1
|
Tarapara B, Shah F. Role of MRE11 in DNA damage repair pathway dynamics and its diagnostic and prognostic significance in hereditary breast and ovarian cancer. BMC Cancer 2025; 25:650. [PMID: 40205351 PMCID: PMC11984277 DOI: 10.1186/s12885-025-14082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND DNA damage repair pathway genes are key components for maintaining genomic stability and are mainly associated with hereditary breast and ovarian cancer. METHODS The present study aimed to investigate the gene expression profile of DNA damage repair pathway genes, including BRCA1, BRCA2, ATM, TP53, CHEK2, MRE11, RAD50, BARD1, PALB2, and NBN, in hereditary breast and ovarian cancer patients using quantitative real-time PCR. RESULTS The study showed significant upregulation of most DNA damage repair genes in HBOC patients compared to controls, except MRE11, which was downregulated. Receiver operating characteristic (ROC) curve analysis revealed that MRE11 (p < 0.001), BRCA1 (p < 0.001), BRCA2 (p < 0.001), and PALB2 (p < 0.001) can be used as potential diagnostic biomarkers for hereditary breast and ovarian cancer. Spearman correlation analysis showed that RAD50 was significantly associated with the BRCA1/2 mutation status (p = 0.05). Furthermore, bivariate analysis revealed a strong positive correlation between BARD1 gene expression and the expression of BRCA1, PALB2, and NBN genes. Kaplan-Meier survival analysis showed that reduces expression of the MRE11 gene was associated with better overall survival. CONCLUSIONS The study findings may lead to a better understanding of the molecular mechanisms underlying hereditary breast and ovarian cancer, suggesting its role as a potential diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Bhoomi Tarapara
- Department of Life-Science, Gujarat University and Young Scientist (DHR-ICMR), Molecular Diagnostic & Research Lab-3, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky Shah
- Department of Cancer Biology, Molecular Diagnostic & Research Lab- 3, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
2
|
Giunco S, Petrara MR, Indraccolo S, Ciminale V, De Rossi A. Beyond Telomeres: Unveiling the Extratelomeric Functions of TERT in B-Cell Malignancies. Cancers (Basel) 2025; 17:1165. [PMID: 40227701 PMCID: PMC11987798 DOI: 10.3390/cancers17071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
The reactivation of telomerase enables cancer cells to maintain the telomere length, bypassing replicative senescence and achieving cellular immortality. In addition to its canonical role in telomere maintenance, accumulating evidence highlights telomere-length-independent functions of TERT, the catalytic subunit of telomerase. These extratelomeric functions involve the regulation of signaling pathways and transcriptional networks, creating feed-forward loops that promote cancer cell proliferation, resistance to apoptosis, and disease progression. This review explores the complex mechanisms by which TERT modulates key signaling pathways, such as NF-κB, AKT, and MYC, highlighting its role in driving autonomous cancer cell growth and resistance to therapy in B-cell malignancies. Furthermore, we discuss the therapeutic potential of targeting TERT's extratelomeric functions. Unlike telomere-directed approaches, which may require prolonged treatment to achieve effective telomere erosion, inhibiting TERT's extratelomeric functions offers the prospect of rapid tumor-specific effects. This strategy could complement existing chemotherapeutic regimens, providing an innovative and effective approach to managing B-cell malignancies.
Collapse
Affiliation(s)
- Silvia Giunco
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Maria Raffaella Petrara
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Stefano Indraccolo
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Vincenzo Ciminale
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
| |
Collapse
|
3
|
van Kampen F, Clark A, Soul J, Kanhere A, Glenn MA, Pettitt AR, Kalakonda N, Slupsky JR. Deletion of 17p in cancers: Guilt by (p53) association. Oncogene 2025; 44:637-651. [PMID: 39966556 DOI: 10.1038/s41388-025-03300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Monoallelic deletion of the short arm of chromosome 17 (del17p) is a recurrent abnormality in cancers with poor outcomes. Best studied in relation to haematological malignancies, associated functional outcomes are attributed mainly to loss and/or dysfunction of TP53, which is located at 17p13.1, but the wider impact of deletion of other genes located on 17p is poorly understood. 17p is one of the most gene-dense regions of the genome and includes tumour suppressor genes additional to TP53, genes essential for cell survival and proliferation, as well as small and long non-coding RNAs. In this review we utilise a data-driven approach to demarcate the extent of 17p deletion in multiple cancers and identify a common loss-of-function gene signature. We discuss how the resultant loss of heterozygosity (LOH) and haploinsufficiency may influence cell behaviour but also identify vulnerabilities that can potentially be exploited therapeutically. Finally, we highlight how emerging animal and isogenic cell line models of del17p can provide critical biological insights for cancer cell behaviour.
Collapse
Affiliation(s)
- Francisca van Kampen
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Abigail Clark
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jamie Soul
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark A Glenn
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Chakraborty S, Banerjee S. Combatting cellular immortality in cancers by targeting the shelterin protein complex. Biol Direct 2024; 19:120. [PMID: 39578854 PMCID: PMC11585132 DOI: 10.1186/s13062-024-00552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Shelterin proteins (TERF1, TERF2, TPP1, TINF2, POT1) protect telomeres, prevent unwarranted repair activation, and regulate telomerase activity. Alterations in these proteins can lead to cancer progression. This study uses an in-silico approach to examine shelterin in tumour samples across various cancers, employing mutation plots, phylogenetic trees, and sequence alignments. Network pharmacology identified TERF1 as an essential shelterin protein and transcription factors RUNX1, CTCF, and KDM2B as potential biomarkers due to their interactions with miRNAs and shelterin proteins. We performed MCODE analysis to identify subnetworks of ncRNAs interacting with the shelterin proteins. Shelterin expression predicted patient survival in 24 cancer types, with TERF1, TERF2, TINF2, and POT1 significantly expressed in testicular, AML, prostate, breast and renal cancers, respectively, and TPP1 in AML and skin cancer. Spearman and Pearson's analyses showed significant correlations of TERF1 across cancers, with near-significant correlations for all five proteins in different cancer datasets like breast cancer, kidney renal papillary and lung squamous cell carcinoma, skin cutaneous melanoma, etc.,. Shelterin expression correlated with patient survival in breast, renal, lung, skin, uterine, and gastric cancers. Insights into TPP1-associated glycans highlighted glycosylated sites contributing to tumorigenesis. This study provides molecular signatures for further functional and therapeutic research on shelterin, highlighting its potential as a target for anti-cancer therapies and promising prospects for cancer prognosis and prediction.
Collapse
Affiliation(s)
- Sohini Chakraborty
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Satarupa Banerjee
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
5
|
Wang Y, Liu Q, Liang S, Yao M, Zheng H, Hu D, Wang Y. Genetically predicted telomere length and the risk of 11 hematological diseases: a Mendelian randomization study. Aging (Albany NY) 2024; 16:4270-4281. [PMID: 38393686 PMCID: PMC10968687 DOI: 10.18632/aging.205583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Previous studies have demonstrated that various hematologic diseases (HDs) induce alterations in telomere length (TL). The aim of this study is to investigate whether genetically predicted changes in TL have an impact on the risk of developing HDs. METHODS GWAS data for TL and 11 HDs were extracted from the database. The R software package "TwoSampleMR" was employed to conduct a two-sample Mendelian randomization (MR) analysis, in order to estimate the influence of TL changes on the risk of developing the 11 HDs. RESULTS We examined the effect of TL changes on the risk of developing the 11 HDs. The IVW results revealed a significant causal association between genetically predicted longer TL and the risk of developing acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MANTLE), and hodgkin lymphoma (HODGKIN). However, there was no significant causal relationship observed between TL changes and the risk of developing chronic myeloid leukemia (CML), diffuse large b-cell lymphoma (DLBCL), marginal zone b-cell lymphoma (MARGINAL), follicular lymphoma (FOLLICULAR), monocytic leukemia (MONOCYTIC), and mature T/NK-cell lymphomas (TNK). CONCLUSIONS The MR analysis revealed a positive association between genetically predicted longer TL and an increased risk of developing ALL, AML, CLL, MANTLE, and HODGKIN. This study further supports the notion that cells with longer TL have greater proliferative and mutational potential, leading to an increased risk of certain HDs.
Collapse
Affiliation(s)
- Yimin Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shibing Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Yao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huimin Zheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongqing Hu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Deregowska A, Lewinska A, Warzybok A, Stoklosa T, Wnuk M. Telomere loss is accompanied by decreased pool of shelterin proteins TRF2 and RAP1, elevated levels of TERRA and enhanced glycolysis in imatinib-resistant CML cells. Toxicol In Vitro 2023; 90:105608. [PMID: 37149272 DOI: 10.1016/j.tiv.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Telomere length may be maintained by telomerase nucleoprotein complex and shelterin complex, namely TRF1, TRF2, TIN2, TPP1, POT1 and RAP1 proteins and modulated by TERRA expression. Telomere loss is observed during progression of chronic myeloid leukemia (CML) from the chronic phase (CML-CP) to the blastic phase (CML-BP). The introduction of tyrosine kinase inhibitors (TKIs), such as imatinib (IM), has changed outcome for majority of patients, however, a number of patients treated with TKIs may develop drug resistance. The molecular mechanisms underlying this phenomenon are not fully understood and require further investigation. In the present study, we demonstrate that IM-resistant BCR::ABL1 gene-positive CML K-562 and MEG-A2 cells are characterized by decreased telomere length, lowered protein levels of TRF2 and RAP1 and increased expression of TERRA in comparison to corresponding IM-sensitive CML cells and BCR::ABL1 gene-negative HL-60 cells. Furthermore, enhanced activity of glycolytic pathway was observed in IM-resistant CML cells. A negative correlation between a telomere length and advanced glycation end products (AGE) was also revealed in CD34+ cells isolated from CML patients. In conclusion, we suggest that affected expression of shelterin complex proteins, namely TRF2 and RAP1, TERRA levels, and glucose consumption rate may promote telomere dysfunction in IM-resistant CML cells.
Collapse
Affiliation(s)
- Anna Deregowska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland; Department of Tumor Biology and Genetics, Medical University of Warsaw, Pawinskiego 7, Warsaw 02-106, Poland.
| | - Anna Lewinska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland.
| | - Aleksandra Warzybok
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Tomasz Stoklosa
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Pawinskiego 7, Warsaw 02-106, Poland.
| | - Maciej Wnuk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland.
| |
Collapse
|
7
|
Rafat A, Dizaji Asl K, Mazloumi Z, Movassaghpour AA, Farahzadi R, Nejati B, Nozad Charoudeh H. Telomerase-based therapies in haematological malignancies. Cell Biochem Funct 2022; 40:199-212. [PMID: 35103334 DOI: 10.1002/cbf.3687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/10/2022] [Indexed: 02/02/2023]
Abstract
Telomeres are specialized genetic structures present at the end of all eukaryotic linear chromosomes. They progressively get shortened after each cell division due to end replication problems. Telomere shortening (TS) and chromosomal instability cause apoptosis and massive cell death. Following oncogene activation and inactivation of tumour suppressor genes, cells acquire mechanisms such as telomerase expression and alternative lengthening of telomeres to maintain telomere length (TL) and prevent initiation of cellular senescence or apoptosis. Significant TS, telomerase activation and alteration in expression of telomere-associated proteins are frequent features of different haematological malignancies that reflect on the progression, response to therapy and recurrence of these diseases. Telomerase is a ribonucleoprotein enzyme that has a pivotal role in maintaining the TL. However, telomerase activity in most somatic cells is insufficient to prevent TS. In 85-90% of tumour cells, the critically short telomeric length is maintained by telomerase activation. Thus, overexpression of telomerase in most tumour cells is a potential target for cancer therapy. In this review, alteration of telomeres, telomerase and telomere-associated proteins in different haematological malignancies and related telomerase-based therapies are discussed.
Collapse
Affiliation(s)
- Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Mazloumi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Nejati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
RAP1/TERF2IP-A Multifunctional Player in Cancer Development. Cancers (Basel) 2021; 13:cancers13235970. [PMID: 34885080 PMCID: PMC8657031 DOI: 10.3390/cancers13235970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary RAP1 (TERF2IP) is a member of the shelterin complex that protects telomeric DNA and plays a critical role in maintaining chromosome stability. However, mammalian RAP1 was recently found to have additional functions apart from telomeres, acting as a regulator of the NF-κB pathway and transcription factor, and has been suggested that they have putative roles in cancer development. Here, we focus on the main roles of RAP1 in different mechanisms of oncogenesis, progression, and chemoresistance, and consider the clinical significance of findings about its regulation and biological functions. Abstract Mammalian RAP1 (TERF2IP), the most conserved shelterin component, plays a pleiotropic role in the regulation of a variety of cellular processes, including cell metabolism, DNA damage response, and NF-κB signaling, beyond its canonical telomeric role. Moreover, it has been demonstrated to be involved in oncogenesis, progression, and chemoresistance in human cancers. Several mutations and different expression patterns of RAP1 in cancers have been reported. However, the functions and mechanisms of RAP1 in various cancers have not been extensively studied, suggesting the necessity of further investigations. In this review, we summarize the main roles of RAP1 in different mechanisms of cancer development and chemoresistance, with special emphasis on the contribution of RAP1 mutations, expression patterns, and regulation by non-coding RNA, and briefly discuss telomeric and non-telomeric functions.
Collapse
|
9
|
Morabito F, Tripepi G, Moia R, Recchia AG, Boggione P, Mauro FR, Bossio S, D'Arrigo G, Martino EA, Vigna E, Storino F, Fronza G, Di Raimondo F, Rossi D, Condoluci A, Colombo M, Fais F, Fabris S, Foa R, Cutrona G, Gentile M, Montserrat E, Gaidano G, Ferrarini M, Neri A. Lymphocyte Doubling Time As A Key Prognostic Factor To Predict Time To First Treatment In Early-Stage Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:684621. [PMID: 34408978 PMCID: PMC8366564 DOI: 10.3389/fonc.2021.684621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
The prognostic role of lymphocyte doubling time (LDT) in chronic lymphocytic leukemia (CLL) was recognized more than three decades ago when the neoplastic clone’s biology was almost unknown. LDT was defined as the time needed for the peripheral blood lymphocyte count to double the of the initial observed value. Herein, the LDT prognostic value for time to first treatment (TTFT) was explored in our prospective O-CLL cohort and validated in in two additional CLL cohorts. Specifically, newly diagnosed Binet stage A CLL patients from 40 Italian Institutions, representative of the whole country, were prospectively enrolled into the O-CLL1-GISL protocol (clinicaltrial.gov identifier: NCT00917540). Two independent cohorts of newly diagnosed CLL patients recruited respectively at the Division of Hematology in Novara, Italy, and at the Hospital Clinic in Barcelona, Spain, were utilized as validation cohorts. In the training cohort, TTFT of patients with LDT >12 months was significantly longer related to those with a shorter LDT. At Cox multivariate regression model, LDT ≤ 12 months maintained a significant independent relationship with shorter TTFT along with IGHV unmutated (IGHVunmut) status, 11q and 17p deletions, elevated β2M, Rai stage I-II, and NOTCH1 mutations. Based on these statistics, two regression models were constructed including the same prognostic factors with or without the LDT. The model with the LTD provided a significantly better data fitting (χ2 = 8.25, P=0.0041). The risk prediction developed including LDT had better prognostic accuracy than those without LDT. Moreover, the Harrell’C index for the scores including LDT were higher than those without LDT, although the accepted 0.70 threshold exceeded in both cases. These findings were also confirmed when the same analysis was carried out according to TTFT’s explained variation. When data were further analyzed based on the combination between LDT and IGHV mutational status in the training and validation cohorts, IGHVunmut and LDT>12months group showed a predominant prognostic role over IGHVmut LTD ≤ 12 months (P=0.006) in the O-CLL validation cohort. However, this predominance was of borden-line significance (P=0.06) in the Barcelona group, while the significant prognostic impact was definitely lost in the Novara group. Overall, in this study, we demonstrated that LDT could be re-utilized together with the more sophisticated prognostic factors to manage the follow-up plans for Binet stage A CLL patients.
Collapse
Affiliation(s)
- Fortunato Morabito
- Department of Onco-Hematology Azienda Ospedaliera (AO) Cosenza, Biotechnology Research Unit, Cosenza, Italy.,Department of Hematology and Bone Marrow Transplant Unit, Augusta Victoria Hospital, Jerusalem, Israel
| | - Giovanni Tripepi
- Centro Nazionale Ricerca Istituto di Fisiologia Clinica (CNR-IFC), Research Unit of Reggio Calabria, Reggio Calabria, Italy
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Anna Grazia Recchia
- Department of Onco-Hematology Azienda Ospedaliera (AO) Cosenza, Biotechnology Research Unit, Cosenza, Italy
| | - Paola Boggione
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Sabrina Bossio
- Department of Onco-Hematology Azienda Ospedaliera (AO) Cosenza, Biotechnology Research Unit, Cosenza, Italy
| | - Graziella D'Arrigo
- Centro Nazionale Ricerca Istituto di Fisiologia Clinica (CNR-IFC), Research Unit of Reggio Calabria, Reggio Calabria, Italy
| | | | - Ernesto Vigna
- Department of Onco-Hematology AO Cosenza, Hematology Unit AO of Cosenza, Cosenza, Italy
| | - Francesca Storino
- Department of Onco-Hematology Azienda Ospedaliera (AO) Cosenza, Biotechnology Research Unit, Cosenza, Italy
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Di Raimondo
- Division of Hematology, Policlinico, Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Adalgisa Condoluci
- Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Monica Colombo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Robin Foa
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Massimo Gentile
- Department of Onco-Hematology AO Cosenza, Hematology Unit AO of Cosenza, Cosenza, Italy
| | - Emili Montserrat
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Antonino Neri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Mechanism of Human Telomerase Reverse Transcriptase ( hTERT) Regulation and Clinical Impacts in Leukemia. Genes (Basel) 2021; 12:genes12081188. [PMID: 34440361 PMCID: PMC8392866 DOI: 10.3390/genes12081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
The proliferative capacity and continuous survival of cells are highly dependent on telomerase expression and the maintenance of telomere length. For this reason, elevated expression of telomerase has been identified in virtually all cancers, including leukemias; however, it should be noted that expression of telomerase is sometimes observed later in malignant development. This time point of activation is highly dependent on the type of leukemia and its causative factors. Many recent studies in this field have contributed to the elucidation of the mechanisms by which the various forms of leukemias increase telomerase activity. These include the dysregulation of telomerase reverse transcriptase (TERT) at various levels which include transcriptional, post-transcriptional, and post-translational stages. The pathways and biological molecules involved in these processes are also being deciphered with the advent of enabling technologies such as next-generation sequencing (NGS), ribonucleic acid sequencing (RNA-Seq), liquid chromatography-mass spectrometry (LCMS/MS), and many others. It has also been established that TERT possess diagnostic value as most adult cells do not express high levels of telomerase. Indeed, studies have shown that prognosis is not favorable in patients who have leukemias expressing high levels of telomerase. Recent research has indicated that targeting of this gene is able to control the survival of malignant cells and therefore offers a potential treatment for TERT-dependent leukemias. Here we review the mechanisms of hTERT regulation and deliberate their association in malignant states of leukemic cells. Further, we also cover the clinical implications of this gene including its use in diagnostic, prognostic, and therapeutic discoveries.
Collapse
|
11
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
12
|
Barrow TM, Wong Doo N, Milne RL, Giles GG, Willmore E, Strathdee G, Byun HM. Analysis of retrotransposon subfamily DNA methylation reveals novel early epigenetic changes in chronic lymphocytic leukemia. Haematologica 2021; 106:98-110. [PMID: 31919093 PMCID: PMC7776340 DOI: 10.3324/haematol.2019.228478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
Retrotransposons such as LINE-1 and Alu comprise >25% of the human genome. While global hypomethylation of these elements has been widely reported in solid tumours, their epigenetic dysregulation is yet to be characterised in chronic lymphocytic leukemia (CLL), and there has been scant consideration of their evolutionary history that mediates sensitivity to hypomethylation. Here, we developed an approach for locus- and evolutionary subfamily-specific analysis of retrotransposons using the Illumina Infinium Human Methylation 450K microarray platform, which we applied to publicly-available datasets from CLL and other haematological malignancies. We identified 9,797 microarray probes mapping to 117 LINE-1 subfamilies and 13,130 mapping to 37 Alu subfamilies. Of these, 10,782 were differentially methylated (PFDR<0.05) in CLL patients (n=139) compared with healthy individuals (n=14), with enrichment at enhancers (P=0.002). Differential methylation was associated with evolutionary age of LINE-1 (r2=0.31, P=0.003) and Alu (r2=0.74, P=0.002) elements, with greater hypomethylation of older subfamilies (L1M, AluJ). Locus-specific hypomethylation was associated with differential expression of proximal genes, including DCLK2, HK1, ILRUN, TANK, TBCD, TNFRSF1B and TXNRD2, with higher expression of DCLK2 and TNFRSF1B associated with reduced patient survival. Hypomethylation at nine loci was highly frequent in CLL (>90% patients) but not observed in healthy individuals or other leukaemias, and was detectable in blood samples taken prior to CLL diagnosis in 9 of 82 individuals from the Melbourne Collaborative Cohort Study. Our results demonstrate differential methylation of retrotransposons in CLL by their evolutionary heritage that modulates expression of proximal genes.
Collapse
Affiliation(s)
- Timothy M Barrow
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| | - Nicole Wong Doo
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Elaine Willmore
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gordon Strathdee
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hyang-Min Byun
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
13
|
Wu Y, Poulos RC, Reddel RR. Role of POT1 in Human Cancer. Cancers (Basel) 2020; 12:cancers12102739. [PMID: 32987645 PMCID: PMC7598640 DOI: 10.3390/cancers12102739] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The segmentation of eukaryotic genomes into discrete linear chromosomes requires processes to solve several major biological problems, including prevention of the chromosome ends being recognized as DNA breaks and compensation for the shortening that occurs when linear DNA is replicated. A specialized set of six proteins, collectively referred to as shelterin, is involved in both of these processes, and mutations in several of these are now known to be involved in cancer. Here, we focus on Protection of Telomeres 1 (POT1), the shelterin protein that appears to be most commonly involved in cancer, and consider the clinical significance of findings about its biological functions and the prevalence of inherited and acquired mutations in the POT1 gene. Abstract Telomere abnormalities facilitate cancer development by contributing to genomic instability and cellular immortalization. The Protection of Telomeres 1 (POT1) protein is an essential subunit of the shelterin telomere binding complex. It directly binds to single-stranded telomeric DNA, protecting chromosomal ends from an inappropriate DNA damage response, and plays a role in telomere length regulation. Alterations of POT1 have been detected in a range of cancers. Here, we review the biological functions of POT1, the prevalence of POT1 germline and somatic mutations across cancer predisposition syndromes and tumor types, and the dysregulation of POT1 expression in cancers. We propose a framework for understanding how POT1 abnormalities may contribute to oncogenesis in different cell types. Finally, we summarize the clinical implications of POT1 alterations in the germline and in cancer, and possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Yangxiu Wu
- Cancer Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
- ProCan® Cancer Data Science Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
| | - Rebecca C. Poulos
- ProCan® Cancer Data Science Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
| | - Roger R. Reddel
- Cancer Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead NSW 2145, Australia;
- Correspondence: ; Tel.: +61-2-8865-2901
| |
Collapse
|
14
|
Takagawa Y, Gen Y, Muramatsu T, Tanimoto K, Inoue J, Harada H, Inazawa J. miR-1293, a Candidate for miRNA-Based Cancer Therapeutics, Simultaneously Targets BRD4 and the DNA Repair Pathway. Mol Ther 2020; 28:1494-1505. [PMID: 32320642 DOI: 10.1016/j.ymthe.2020.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/04/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
BRD4, a member of the bromodomain and extra-terminal domain (BET) protein family, plays a role in the organization of super-enhancers and transcriptional activation of oncogenes in cancer and is recognized as a promising target for cancer therapy. microRNAs (miRNAs), endogenous small noncoding RNAs, cause mRNA degradation or inhibit protein translation of their target genes by binding to complementary sequences. miRNA mimics simultaneously targeting several tumor-promoting genes and BRD4 may be useful as therapeutic agents of tumor-suppressive miRNAs (TS-miRs) for cancer therapy. To investigate TS-miRs for the development of miRNA-based cancer therapeutics, we performed function-based screening in 10 cancer cell lines with a library containing 2,565 human miRNA mimics. Consequently, miR-1293, miR-876-3p, and miR-6571-5p were identified as TS-miRs targeting BRD4 in this screening. Notably, miR-1293 also suppressed DNA repair pathways by directly suppressing the DNA repair genes APEX1 (apurinic-apyrimidinic endonuclease 1), RPA1 (replication protein A1), and POLD4 (DNA polymerase delta 4, accessory subunit). Concurrent suppression of BRD4 and these DNA repair genes synergistically inhibited tumor cell growth in vitro. Furthermore, administration of miR-1293 suppressed in vivo tumor growth in a xenograft mouse model. These results suggest that miR-1293 is a candidate for the development of miRNA-based cancer therapeutics.
Collapse
Affiliation(s)
- Yuki Takagawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuyuki Gen
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kousuke Tanimoto
- Genome Laboratory, Medical Research Institute, TMDU, Tokyo, Japan
| | - Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Bioresource Research Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
15
|
Genetic variants in RPA1 associated with the response to oxaliplatin-based chemotherapy in colorectal cancer. J Gastroenterol 2019; 54:939-949. [PMID: 30923916 DOI: 10.1007/s00535-019-01571-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 03/12/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Oxaliplatin (L-OHP) is a commonly used first-line chemotherapy for colorectal cancer. Genetic variants in nucleotide excision repair (NER) pathway genes may alter genomic integrity and the efficacy of oxaliplatin-based chemotherapy in colorectal cancer. METHODS We investigated the association between genetic variants in 19 NER pathway genes and the disease control rate (DCR) and progression-free survival (PFS) among 166 colorectal cancer patients who received oxaliplatin-based chemotherapy. Expression quantitative trait loci (eQTL) analysis was performed using the Genotype-Tissue Expression (GTEx) portal. Gene harboring significant SNP was overexpressed or knocked down to demonstrate the effect on cell phenotypes with or without oxaliplatin treatment. RESULTS We found that rs5030740, located in the 3'-untranslated region (3'-UTR) of RPA1, was associated with DCR [OR = 2.99 (1.33-5.69), P = 4.00 × 10-3] and PFS [HR = 1.86 (1.30-2.68), P = 7.39 × 10-4]. The C allele was significantly associated with higher RPA1 mRNA expression levels according to eQTL analysis (P = 0.010 for sigmoid colon and P = 0.004 for transverse colon). The C allele of rs5030740 disrupted let-7e-5p binding to enhance RPA1 expression. Functionally, RPA1 knockdown inhibited cell proliferation and promoted cell apoptosis, whereas RPA1 overexpression promoted proliferation and suppressed apoptosis. Furthermore, low RPA1 expression increased sensitivity to oxaliplatin in colon cancer cells and inhibited proliferation after oxaliplatin treatment. CONCLUSIONS Our findings demonstrate an association between rs5030740 and the DCR and PFS of colorectal cancer patients. RPA1 functions as a putative oncogene in tumorigenesis by reducing sensitivity to oxaliplatin and could serve as a potential prognostic biomarker in colorectal cancer.
Collapse
|
16
|
Wysoczanska B, Dratwa M, Gebura K, Mizgala J, Mazur G, Wrobel T, Bogunia-Kubik K. Variability within the human TERT gene, telomere length and predisposition to chronic lymphocytic leukemia. Onco Targets Ther 2019; 12:4309-4320. [PMID: 31239704 PMCID: PMC6551596 DOI: 10.2147/ott.s198313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The human telomerase reverse transcriptase (TERT) gene encodes the catalytic subunit of telomerase that is essential for maintenance of telomere length. We aimed to find out whether variability within the TERT gene could be associated with telomere length and development of the disease in non-treated patients with chronic lymphocytic leukemia (CLL). Materials and methods: Telomere length, rs2736100, rs2853690, rs33954691, rs35033501 single-nucleotide polymorphisms, and variable number of tandem repeats (VNTR-MNS16A) were assessed in patients at diagnosis. In addition, blood donors served as controls for the polymorphism studies. Results: The minor rs35033501 A variant was more frequent among CLL patients than in healthy controls (OR=3.488, p=0.039). CLL patients over 60 years of age were characterized with lower disease stage at diagnosis (p=0.001 and p=0.008, for the Rai and Binet criteria, respectively). The MNS16A VNTR-243 short allele was more frequent in patients with a low disease stage (p=0.020 and p=0.028, for the Rai and Binet staging system) and also among older patients having longer telomeres (p=0.046). Patients with Rai 0-I stage were characterized with longer telomeres than those with more advanced disease (p=0.030). This relationship was especially pronounced in patients carrying the rs2736100 C allele, independently of the criteria used, ie, Binet (p=0.048) or Rai (p=0.001). Conclusion: Our results showed that the genetic variation within the TERT gene seems to play a regulatory role in CLL and telomere length.
Collapse
Affiliation(s)
- Barbara Wysoczanska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Katarzyna Gebura
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Jakub Mizgala
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, 50-001, Poland
| | - Tomasz Wrobel
- Department of Haematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw50-367, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw53-114, Poland
| |
Collapse
|
17
|
Huang H, Wang Q, He X, Wu Y, Xu C. Association between polyfluoroalkyl chemical concentrations and leucocyte telomere length in US adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:547-553. [PMID: 30414584 DOI: 10.1016/j.scitotenv.2018.10.400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 05/22/2023]
Abstract
Exposure to some environmental chemicals is reportedly associated with the leucocyte telomere length (LTL), but the effects of the non-occupational exposure to polyfluoroalkyl chemical (PFCs) on the LTL are not well understood. Using data from 773 participants in the National Health and Nutrition Examination Survey (NHANES) conducted in 1999-2000, we analysed the association between blood PFC concentrations and LTL. Coefficients (betas) and 95% confidence intervals (CIs) for the blood PFC concentrations in association with the LTL were estimated using multivariate linear regression models after adjustment for age, gender, race, body mass index (BMI), poverty income ratio, educational level, white blood cell count, C-reactive protein and other PFCs. The results identified a strong positive association between the blood perfluorooctane sulfonic acid (PFOS) concentration and LTL in adults, and no associations were found between the LTL and other PFCs. In the linear regression models, each increment of one standard deviation (SD) in the base-10-logarithm-transformed PFOS concentration was associated with a 21-bp increase in the LTL in the fully adjusted model (P = 0.033). Moreover, serum PFOS was associated with the LTL mainly in females and individuals aged 40-50, as demonstrated by stratified analyses. These results provide epidemiological evidence showing that environment-related levels of serum PFOS are positively associated with the LTL in adults.
Collapse
Affiliation(s)
- Haobin Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Qinxue Wang
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiaowei He
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Institute, Jiangsu Province Official Hospital, Nanjing 210024, Jiangsu Province, China
| | - Yanhu Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Cheng Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
18
|
Warny M, Helby J, Sengeløv H, Nordestgaard BG, Birgens H, Bojesen SE. Bone marrow mononuclear cell telomere length in acute myeloid leukaemia and high-risk myelodysplastic syndrome. Eur J Haematol 2019; 102:218-226. [PMID: 30427547 DOI: 10.1111/ejh.13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Short telomere length is a known risk factor for developing clonal haematopoietic stem cell disorders, probably due to chromosomal instability. We tested the hypotheses that bone marrow mononuclear cell telomere length change from diagnosis through chemotherapy-induced remission and relapse, and that long telomere length is associated with low risk of relapse and all-cause mortality in patients with acute myeloid leukaemia or high-risk myelodysplastic syndrome. METHODS We measured telomere length in bone marrow mononuclear cells from 233 patients at diagnosis, 112 patients at chemotherapy-induced remission and 58 patients at relapse of disease. RESULTS In patients with acute myeloid leukaemia or high-risk myelodysplastic syndrome, bone marrow mononuclear cell telomere length was similar at diagnosis and relapse, but increased after chemotherapy-induced remission. Furthermore, bone marrow mononuclear cell telomere length was longer in patients with higher age at diagnosis. There was no association between telomere length at diagnosis, remission or relapse and all-cause mortality, nor did we find any association between telomere length at diagnosis or remission and risk of relapse. CONCLUSION In patients with acute myeloid leukaemia or high-risk myelodysplastic syndrome, bone marrow mononuclear cell telomere length increased from diagnosis to remission. Furthermore, telomere length paradoxically was longer at higher age at diagnosis, even after adjusting for known risk factors of disease severity. Finally, we did not detect any prognostic information in telomere length.
Collapse
Affiliation(s)
- Marie Warny
- Department of Haematology, Herlev and Gentofte hospital, Copenhagen University Hospital, Herlev, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens Helby
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Henrik Sengeløv
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Department of Haematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Henrik Birgens
- Department of Haematology, Herlev and Gentofte hospital, Copenhagen University Hospital, Herlev, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Stig E Bojesen
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
19
|
Udristioiu A, Nica-Badea D. Signification of protein p-53 isoforms and immune therapeutic success in chronic lymphocytic leukemia. Biomed Pharmacother 2018; 106:50-53. [PMID: 29945117 PMCID: PMC11103075 DOI: 10.1016/j.biopha.2018.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022] Open
Abstract
In the past few years has used thetechnique for analyzing deletions of genes, its rearrangements, cross-reactivity or multiplications in human genome affected of genetic diseases. Was proved that, the best techniques in the investigation of malignant lymphocytes are the Flow Cytometry, Elisa, ICT and Fluorescence in situ hybridization (FISH). Last method, FISH is used as an alternative to chromosomal banding, a conventional application in molecular medicine and can detect the chromosomal rearrangements and complexes of different genes in malignant diseases, like chronic lymphocytic leukemia (CLL), acute lymphocytic leukemia, (ALL), or multiple myeloma (MM). Identification of P53 gene deletions and mutations in regions of chromosome 17 in hematological malignancies is important because these mutations have an impact on the clinical management of patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- DNA Damage
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Molecular Targeted Therapy
- Mutation
- Precision Medicine
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Protein Isoforms
- Treatment Outcome
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Aurelian Udristioiu
- Molecular Biology, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Delia Nica-Badea
- Constantin Brancusi University, Faculty of Medical Science and Behaviors, Târgu Jiu, Romania.
| |
Collapse
|
20
|
Joyce BT, Zheng Y, Nannini D, Zhang Z, Liu L, Gao T, Kocherginsky M, Murphy R, Yang H, Achenbach CJ, Roberts LR, Hoxha M, Shen J, Vokonas P, Schwartz J, Baccarelli A, Hou L. DNA Methylation of Telomere-Related Genes and Cancer Risk. Cancer Prev Res (Phila) 2018; 11:511-522. [PMID: 29895583 PMCID: PMC6800137 DOI: 10.1158/1940-6207.capr-17-0413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/03/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
Abstract
Researchers hypothesized that telomere shortening facilitates carcinogenesis. Previous studies found inconsistent associations between blood leukocyte telomere length (LTL) and cancer. Epigenetic reprogramming of telomere maintenance mechanisms may help explain this inconsistency. We examined associations between DNA methylation in telomere-related genes (TRG) and cancer. We analyzed 475 participants providing 889 samples 1 to 3 times (median follow-up, 10.1 years) from 1999 to 2013 in the Normative Aging Study. All participants were cancer-free at each visit and blood leukocytes profiled using the Illumina 450K array. Of 121 participants who developed cancer, 34 had prostate cancer, 10 melanoma, 34 unknown skin malignancies, and 43 another cancer. We examined 2,651 CpGs from 80 TRGs and applied a combination of Cox and mixed models to identify CpGs prospectively associated with cancer (at FDR < 0.05). We also explored trajectories of DNA methylation, logistic regression stratified by time to diagnosis/censoring, and cross-sectional models of LTL at first blood draw. We identified 30 CpGs on 23 TRGs whose methylation was positively associated with cancer incidence (β = 1.0-6.93) and one protective CpG in MAD1L1 (β = -0.65), of which 87% were located in TRG promoters. Methylation trajectories of 21 CpGs increased in cancer cases relative to controls; at 4 to 8 years prediagnosis/censoring, 17 CpGs were positively associated with cancer. Three CpGs were cross-sectionally associated with LTL. TRG methylation may be a mechanism through which LTL dynamics reflect cancer risk. Future research should confirm these findings and explore potential mechanisms underlying these findings, including telomere maintenance and DNA repair dysfunction. Cancer Prev Res; 11(8); 511-22. ©2018 AACR.
Collapse
Affiliation(s)
- Brian T Joyce
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Yinan Zheng
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Drew Nannini
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zhou Zhang
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lei Liu
- Division of Biostatistics, Washington University in St. Louis, St. Louis, Missouri
| | - Tao Gao
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Masha Kocherginsky
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert Murphy
- Center for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hushan Yang
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Chad J Achenbach
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mirjam Hoxha
- Molecular Epidemiology and Environmental Epigenetics Laboratory, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Jincheng Shen
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, Utah
| | - Pantel Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Andrea Baccarelli
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, New York
| | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
21
|
Eskandari E, Hashemi M, Naderi M, Bahari G, Safdari V, Taheri M. Leukocyte Telomere Length Shortening, hTERT Genetic Polymorphisms and Risk of Childhood Acute Lymphoblastic Leukemia. Asian Pac J Cancer Prev 2018; 19:1515-1521. [PMID: 29936725 PMCID: PMC6103564 DOI: 10.22034/apjcp.2018.19.6.1515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 05/28/2018] [Indexed: 01/09/2023] Open
Abstract
Background: Telomeres are involved in chromosomal stability, cellular immortality and tumorigenesis. Human telomerase reverse transcriptase (TERT) is essential for the maintenance of telomere DNA length. Recently, a variable tandem-repeats polymorphism, MNS16A, located in the downstream region of the TERT gene, was reported to have an effect on TERT expression and telomerase activity. Previous studies have linked both relative telomere length (RTL) and TERT variants with cancer. Therefore, we evaluated associations between RTL, TERT gene polymorphisms (hTERT, rs2735940 C/T and MNS16A Ins/Del) and risk of childhood acute lymphoblastic leukemia (ALL) in an Iranian population. Methods: RTL was determined by a multiplex quantitative PCR-based method, and variants of the hTERT, rs2735940 C/T and MNS16A Ins/Del, were genotyped by amplification refractory mutation system PCR (ARMS-PCR), and PCR, respectively. Results: Our results indicated that RTL was shorter in ALL patients (1.53±0.12) compared to the control group (2.04±0.19) (P=0.029). However, no associations between hTERT gene variants or haplotypes and the risk of childhood ALL were observed (P>0.05). Also hTERT polymorphisms were not associated with RTL or patient clinicopathological characteristics, including age (P=0.304), sex (P=0.061) organomegally (P=0.212) CSF involvement (P=0.966) or response to treatment (P=0.58). Conclusions: We found that telomere attrition may be related to the pathogenesis of childhood ALL, irrespective to TERT variants.
Collapse
Affiliation(s)
- Ebrahim Eskandari
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | | | | | | | | | | |
Collapse
|
22
|
Syed A, Tainer JA. The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 2018; 87:263-294. [PMID: 29709199 PMCID: PMC6076887 DOI: 10.1146/annurev-biochem-062917-012415] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genomic instability in disease and its fidelity in health depend on the DNA damage response (DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), ATP-binding cassette-ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1). The MRE11-RAD50-NBS1 (MRN) complex forms a multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the initial and sustained responses to DNA double-strand breaks, stalled replication forks, dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is an attractive target for precision medicine. Its conformations change the paradigm whereby kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational targeting, functional scaffolding, conformations storing binding energy and enabling access, interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, implements, and regulates multifunctional responses to genomic stress.
Collapse
Affiliation(s)
- Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
23
|
Kumar R, Khan R, Gupta N, Seth T, Sharma A, Kalaivani M, Sharma A. Identifying the biomarker potential of telomerase activity and shelterin complex molecule, telomeric repeat binding factor 2 (TERF2), in multiple myeloma. Leuk Lymphoma 2017; 59:1677-1689. [PMID: 29043869 DOI: 10.1080/10428194.2017.1387915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Telomere length (TL) is maintained by telomere capping protein complex called shelterin complex. We studied the possible involvement and biomarker potential of shelterin complex molecules in naive multiple myeloma (MM) patients and controls. TL, relative telomerase activity (RTA), real-time PCR and Western blotting were performed in bonemarrow sample of 70 study subjects (patients = 50; controls = 20). Significantly lowered mean TL, increased RTA and higher mRNA expression of shelterin molecules were observed in patients, while PIN2/TERF1 interacting telomerase inhibitor 1 (PINX1) showed lower mRNA expression. Significantly increased protein expression of telomeric repeat binding factor 2 (TERF2), protection of telomeres 1, adrenocortical dysplasia homolog, Tankyrase 1 and telomere reverse transcriptase were observed in MM patients. Significant correlation was observed among genes and of genes with clinical parameters. In conclusion, our findings showed alteration of these molecules at mRNA and protein levels suggested their involvement in disease progression. Optimal sensitivity and specificity of TERF2 and RTA on receiver operating characteristics curve analysis and univariate analysis demonstrated their biomarkers potential in better prediction of disease course.
Collapse
Affiliation(s)
- Raman Kumar
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Rehan Khan
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Nidhi Gupta
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Tulika Seth
- b Department of Hematology , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Atul Sharma
- c Department of Medical Oncology , BRA-IRCH, All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Mani Kalaivani
- d Department of Biostatistics , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Alpana Sharma
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| |
Collapse
|
24
|
Bagacean C, Tempescul A, Le Dantec C, Bordron A, Mohr A, Saad H, Olivier V, Zdrenghea M, Cristea V, Cartron PF, Douet-Guilbert N, Berthou C, Renaudineau Y. Alterations in DNA methylation/demethylation intermediates predict clinical outcome in chronic lymphocytic leukemia. Oncotarget 2017; 8:65699-65716. [PMID: 29029465 PMCID: PMC5630365 DOI: 10.18632/oncotarget.20081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Cytosine derivative dysregulations represent important epigenetic modifications whose impact on the clinical outcome in chronic lymphocytic leukemia (CLL) is incompletely understood. Hence, global levels of 5-methylcytosine (5-mCyt), 5-hydroxymethylcytosine (5-hmCyt), 5-carboxylcytosine (5-CaCyt) and 5-hydroxymethyluracil were tested in purified B cells from CLL patients (n = 55) and controls (n = 17). The DNA methylation 'writers' (DNA methyltransferases [DNMT1/3A/3B]), 'readers' (methyl-CpG-binding domain [MBD2/4]), 'editors' (ten-eleven translocation [TET1/2/3]) and 'modulators' (SAT1) were also evaluated. Accordingly, patients were stratified into three subgroups. First, a subgroup with a global deficit in cytosine derivatives characterized by hyperlymphocytosis, reduced median progression free survival (PFS = 52 months) and shorter treatment free survival (TFS = 112 months) was identified. In this subgroup, major epigenetic modifications were highlighted including a reduction of 5-mCyt, 5-hmCyt, 5-CaCyt associated with DNMT3A, MBD2/4 and TET1/2 downregulation. Second, the cytosine derivative analysis revealed a subgroup with a partial deficit (PFS = 84, TFS = 120 months), mainly affecting DNA demethylation (5-hmCyt reduction, SAT1 induction). Third, a subgroup epigenetically similar to controls was identified (PFS and TFS > 120 months). The prognostic impact of stratifying CLL patients within three epigenetic subgroups was confirmed in a validation cohort. In conclusion, our results suggest that dysregulations of cytosine derivative regulators represent major events acquired during CLL progression and are independent from IGHV mutational status.
Collapse
Affiliation(s)
- Cristina Bagacean
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
- Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Brest, France
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Tempescul
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
- Department of Hematology, Brest University Medical School Hospital, Brest, France
| | - Christelle Le Dantec
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
| | - Anne Bordron
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
| | - Audrey Mohr
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
| | - Hussam Saad
- Department of Hematology, Brest University Medical School Hospital, Brest, France
| | - Valerie Olivier
- Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Brest, France
| | - Mihnea Zdrenghea
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, ‘Ion Chiricuta’ Oncology Institute, Cluj-Napoca, Romania
| | - Victor Cristea
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | - Christian Berthou
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
- Department of Hematology, Brest University Medical School Hospital, Brest, France
| | - Yves Renaudineau
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from Cancéropôle Grand Ouest, Brest, France
- Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Brest, France
| |
Collapse
|
25
|
Thomay K, Fedder C, Hofmann W, Kreipe H, Stadler M, Titgemeyer J, Zander I, Schlegelberger B, Göhring G. Telomere shortening, TP53 mutations and deletions in chronic lymphocytic leukemia result in increased chromosomal instability and breakpoint clustering in heterochromatic regions. Ann Hematol 2017; 96:1493-1500. [PMID: 28691153 DOI: 10.1007/s00277-017-3055-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/19/2017] [Indexed: 01/09/2023]
Abstract
Complex karyotypes are associated with a poor prognosis in chronic lymphocytic leukemia (CLL). Using mFISH, iFISH, and T/C-FISH, we thoroughly characterized 59 CLL patients regarding parameters known to be involved in chromosomal instability: status of the genes ATM and TP53 and telomere length. Interestingly, a deletion of the ATM locus in 11q, independent of the cytogenetic context, was associated with significantly diminished risk (p<0.05) of carrying a mutation in TP53. In patients with loss or mutation of TP53, chromosomal breakage occurred more frequently (p<0.01) in (near-) heterochromatic regions. Median telomere length in patients with complex karyotypes was significantly shorter than that of healthy controls and shorter than in all other cytogenetic cohorts. Furthermore, the median telomere length of patients carrying a TP53 mutation was significantly shorter than without mutation. We conclude that telomere shortening in combination with loss of TP53 induces increased chromosomal instability with preferential involvement of (near-) heterochromatic regions.
Collapse
Affiliation(s)
- Kathrin Thomay
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Caroline Fedder
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Michael Stadler
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625, Hannover, Germany
| | - Jan Titgemeyer
- Onkologische Praxis Celle, Neumarkt 1, 29221, Celle, Germany
| | - Ingo Zander
- Onkologie am Raschplatz, Rundestr. 10, 30161, Hannover, Germany
| | - Brigitte Schlegelberger
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
26
|
Dos Santos PC, Panero J, Stanganelli C, Palau Nagore V, Stella F, Bezares R, Slavutsky I. Dysregulation of H/ACA ribonucleoprotein components in chronic lymphocytic leukemia. PLoS One 2017; 12:e0179883. [PMID: 28666010 PMCID: PMC5493334 DOI: 10.1371/journal.pone.0179883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/06/2017] [Indexed: 11/18/2022] Open
Abstract
Telomeres are protective repeats of TTAGGG sequences located at the end of human chromosomes. They are essential to maintain chromosomal integrity and genome stability. Telomerase is a ribonucleoprotein complex containing an internal RNA template (hTR) and a catalytic subunit (hTERT). The human hTR gene consists of three major domains; among them the H/ACA domain is essential for telomere biogenesis. H/ACA ribonucleoprotein (RNP) complex is composed of four evolutionary conserved proteins, including dyskerin (encoded by DKC1 gene), NOP10, NHP2 and GAR1. In this study, we have evaluated the expression profile of the H/ACA RNP complex genes: DKC1, NOP10, NHP2 and GAR1, as well as hTERT and hTR mRNA levels, in patients with chronic lymphocytic leukemia (CLL). Results were correlated with the number and type of genetic alteration detected by conventional cytogenetics and FISH (fluorescence in situ hybridization), IGHV (immunoglobulin heavy chain variable region) mutational status, telomere length (TL) and clinico-pathological characteristics of patients. Our results showed significant decreased expression of GAR1, NOP10, DKC1 and hTR, as well as increased mRNA levels of hTERT in patients compared to controls (p≤0.04). A positive correlation between the expression of GAR1-NHP2, GAR1-NOP10, and NOP10-NHP2 (p<0.0001), were observed. The analysis taking into account prognostic factors showed a significant increased expression of hTERT gene in unmutated-IGHV cases compared to mutated-CLL patients (p = 0.0185). The comparisons among FISH groups exhibited increased expression of DKC1 in cases with two or more alterations with respect to no abnormalities, trisomy 12 and del13q14, and of NHP2 and NOP10 compared to those with del13q14 (p = 0.03). The analysis according to TL showed a significant increased expression of hTERT (p = 0.0074) and DKC1 (p = 0.0036) in patients with short telomeres compared to those with long TL. No association between gene expression and clinical parameters was found. Our results suggest a role for these telomere associated genes in genomic instability and telomere dysfunction in CLL.
Collapse
Affiliation(s)
- Patricia Carolina Dos Santos
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Julieta Panero
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Virginia Palau Nagore
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Flavia Stella
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Raimundo Bezares
- Servicio de Hematología, Hospital Teodoro Álvarez, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
27
|
Adam R, Díez-González L, Ocaña A, Šeruga B, Amir E, Templeton AJ. Prognostic role of telomere length in malignancies: A meta-analysis and meta-regression. Exp Mol Pathol 2017; 102:455-474. [PMID: 28506770 DOI: 10.1016/j.yexmp.2017.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/18/2017] [Accepted: 05/11/2017] [Indexed: 01/22/2023]
Abstract
Telomere length (TL) has been associated with several health conditions including cancer. To quantify the effect of TL on outcomes in malignancies and explore the role of type of TL measurement we conducted a librarian-led systematic search of electronic databases identified publications exploring the prognostic role of TL on cancer outcomes. Overall survival (OS) was the primary outcome measure while other time-to-event endpoints were secondary outcomes. Data from studies reporting a hazard ratio (HR) with 95% confidence interval (CI) and/or p-value were pooled in a meta-analysis. HRs were weighted by generic inverse variance and computed by random effects modeling. All statistical tests were two-sided. Sixty-one studies comprising a total of 14,720 patients were included of which 41 (67%) reported OS outcomes. Overall, the pooled HR for OS was 0.88 (95%CI=0.69-1.11, p=0.28). Long (versus short) telomeres were associated with improved outcomes in chronic lymphatic leukemia (CLL) and urothelial cancer (HR=0.45, 95%CI=0.29-0.71 and HR=0.68, 95%CI=0.46-1.00, respectively), conversely worse OS was seen with hepatocellular carcinoma (HR=1.90, 95%CI=1.51-2.38). Pooled HRs (95% CI) for progression-free survival, relapse/disease-free survival, cancer-specific survival, and treatment-free survival were 0.56 (0.41-0.76), 0.76 (0.53-1.10), 0.72 (0.48-1.10), and 0.48 (0.39-0.60), respectively. There was substantial heterogeneity of tissues and methods used for TL measurement and no clear association between TL and outcome was identified in subgroups. In conclusion, there is inconsistent effect of TL on cancer outcomes possibly due to variable methods of measurement. Standardization of measurement and reporting of TL is warranted before the prognostic value of TL can be accurately assessed.
Collapse
Affiliation(s)
- Roman Adam
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Laura Díez-González
- Traslational Research laboratory, Albacete University Hospital, and Regional Biomedical Research Center, Castilla La Mancha University, Albacete, Spain
| | - Alberto Ocaña
- Traslational Research laboratory, Albacete University Hospital, and Regional Biomedical Research Center, Castilla La Mancha University, Albacete, Spain
| | - Boštjan Šeruga
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Eitan Amir
- Divisions of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, Canada
| | - Arnoud J Templeton
- Faculty of Medicine, University of Basel, Basel, Switzerland; Department of Medical Oncology and Hematology, St. Claraspital, Basel, Switzerland.
| |
Collapse
|
28
|
Li R, Gu J, Heymach JV, Shu X, Zhao L, Han B, Ye Y, Roth J, Wu X. Hypoxia pathway genetic variants predict survival of non-small-cell lung cancer patients receiving platinum-based chemotherapy. Carcinogenesis 2017; 38:419-424. [PMID: 28186269 DOI: 10.1093/carcin/bgx014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/03/2017] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a hallmark of solid tumors and has been implicated in the development of advanced disease and poor clinical outcome. In this multi-stage study, we aimed to assess whether genetic variations in hypoxia pathway genes might affect overall survival (OS) in patients with advanced-stage non-small cell lung cancer (NSCLC). We genotyped 598 potentially functional and tagging single nucleotide polymorphisms (SNPs) in 42 genes of the hypoxia pathway in 602 advanced stage NSCLC patients who received platinum-based chemotherapy or chemoradiation (discovery phase). Significant SNPs were validated in an additional 278 advanced stage patients (validation phase). Cox proportional hazard regression analysis was used to evaluate the association of each SNP with OS. Results showed in chemotherapy only group the median survival time (MST) of NSCLC patients with RPA1: rs2270412 AA+GA genotype versus GG genotype was 10.5 versus 12.7 month [P = 0.004, hazard ratio (HR) = 1.42, 95% CI: 1.16-1.74, combined set]. The MST of patients with EXO1: rs9350 GA+AA genotype versus GG genotypes was 13.2 months versus 11.5 months (P = 0.009, HR = 0.70, 95% CI: 0.56-0.87, combined set). Patients harboring two unfavorable genotypes had a 2.02-fold increased risk of death (P = 3.16E-6) and chemoradiation would improve survival for them (HR = 0.75, 95% CI: 0.51-1.10, P = 0.27, combined set). The MST for patients with 0, 1, and 2 unfavorable genotypes was 13.2, 12.7 and 8.9 months, respectively (P = 0.0002, combined set). In summary, two variants in RPA1 and EXO1 were associated with poor survival in NSCLC patients treated by platinum-based chemotherapy. Adding radiotherapy could improve survival in patients harboring these risk genotypes.
Collapse
Affiliation(s)
- Rong Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.,Department of Epidemiology
| | | | - John V Heymach
- Department of Thoracic/Head and Neck Med Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Lina Zhao
- Department of Epidemiology.,The Fourth Military Medical University, XiAn 710032, China and
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | | | - Jack Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
29
|
Furtado FM, Scheucher PS, Santana BA, Scatena NF, Calado RT, Rego EM, Matos DM, Falcão RP. Telomere length analysis in monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia Binet A. ACTA ACUST UNITED AC 2017; 50:e6019. [PMID: 28423121 PMCID: PMC5441285 DOI: 10.1590/1414-431x20176019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/22/2017] [Indexed: 11/22/2022]
Abstract
Monoclonal B-cell lymphocytosis (MBL) is an asymptomatic clinical entity characterized by the proliferation of monoclonal B cells not meeting the diagnosis criteria for chronic lymphocytic leukemia (CLL). MBL may precede the development of CLL, but the molecular mechanisms responsible for disease progression and evolution are not completely known. Telomeres are usually short in CLL and their attrition may contribute to disease evolution. Here, we determined the telomere lengths of CD5+CD19+ cells in MBL, CLL, and healthy volunteers. Twenty-one CLL patients, 11 subjects with high-count MBL, and 6 with low-count MBL were enrolled. Two hundred and sixty-one healthy volunteers aged 0 to 88 years were studied as controls. After diagnosis confirmation, a flow cytometry CD19+CD5+-based cell sorting was performed for the study groups. Telomere length was determined by qPCR. Telomere length was similar in the 3 study groups but shorter in these groups compared to normal age-matched subjects that had been enrolled in a previous study from our group. These findings suggest that telomere shortening is an early event in CLL leukemogenesis.
Collapse
Affiliation(s)
- F M Furtado
- Divisão de Hematologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - P S Scheucher
- Divisão de Hematologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - B A Santana
- Divisão de Hematologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - N F Scatena
- Divisão de Hematologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - R T Calado
- Divisão de Hematologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - E M Rego
- Divisão de Hematologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - D M Matos
- Hospital Universitário Walter Cantidio, Faculdade de Medicina de Fortaleza, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R P Falcão
- Divisão de Hematologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
30
|
Rampazzo E, Bojnik E, Trentin L, Bonaldi L, Del Bianco P, Frezzato F, Visentin A, Facco M, Semenzato G, De Rossi A. Role of miR-15a/miR-16-1 and the TP53 axis in regulating telomerase expression in chronic lymphocytic leukemia. Haematologica 2017; 102:e253-e256. [PMID: 28385779 DOI: 10.3324/haematol.2016.157669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Enrica Rampazzo
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova
| | - Engin Bojnik
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova
| | - Livio Trentin
- Department of Clinical and Experimental Medicine, Hematology Section, University of Padova
| | | | | | - Federica Frezzato
- Department of Clinical and Experimental Medicine, Hematology Section, University of Padova
| | - Andrea Visentin
- Department of Clinical and Experimental Medicine, Hematology Section, University of Padova
| | - Monica Facco
- Department of Clinical and Experimental Medicine, Hematology Section, University of Padova
| | - Gianpietro Semenzato
- Department of Clinical and Experimental Medicine, Hematology Section, University of Padova
| | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova .,Istituto Oncologico Veneto-IRCCS, Padova, Italy
| |
Collapse
|
31
|
Chang HB, Zou JZ, He C, Zeng R, Li YY, Ma FF, Liu Z, Ye H, Wu JX. Association between Long Interspersed Nuclear Element-1 Methylation and Relative Telomere Length in Wilms Tumor. Chin Med J (Engl) 2016; 128:3055-61. [PMID: 26608986 PMCID: PMC4795265 DOI: 10.4103/0366-6999.169071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: DNA hypomethylation of long interspersed nuclear elements-1 (LINEs-1) occurs during carcinogenesis, whereas information addressing LINE-1 methylation in Wilms tumor (WT) is limited. The main purpose of our study was to quantify LINE-1 methylation levels and evaluate their relationship with relative telomere length (TL) in WT. Methods: We investigated LINE-1 methylation and relative TL using bisulfite-polymerase chain reaction (PCR) pyrosequencing and quantitative PCR, respectively, in 20 WT tissues, 10 normal kidney tissues and a WT cell line. Significant changes were analyzed by t-tests. Results: LINE-1 methylation levels were significantly lower (P < 0.05) and relative TLs were significantly shorter (P < 0.05) in WT compared with normal kidney. There was a significant positive relationship between LINE-1 methylation and relative TL in WT (r = 0.671, P = 0.001). LINE-1 Methylation levels were significantly associated with global DNA methylation (r = 0.332, P < 0.01). In addition, relative TL was shortened and LINE-1 methylation was decreased in a WT cell line treated with the hypomethylating agent 5-aza-2′-deoxycytidine compared with untreated WT cell line. Conclusion: These results suggest that LINE-1 hypomethylation is common and may be linked to telomere shortening in WT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jian-Xin Wu
- Department of Biochemistry, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
32
|
Doerrenberg M, Kloetgen A, Hezaveh K, Wössmann W, Bleckmann K, Stanulla M, Schrappe M, McHardy AC, Borkhardt A, Hoell JI. T-cell acute lymphoblastic leukemia in infants has distinct genetic and epigenetic features compared to childhood cases. Genes Chromosomes Cancer 2016; 56:159-167. [DOI: 10.1002/gcc.22423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mareike Doerrenberg
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
| | - Andreas Kloetgen
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Braunschweig Germany
| | - Kebria Hezaveh
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
| | - Wilhelm Wössmann
- Department of Pediatric Hematology and Oncology; University Hospital Gießen and Marburg; Gießen Germany
| | - Kirsten Bleckmann
- ALL BFM Trial Center; University Hospital Schleswig-Holstein; Kiel Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology; Hannover Medical School; Hannover Germany
| | - Martin Schrappe
- Department of Pediatrics; University Medical Center Schleswig-Holstein; Kiel Germany
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Braunschweig Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
| | - Jessica I Hoell
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
| |
Collapse
|
33
|
Alegría-Torres JA, Velázquez-Villafaña M, López-Gutiérrez JM, Chagoyán-Martínez MM, Rocha-Amador DO, Costilla-Salazar R, García-Torres L. Association of Leukocyte Telomere Length and Mitochondrial DNA Copy Number in Children from Salamanca, Mexico. Genet Test Mol Biomarkers 2016; 20:654-659. [PMID: 27622310 DOI: 10.1089/gtmb.2016.0176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM The purpose of this study was to determine if there is a correlation between telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) in children. METHODS Leukocyte TL and mtDNAcn were measured by real-time PCR in 98 Mexican children 6-12 years of age from Salamanca, México. RESULTS A positive association was found between TL and mtDNAcn after a natural log transformation (Pearson correlation r = 0.72; p < 0.0001). No correlation between age and body mass index (BMI) biomarkers was found, and no differences according to sex were observed. After adjustment for these variables, a linear regression model showed an association between TL and mtDNAcn (β = 0.739, 95% confidence interval 0.594; 0.885, p < 0.0001). CONCLUSIONS A strong positive correlation between TL and mtDNAcn was found in the study population; age, sex, and BMI seemed to have no effect on this correlation.
Collapse
Affiliation(s)
- Jorge Alejandro Alegría-Torres
- 1 División de Ciencias Naturales y Exactas, Departamento de Farmacia, Campus Guanajuato, Universidad de Guanajuato , Guanajuato, México .,2 Laboratorio de Investigación Molecular en Nutrición, LIMON, Universidad del Centro de México UCEM , San Luis Potosí, México
| | - Marion Velázquez-Villafaña
- 1 División de Ciencias Naturales y Exactas, Departamento de Farmacia, Campus Guanajuato, Universidad de Guanajuato , Guanajuato, México
| | - Juan Manuel López-Gutiérrez
- 3 División de Ciencias de la Vida, Departamento de Ciencias Ambientales, Universidad de Guanajuato , Guanajuato, México
| | - Marcela M Chagoyán-Martínez
- 4 Unidad Interdisciplinaria de Ingeniería, Campus Guanajuato, Instituto Politécnico Nacional , Silao, Guanajuato, México
| | - Diana O Rocha-Amador
- 1 División de Ciencias Naturales y Exactas, Departamento de Farmacia, Campus Guanajuato, Universidad de Guanajuato , Guanajuato, México
| | - Rogelio Costilla-Salazar
- 3 División de Ciencias de la Vida, Departamento de Ciencias Ambientales, Universidad de Guanajuato , Guanajuato, México
| | - Lizeth García-Torres
- 2 Laboratorio de Investigación Molecular en Nutrición, LIMON, Universidad del Centro de México UCEM , San Luis Potosí, México
| |
Collapse
|
34
|
Guièze R, Pages M, Véronèse L, Combes P, Lemal R, Gay-bellile M, Chauvet M, Callanan M, Kwiatkowski F, Pereira B, Vago P, Bay JO, Tournilhac O, Tchirkov A. Telomere status in chronic lymphocytic leukemia with TP53 disruption. Oncotarget 2016; 7:56976-56985. [PMID: 27486974 PMCID: PMC5302966 DOI: 10.18632/oncotarget.10927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/10/2016] [Indexed: 12/23/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), telomere dysfunction is associated with poor outcomes. TP53 is involved in cellular responses to dysfunctional telomeres, and its inactivation is the strongest adverse prognostic factor for CLL. Given the biological relationship between TP53 and telomeres, and their prognostic value, it is important to improve our understanding of the impact of TP53 alterations on telomeres. We performed a comprehensive study of the deletions and mutations of the TP53 gene and telomere parameters, including hTERT and the shelterin complex, in 115 CLL patients. We found that any type of TP53 alteration was associated with very short telomeres and high hTERT expression, independently of other biological CLL features. Patients with disrupted TP53 showed telomere deletions and chromosomal end-to-end fusions in cells with complex karyotypes. TP53 disruption was characterized by downregulation of shelterin genes. Interestingly, low expression of POT1, TPP1 and TIN2 was also found in some patients with wild-type TP53 and had an adverse impact on progression-free survival after standard genotoxic therapy. In conclusion, we have demonstrated that patients with disrupted TP53 have severe telomere dysfunction and high genomic instability. Thus, the telomeric profile could be tested as a biomarker in CLL patients treated with new therapeutic agents.
Collapse
Affiliation(s)
- Romain Guièze
- CHU Clermont-Ferrand, Hématologie Clinique, Clermont-Ferrand, France
- EA 7283 CREaT, Université d’Auvergne, Clermont-Ferrand, France
| | - Mélanie Pages
- Department de Neuropathologie, Hôpital Sainte-Anne, Paris, France
- Université Paris Descartes, Paris, France
| | - Lauren Véronèse
- Université Clermont 1, UFR Médecine, Cytologie Histologie Embryologie Cytogénétique, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, France
- EA 4677 ERTICa, Université d’Auvergne, Clermont-Ferrand, France
| | - Patricia Combes
- Université Clermont 1, UFR Médecine, Cytologie Histologie Embryologie Cytogénétique, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, France
- EA 4677 ERTICa, Université d’Auvergne, Clermont-Ferrand, France
| | - Richard Lemal
- CHU Clermont-Ferrand, Hématologie Clinique, Clermont-Ferrand, France
- EA 7283 CREaT, Université d’Auvergne, Clermont-Ferrand, France
| | - Mathilde Gay-bellile
- Université Clermont 1, UFR Médecine, Cytologie Histologie Embryologie Cytogénétique, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, France
- EA 4677 ERTICa, Université d’Auvergne, Clermont-Ferrand, France
| | - Martine Chauvet
- Inserm U823, Institut Albert Bonniot & Université Joseph Fourier, Grenoble, France
- CHU Grenoble, Laboratoire de Génétique Onco-hématologique, Grenoble, France
| | - Mary Callanan
- Inserm U823, Institut Albert Bonniot & Université Joseph Fourier, Grenoble, France
- CHU Grenoble, Laboratoire de Génétique Onco-hématologique, Grenoble, France
| | - Fabrice Kwiatkowski
- EA 4677 ERTICa, Université d’Auvergne, Clermont-Ferrand, France
- Centre Jean Perrin, Clermont-Ferrand, France
| | - Bruno Pereira
- Direction de la Recherche Clinique et de l’Innovation, Département de Biostatistiques, CHU Clermont-Ferrand, Clermont Ferrand, France
| | - Philippe Vago
- Université Clermont 1, UFR Médecine, Cytologie Histologie Embryologie Cytogénétique, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, France
- EA 4677 ERTICa, Université d’Auvergne, Clermont-Ferrand, France
| | - Jacques-Olivier Bay
- CHU Clermont-Ferrand, Hématologie Clinique, Clermont-Ferrand, France
- EA 7283 CREaT, Université d’Auvergne, Clermont-Ferrand, France
| | - Olivier Tournilhac
- CHU Clermont-Ferrand, Hématologie Clinique, Clermont-Ferrand, France
- EA 7283 CREaT, Université d’Auvergne, Clermont-Ferrand, France
| | - Andreï Tchirkov
- Université Clermont 1, UFR Médecine, Cytologie Histologie Embryologie Cytogénétique, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, France
- EA 4677 ERTICa, Université d’Auvergne, Clermont-Ferrand, France
| |
Collapse
|
35
|
Upchurch GM, Haney SL, Opavsky R. Aberrant Promoter Hypomethylation in CLL: Does It Matter for Disease Development? Front Oncol 2016; 6:182. [PMID: 27563627 PMCID: PMC4980682 DOI: 10.3389/fonc.2016.00182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
Over the last 30 years, studies of aberrant DNA methylation in hematologic malignancies have been dominated by the primary focus of understanding promoter hypermethylation. These efforts not only resulted in a better understanding of the basis of epigenetic silencing of tumor suppressor genes but also resulted in approval of hypomethylating agents for the treatment of several malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global methylation profiling coupled with the use of mouse models suggest that aberrant promoter hypomethylation is also a frequent event in hematologic malignancies, particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects gene expression and, therefore, may play an important role in disease pathogenesis. Here, we review recent findings and discuss the potential involvement of aberrant promoter hypomethylation in CLL.
Collapse
Affiliation(s)
- Garland Michael Upchurch
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, NE , USA
| | - Staci L Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center , Omaha, NE , USA
| | - Rene Opavsky
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
36
|
Grgurevic S, Berquet L, Quillet-Mary A, Laurent G, Récher C, Ysebaert L, Cazaux C, Hoffmann JS. 3R gene expression in chronic lymphocytic leukemia reveals insight into disease evolution. Blood Cancer J 2016; 6:e429. [PMID: 27258610 PMCID: PMC5141354 DOI: 10.1038/bcj.2016.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- S Grgurevic
- INSERM, U1037, CRCT, Toulouse, France.,University Toulouse III Paul Sabatier, U1037, CRCT, Toulouse, France.,CNRS, ERL5294, CRCT, Toulouse, France.,Equipe 'Labellisée LA LIGUE CONTRE LE CANCER 2013', Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex Toucan, CRCT, Inserm U1037, CNRS ERL5294, Toulouse, France
| | - L Berquet
- INSERM, U1037, CRCT, Toulouse, France.,University Toulouse III Paul Sabatier, U1037, CRCT, Toulouse, France.,CNRS, ERL5294, CRCT, Toulouse, France
| | - A Quillet-Mary
- INSERM, U1037, CRCT, Toulouse, France.,University Toulouse III Paul Sabatier, U1037, CRCT, Toulouse, France.,CNRS, ERL5294, CRCT, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex Toucan, CRCT, Inserm U1037, CNRS ERL5294, Toulouse, France
| | - G Laurent
- INSERM, U1037, CRCT, Toulouse, France.,University Toulouse III Paul Sabatier, U1037, CRCT, Toulouse, France.,CNRS, ERL5294, CRCT, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex Toucan, CRCT, Inserm U1037, CNRS ERL5294, Toulouse, France.,Department of Hematology, Institut Universitaire du Cancer (IUC), Toulouse, France
| | - C Récher
- INSERM, U1037, CRCT, Toulouse, France.,University Toulouse III Paul Sabatier, U1037, CRCT, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex Toucan, CRCT, Inserm U1037, CNRS ERL5294, Toulouse, France.,Department of Hematology, Institut Universitaire du Cancer (IUC), Toulouse, France
| | - L Ysebaert
- INSERM, U1037, CRCT, Toulouse, France.,University Toulouse III Paul Sabatier, U1037, CRCT, Toulouse, France.,CNRS, ERL5294, CRCT, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex Toucan, CRCT, Inserm U1037, CNRS ERL5294, Toulouse, France.,Department of Hematology, Institut Universitaire du Cancer (IUC), Toulouse, France
| | | | - J S Hoffmann
- INSERM, U1037, CRCT, Toulouse, France.,University Toulouse III Paul Sabatier, U1037, CRCT, Toulouse, France.,CNRS, ERL5294, CRCT, Toulouse, France.,Equipe 'Labellisée LA LIGUE CONTRE LE CANCER 2013', Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer Labex Toucan, CRCT, Inserm U1037, CNRS ERL5294, Toulouse, France
| |
Collapse
|
37
|
Ojha J, Codd V, Nelson CP, Samani NJ, Smirnov IV, Madsen NR, Hansen HM, de Smith AJ, Bracci PM, Wiencke JK, Wrensch MR, Wiemels JL, Walsh KM. Genetic Variation Associated with Longer Telomere Length Increases Risk of Chronic Lymphocytic Leukemia. Cancer Epidemiol Biomarkers Prev 2016; 25:1043-9. [PMID: 27197291 DOI: 10.1158/1055-9965.epi-15-1329] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/31/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world. Shorter mean telomere length in leukemic cells has been associated with more aggressive disease. Germline polymorphisms in telomere maintenance genes affect telomere length and may contribute to CLL susceptibility. METHODS We collected genome-wide data from two groups of patients with CLL (N = 273) and two control populations (N = 5,725). In ancestry-adjusted case-control comparisons, we analyzed eight SNPs in genes definitively associated with inter-individual variation in leukocyte telomere length (LTL) in prior genome-wide association studies: ACYP2, TERC, NAF1, TERT, OBFC1, CTC1, ZNF208, and RTEL1 RESULTS: Three of the eight LTL-associated SNPs were associated with CLL risk at P < 0.05, including those near: TERC [OR, 1.46; 95% confidence interval (CI), 1.15-1.86; P = 1.8 × 10(-3)], TERT (OR = 1.23; 95% CI, 1.02-1.48; P = 0.030), and OBFC1 (OR, 1.36; 95% CI, 1.08-1.71; P = 9.6 × 10(-3)). Using a weighted linear combination of the eight LTL-associated SNPs, we observed that CLL patients were predisposed to longer LTL than controls in both case-control sets (P = 9.4 × 10(-4) and 0.032, respectively). CLL risk increased monotonically with increasing quintiles of the weighted linear combination. CONCLUSIONS Genetic variants in TERC, TERT, and OBFC1 are associated with both longer LTL and increased CLL risk. Because the human CST complex competes with shelterin for telomeric DNA, future work should explore the role of OBFC1 and other CST complex genes in leukemogenesis. IMPACT A genetic predisposition to longer telomere length is associated with an increased risk of CLL, suggesting that the role of telomere length in CLL etiology may be distinct from its role in disease progression. Cancer Epidemiol Biomarkers Prev; 25(7); 1043-9. ©2016 AACR.
Collapse
Affiliation(s)
- Juhi Ojha
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom. National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom. National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom. National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Ivan V Smirnov
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Nils R Madsen
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Helen M Hansen
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Adam J de Smith
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - John K Wiencke
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Margaret R Wrensch
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Joseph L Wiemels
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California. Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Kyle M Walsh
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Program in Neurologic Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| | | |
Collapse
|
38
|
Giunco S, Rampazzo E, Celeghin A, Petrara MR, De Rossi A. Telomere and Telomerase in Carcinogenesis: Their Role as Prognostic Biomarkers. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0087-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Panero J, Stella F, Schutz N, Fantl DB, Slavutsky I. Differential Expression of Non-Shelterin Genes Associated with High Telomerase Levels and Telomere Shortening in Plasma Cell Disorders. PLoS One 2015; 10:e0137972. [PMID: 26366868 PMCID: PMC4569359 DOI: 10.1371/journal.pone.0137972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/24/2015] [Indexed: 12/25/2022] Open
Abstract
Telomerase, shelterin proteins and various interacting factors, named non-shelterin proteins, are involved in the regulation of telomere length (TL). Altered expression of any of these telomere-associated genes can lead to telomere dysfunction, causing genomic instability and disease development. In this study, we investigated the expression profile of a set of non-shelterin genes involved in essential processes such as replication (RPA1), DNA damage repair pathways (MRE11-RAD50-NBS1) and stabilization of telomerase complex (DKC1), in 35 patients with monoclonal gammopathy of undetermined significance (MGUS) and 40 cases with multiple myeloma (MM). Results were correlated with hTERT expression, TL and clinical parameters. Overall, a significant increase in DKC1, RAD50, MRE11, NBS1 and RPA1 expression along with an upregulation of hTERT in MM compared with MGUS was observed (p≤0.032). Interestingly, in both entities high mRNA levels of non-shelterin genes were associated with short TLs and increased hTERT expression. Significant differences were observed for DKC1 in MM (p ≤0.026), suggesting an important role for this gene in the maintenance of short telomeres by telomerase in myeloma plasma cells. With regard to clinical associations, we observed a significant increase in DKC1, RAD50, MRE11 and RPA1 expression in MM cases with high bone marrow infiltration (p≤0.03) and a tendency towards cases with advanced ISS stage, providing the first evidence of non-shelterin genes associated to risk factors in MM. Taken together, our findings bring new insights into the intricate mechanisms by which telomere-associated proteins collaborate in the maintenance of plasma cells immortalization and suggest a role for the upregulation of these genes in the progression of the disease.
Collapse
Affiliation(s)
- Julieta Panero
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
- * E-mail:
| | - Flavia Stella
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Natalia Schutz
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Dorotea Beatriz Fantl
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
40
|
Telomere shortening associated with increased genomic complexity in chronic lymphocytic leukemia. Tumour Biol 2015; 36:8317-24. [DOI: 10.1007/s13277-015-3556-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023] Open
|