 200438, PR China
| | - Lin Zhang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Jianguo Wei
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Yafang Zhu
- Department of Endoscopy Center, Affiliated Hospital of Shaoxing College of Arts and Sciences (Shaoxing Municipal Hospital), Shaoxing 312000, Zhejiang Province, PR China
| | - Jianhui Yang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Kewei Ji
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang Province, PR China
| | - Zongliang Huang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China.
| |
Collapse
|
15
|
Down-regulation of STIP1 regulate apoptosis and invasion of glioma cells via TRAP1/AKT signaling pathway. Cancer Genet 2019; 237:1-9. [PMID: 31447061 DOI: 10.1016/j.cancergen.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/15/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND In recent years, many studies have confirmed that STIP1 (phosphorylation-induced protein 1) is involved in the development and progression of various tumors. However, its potential role in glioma progression and the underlying mechanisms of glioma development remain unclear. METHODS We analyzed the expression of STIP1 in 35 human glioma tissue specimens of different grades, using 6 normal brain tissues for comparison. We transfected U87 and U251 cell lines with small interfering RNA (siRNA) to downregulate STIP1, and set up a negative control group and a blank group for comparison. The MTT assay was used to detect cell proliferation, and cell cycle progression and apoptosis were analyzed through flow cytometry. Transwell experiments were employed to detect the invasion and migration of STIP1-depleted and control U87 and U251 cells and western blotting was used to detect the expression of TRAP1/Akt pathway proteins. In addition, immunohistochemical analysis was used to reveal differences in expression and localization between transplanted tumor specimens of each group. RESULTS We observed a high expression of STIP1 in glioblastoma, MTT assay revealed a decreased cell proliferation rate in the STIP1-downregulated cells. Cell cycle analysis revealed an increased proportion of cells in G1 phase, as well as an increase in apoptosis, upon STIP1 downregulation. Western blotting showed that TRAP1, pAkt, and MMP2 expression was decreased upon STIP1 downregulation. In addition, TRAP1, ki-67, and MMP2 displayed a decreased expression in vivo. CONCLUSIONS STIP1 is highly expressed in glioblastoma compared to normal brain tissues. Downregulation of STIP1 in glioma cells reduces cell proliferation rate and invasion and increases cell apoptosis.
Collapse
|
16
|
Chen SH, Chao A, Tsai CL, Sue SC, Lin CY, Lee YZ, Hung YL, Chao AS, Cheng AJ, Wang HS, Wang TH. Utilization of HEPES for Enhancing Protein Transfection into Mammalian Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:99-111. [PMID: 30740472 PMCID: PMC6357789 DOI: 10.1016/j.omtm.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/13/2018] [Indexed: 01/12/2023]
Abstract
The delivery of active proteins into cells (protein transfection) for biological purposes offers considerable potential for clinical applications. Herein we demonstrate that, with a readily available, inexpensive organic agent, the 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) method can be used for simple and efficient protein transfection. By mixing proteins with a pure HEPES solution before they are applied to live cells, proteins with various molecular weights (including antibodies, recombinant proteins, and peptides) were successfully delivered into the cytoplasm of different cell types. The protein transfection efficiency of the HEPES method was not inferior to that of commercially available systems that are both more expensive and time consuming. Studies using endocytotic inhibitors and endosomal markers have revealed that cells internalize HEPES-protein mixtures through endocytosis. Results that HEPES-protein mixtures exhibited a low diffusion coefficient suggest that HEPES might neutralize the charges of proteins and, thus, facilitate their cellular internalization. Upon internalization, the cytosolic antibodies caused the degradation of targeted proteins in TRIM21-expressing cells. In summary, the HEPES method is efficient for protein transfection and has potential for myriad clinical applications.
Collapse
Affiliation(s)
- Shun-Hua Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan.,Gynecologic Cancer Research Center, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chiao-Yun Lin
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Lin Hung
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - An-Shine Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Shih Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Hao Wang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan.,Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| |
Collapse
|
17
|
Kituyi SN, Edkins AL. Hop/STIP1 depletion alters nuclear structure via depletion of nuclear structural protein emerin. Biochem Biophys Res Commun 2018; 507:503-509. [PMID: 30449594 DOI: 10.1016/j.bbrc.2018.11.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Hop/STIP1 is a co-chaperone of Hsp70 and Hsp90 that regulates a number of cell biology processes via interactions with cellular proteins. Here we report a new relationship between Hop and the nuclear structural protein emerin in maintenance of nuclear morphology. Depletion or overexpression of Hop resulted in the reduction of emerin protein levels via proteasomal and lysosomal pathways. Co-immunoprecipitation assays confirmed that Hop and emerin are in a common complex, which could accommodate Hsp70 but not Hsp90, and that TPR2AB is required for the association. Loss of Hop or emerin led to a deformation of nuclear structure, a statistically significant decrease in nuclear size, and was associated with changes in the levels of nuclear proteins, lamin A-C and fibrillarin. The nuclear defects upon Hop loss could be rescued by emerin overexpression. Taken together, these data suggest that Hop stabilises emerin and that loss of Hop alters nuclear structure via emerin degradation.
Collapse
Affiliation(s)
- Sarah Naulikha Kituyi
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
18
|
Zhang S, Shao J, Su F. Prognostic significance of STIP1 expression in human cancer: A meta-analysis. Clin Chim Acta 2018; 486:168-176. [DOI: 10.1016/j.cca.2018.07.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
|
19
|
Shin HY, Yang W, Lee EJ, Han GH, Cho H, Chay DB, Kim JH. Establishment of five immortalized human ovarian surface epithelial cell lines via SV40 T antigen or HPV E6/E7 expression. PLoS One 2018; 13:e0205297. [PMID: 30296284 PMCID: PMC6175519 DOI: 10.1371/journal.pone.0205297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/21/2018] [Indexed: 01/02/2023] Open
Abstract
Background Human ovarian surface epithelial (HOSE) cells are a critical cell source for ovarian cancer research; however, they are difficult to obtain and maintain under standard laboratory conditions in large quantities. The aim of this study was to generate immortalized HOSE (IHOSE) cells with maintained properties to the original cell source, thereby guaranteeing a sufficiently large cell quantity for ovarian cancer research. Methods HOSE cells isolated from four non-cancer patients and five IHOSE cell lines were established by induction of HPV-E6/E7 expression or SV40 large T antigen using a lenti-viral system. Each of IHOSE cells was confirmed to be distinct by STR profiling. RNA-sequencing was used to compare gene expression profiles in HOSE, IHOSE and ovarian cancer cells. Results RNA-sequencing results revealed a stronger linear correlation in gene expression between IHOSE and HOSE cells (R2 = 0.9288) than between IHOSE or HOSE cells and ovarian cancer cells (R2 = 0.8562 and R2 = 0.7982, respectively). The gene expression pattern of 319 differentially expressed genes revealed minimal differences between HOSE and IHOSE cells, while a strong difference between ovarian cancer cells and HOSE or IHOSE cells was observed. Furthermore, the five IHOSE cell lines displayed morphological characteristics typical of epithelial cells but showed a lower level of EpCAM, CD133 and E-cadherin, as cancer stem marker, than ovarian cancer cells. Moreover, unlike cancer cells, IHOSE cells could not form colonies in the anchorage-independent soft agar growth assay. Conclusion These findings demonstrate that five newly established IHOSE cell lines have characteristics of progenitor HOSE cells while exhibiting continuous growth, and thus, should be highly useful as control cells for ovarian cancer research.
Collapse
MESH Headings
- AC133 Antigen/genetics
- AC133 Antigen/metabolism
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Proliferation
- Epithelial Cell Adhesion Molecule/genetics
- Epithelial Cell Adhesion Molecule/metabolism
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Female
- Founder Effect
- Gene Expression
- Humans
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Ovary/cytology
- Ovary/metabolism
- Papillomavirus E7 Proteins/genetics
- Papillomavirus E7 Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Ha-Yeon Shin
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wookyeom Yang
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun-ju Lee
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gwan Hee Han
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanbyoul Cho
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Doo Byung Chay
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-hoon Kim
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Chen Q, Hang Y, Zhang T, Tan L, Li S, Jin Y. USP10 promotes proliferation and migration and inhibits apoptosis of endometrial stromal cells in endometriosis through activating the Raf-1/MEK/ERK pathway. Am J Physiol Cell Physiol 2018; 315:C863-C872. [PMID: 30281322 DOI: 10.1152/ajpcell.00272.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endometriosis has been initially described as endometrial-like tissue outside of the uterine cavity. The mitogen-activated protein kinase/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway playing an important role in the regulation of cell proliferation, apoptosis, and migration has been found to be activated in endometriosis. However, regulation of the MEK/ERK signaling pathway in endometriosis has not been fully understood. In this study, primary-cultured endometrial stromal cells were collected from patients with endometriosis and healthy controls, and the proliferation, apoptosis, and migration of ectopic endometrial stromal cells transfected with ubiquitin-specific protease 10 (USP10)-small-interfering RNA (siRNA) or pLVX-Puro-USP10 with or without MEK inhibitor PD-98059 or exogenous signaling stimulation such as epidermal growth factor (EGF) were measured by CCK-8, flow cytometry, and Transwell, respectively. The gene and protein expressions were measured by real-time PCR or Western blot. USP10 overexpression promoted ectopic endometrial stromal cell migration and proliferation, suppressed cell apoptosis, and activated MEK/ERK signaling that is a critical downstream target of the serine/threonine protein kinase Raf-1, which was significantly blocked by PD-98059. USP10 silencing demonstrated the inverse effects, and these effects induced by USP10 silencing were significantly blocked by EGF. USP10 overexpression promoted Raf-1 protein expression, but not mRNA expression, through deubiquitination. In conclusion, these results suggest that USP10 promotes proliferation and migration and inhibits apoptosis of endometrial stromal cells in endometriosis through activating the Raf-1/MEK/ERK pathway.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Traditional Chinese Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Yuanyuan Hang
- School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Tingting Zhang
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Li Tan
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Shuangdi Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Yuli Jin
- Department of Traditional Chinese Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
21
|
Aberrant expression of stress-induced phosphoprotein 1 in colorectal cancer and its clinicopathologic significance. Hum Pathol 2018; 79:135-143. [DOI: 10.1016/j.humpath.2018.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/20/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
|
22
|
Wu R, Liu F, Peng P, Qiu H, Xiong H, Yu S, Huang X, Zhang H, Zhuang L. Tumor stress-induced phosphoprotein 1 as a prognostic biomarker for breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:302. [PMID: 30211190 DOI: 10.21037/atm.2018.06.46] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Recent studies suggested an important relationship between tumor stress-induced phosphoprotein 1 (STIP1) and cancer. However, the expression of STIP1 in breast cancer tissues and its relationship with clinical characteristics and survival have not been investigated in humans. The aim of our work was to evaluate the association of STIP1 and the prognosis of breast cancer patients. Methods The included patients were followed-up by telephone and through a review of their outpatient records. The expression of STIP1 was assessed by immunohistochemistry (IHC). The 5-year recurrence-free survival (RFS) rate and the 5-year overall survival (OS) rate were the prognostic indicators evaluated by the Kaplan-Meier method. Univariate and multivariate analyses employing a Cox regression model were used to calculate hazard ratios (HRs). Results The rate of high expression of STIP1 was 55.3% (126/228) in breast cancer tissues and 14.9% (34/228) in adjacent normal tissues (χ2=81.495, P<0.001). High expression of STIP1 was associated with tumor size, stage and human epidermal growth factor receptor 2 (HER-2) status. The 5-year RFS rate was 75.4% in the STIP1 high expression group and 87.3% in the STIP1 low expression group (χ2=5.721, P=0.017). The 5-year OS rate was 84.1% in the STIP1 high expression group and 94.1% in the STIP1 low expression group (χ2=5.814, P=0.016). STIP1 was found to be an independent relapse predictor for the adjusted HR is 1.983 (95% CI, 1.031-3.815). Conclusions High expression of STIP1 is associated with the poor prognosis of breast cancer patients and HER-2 positive expression. STIP1 may therefore serve as a prognostic biomarker for breast cancer patients.
Collapse
Affiliation(s)
- Ruxing Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Liu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Peng
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Qiu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihua Xiong
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiying Yu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyuan Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Zhuang
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
23
|
STIP1 is over-expressed in hepatocellular carcinoma and promotes the growth and migration of cancer cells. Gene 2018; 662:110-117. [DOI: 10.1016/j.gene.2018.03.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022]
|
24
|
Gebhard C, Miller I, Hummel K, Neschi née Ondrovics M, Schlosser S, Walter I. Comparative proteome analysis of monolayer and spheroid culture of canine osteosarcoma cells. J Proteomics 2018; 177:124-136. [DOI: 10.1016/j.jprot.2018.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
|
25
|
Stress-induced phosphoprotein 1 acts as a scaffold protein for glycogen synthase kinase-3 beta-mediated phosphorylation of lysine-specific demethylase 1. Oncogenesis 2018; 7:31. [PMID: 29593255 PMCID: PMC5874249 DOI: 10.1038/s41389-018-0040-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 02/10/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
Stress-induced phosphoprotein 1 (STIP1)-a co-chaperone of heat shock proteins-promotes cell proliferation and may act as an oncogenic factor. Similarly, glycogen synthase kinase-3 beta (GSK3β)-mediated phosphorylation of lysine-specific demethylase 1 (LSD1)-an epigenetic regulator-can contribute to the development of an aggressive cell phenotype. Owing to their ability to tether different molecules into functional complexes, scaffold proteins have a key role in the regulation of different signaling pathways in tumorigenesis. Here, we show that STIP1 acts as a scaffold promoting the interaction between LSD1 and GSK3β. Specifically, the TPR1 and TPR2B domains of STIP1 are capable of binding with the AOL domain of LSD1, whereas the TPR2A and TPR2B domains of STIP1 interact with the kinase domain of GSK3β. We also demonstrate that STIP1 is required for GSK3β-mediated LSD1 phosphorylation, which promoted LSD1 stability and enhanced cell proliferation. After transfection of cancer cells with double-mutant (S707A/S711A) LSD1, subcellular localization analysis revealed that LSD1 was translocated from the nucleus to the cytoplasm. In vitro experiments also showed that the LSD1 inhibitor SP2509 and the GSK3β inhibitor LY2090314 acted synergistically to induce cancer cell death. Finally, the immunohistochemical expression of STIP1 and LSD1 showed a positively correlation in human cancer specimens. In summary, our data provide mechanistic insights into the role of STIP1 in human tumorigenesis by showing that it serves as a scaffold for GSK3β-mediated LSD1 phosphorylation. The combination of LSD1 and GSK3β inhibitors may exert synergistic antitumor effects and deserves further scrutiny in preclinical studies.
Collapse
|
26
|
Wang HS, Tsai CL, Chang PY, Chao A, Wu RC, Chen SH, Wang CJ, Yen CF, Lee YS, Wang TH. Positive associations between upregulated levels of stress-induced phosphoprotein 1 and matrix metalloproteinase-9 in endometriosis/adenomyosis. PLoS One 2018; 13:e0190573. [PMID: 29304094 PMCID: PMC5755831 DOI: 10.1371/journal.pone.0190573] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 12/18/2017] [Indexed: 12/05/2022] Open
Abstract
Stress-induced phosphoprotein-1 (STIP1), an adaptor protein that coordinates the functions of HSP70 and HSP90 in protein folding, has been implicated in the development of human gynecologic malignancies. This case-control study investigates STIP1 serum levels and tissue expression in relation to endometriosis/adenomyosis in Taiwanese population. Female patients with surgically confirmed endometriosis/adenomyosis were compared with women free of endometriosis/adenomyosis. Serum STIP1 levels were measured using an enzyme-linked immunosorbent assay and surgical tissues were analyzed by immunohistochemistry. Both epithelial and stromal cells in surgical tissues of endometriosis and adenomyosis expressed STIP1 and MMP-9. Notably, MMP-9 expression was significantly decreased when STIP1 expression was knocked-down. In vitro experiments revealed that STIP1 was capable of binding to the MMP-9 promoter and enhanced its transcriptional expression. The preoperative serum STIP1 levels of patients with endometriosis/adenomyosis were significantly higher than those of the controls. In brief, our data suggest an association between STIP1 levels and endometriosis/adenomyosis.
Collapse
Affiliation(s)
- Hsin-Shih Wang
- Department of Obstetrics and Gynecology, LinKou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pi-Yueh Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, LinKou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Gynecologic Cancer Research Centre, LinKou Medical Center, Chang Gung Memorial Hospital, Taoyuan Taiwan
| | - Ren-Chin Wu
- Department of Clinical Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shun-Hua Chen
- Graduate Institutes of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Jung Wang
- Department of Obstetrics and Gynecology, LinKou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chih-Feng Yen
- Department of Obstetrics and Gynecology, LinKou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan
| | - Tzu-Hao Wang
- Department of Obstetrics and Gynecology, LinKou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Gynecologic Cancer Research Centre, LinKou Medical Center, Chang Gung Memorial Hospital, Taoyuan Taiwan
- Graduate Institutes of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Xu YW, Liu CT, Huang XY, Huang LS, Luo YH, Hong CQ, Guo HP, Xu LY, Peng YH, Li EM. Serum Autoantibodies against STIP1 as a Potential Biomarker in the Diagnosis of Esophageal Squamous Cell Carcinoma. DISEASE MARKERS 2017; 2017:5384091. [PMID: 28852266 PMCID: PMC5567451 DOI: 10.1155/2017/5384091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 02/05/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains one of the leading causes of cancer-related mortality around the world. The identification of novel serum biomarkers is required for early detection of ESCC. This study was designed to elucidate whether autoantibodies against STIP1 could be a diagnostic biomarker in ESCC. An enzyme-linked immunosorbent assay was performed to detect serum levels of STIP1 autoantibodies in a training cohort (148 ESCC patients and 111 controls) and a validation cohort (60 ESCC patients and 40 controls). Mann-Whitney's U test showed that ESCC patients in two cohorts have higher levels of autoantibodies against STIP1 when compared to controls (P < 0.001). According to receiver operating characteristic analysis, the sensitivity, specificity, and area under the curve (AUC) of autoantibodies against STIP1 in ESCC were 41.9%, 90.1%, and 0.682 in the training cohort and 40.0%, 92.5%, and 0.710 in the validation cohort, respectively. Moreover, detection of autoantibodies against STIP1 could discriminate early-stage ESCC patients from controls, with sensitivity, specificity, and AUC of 35.7%, 90.1%, and 0.684 in the training cohort and 38.5%, 92.5%, and 0.756 in the validation cohort, respectively. Our findings indicated that autoantibodies against STIP1 might be a useful biomarker for early-stage ESCC detection.
Collapse
Affiliation(s)
- Yi-Wei Xu
- Department of Clinical Laboratory Medicine, Cancer Hospital, Shantou University Medical College, Shantou 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Can-Tong Liu
- Shantou University Medical College, Shantou 515041, China
| | - Xin-Yi Huang
- Shantou University Medical College, Shantou 515041, China
| | - Li-Sheng Huang
- Department of Radiation Oncology, Cancer Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yu-Hao Luo
- Department of Clinical Laboratory Medicine, Cancer Hospital, Shantou University Medical College, Shantou 515041, China
| | - Chao-Qun Hong
- Department of Oncological Research Laboratory, Cancer Hospital, Shantou University Medical College, Shantou 515041, China
| | - Hai-Peng Guo
- Department of Surgical Oncology, Cancer Hospital, Shantou University Medical College, Shantou 515041, China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, Cancer Hospital, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
- *Yu-Hui Peng: and
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
- *En-Min Li:
| |
Collapse
|
28
|
Huang Y, Li H, Wang L, Mao X, Li G. Highly Sensitive Protein Detection Based on Smart Hybrid Nanocomposite-Controlled Switch of DNA Polymerase Activity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28202-28207. [PMID: 27681499 DOI: 10.1021/acsami.6b09270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this work, we have successfully designed a smart and flexible signal amplification method based on a newly synthesized hybrid nanocomposite with switchable enzyme activity for specific and sensitive protein detection. The smart hybrid nanocomposite synthesized here is initially loaded with quenched fluorophore and a unique aptamer-inhibited DNA polymerase. It then undergoes target protein-triggered release of the fluorophore and activation of the DNA polymerase, which can thereby promote multiple catalytic reactions and recycled use of the target protein, resulting in the generation of highly amplified signals. Therefore, a small amount of target protein can lead to a large amount of signal without being consumed. In addition, the programmable control of DNA polymerase activity may effectively reduce background signal and avoid false positive results, which may further facilitate an efficient detection of small amounts of protein. By taking the detection of human stress-induced phosphoprotein 1 (STIP1) as an example, the excellent performance of this method has been verified. Furthermore, the proposed method has been used to analyze serum STIP1 from patients of ovarian cancer, showing promising application in clinical practice.
Collapse
Affiliation(s)
- Yue Huang
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, P.R. China
| | - Hao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, P.R. China
| | - Lei Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, P.R. China
| | - Xiaoxia Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University , Shanghai 200444, P.R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, P.R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University , Shanghai 200444, P.R. China
| |
Collapse
|
29
|
Bertram S, Padden J, Kälsch J, Ahrens M, Pott L, Canbay A, Weber F, Fingas C, Hoffmann AC, Vietor A, Schlaak JF, Eisenacher M, Reis H, Sitek B, Baba HA. Novel immunohistochemical markers differentiate intrahepatic cholangiocarcinoma from benign bile duct lesions. J Clin Pathol 2016; 69:619-26. [PMID: 26729014 DOI: 10.1136/jclinpath-2015-203418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022]
Abstract
AIMS The distinction between intrahepatic cholangiocarcinoma (ICC) and benign bile duct lesions can be challenging. Using our previously identified potential biomarkers for ICC, we examined whether these are useful for the differential diagnosis of ICC, bile duct adenoma and reactive bile duct proliferations in an immunohistochemical approach and identified a diagnostic marker panel including known biomarkers. METHODS Subjects included samples from 77 patients with ICC, 33 patients with bile duct adenoma and 47 patients with ductular reactions in liver cirrhosis. Our previously identified biomarkers (stress-induced phosphoprotein 1 (STIP1), SerpinH1, 14-3-3Sigma) were tested immunohistochemically following comparison with candidates from the literature (cluster of differentiation 56, heat shock protein (HSP)27, HSP70, B-cell-lymphoma2, p53, ki67). RESULTS The expression of SerpinH1 and 14-3-3Sigma was significantly higher in ICC than in bile duct adenomas and ductular reactions (p<0.05), whereas STIP1 expression was significantly higher (p<0.05) in ICC than in ductular reactions, but the difference to the bile duct adenoma group was not significant. A panel of the biomarker SerpinH1, 14-3-3Sigma and ki67 (≥2 marker positive) showed a high diagnostic accuracy (sensitivity 87.8%, specificity 95.9%, accuracy 91.8%) in the differential diagnosis of ICC versus non-malignant bile duct lesions. CONCLUSIONS This suggests that 14-3-3Sigma and SerpinH1 may be useful in the differential diagnosis of malignant, benign and reactive bile duct lesions in addition to ki67 where a cut-off of >5% might be used for the distinction of malignant and non-malignant lesions.
Collapse
Affiliation(s)
- Stefanie Bertram
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Juliet Padden
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Julia Kälsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Maike Ahrens
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Leona Pott
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Ali Canbay
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank Weber
- Department of General, Visceral and Transplantation Surgery, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Fingas
- Department of General, Visceral and Transplantation Surgery, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas C Hoffmann
- West German Cancer Center Essen, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Antonie Vietor
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Joerg F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Henning Reis
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
30
|
Gomes AV, Kazmierczak K, Cheah JX, Gilda JE, Yuan CC, Zhou Z, Szczesna-Cordary D. Proteomic analysis of physiological versus pathological cardiac remodeling in animal models expressing mutations in myosin essential light chains. J Muscle Res Cell Motil 2015; 36:447-61. [PMID: 26668058 DOI: 10.1007/s10974-015-9434-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/22/2015] [Indexed: 12/20/2022]
Abstract
In this study we aimed to provide an in-depth proteomic analysis of differentially expressed proteins in the hearts of transgenic mouse models of pathological and physiological cardiac hypertrophy using tandem mass tag labeling and liquid chromatography tandem mass spectrometry. The Δ43 mouse model, expressing the 43-amino-acid N-terminally truncated myosin essential light chain (ELC) served as a tool to study the mechanisms of physiological cardiac remodeling, while the pathological hypertrophy was investigated in A57G (Alanine 57 → Glycine) ELC mice. The results showed that 30 proteins were differentially expressed in Δ43 versus A57G hearts as determined by multiple pair comparisons of the mutant versus wild-type (WT) samples with P < 0.05. The A57G hearts showed differential expression of nine mitochondrial proteins involved in metabolic processes compared to four proteins for ∆43 hearts when both mutants were compared to WT hearts. Comparisons between ∆43 and A57G hearts showed an upregulation of three metabolically important mitochondrial proteins but downregulation of nine proteins in ∆43 hearts. The physiological model of cardiac hypertrophy (∆43) showed no changes in the levels of Ca(2+)-binding proteins relative to WT, while the pathologic model (A57G) showed the upregulation of three Ca(2+)-binding proteins, including sarcalumenin. Unique differences in chaperone and fatty acid metabolism proteins were also observed in Δ43 versus A57G hearts. The proteomics data support the results from functional studies performed previously on both animal models of cardiac hypertrophy and suggest that the A57G- and not ∆43- mediated alterations in fatty acid metabolism and Ca(2+) homeostasis may contribute to pathological cardiac remodeling in A57G hearts.
Collapse
Affiliation(s)
- Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA.
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jenice X Cheah
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA
| | - Jennifer E Gilda
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA
| | - Chen-Ching Yuan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zhiqun Zhou
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|