1
|
Maioli M, Cocchi S, Gambarotti M, Benini S, Magagnoli G, Gamberi G, Griffoni C, Gasbarrini A, Ghermandi R, Noli LE, Alcherigi C, Ferrari C, Bianchi G, Asioli S, Pignotti E, Righi A. Conventional Spinal Chordomas: Investigation of SMARCB1/INI1 Protein Expression, Genetic Alterations in SMARCB1 Gene, and Clinicopathological Features in 89 Patients. Cancers (Basel) 2024; 16:2808. [PMID: 39199581 PMCID: PMC11353163 DOI: 10.3390/cancers16162808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
The partial loss of SMARCB1/INI1 expression has recently been reported in skull base conventional chordomas, with possible therapeutic implications. We retrospectively analyzed 89 patients with conventional spinal chordomas to investigate the differences in the immunohistochemical expression of SMARCB1/INI1 and the underlying genetic alterations in the SMARCB1 gene. Moreover, we assessed the correlation of clinicopathological features (age, gender, tumor size, tumor location, surgical margins, Ki67 labelling index, SMARCB1/INI1 pattern, previous surgery, previous treatment, type of surgery, and the Charlson Comorbidity Index) with patient survival. Our cohort included 51 males and 38 females, with a median age at diagnosis of 61 years. The median tumor size at presentation was 5.9 cm. The 5-year overall survival (OS) and 5-year disease-free survival (DFS) rates were 90.8% and 54.9%, respectively. Partial SMARCB1/INI1 loss was identified in 37 (41.6%) patients with conventional spinal chordomas (27 mosaic and 10 clonal). The most frequent genetic alteration detected was the monoallelic deletion of a portion of the long arm of chromosome 22, which includes the SMARCB1 gene. Partial loss of SMARCB1/INI1 was correlated with cervical-thoracic-lumbar tumor location (p = 0.033) and inadequate surgical margins (p = 0.007), possibly due to the high degree of tumor invasiveness in this site. Among all the considered clinicopathological features related to patient survival, only tumor location in the sacrococcygeal region and adequate surgical margins positively impacted DFS. In conclusion, partial SMARCB1/INI1 loss, mostly due to 22q deletion, was detected in a significant number of patients with conventional spinal chordomas and was correlated with mobile spine location and inadequate surgical margins.
Collapse
Affiliation(s)
- Margherita Maioli
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Stefania Cocchi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Stefania Benini
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanna Magagnoli
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Gabriella Gamberi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cristiana Griffoni
- Department of Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alessandro Gasbarrini
- Department of Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Riccardo Ghermandi
- Department of Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Luigi Emanuele Noli
- Department of Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Alcherigi
- Department of Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cristina Ferrari
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giuseppe Bianchi
- Department of Orthopedic Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Elettra Pignotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Righi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
2
|
Zhong N, Yu D, Yang M, Lu X, Zhang Q, Wei W, Jiao J, Yang X, Zhu Z, Chen S, Xiao J. A retrospective study on the mechanism underlying quick transfer from response to resistance in a repeated recurrent chordoma patient with molecular alterations treated with Palbociclib. J Cancer Res Clin Oncol 2024; 150:95. [PMID: 38369555 PMCID: PMC10874909 DOI: 10.1007/s00432-023-05560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 02/20/2024]
Abstract
PURPOSE There is no approved targeted therapy for chordoma at present. Although several preclinical studies have implied the potential applicability of CDK4/6 inhibitor for this rare tumor, no clinical evidence has been documented so far. The purpose of this study was to elucidate the therapeutic efficacy of CDK4/6 inhibitor for chordoma. METHODS The next generation sequencing (as for whole-exome sequencing, WES assay) and immunohistochemical (IHC) staining of the chordoma tissue from a patient with an advanced lesion were performed before treatment. Then, the patient was treated with Palbociclib for 4 months until progression occurred in the 5th month. Surgical resection was implemented and the tumor tissue was obtained postoperatively for assessment of molecular alterations. RESULTS Molecular features of the tumor before medical treatment suggested applicability of CDK4/6 inhibitor and the patient showed partial response (PR) according to Choi Criteria after 4 months treating with Palbociclib until progression occurred. Then, a drastic molecular alteration of the tumor as represented by emergence of dramatic E2F amplification, which is known to induce CDK4/6 independent cell-cycle entry and progression after treatment, was detected. The findings in this patient demonstrated tumor evolution under drug pressure. CONCLUSION The findings of the present study suggest the feasibility of Palbociclib for the clinical treatment of chordoma, and imply the necessity of combination therapies rather single drug administration due to the quick resistance of the tumor to Palbociclib treatment.
Collapse
Affiliation(s)
- Nanzhe Zhong
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Dong Yu
- Center of Translational Medicine, Naval Medical University, Shanghai, China
| | - Minglei Yang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xingyi Lu
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Qiangzu Zhang
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Jiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinghai Yang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhi Zhu
- Department of Pathology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Su Chen
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Jianru Xiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
3
|
Yang R, Ai Y, Bai T, Lu XX, He G. Williams-Beuren syndrome in pediatric T-cell acute lymphoblastic leukemia: A rare case report and review of literature. Medicine (Baltimore) 2024; 103:e36976. [PMID: 38363891 PMCID: PMC10869033 DOI: 10.1097/md.0000000000036976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Williams-Beuren syndrome (WBS) is a rare genetic disorder caused by hemizygous microdeletion of contiguous genes on chromosome 7q11.23. Although the phenotype features extensive heterogeneity in severity and performance, WBS is not considered to be a predisposing factor for cancer development. Currently, hematologic cancers, mainly Burkitt lymphoma, are rarely reported in patients with WBS. Here in, we report a unique case of T-cell acute lymphoblastic leukemia in a male child with WBS. METHODS This retrospective study analyzed the clinical data of this case receiving chemotherapy were analyzed. This is a retrospective study. RESULTS The patient, who exhibited a typical WBS phenotype and presented with hemorrhagic spots. Chromosomal genome-wide chip analysis (CMA) revealed abnormalities on chromosomes 7 and 9. The fusion gene STIL-TAL1 and mutations in BCL11B, NOTCH1, and USP7 have also been found and all been associated with the occurrence of T-cell leukemia. The patient responded well to the chemotherapy. CONCLUSION To the best of our knowledge, this is the first reported case of WBS in T-cell acute lymphoblastic leukemia. We want to emphasize that the occurrence of leukemia in this patient might be related to the loss of 7q11.23 and microdeletion of 9p21.3 (including 3 TSGs), but the relationship between WBS and malignancy remains unclear. Further studies are required to clarify the relationship between WBS and malignancy.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yuan Ai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ting Bai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiao-Xi Lu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Guoqian He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
4
|
Noya C, D’Alessandris QG, Doglietto F, Pallini R, Rigante M, Mattogno PP, Gessi M, Montano N, Parrilla C, Galli J, Olivi A, Lauretti L. Treatment of Clival Chordomas: A 20-Year Experience and Systematic Literature Review. Cancers (Basel) 2023; 15:4493. [PMID: 37760463 PMCID: PMC10527079 DOI: 10.3390/cancers15184493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Clival chordomas are rare but aggressive skull base tumors that pose significant treatment challenges and portend dismal prognosis. The aim of this study was to highlight the advantages and limitations of available treatments, to furnish prognostic indicators, and to shed light on novel therapeutic strategies. We conducted a retrospective study of clival chordomas that were surgically treated at our institution from 2003 to 2022; for comparison purposes, we provided a systematic review of published surgical series and, finally, we reviewed the most recent advancements in molecular research. A total of 42 patients underwent 85 surgeries; median follow-up was 15.8 years, overall survival rate was 49.9% at 10 years; meanwhile, progression-free survival was 26.6% at 10 years. A significantly improved survival was observed in younger patients (<50 years), in tumors with Ki67 ≤ 5% and when adjuvant radiotherapy was performed. To conclude, clival chordomas are aggressive tumors in which surgery and radiotherapy play a fundamental role while molecular targeted drugs still have an ancillary position. Recognizing risk factors for recurrence and performing a molecular characterization of more aggressive lesions may be the key to future effective treatment.
Collapse
Affiliation(s)
- Carolina Noya
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.N.); (Q.G.D.); (F.D.); (R.P.); (M.G.); (N.M.); (J.G.); (A.O.)
| | - Quintino Giorgio D’Alessandris
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.N.); (Q.G.D.); (F.D.); (R.P.); (M.G.); (N.M.); (J.G.); (A.O.)
- Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy;
| | - Francesco Doglietto
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.N.); (Q.G.D.); (F.D.); (R.P.); (M.G.); (N.M.); (J.G.); (A.O.)
- Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy;
| | - Roberto Pallini
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.N.); (Q.G.D.); (F.D.); (R.P.); (M.G.); (N.M.); (J.G.); (A.O.)
| | - Mario Rigante
- Otolaryngology, Head and Neck Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.R.); (C.P.)
| | - Pier Paolo Mattogno
- Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy;
| | - Marco Gessi
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.N.); (Q.G.D.); (F.D.); (R.P.); (M.G.); (N.M.); (J.G.); (A.O.)
- Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Nicola Montano
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.N.); (Q.G.D.); (F.D.); (R.P.); (M.G.); (N.M.); (J.G.); (A.O.)
- Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy;
| | - Claudio Parrilla
- Otolaryngology, Head and Neck Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.R.); (C.P.)
| | - Jacopo Galli
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.N.); (Q.G.D.); (F.D.); (R.P.); (M.G.); (N.M.); (J.G.); (A.O.)
- Otolaryngology, Head and Neck Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.R.); (C.P.)
| | - Alessandro Olivi
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.N.); (Q.G.D.); (F.D.); (R.P.); (M.G.); (N.M.); (J.G.); (A.O.)
- Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy;
| | - Liverana Lauretti
- School of Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.N.); (Q.G.D.); (F.D.); (R.P.); (M.G.); (N.M.); (J.G.); (A.O.)
- Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy;
| |
Collapse
|
5
|
Tanaka M, Nakamura T. Targeting epigenetic aberrations of sarcoma in CRISPR era. Genes Chromosomes Cancer 2023; 62:510-525. [PMID: 36967299 DOI: 10.1002/gcc.23142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sarcomas are rare malignancies that exhibit diverse biological, genetic, morphological, and clinical characteristics. Genetic alterations, such as gene fusions, mutations in transcriptional machinery components, histones, and DNA methylation regulatory molecules, play an essential role in sarcomagenesis. These mutations induce and/or cooperate with specific epigenetic aberrations required for the growth and maintenance of sarcomas. Appropriate mouse models have been developed to clarify the significance of genetic and epigenetic interactions in sarcomas. Studies using the mouse models for human sarcomas have demonstrated major advances in our understanding the developmental processes as well as tumor microenvironment of sarcomas. Recent technological progresses in epigenome editing will not only improve the studies using animal models but also provide a direct clue for epigenetic therapies. In this manuscript, we review important epigenetic aberrations in sarcomas and their representative mouse models, current methods of epigenetic editing using CRISPR/dCas9 systems, and potential applications in sarcoma studies and therapeutics.
Collapse
Affiliation(s)
- Miwa Tanaka
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Baluszek S, Kober P, Rusetska N, Wągrodzki M, Mandat T, Kunicki J, Bujko M. DNA methylation, combined with RNA sequencing, provide novel insight into molecular classification of chordomas and their microenvironment. Acta Neuropathol Commun 2023; 11:113. [PMID: 37434245 DOI: 10.1186/s40478-023-01610-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Chordomas are rare tumors of notochord remnants, occurring mainly in the sacrum and skull base. Despite of their unusually slow growth, chordomas are highly invasive and the involvement of adjacent critical structures causes treatment challenges. Due to the low incidence, the molecular pathogenesis of this entity remains largely unknown. This study aimed to investigate DNA methylation abnormalities and their impact on gene expression profiles in skull base chordomas. 32 tumor and 4 normal nucleus pulposus samples were subjected to DNA methylation and gene expression profiling with methylation microarrays and RNA sequencing. Genome-wide DNA methylation analysis revealed two distinct clusters for chordoma (termed subtypes C and I) with different patterns of aberrant DNA methylation. C Chordomas were characterized by general hypomethylation with hypermethylation of CpG islands, while I chordomas were generally hypermethylated. These differences were reflected by distinct distribution of differentially methylated probes (DMPs). Differentially methylated regions (DMRs) were identified, indicating aberrant methylation in known tumor-related genes in booth chordoma subtypes and regions encoding small RNAs in subtype C chordomas. Correlation between methylation and expression was observed in a minority of genes. Upregulation of TBXT in chordomas appeared to be related to lower methylation of tumor-specific DMR in gene promoter. Gene expression-based clusters of tumor samples did not overlap with DNA methylation-based subtypes. Nevertheless, they differ in transcriptomic profile that shows immune infiltration in I chordomas and up-regulation of cell cycle in C chordomas. Immune enrichment in chordomas I was confirmed with 3 independent deconvolution methods and immunohistochemistry. Copy number analysis showed higher chromosomal instability in C chordomas. Nine out of eight had deletion of CDKN2A/B loci and downregulation of genes encoded in related chromosomal band. No significant difference in patients' survival was observed between tumor subtypes, however, shorter survival was observed in patients with higher number of copy number alterations.
Collapse
Affiliation(s)
- Szymon Baluszek
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Rusetska
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Wągrodzki
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| |
Collapse
|
7
|
Righi A, Cocchi S, Maioli M, Zoli M, Guaraldi F, Carretta E, Magagnoli G, Pasquini E, Melotti S, Vornetti G, Tonon C, Mazzatenta D, Asioli S. SMARCB1/INI1 loss in skull base conventional chordomas: a clinicopathological and molecular analysis. Front Oncol 2023; 13:1160764. [PMID: 37456229 PMCID: PMC10348873 DOI: 10.3389/fonc.2023.1160764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The loss of SMARCB1/INI1 protein has been recently described in poorly differentiated chordoma, an aggressive and rare disease variant typically arising from the skull base. Methods Retrospective study aimed at 1) examining the differential immunohistochemical expression of SMARCB1/INI1 in conventional skull base chordomas, including the chondroid subtype; 2) evaluating SMARCB1 gene deletions/copy number gain; and 3) analyzing the association of SMARCB1/INI1 expression with clinicopathological parameters and patient survival. Results 65 patients (35 men and 30 women) affected by conventional skull base chordoma, 15 with chondroid subtype, followed for >48 months after surgery were collected. Median age at surgery was 50 years old (range 9-79). Mean tumor size was 3.6 cm (range 2-9.5). At immunohistochemical evaluation, a partial loss of SMARCB1/INI1 (>10% of neoplastic examined cells) was observed in 21 (32.3%) cases; the remaining 43 showed a strong nuclear expression. Fluorescence in situ hybridization (FISH) analysis was performed in 15/21 (71.4%) cases of the chordomas with partial SMARCB1/INI1 loss of expression. Heterozygous deletion of SMARCB1 was identified in 9/15 (60%) cases and was associated to copy number gain in one case; no deletion was found in the other 6 (40%) cases, 3 of which presenting with a copy number gain. No correlations were found between partial loss of SMARCB1/INI1 and the clinicopathological parameters evaluated (i.e., age, tumor size, gender, tumor size and histotype). Overall 5-year survival and 5-year disease-free rates were 82% and 59%, respectively. According to log-rank test analysis the various clinico-pathological parameters and SMARCB1/INI1 expression did not impact on overall and disease free-survival. Discussion Partial loss of SMARCB1/INI1, secondary to heterozygous deletion and/or copy number gain of SMARCB1, is not peculiar of aggressive forms, but can be identified by immunohistochemistry in a significant portion of conventional skull base chordomas, including the chondroid subtype. The variable protein expression does not appear to correlate with clinicopathological parameters, nor survival outcomes, but still, it could have therapeutic implications.
Collapse
Affiliation(s)
| | | | | | - Matteo Zoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Federica Guaraldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | | | - Ernesto Pasquini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sofia Melotti
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Diego Mazzatenta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sofia Asioli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
He J, Xu T, Zhao F, Guo J, Hu Q. SETD2-H3K36ME3: an important bridge between the environment and tumors. Front Genet 2023; 14:1204463. [PMID: 37359376 PMCID: PMC10288198 DOI: 10.3389/fgene.2023.1204463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Epigenetic regulation plays an important role in the occurrence, development and treatment of tumors. The histone methyltransferase SET-domain-containing 2 (SETD2) plays a key role in mammalian epigenetic regulation by catalyzing histone methylation and interacting with RNA polymerase II to mediate transcription elongation and mismatch repair. As an important bridge between the environment and tumors, SETD2-H3K36me3 plays an important role in the occurrence and development of tumors. Many tumors, including renal cancer, gastric cancer, lung cancer, are closely related to SETD2 gene mutations. As a key component of common tumor suppressor mechanisms, SETD2-H3K36me3is an important target for clinical disease diagnosis and treatment. Here, we reviewed the structure and function of the SETD2 and how SETD2-H3K36me3 functions as a bridge between the environment and tumors to provide an in-depth understanding of its role in the occurrence and development of various tumors, which is of great significance for future disease diagnosis and treatment.
Collapse
Affiliation(s)
- Jiahui He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tangpeng Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fangrui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Vuong HG, Le MK, Nguyen TPX, Eschbacher K. De novo Versus Secondary Dedifferentiated Chordomas: A Population-Based Analysis and Integrated Individual Participant Data Meta-Analysis. World Neurosurg 2023; 173:208-217.e7. [PMID: 36804481 DOI: 10.1016/j.wneu.2023.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE There is a lack of data about the clinicopathological and molecular characteristics of de novo versus secondary dedifferentiated chordoma (DC). This integrated study aimed to investigate the similarities and differences in clinicopathological manifestations, prognoses, and molecular profiles of these 2 subtypes. METHODS We accessed the Surveillance, Epidemiology, and End Results (SEER) Program for DC cases from 1975 to 2020. Three electronic databases were also searched for additional DCs. Individual patient data of DC patients from SEER and published literature were combined in integrated analyses. RESULTS After excluding duplicated patients, we identified 14 and 116 DC patients from SEER and published literature, respectively. There were 74 de novo, 39 secondary, and 18 cases with unknown origin. Our results showed that de novo and secondary DCs were not statistically different in terms of age, gender, primary location, tumor size, distant metastasis at diagnosis, extent of resection, and chemotherapy receipt. There was limited available molecular data for de novo and secondary DCs, though examples TP53 mutations were found in both. In addition, the rates of tumor relapse, metastasis during follow-up, and patient mortality were also comparable between the 2 groups. In the multivariate Cox regression model, we demonstrated that gross total removal and radiotherapy use were associated with prolonged survival of DCs. CONCLUSIONS De novo and secondary DCs were statistically comparable in terms of patient demographics, clinical manifestations, and prognoses. Gross total excision and radiotherapy were optimal treatments associated with better outcomes of DC patients.
Collapse
Affiliation(s)
- Huy Gia Vuong
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
| | - Minh-Khang Le
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Truong P X Nguyen
- Department of Pathology, Chulalongkorn University, Bangkok, Thailand
| | - Kathryn Eschbacher
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Makise N, Shimoi T, Sunami K, Aoyagi Y, Kobayashi H, Tanaka S, Kawai A, Yonemori K, Ushiku T, Yoshida A. Loss of H3K27 trimethylation in a distinct group of de-differentiated chordoma of the skull base. Histopathology 2023; 82:420-430. [PMID: 36217885 DOI: 10.1111/his.14823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 01/20/2023]
Abstract
De-differentiated chordoma is defined as a high-grade sarcoma lacking notochordal differentiation, which arises in association with conventional chordoma. The mechanism underlying de-differentiation remains unclear. We immunohistochemically investigated trimethylation at lysine 27 of histone 3 (H3K27me3) in nine de-differentiated chordomas. The tumours occurred at the skull base (n = 5) or the sacrum (n = 4) in four men and five women with a median age of 50 years. De-differentiation occurred de novo in four cases and at recurrence/metastasis in five cases. Five tumours retained H3K27me3, whereas four showed complete loss of H3K27me3 only in the de-differentiated component, while the conventional chordoma component retained H3K27me3. All the H3K27me3-negative tumours showed co-loss of dimethylation at H3K27 (H3K27me2), consistent with inactivation of polycomb repressive complex 2. Two genetically analysed H3K27me3-negative tumours harboured EED homozygous deletions. All four H3K27me3-negative de-differentiated chordomas affected the skull base of young or middle-aged women. Unlike dense proliferation of highly pleomorphic spindle or epithelioid cells in the H3K27me3-positive de-differentiated chordomas, all H3K27me3-negative tumours displayed swirling fascicles of relatively uniform spindle cells with alternating cellularity and perivascular accentuation, resembling malignant peripheral nerve sheath tumour (MPNST). Rhabdomyoblastic differentiation was present in one H3K27me3-negative tumour. We identified a novel group of de-differentiated chordomas in the skull base that lost H3K27me3/me2 only in the de-differentiated component, which was associated with EED homozygous deletion and MPNST-like histology. Our data suggest a distinct 'polycomb-type' de-differentiation pathway in chordoma, similar to a recently described de-differentiated chondrosarcoma with H3K27me3 loss.
Collapse
Affiliation(s)
- Naohiro Makise
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo.,Rare Cancer Center, National Cancer Center Hospital, Tokyo
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo
| | - Yasuko Aoyagi
- Department of Precision Cancer Medicine, Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo
| | - Hiroshi Kobayashi
- Department of Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo
| | - Akira Kawai
- Rare Cancer Center, National Cancer Center Hospital, Tokyo.,Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo.,Rare Cancer Center, National Cancer Center Hospital, Tokyo
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo
| | - Akihiko Yoshida
- Rare Cancer Center, National Cancer Center Hospital, Tokyo.,Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
11
|
Passeri T, Dahmani A, Masliah-Planchon J, El Botty R, Courtois L, Vacher S, Marangoni E, Nemati F, Roman-Roman S, Adle-Biassette H, Mammar H, Froelich S, Bièche I, Decaudin D. In vivo efficacy assessment of the CDK4/6 inhibitor palbociclib and the PLK1 inhibitor volasertib in human chordoma xenografts. Front Oncol 2022; 12:960720. [PMID: 36505864 PMCID: PMC9732546 DOI: 10.3389/fonc.2022.960720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background Management of advanced chordomas remains delicate considering their insensitivity to chemotherapy. Homozygous deletion of the regulatory gene CDKN2A has been described as the most frequent genetic alteration in chordomas and may be considered as a potential theranostic marker. Here, we evaluated the tumor efficacy of the CDK4/6 inhibitor palbociclib, as well as the PLK1 inhibitor volasertib, in three chordoma patient-derived xenograft (PDX) models to validate and identify novel therapeutic approaches. Methods From our chordoma xenograft panel, we selected three models, two of them harboring a homozygous deletion of CDKN2A/2B genes, and the last one a PBRM1 pathogenic variant (as control). For each model, we tested the palbociclib and volasertib drugs with pharmacodynamic studies together with RT-PCR and RNAseq analyses. Results For palbociclib, we observed a significant tumor response for one of two models harboring the deletion of CDKN2A/2B (p = 0.02), and no significant tumor response in the PBRM1-mutated PDX; for volasertib, we did not observe any response in the three tested models. RT-PCR and RNAseq analyses showed a correlation between cell cycle markers and responses to palbociclib; finally, RNAseq analyses showed a natural enrichment of the oxidative phosphorylation genes (OxPhos) in the palbociclib-resistant PDX (p = 0.02). Conclusion CDK4/6 inhibition appears as a promising strategy to manage advanced chordomas harboring a loss of CDKN2A/2B. However, further preclinical studies are strongly requested to confirm it and to understand acquired or de novo resistance to palbociclib, in the peculiar view of a targeting of the oxidative phosphorylation genes.
Collapse
Affiliation(s)
- Thibault Passeri
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, Paris, France
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | | | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | - Laura Courtois
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, University of Paris Saclay, Paris, France
| | - Homa Adle-Biassette
- Department of Pathology, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, Paris, France
| | - Hamid Mammar
- Department of Radiotherapy - Proton Therapy Center, Institut Curie, Paris-Saclay University, Orsay, France
| | - Sébastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| |
Collapse
|
12
|
Zhao C, Tan T, Zhang E, Wang T, Gong H, Jia Q, Liu T, Yang X, Zhao J, Wu Z, Wei H, Xiao J, Yang C. A chronicle review of new techniques that facilitate the understanding and development of optimal individualized therapeutic strategies for chordoma. Front Oncol 2022; 12:1029670. [PMID: 36465398 PMCID: PMC9708744 DOI: 10.3389/fonc.2022.1029670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/19/2022] [Indexed: 09/01/2023] Open
Abstract
Chordoma is a rare malignant bone tumor that mainly occurs in the sacrum and the clivus/skull base. Surgical resection is the treatment of choice for chordoma, but the local recurrence rate is high with unsatisfactory prognosis. Compared with other common tumors, there is not much research and individualized treatment for chordoma, partly due to the rarity of the disease and the lack of appropriate disease models, which delay the discovery of therapeutic strategies. Recent advances in modern techniques have enabled gaining a better understanding of a number of rare diseases, including chordoma. Since the beginning of the 21st century, various chordoma cell lines and animal models have been reported, which have partially revealed the intrinsic mechanisms of tumor initiation and progression with the use of next-generation sequencing (NGS) techniques. In this study, we performed a systematic overview of the chordoma models and related sequencing studies in a chronological manner, from the first patient-derived chordoma cell line (U-CH1) to diverse preclinical models such as the patient-derived organoid-based xenograft (PDX) and patient-derived organoid (PDO) models. The use of modern sequencing techniques has discovered mutations and expression signatures that are considered potential treatment targets, such as the expression of Brachyury and overactivated receptor tyrosine kinases (RTKs). Moreover, computational and bioinformatics techniques have made drug repositioning/repurposing and individualized high-throughput drug screening available. These advantages facilitate the research and development of comprehensive and personalized treatment strategies for indicated patients and will dramatically improve their prognoses in the near feature.
Collapse
Affiliation(s)
- Chenglong Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Tao Tan
- Department of Orthopedics, 905 Hospital of People’s Liberation Army Navy, Shanghai, China
| | - E. Zhang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Ting Wang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Haiyi Gong
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Qi Jia
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Tielong Liu
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Xinghai Yang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Jian Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Zhipeng Wu
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Haifeng Wei
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Jianru Xiao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Cheng Yang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| |
Collapse
|
13
|
Freed DM, Sommer J, Punturi N. Emerging target discovery and drug repurposing opportunities in chordoma. Front Oncol 2022; 12:1009193. [PMID: 36387127 PMCID: PMC9647139 DOI: 10.3389/fonc.2022.1009193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 09/01/2023] Open
Abstract
The development of effective and personalized treatment options for patients with rare cancers like chordoma is hampered by numerous challenges. Biomarker-guided repurposing of therapies approved in other indications remains the fastest path to redefining the treatment paradigm, but chordoma's low mutation burden limits the impact of genomics in target discovery and precision oncology efforts. As our knowledge of oncogenic mechanisms across various malignancies has matured, it's become increasingly clear that numerous properties of tumors transcend their genomes - leading to new and uncharted frontiers of therapeutic opportunity. In this review, we discuss how the implementation of cutting-edge tools and approaches is opening new windows into chordoma's vulnerabilities. We also note how a convergence of emerging observations in chordoma and other cancers is leading to the identification and evaluation of new therapeutic hypotheses for this rare cancer.
Collapse
|
14
|
Xia B, Biswas K, Foo TK, Torres T, Riedel-Topper M, Southon E, Kang Z, Huo Y, Reid S, Stauffer S, Zhou W, Zhu B, Koka H, Yepes S, Brodie SA, Jones K, Vogt A, Zhu B, Cater B, Freedman ND, Hicks B, Yeager M, Chanock SJ, Couch F, Parry DM, Monteiro AN, Goldstein AM, Carvalho MA, Sharan SK, Yang XR. Rare germline variants in PALB2 and BRCA2 in familial and sporadic chordoma. Hum Mutat 2022; 43:1396-1407. [PMID: 35762214 PMCID: PMC9444938 DOI: 10.1002/humu.24427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Chordoma is a rare bone tumor with genetic risk factors largely unknown. We conducted a whole-exome sequencing (WES) analysis of germline DNA from 19 familial chordoma cases in five pedigrees and 137 sporadic chordoma patients and identified 17 rare germline variants in PALB2 and BRCA2, whose products play essential roles in homologous recombination (HR) and tumor suppression. One PALB2 variant showed disease cosegregation in a family with four affected people or obligate gene carrier. Chordoma cases had a significantly increased burden of rare variants in both genes when compared to population-based controls. Four of the six PALB2 variants identified from chordoma patients modestly affected HR function and three of the 11 BRCA2 variants caused loss of function in experimental assays. These results, together with previous reports of abnormal morphology and Brachyury expression of the notochord in Palb2 knockout mouse embryos and genomic signatures associated with HR defect and HR gene mutations in advanced chordomas, suggest that germline mutations in PALB2 and BRCA2 may increase chordoma susceptibility. Our data shed light on the etiology of chordoma and support the previous finding that PARP-1 inhibitors may be a potential therapy for some chordoma patients.
Collapse
Affiliation(s)
- Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Thiago Torres
- Instituto Nacional de Câncer, Divisão de Pesquisa Clínica, Rio de Janeiro 20230-130, Brazil
| | - Maximilian Riedel-Topper
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Zhihua Kang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yanying Huo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Weiyin Zhou
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Hela Koka
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Sally Yepes
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Seth A. Brodie
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Aurelie Vogt
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Brian Cater
- American Cancer Society, Inc, Atlanta, GA 30303, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Fergus Couch
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dilys M. Parry
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Alvaro N. Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Marcelo A. Carvalho
- Instituto Nacional de Câncer, Divisão de Pesquisa Clínica, Rio de Janeiro 20230-130, Brazil
- Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro 20270-021, Brazil
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
15
|
Walker CJ, Chang H, Henegar L, Kashyap T, Shacham S, Sommer J, Wick MJ, Levy J, Landesman Y. Selinexor inhibits growth of patient derived chordomas in vivo as a single agent and in combination with abemaciclib through diverse mechanisms. Front Oncol 2022; 12:808021. [PMID: 36059685 PMCID: PMC9434827 DOI: 10.3389/fonc.2022.808021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Chordoma is a rare cancer that grows in the base of the skull and along the mobile spine from remnants of embryonic notochord tissue. The cornerstone of current treatments is surgical excision with adjuvant radiation therapy, although complete surgical removal is not always possible. Chordomas have high rates of metastasis and recurrence, with no approved targeted agents. Selinexor and eltanexor are selective inhibitors of nuclear export (SINE) that prevent the karyopherin protein exportin-1 (XPO1) from shuttling its cargo proteins through nuclear pore complexes out of the nucleus and into the cytoplasm. As cancer cells overexpress XPO1, and many of its cargos include tumor suppressor proteins and complexes bound to oncogene mRNAs, XPO1 inhibition can suppress oncogene translation and restore tumor suppressor protein activity in different cancer types. SINE compounds have exhibited anti-cancer activity in a wide range of hematological and solid tumor malignancies. Here we demonstrate the preclinical effectiveness of SINE compounds used as single agents or in combination with either the proteasome inhibitor, bortezomib, or the CDK4/6 inhibitor, abemaciclib, against various patient- derived xenograft (PDX) mouse models of chordoma, which included clival and sacral chordomas from adult or pediatric patients with either primary or metastatic disease, with either differentiated or poorly differentiated subtypes. SINE treatment significantly impaired tumor growth in all five tested chordoma models, with the selinexor and abemaciclib combination showing the strongest activity (tumor growth inhibition of 78-92%). Immunohistochemistry analysis of excised tumors revealed that selinexor treatment resulted in marked induction of apoptosis and reduced cell proliferation, as well as nuclear accumulation of SMAD4, and reduction of Brachyury and YAP1. RNA sequencing showed selinexor treatment resulted in differences in activated and repressed signaling pathways between the PDX models, including changes in WNT signaling, E2F pathways and glucocorticoid receptor signaling. This is consistent with SINE-compound mediated XPO1 inhibition exhibiting anti-cancer activity through a broad range of different mechanisms in different molecular chordoma subsets. Our findings validate the need for further investigation into selinexor as a targeted therapeutic for chordoma, especially in combination with abemaciclib.
Collapse
Affiliation(s)
- Christopher J. Walker
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Hua Chang
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Leah Henegar
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Trinayan Kashyap
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Sharon Shacham
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Josh Sommer
- Department of Research, Chordoma Foundation, Durham, NC, United States
| | - Michael J. Wick
- Department of Research, XenoSTART, San Antonio, TX, United States
| | - Joan Levy
- Department of Research, Chordoma Foundation, Durham, NC, United States
| | - Yosef Landesman
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
- *Correspondence: Yosef Landesman,
| |
Collapse
|
16
|
Tu K, Lee S, Roy S, Sawant A, Shukla H. Dysregulated Epigenetics of Chordoma: Prognostic Markers and Therapeutic Targets. Curr Cancer Drug Targets 2022; 22:678-690. [PMID: 35440334 DOI: 10.2174/1568009622666220419122716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Chordoma is a rare, slow-growing sarcoma that is locally aggressive, and typically resistant to conventional chemo- and radiotherapies. Despite its low incidence, chordoma remains a clinical challenge because therapeutic options for chordoma are limited, and little is known about the molecular mechanisms involved in resistance to therapies. Furthermore, there are currently no established predictive or prognostic biomarkers to follow disease progression or treatment. Whole-genome sequencing of chordoma tissues has demonstrated a low-frequency mutation rate compared to other cancers. This has generated interest in the role of epigenetic events in chordoma pathogenesis. In this review, we discuss the current understanding of the epigenetic drivers of chordoma and their potential applications in prognosis and the development of new therapies.
Collapse
Affiliation(s)
- Kevin Tu
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland school of Medicine, Baltimore, MD, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA
| | - Sang Lee
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Sanjit Roy
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland school of Medicine, Baltimore, MD, USA
| | - Amit Sawant
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland school of Medicine, Baltimore, MD, USA
| | - Hem Shukla
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland school of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Guinebretière JM, de Pinieux G. Les tumeurs notochordales : de la notochorde au chordome. Ann Pathol 2022; 42:249-258. [DOI: 10.1016/j.annpat.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
|
18
|
Samarasinghe KTG, An E, Genuth MA, Chu L, Holley SA, Crews CM. OligoTRAFTACs: A generalizable method for transcription factor degradation. RSC Chem Biol 2022; 3:1144-1153. [PMID: 36128504 PMCID: PMC9428672 DOI: 10.1039/d2cb00138a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Targeted transcription factor degradation using oligonucleotide-based transcription factor targeting chimeras (TRAFTACs).
Collapse
Affiliation(s)
- Kusal T. G. Samarasinghe
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Elvira An
- Department of Pharmacology, Yale University, New Haven, CT, 06511, USA
| | - Miriam A. Genuth
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Ling Chu
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Scott A. Holley
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Craig M. Crews
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
- Department of Pharmacology, Yale University, New Haven, CT, 06511, USA
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
19
|
Xiao C, Fan T, Tian H, Zheng Y, Zhou Z, Li S, Li C, He J. H3K36 trimethylation-mediated biological functions in cancer. Clin Epigenetics 2021; 13:199. [PMID: 34715919 PMCID: PMC8555273 DOI: 10.1186/s13148-021-01187-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Histone modification is an important form of epigenetic regulation. Thereinto, histone methylation is a critical determination of chromatin states, participating in multiple cellular processes. As a conserved histone methylation mark, histone 3 lysine 36 trimethylation (H3K36me3) can mediate multiple transcriptional-related events, such as the regulation of transcriptional activity, transcription elongation, pre-mRNA alternative splicing, and RNA m6A methylation. Additionally, H3K36me3 also contributes to DNA damage repair. Given the crucial function of H3K36me3 in genome regulation, the roles of H3K36me3 and its sole methyltransferase SETD2 in pathogenesis, especially malignancies, have been emphasized in many studies, and it is conceivable that disruption of histone methylation regulatory network composed of "writer", "eraser", "reader", and the mutation of H3K36me3 codes have the capacity of powerfully modulating cancer initiation and development. Here we review H3K36me3-mediated biological processes and summarize the latest findings regarding its role in cancers. We highlight the significance of epigenetic combination therapies in cancers.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuofeng Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
20
|
Zuccato JA, Patil V, Mansouri S, Liu JC, Nassiri F, Mamatjan Y, Chakravarthy A, Karimi S, Almeida JP, Bernat AL, Hasen M, Singh O, Khan S, Kislinger T, Sinha N, Froelich S, Adle-Biassette H, Aldape KD, De Carvalho DD, Zadeh G. DNA Methylation based prognostic subtypes of chordoma tumors in tissue and plasma. Neuro Oncol 2021; 24:442-454. [PMID: 34614192 DOI: 10.1093/neuonc/noab235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chordomas are rare malignant bone cancers of the skull-base and spine. Patient survival is variable and not reliably predicted using clinical factors or molecular features. This study identifies prognostic epigenetic chordoma subtypes that are detected non-invasively using plasma methylomes. METHODS Methylation profiles of 68 chordoma surgical samples were obtained between 1996-2018 across three international centres along with matched plasma methylomes where available. RESULTS Consensus clustering identified two stable tissue clusters with a disease-specific survival difference that was independent of clinical factors in a multivariate Cox analysis (HR=14.2, 95%CI: 2.1-94.8, p=0.0063). Immune-related pathways with genes hypomethylated at promoters and increased immune cell abundance were observed in the poor-performing "Immune-infiltrated" subtype. Cell-to-cell interaction plus extracellular matrix pathway hypomethylation and higher tumor purity was observed in the better-performing "Cellular" subtype. The findings were validated in additional DNA methylation and RNA sequencing datasets as well as with immunohistochemical staining. Plasma methylomes distinguished chordomas from other clinical differential diagnoses by applying fifty chordoma-versus-other binomial generalized linear models in random 20% testing sets (mean AUROC=0.84, 95%CI: 0.52-1.00). Tissue-based and plasma-based methylation signals were highly correlated in both prognostic clusters. Additionally, leave-one-out models accurately classified all tumors into their correct cluster based on plasma methylation data. CONCLUSIONS Here, we show the first identification of prognostic epigenetic chordoma subtypes and first use of plasma methylome-based biomarkers to non-invasively diagnose and subtype chordomas. These results may transform patient management by allowing treatment aggressiveness to be balanced with patient risk according to prognosis.
Collapse
Affiliation(s)
- Jeffrey A Zuccato
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Vikas Patil
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Sheila Mansouri
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey C Liu
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Farshad Nassiri
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Yasin Mamatjan
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shirin Karimi
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Joao Paulo Almeida
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Laure Bernat
- Neurosurgery Department, Hôpital Lariboisiere, APHP, Université Paris Diderot, Paris, France
| | - Mohammed Hasen
- Section of Neurosurgery, Division of Surgery, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada.,Department of Neurosurgery, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Olivia Singh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Namita Sinha
- Department of Pathology, Shared Health, HSC, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sébastien Froelich
- Neurosurgery Department, Hôpital Lariboisiere, APHP, Université Paris Diderot, Paris, France
| | - Homa Adle-Biassette
- Department of Pathology, Lariboisière Hospital, Assistance Publique - Hôpitaux de Paris, Université de Paris, Paris, France
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Wen X, Cimera R, Aryeequaye R, Abhinta M, Athanasian E, Healey J, Fabbri N, Boland P, Zhang Y, Hameed M. Recurrent loss of chromosome 22 and SMARCB1 deletion in extra-axial chordoma: A clinicopathological and molecular analysis. Genes Chromosomes Cancer 2021; 60:796-807. [PMID: 34392582 DOI: 10.1002/gcc.22992] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Extra-axial chordoma is a rare neoplasm of extra-axial skeleton and soft tissue that shares identical histomorphologic and immunophenotypic features with midline chordoma. While genetic changes in conventional chordoma have been well-studied, the genomic alterations of extra-axial chordoma have not been reported. It is well known that conventional chordoma is a tumor with predominantly non-random copy number alterations and low mutational burden. Herein we describe the clinicopathologic and genomic characteristics of six cases of extra-axial chordoma, with genome-wide high-resolution single nucleotide polymorphism array, fluorescence in situ hybridization and targeted next-generation sequencing (NGS) analysis. The patients presented at a mean age of 33 years (range: 21-54) with a female to male ratio of 5:1. Four cases were histologically conventional type, presented with bone lesions and three of them had local recurrence. Two cases were poorly differentiated chordomas, presented with intra-articular soft tissue masses and both developed distant metastases. All cases showed brachyury positivity and the two poorly differentiated chordomas showed in addition loss of INI-1 expression by immunohistochemical analysis. Three of four extra-axial conventional chordomas showed simple genome with loss of chromosome 22 or a heterozygous deletion of SMARCB1. Both poorly differentiated chordomas demonstrated a complex hyperdiploid genomic profile with gain of multiple chromosomes and homozygous deletion of SMARCB1. Our findings show that heterozygous deletion of SMARCB1 or the loss of chromosome 22 is a consistent abnormality in extra-axial chordoma and transformation to poorly differentiated chordoma is characterized by homozygous loss of SMARCB1 associated with genomic complexity and instability such as hyperdiploidy.
Collapse
Affiliation(s)
- Xiaoyun Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Cimera
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ruth Aryeequaye
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mohanty Abhinta
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Edward Athanasian
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nicola Fabbri
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patrick Boland
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
22
|
Chabanon RM, Morel D, Eychenne T, Colmet-Daage L, Bajrami I, Dorvault N, Garrido M, Meisenberg C, Lamb A, Ngo C, Hopkins SR, Roumeliotis TI, Jouny S, Hénon C, Kawai-Kawachi A, Astier C, Konde A, Del Nery E, Massard C, Pettitt SJ, Margueron R, Choudhary JS, Almouzni G, Soria JC, Deutsch E, Downs JA, Lord CJ, Postel-Vinay S. PBRM1 Deficiency Confers Synthetic Lethality to DNA Repair Inhibitors in Cancer. Cancer Res 2021; 81:2888-2902. [PMID: 33888468 DOI: 10.1158/0008-5472.can-21-0628] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Inactivation of Polybromo 1 (PBRM1), a specific subunit of the PBAF chromatin remodeling complex, occurs frequently in cancer, including 40% of clear cell renal cell carcinomas (ccRCC). To identify novel therapeutic approaches to targeting PBRM1-defective cancers, we used a series of orthogonal functional genomic screens that identified PARP and ATR inhibitors as being synthetic lethal with PBRM1 deficiency. The PBRM1/PARP inhibitor synthetic lethality was recapitulated using several clinical PARP inhibitors in a series of in vitro model systems and in vivo in a xenograft model of ccRCC. In the absence of exogenous DNA damage, PBRM1-defective cells exhibited elevated levels of replication stress, micronuclei, and R-loops. PARP inhibitor exposure exacerbated these phenotypes. Quantitative mass spectrometry revealed that multiple R-loop processing factors were downregulated in PBRM1-defective tumor cells. Exogenous expression of the R-loop resolution enzyme RNase H1 reversed the sensitivity of PBRM1-deficient cells to PARP inhibitors, suggesting that excessive levels of R-loops could be a cause of this synthetic lethality. PARP and ATR inhibitors also induced cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) innate immune signaling in PBRM1-defective tumor cells. Overall, these findings provide the preclinical basis for using PARP inhibitors in PBRM1-defective cancers. SIGNIFICANCE: This study demonstrates that PARP and ATR inhibitors are synthetic lethal with the loss of PBRM1, a PBAF-specific subunit, thus providing the rationale for assessing these inhibitors in patients with PBRM1-defective cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/11/2888/F1.large.jpg.
Collapse
MESH Headings
- Animals
- Apoptosis
- Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Proliferation
- DNA Repair
- DNA-Binding Proteins/deficiency
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Synthetic Lethal Mutations
- Transcription Factors/deficiency
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Roman M Chabanon
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Daphné Morel
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
- Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, France
| | - Thomas Eychenne
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Léo Colmet-Daage
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Ilirjana Bajrami
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Nicolas Dorvault
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Marlène Garrido
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Cornelia Meisenberg
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, London, United Kingdom
| | | | - Carine Ngo
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Suzanna R Hopkins
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, London, United Kingdom
| | | | - Samuel Jouny
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Clémence Hénon
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | | | - Clémence Astier
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Asha Konde
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Department of Translational Research, The Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | | | - Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Raphaël Margueron
- Institut Curie, PSL Research University, INSERM Unit U934, CNRS UMR 3215, Paris, France
| | - Jyoti S Choudhary
- Functional Proteomics Team, The Institute of Cancer Research, London, United Kingdom
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR 3664, Equipe Labellisée Ligue contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Université Paris-VI, CNRS, UMR3664, Paris, France
| | - Jean-Charles Soria
- Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, France
| | - Eric Deutsch
- Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, France
- INSERM UMR1030 Molecular Radiotherapy and Therapeutic Innovations, Gustave Roussy, Villejuif, France
| | - Jessica A Downs
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, London, United Kingdom
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom.
| | - Sophie Postel-Vinay
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France.
- Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
| |
Collapse
|
23
|
Levine AB, Wong D, Fatehi M, Yip S. Ependymoma and Chordoma. Neurosurgery 2021; 87:860-870. [PMID: 33057707 DOI: 10.1093/neuros/nyaa329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/31/2020] [Indexed: 11/14/2022] Open
Abstract
Ependymoma and chordoma are 2 tumors that occur throughout the craniospinal axis, and for which the extent of neurosurgical resection has a key prognostic role. Both tumors have distinctive pathologic features, yet can present significant diagnostic challenges to pathologists in cases without classical histology. The molecular understanding of ependymoma has had significant advances in the past decade, with the identification of 9 molecular groups with significant prognostic and clinical implications, while a comprehensive study of chordoma further emphasized the key role of brachyury overexpression in its pathogenesis. In this review, we discuss the pathogenesis, radiology and gross pathology, histology, and molecular features of these 2 tumors, as well as active research into targeted therapies, with an emphasis on practical diagnostic challenges, and the use of immunohistochemical and molecular tests in routine diagnostic practice.
Collapse
Affiliation(s)
- Adrian B Levine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek Wong
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mostafa Fatehi
- Department of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Mattox AK, Yang B, Douville C, Lo SF, Sciubba D, Wolinsky JP, Gokaslan ZL, Robison J, Blair C, Jiao Y, Bettegowda C. The mutational landscape of spinal chordomas and their sensitive detection using circulating tumor DNA. Neurooncol Adv 2021; 3:vdaa173. [PMID: 33543146 PMCID: PMC7850091 DOI: 10.1093/noajnl/vdaa173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Chordomas are the most common primary spinal column malignancy in the United States. The aim of this study was to determine whether chordomas may be detected by evaluating mutations in circulating tumor DNA (ctDNA). Methods Thirty-two patients with a biopsy-confirmed diagnosis of chordoma had blood drawn pre-operatively and/or at follow-up appointments. Mutations in the primary tumor were identified by whole exome sequencing and liquid biopsy by ddPCR and/or RACE-Seq was used to detect one or more of these mutations in plasma ctDNA at concurrent or later time points. Results At the time of initial blood draw, 87.1% of patients were ctDNA positive (P <.001). Follow-up blood draws in twenty of the patients suggest that ctDNA levels may reflect the clinical status of the disease. Patients with positive ctDNA levels were more likely to have greater mutant allele frequencies in their primary tumors (P = .004) and undergo radiotherapy (P = .02), and the presence of ctDNA may correlate with response to systemic chemotherapy and/or disease recurrence. Conclusions Detection of ctDNA mutations may allow for the detection and monitoring of disease progression for chordomas.
Collapse
Affiliation(s)
- Austin K Mattox
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Beibei Yang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Christopher Douville
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheng-Fu Lo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean Paul Wolinsky
- Department of Neurosurgery, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Jamie Robison
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Cherie Blair
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Bai J, Shi J, Li C, Wang S, Zhang T, Hua X, Zhu B, Koka H, Wu HH, Song L, Wang D, Wang M, Zhou W, Ballew BJ, Zhu B, Hicks B, Mirabello L, Parry DM, Zhai Y, Li M, Du J, Wang J, Zhang S, Liu Q, Zhao P, Gui S, Goldstein AM, Zhang Y, Yang XR. Whole genome sequencing of skull-base chordoma reveals genomic alterations associated with recurrence and chordoma-specific survival. Nat Commun 2021; 12:757. [PMID: 33536423 PMCID: PMC7859411 DOI: 10.1038/s41467-021-21026-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Chordoma is a rare bone tumor with an unknown etiology and high recurrence rate. Here we conduct whole genome sequencing of 80 skull-base chordomas and identify PBRM1, a SWI/SNF (SWItch/Sucrose Non-Fermentable) complex subunit gene, as a significantly mutated driver gene. Genomic alterations in PBRM1 (12.5%) and homozygous deletions of the CDKN2A/2B locus are the most prevalent events. The combination of PBRM1 alterations and the chromosome 22q deletion, which involves another SWI/SNF gene (SMARCB1), shows strong associations with poor chordoma-specific survival (Hazard ratio [HR] = 10.55, 95% confidence interval [CI] = 2.81-39.64, p = 0.001) and recurrence-free survival (HR = 4.30, 95% CI = 2.34-7.91, p = 2.77 × 10-6). Despite the low mutation rate, extensive somatic copy number alterations frequently occur, most of which are clonal and showed highly concordant profiles between paired primary and recurrence/metastasis samples, indicating their importance in chordoma initiation. In this work, our findings provide important biological and clinical insights into skull-base chordoma.
Collapse
Affiliation(s)
- Jiwei Bai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuai Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Xing Hua
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Ho-Hsiang Wu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mingyi Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bari J Ballew
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Dilys M Parry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yixuan Zhai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingxuan Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiang Du
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Junmei Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuheng Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Anshan Central Hospital, Anshan, China
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peng Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing, China.
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
26
|
Shifting from targeted therapies to personalised treatment in chordoma – Authors' reply. Lancet Oncol 2020; 21:e548. [DOI: 10.1016/s1470-2045(20)30696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022]
|
27
|
Genetic Testing Distinguishes Multiple Chondroid Chordomas with Neuraxial Bone Metastases from Multicentric Tumors. Case Rep Genet 2020; 2020:8877722. [PMID: 33312743 PMCID: PMC7719490 DOI: 10.1155/2020/8877722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background Chordomas are rare malignant bone tumors preferentially forming in neuraxial bones. Chondroid chordoma is a subtype of chordoma. Chordomas reportedly present as synchronous multiple lesions upon initial diagnosis. However, it remains unknown whether these lesions are multicentric or metastatic multiple chordoma tumors. Case Presentation. Here, we present the case of a 57-year-old woman with multiple chordomas at the clivus, C6, and T12 upon initial presentation. Sequential surgeries and radiotherapy were performed for these lesions, and postoperative histological diagnosis revealed that all lesions were chondroid chordomas. Next-generation sequencing revealed that these lesions harbored a common somatic mutation in epidermal growth factor receptor (EGFR), c.3617A>C, which is not considered a pathogenic chordoma mutation, thus indicating that these lesions were not multicentric but rather multiple metastatic tumors. Subsequent multiple metastases to the lung and appendicular and axial bones were detected 15 months after the initial surgery. Recurrent lesions at the clivus progressed despite EGFR-targeted therapy, surgery, and radiotherapy. Conclusion The present evidence indicates that multiple chordomas in this case were caused by multiple metastases rather than multicentric lesions. Multiple presentations of chordoma imply systemic dissemination of tumor cells, and novel efficient systemic therapy is required to treat this disease.
Collapse
|
28
|
Ball S, Dash A, Igid HP, Thein KZ, Sharma U, Tijani L. Primary Extra-axial Chordoma Masquerading as Lung Cancer: Case Report and Review of the Literature. Clin Lung Cancer 2020; 21:e560-e563. [DOI: 10.1016/j.cllc.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/04/2020] [Accepted: 05/01/2020] [Indexed: 01/19/2023]
|
29
|
Curcio C, Cimera R, Aryeequaye R, Rao M, Fabbri N, Zhang Y, Hameed M. Poorly differentiated chordoma with whole-genome doubling evolving from a SMARCB1-deficient conventional chordoma: A case report. Genes Chromosomes Cancer 2020; 60:43-48. [PMID: 32920865 DOI: 10.1002/gcc.22895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/30/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Evolution of poorly differentiated chordoma from conventional chordoma has not been previously reported. We encountered a case of a poorly differentiated chordoma with evidence of whole-genome doubling arising from a SMARCB1-deficient conventional chordoma. The tumor presented as a destructive sacral mass in a 43-year-old man and was comprised of a highly cellular poorly differentiated chordoma with small, morphologically distinct nodules of conventional chordoma accounting for <5% of the total tumor volume. Immunohistochemistry (IHC) revealed both components were strongly reactive for brachyury and lacked normal staining for INI1. Single nucleotide polymorphism (SNP) array analysis identified multiple genomic imbalances in the conventional component, including deletions of 1p, 3p, and 22q (involving SMARCB1) and loss of chromosomes 5 and 15, while the poorly differentiated component exhibited the same aberrations at a more profound level with additional loss of chromosome 4, low level focal deletion of 17p (involving TP53), and tetraploidy. Homozygous deletion of SMARCB1 was present in both components. Fluorescence in situ hybridization (FISH) analysis confirmed the relevant deletions in both components as well as genome doubling in the poorly differentiated tumor. This case suggests that SMARCB1 loss is an early event in rare conventional chordomas that could potentially evolve into poorly differentiated chordoma through additional genomic aberrations such as genome doubling. Further studies with additional patients will be needed to determine if genome doubling is a consistent pathway for evolution of poorly differentiated chordoma.
Collapse
Affiliation(s)
- Christian Curcio
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, New York, USA
| | - Robert Cimera
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ruth Aryeequaye
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mamta Rao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nicola Fabbri
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
30
|
Zhu GG, Ramirez D, Chen W, Lu C, Wang L, Frosina D, Jungbluth A, Ntiamoah P, Nafa K, Boland PJ, Hameed MR. Chromosome 3p loss of heterozygosity and reduced expression of H3K36me3 correlate with longer relapse-free survival in sacral conventional chordoma. Hum Pathol 2020; 104:73-83. [PMID: 32795465 DOI: 10.1016/j.humpath.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/26/2022]
Abstract
Conventional chordoma is a rare slow-growing malignant tumor of notochordal origin primarily arising at the base of the skull and sacrococcygeal bones. Chordoma may arise from its benign counterpart, benign notochordal cell tumors, and can also undergo dedifferentiation progressing into dedifferentiated chordoma. No study has directly compared the genomic alterations among these tumors comprising a morphologic continuum. Our prior study identified frequent chromosome 3p loss of heterozygosity and minimal deleted regions on chromosome 3 encompassing SETD2, encoding a histone methyltransferase involved in histone H3 lysine 36 trimethylation (H3K36me3). In the present study, we expanded our study to include 65 sacral conventional chordoma cases, 3 benign notochordal cell tumor cases, and 2 dedifferentiated chordoma cases using single nucleotide polymorphism (SNP) array, targeted next-generation sequencing analysis, and immunohistochemistry. We performed immunohistochemical analysis of histone, H3K36me3, and investigated whether there is any association between the clinical behavior and recurrent chromosome or aneuploidy or H3K36me3 protein expression. We found that there is increased genomic instability from benign notochordal cell tumor to conventional chordoma to dedifferentiated chordoma. The highly recurrent genomic aberration, chromosome 3p loss of heterozygosity (occurred in 70% of conventional chordomas), is correlated with longer relapse-free survival, but not with overall survival or metastasis-free survival in sacral chordoma. Chordomas demonstrate variable patterns and levels of H3K36me3 expression, and reduced expression of H3K36me3 showed marginally significant correlation with longer relapse-free survival. Copy number alterations in the genes encoding the H3K36me3 methylation transferase complex and demethylase may account for the altered H3K36me3 expression levels.
Collapse
Affiliation(s)
- Guo Gord Zhu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Pathology, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, 08003, USA
| | - Daniel Ramirez
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Pathology, Northwell Health, Great Neck, NY, 11021, USA
| | - Wen Chen
- Department of Pathology, Washington DC VA Medical Center, Washington, DC, 20422, USA
| | - Chao Lu
- Department of Genetics & Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Denise Frosina
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Achim Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peter Ntiamoah
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Khedoudja Nafa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Patrick J Boland
- Orthopaedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Meera R Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
31
|
Hoffman SE, Al Abdulmohsen SA, Gupta S, Hauser BM, Meredith DM, Dunn IF, Bi WL. Translational Windows in Chordoma: A Target Appraisal. Front Neurol 2020; 11:657. [PMID: 32733369 PMCID: PMC7360834 DOI: 10.3389/fneur.2020.00657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Chordomas are rare tumors that are notoriously refractory to chemotherapy and radiotherapy when radical surgical resection is not achieved or upon recurrence after maximally aggressive treatment. The study of chordomas has been complicated by small patient cohorts and few available model systems due to the rarity of these tumors. Emerging next-generation sequencing technologies have broadened understanding of this disease by implicating novel pathways for possible targeted therapy. Mutations in cell-cycle regulation and chromatin remodeling genes have been identified in chordomas, but their significance remains unknown. Investigation of the immune microenvironment of these tumors suggests that checkpoint protein expression may influence prognosis, and adjuvant immunotherapy may improve patient outcome. Finally, growing evidence supports aberrant growth factor signaling as potential pathogenic mechanisms in chordoma. In this review, we characterize the impact on treatment opportunities offered by the genomic and immunologic landscape of this tumor.
Collapse
Affiliation(s)
- Samantha E Hoffman
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Sally A Al Abdulmohsen
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Saksham Gupta
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Blake M Hauser
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - David M Meredith
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
32
|
Yang C, Sun J, Yong L, Liang C, Liu T, Xu Y, Yang J, Liu X. Deficiency of PTEN and CDKN2A Tumor-Suppressor Genes in Conventional and Chondroid Chordomas: Molecular Characteristics and Clinical Relevance. Onco Targets Ther 2020; 13:4649-4663. [PMID: 32547095 PMCID: PMC7259488 DOI: 10.2147/ott.s252990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/11/2020] [Indexed: 12/03/2022] Open
Abstract
Introduction Chordoma is a malignant tumor predominantly involving the skull base and vertebral column. This study aimed to investigate the molecular characteristics of PTEN and CDKN2A in conventional and chondroid chordomas and their correlation with clinical prognosis. Materials and Methods A total of 42 patients were enrolled, including 26 patients with conventional chordoma and 16 patients with chondroid chordoma. Clinicopathological profiles and tissue specimens were collected. Gene sequencing and fluorescence in situ hybridization were performed to identify genetic alterations in the PTEN and CDKN2A genes. Immunohistochemical staining was used for semiquantitative evaluation of PTEN and CDKN2A expression. Results Gene sequencing revealed an intron SNP (c.80–96A>G) and a missense mutation (c.10G>A; p.Gly4Arg) in the PTEN gene and a missense mutation (c.442G>A; p.Ala148Thr) in the CDKN2A gene. Loss of the PTEN locus was identified in 25 (59.5%) cases, and loss of the CDKN2A locus was found in 28 (66.7%) cases. There was no significant correlation between progression-free survival (PFS)/overall survival (OS) and loss of PTEN or CDKN2A. The patients with lower PTEN expression showed significantly shorter PFS and OS than those with higher expression, while there was no significant difference in PFS or OS between patients with lower CDKN2A expression and those with higher CDKN2A expression. Conclusion Our findings delineated the genetic landscape and expression of PTEN and CDKN2A in chordomas. PTEN expression may serve as a prognostic and predictive biomarker for chordomas.
Collapse
Affiliation(s)
- Chenlong Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Jianjun Sun
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Lei Yong
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Chen Liang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Tie Liu
- Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Yulun Xu
- Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China
| |
Collapse
|
33
|
Ozair MZ, Shah PP, Mathios D, Lim M, Moss NS. New Prospects for Molecular Targets for Chordomas. Neurosurg Clin N Am 2020; 31:289-300. [PMID: 32147018 DOI: 10.1016/j.nec.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chordomas are malignant, highly recurrent tumors of the midline skeleton that arise from the remnants of the notochord. The development of systemic therapy is critically important to ultimately managing this tumor. Several ongoing trials are attempting to use molecular targeted therapies for mutated pathways in recurrent and advanced chordomas and have shown promise. In addition, immunotherapies, including brachyury-directed vaccination and checkpoint inhibition, have also been attempted with encouraging results. This article discusses the major pathways that have been implicated in the pathogenesis of chordoma with an emphasis on molecular vulnerabilities that future therapies are attempting to exploit.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Pavan Pinkesh Shah
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Dimitrios Mathios
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Nelson S Moss
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
34
|
Noor A, Bindal P, Ramirez M, Vredenburgh J. Chordoma: A Case Report and Review of Literature. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e918927. [PMID: 31969553 PMCID: PMC6998794 DOI: 10.12659/ajcr.918927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Patient: Female, 68-year-old Final Diagnosis: Chordoma Symptoms: Hoarseness • neck pain • weakness Medication: — Clinical Procedure: — Specialty: Oncology
Collapse
Affiliation(s)
- Arish Noor
- Internal Medicine, University of Connecticut, Farmington, CT, USA
| | - Poorva Bindal
- Internal Medicine, University of Connecticut, Farmington, CT, USA
| | - Miguel Ramirez
- Department of Radiology, St. Francis Hospital, Hartford, CT, USA
| | - James Vredenburgh
- Department of Hematology Oncology, St. Francis Hospital, Hartford, CT, USA
| |
Collapse
|
35
|
[From bench to bedside for new treatment paradigms in chordomas: An update]. Bull Cancer 2019; 107:129-135. [PMID: 31882268 DOI: 10.1016/j.bulcan.2019.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 11/23/2022]
Abstract
Chordomas are rare malignant tumours, which typically occur in the axial skeleton and skull base. They arise from embryonic remnants of the notochord. They constitute less than 5 % of primary bone tumours. They are characterised by their locally aggressive potential with high frequency of recurrences and a median overall survival of 6 years. The initial therapeutic strategy must be discussed in an expert centre and may involve surgery, preoperative radiotherapy, exclusive radiotherapy or therapeutic abstention. Despite this, more than 50 % of patients will be facing recurrences with few therapeutic options available at this advanced stage. This review aims to outline current treatment options available in chordomas, as well as discussing potentiality of new therapeutic approaches through their molecular characterization and the comprehension of their immunological environment.
Collapse
|
36
|
Yao J, Wu X. Upregulation Of miR-149-3p Suppresses Spinal Chordoma Malignancy By Targeting Smad3. Onco Targets Ther 2019; 12:9987-9997. [PMID: 31819495 PMCID: PMC6875263 DOI: 10.2147/ott.s222380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose Dysregulation of miRNAs plays an important role in the malignancy of different tumors including chordoma. Expression of miR-149-3p was earlier reported to be downregulated in chordoma tissue. However, its biological role remains to be unrevealed in chordoma, especially in spinal chordoma. Methods Expression of miR-149-3p and Smad3 was detected by RT-qPCR and Western blot. Chordoma malignancy was evaluated by cell proliferation, migration, invasion, and apoptosis using MTT assay, transwell assay, flow cytometry analyzing apoptosis rate, and Western blot-determined expression of Bcl-2, Bax, and cleaved caspase 3, respectively. The target binding between miR-149-3p and Smad3 was predicted by TargetScan Human website and confirmed by luciferase reporter assay and RNA immunoprecipitation. Xenograft tumors were generated, and expression of miR-149-3p and Smad3 was investigated in vivo. Results miR-149-3p was downregulated in spinal chordoma tissues and cells, and its overexpression promoted chordoma cell apoptosis and inhibited proliferation, migration, and invasion in U-CH1 and MUG-Chor1 cells. Unexpectedly, Smad3 was a downstream target of miR-149-3p and negatively correlated with miR-149-3p expression in chordoma tissues. Besides, Smad3 was upregulated in chordoma tissues and its silencing had a similar effect as miR-149-3p overexpression in U-CH1 and MUG-Chor1 cells. Moreover, Smad3 upregulation could partially reverse the tumor-suppressive effect of miR-149-3p in chordoma cells. In vivo, the tumorigenesis of U-CH1 and MUG-Chor1 cells was impaired by upregulated miR-149-3p through decreasing Smad3 expression. Conclusion miR-149-3p could serve as a tumor suppressor in spinal chordoma through targeting and downregulating Smad3.
Collapse
Affiliation(s)
- Jie Yao
- Department of Spine, The Orthopedic Hospital of Zhengzhou, Zhengzhou, Henan 450099, People's Republic of China
| | - Xuejian Wu
- Department of Orthopaedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| |
Collapse
|
37
|
Defective homologous recombination DNA repair as therapeutic target in advanced chordoma. Nat Commun 2019; 10:1635. [PMID: 30967556 PMCID: PMC6456501 DOI: 10.1038/s41467-019-09633-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Chordomas are rare bone tumors with few therapeutic options. Here we show, using whole-exome and genome sequencing within a precision oncology program, that advanced chordomas (n = 11) may be characterized by genomic patterns indicative of defective homologous recombination (HR) DNA repair and alterations affecting HR-related genes, including, for example, deletions and pathogenic germline variants of BRCA2, NBN, and CHEK2. A mutational signature associated with HR deficiency was significantly enriched in 72.7% of samples and co-occurred with genomic instability. The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib, which is preferentially toxic to HR-incompetent cells, led to prolonged clinical benefit in a patient with refractory chordoma, and whole-genome analysis at progression revealed a PARP1 p.T910A mutation predicted to disrupt the autoinhibitory PARP1 helical domain. These findings uncover a therapeutic opportunity in chordoma that warrants further exploration, and provide insight into the mechanisms underlying PARP inhibitor resistance. Chordomas are rare bone tumors with limited therapeutic options. Here, the authors identify molecular alterations associated with defective homologous recombination DNA repair in advanced chordomas and report prolonged response in a patient treated with a PARP inhibitor, which later acquired resistance due to a newly gained PARP1 mutation.
Collapse
|
38
|
Meng T, Jin J, Jiang C, Huang R, Yin H, Song D, Cheng L. Molecular Targeted Therapy in the Treatment of Chordoma: A Systematic Review. Front Oncol 2019; 9:30. [PMID: 30775316 PMCID: PMC6367227 DOI: 10.3389/fonc.2019.00030] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives: Chordoma is a rare bone malignancy that affects the spine and skull base. Treatment dilemma leads to a high rate of local relapse and distant metastases. Molecular targeted therapy (MTT) is an option for advanced chordoma, but its therapeutic efficacy and safety have not been investigated systematically. Therefore, a systematic review was conducted on studies reporting MTT regimens for chordoma. Methods: Clinical trials, case series and case reports on chordoma MTT were identified using MEDLINE, Cochrane library and EMBASE, and systematically reviewed. Data on clinical outcomes, such as median overall survival, progression-free survival, response rate and adverse events (AEs) were extracted and analyzed. Results: Thirty-three eligible studies were selected for the systematic review, which indicated that imatinib and erlotinib were the most frequently used molecular targeted inhibitors (MTIs) for chordoma. For PDGFR-positive and/or EGFR-positive chordoma, clinical benefits were achieved with acceptable AEs. Monotherapy is preferred as the first-line of treatment, and combined drug therapy as the second-line treatment. In addition, the brachyury vaccine has shown promising results. Conclusions: The selection of MTIs for patients with advanced or relapsed chordoma should be based on gene mutation screening and immunohistochemistry (IHC). Monotherapy of TKIs is recommended as the first-line management, and combination therapy (two TKIs or TKI plus mTOR inhibitor) may be the choice for drug-resistant chordoma. Brachyury vaccine is a promising therapeutic strategy and requires more clinical trials to evaluate its safety and efficacy.
Collapse
Affiliation(s)
- Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China.,Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiali Jin
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Jiang
- Beth Israel Deaconess Medical Center, BIDMC Cancer Center, Harvard Medical School, Cancer Research Institute, Boston, MA, United States
| | - Runzhi Huang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Huabin Yin
- Shanghai Bone Tumor Institution, Shanghai, China.,Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dianwen Song
- Shanghai Bone Tumor Institution, Shanghai, China.,Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai, China
| |
Collapse
|
39
|
Baumhoer D, Amary F, Flanagan AM. An update of molecular pathology of bone tumors. Lessons learned from investigating samples by next generation sequencing. Genes Chromosomes Cancer 2018; 58:88-99. [PMID: 30582658 DOI: 10.1002/gcc.22699] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
The last decade has seen the majority of primary bone tumor subtypes become defined by molecular genetic alteration. Examples include giant cell tumour of bone (H3F3A p.G34W), chondroblastoma (H3F3B p.K36M), mesenchymal chondrosarcoma (HEY1-NCOA2), chondromyxoid fibroma (GRM1 rearrangements), aneurysmal bone cyst (USP6 rearrangements), osteoblastoma/osteoid osteoma (FOS/FOSB rearrangements), and synovial chondromatosis (FN1-ACVR2A and ACVR2A-FN1). All such alterations are mutually exclusive. Many of these have been translated into clinical service using immunohistochemistry or FISH. 60% of central chondrosarcoma is characterised by either isocitrate dehydrogenase (IDH) 1 or IDH2 mutations distinguishing them from other cartilaginous tumours. In contrast, recurrent alterations which are clinically helpful have not been found in high grade osteosarcoma. High throughput next generation sequencing has also proved valuable in identifying germ line alterations in a significant proportion of young patients with primary malignant bone tumors. These findings will play an increasing role in reaching a diagnosis and in patient management.
Collapse
Affiliation(s)
- Daniel Baumhoer
- Bone Tumour Reference Centre, Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Fernanda Amary
- Department of Pathology, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom.,Department of Pathology, Cancer Institute, University College London, London, United Kingdom
| | - Adrienne M Flanagan
- Department of Pathology, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom.,Department of Pathology, Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
40
|
Liang WS, Dardis C, Helland A, Sekar S, Adkins J, Cuyugan L, Enriquez D, Byron S, Little AS. Identification of therapeutic targets in chordoma through comprehensive genomic and transcriptomic analyses. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a003418. [PMID: 30322893 PMCID: PMC6318766 DOI: 10.1101/mcs.a003418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/04/2018] [Indexed: 01/12/2023] Open
Abstract
Chordoma is a rare, orphan cancer arising from embryonal precursors of bone. Surgery and radiotherapy (RT) provide excellent local control, often at the price of significant morbidity because of the structures involved and the need for relatively high doses of RT; however, recurrence remains high. Although our understanding of the genetic changes that occur in chordoma is evolving rapidly, this knowledge has yet to translate into treatments. We performed comprehensive DNA (paired tumor/normal whole-exome and shallow whole-genome) and RNA (tumor whole-transcriptome) next-generation sequencing analyses of archival sacral and clivus chordoma specimens. Incorporation of transcriptomic data enabled the identification of gene overexpression and expressed DNA alterations, thus providing additional support for potential therapeutic targets. In three patients, we identified alterations that may be amenable to off-label FDA-approved treatments for other tumor types. These alterations include FGFR1 overexpression (ponatinib, pazopanib) and copy-number duplication of CDK4 (palbociclib) and ERBB3 (gefitinib). In a third patient, germline DNA demonstrated predicted pathogenic changes in CHEK2 and ATM, which may have predisposed the patient to developing chordoma at a young age and may also be associated with potential sensitivity to PARP inhibitors because of homologous recombination repair deficiency. Last, in the fourth patient, a missense mutation in IGF1R was identified, suggesting potential activity for investigational anti-IGF1R strategies. Our findings demonstrate that chordoma patients present with aberrations in overlapping pathways. These results provide support for targeting the IGF1R/FGFR/EGFR and CDK4/6 pathways as treatment strategies for chordoma patients. This study underscores the value of comprehensive genomic and transcriptomic analysis in the development of rational, individualized treatment plans for chordoma.
Collapse
Affiliation(s)
- Winnie S Liang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Christopher Dardis
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | - Adrienne Helland
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Shobana Sekar
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Jonathan Adkins
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Lori Cuyugan
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Daniel Enriquez
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Sara Byron
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Andrew S Little
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| |
Collapse
|
41
|
Viaene AN, Santi M, Rosenbaum J, Li MM, Surrey LF, Nasrallah MP. SETD2 mutations in primary central nervous system tumors. Acta Neuropathol Commun 2018; 6:123. [PMID: 30419952 PMCID: PMC6231273 DOI: 10.1186/s40478-018-0623-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/21/2018] [Indexed: 02/07/2023] Open
Abstract
Mutations in SETD2 are found in many tumors, including central nervous system (CNS) tumors. Previous work has shown these mutations occur specifically in high grade gliomas of the cerebral hemispheres in pediatric and young adult patients. We investigated SETD2 mutations in a cohort of approximately 640 CNS tumors via next generation sequencing; 23 mutations were detected across 19 primary CNS tumors. Mutations were found in a wide variety of tumors and locations at a broad range of allele frequencies. SETD2 mutations were seen in both low and high grade gliomas as well as non-glial tumors, and occurred in patients greater than 55 years of age, in addition to pediatric and young adult patients. High grade gliomas at first occurrence demonstrated either frameshift/truncating mutations or point mutations at high allele frequencies, whereas recurrent high grade gliomas frequently harbored subclones with point mutations in SETD2 at lower allele frequencies in the setting of higher mutational burdens. Comparison with the TCGA dataset demonstrated consistent findings. Finally, immunohistochemistry showed decreased staining for H3K36me3 in our cohort of SETD2 mutant tumors compared to wildtype controls. Our data further describe the spectrum of tumors in which SETD2 mutations are found and provide a context for interpretation of these mutations in the clinical setting.
Collapse
|
42
|
Du J, Xu L, Cui Y, Liu Z, Su Y, Li G. Benign notochordal cell tumour: clinicopathology and molecular profiling of 13 cases. J Clin Pathol 2018; 72:66-74. [DOI: 10.1136/jclinpath-2018-205441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
AimsTo study the clinicopathological and molecular features of benign notochordal cell tumours (BNCTs) and their differential diagnosis from chordoma.Methods13 cases of BNCT were investigated. The genome-wide copy number imbalances were performed using Oncoscan CNV array in three cases and fluorescence in situ hybridisation (FISH) detection of epidermal growth factor receptor (EGFR)/chromosome 7 enumeration probe (CEP7), LSI1p36/1q21, LSI19p13/19q13, CEP3/CEP12 and Telvysion 6 P was performed in 13 cases.ResultsAll 13 BNCTs were symptomatic and eight cases showed a close relationship with the bones of the skull base. The important histological character for differential diagnosis with chordoma was the absence of extracellular matrix and eosinophil cells and the presence of vacuoles in most tumour cells. Immunohistochemical staining of AE1/AE3, vimentin, epithelial membrane antigen, S-100 and brachyury (100% each) were positive in BNCTs. Gain of chromosome 7 occurred in 10 cases (76.9%), gain of 1p in four (30.8%), gain of 1q in five (38.5%), gain of 19p and 19q in five (38.5%), gain of chromosome 12 in 11 cases (84.6%), gain of 6p in eight (61.5%) and gain of chromosome 3 in four cases (30.8%).ConclusionsIn contrast to chordoma, chromosome gain or normal copy number was more common while chromosome loss was infrequent in BNCTs. This may be a differential diagnosis clue for chordoma and may be an important characteristic in the progression of notochordal cell tumours.
Collapse
|
43
|
Sakthikumar S, Elvers I, Kim J, Arendt ML, Thomas R, Turner-Maier J, Swofford R, Johnson J, Schumacher SE, Alföldi J, Axelsson E, Couto CG, Kisseberth WC, Pettersson ME, Getz G, Meadows JRS, Modiano JF, Breen M, Kierczak M, Forsberg-Nilsson K, Marinescu VD, Lindblad-Toh K. SETD2 Is Recurrently Mutated in Whole-Exome Sequenced Canine Osteosarcoma. Cancer Res 2018; 78:3421-3431. [PMID: 29724721 DOI: 10.1158/0008-5472.can-17-3558] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is a debilitating bone cancer that affects humans, especially children and adolescents. A homologous form of osteosarcoma spontaneously occurs in dogs, and its differential incidence observed across breeds allows for the investigation of tumor mutations in the context of multiple genetic backgrounds. Using whole-exome sequencing and dogs from three susceptible breeds (22 golden retrievers, 21 Rottweilers, and 23 greyhounds), we found that osteosarcoma tumors show a high frequency of somatic copy-number alterations (SCNA), affecting key oncogenes and tumor-suppressor genes. The across-breed results are similar to what has been observed for human osteosarcoma, but the disease frequency and somatic mutation counts vary in the three breeds. For all breeds, three mutational signatures (one of which has not been previously reported) and 11 significantly mutated genes were identified. TP53 was the most frequently altered gene (83% of dogs have either mutations or SCNA in TP53), recapitulating observations in human osteosarcoma. The second most frequently mutated gene, histone methyltransferase SETD2, has known roles in multiple cancers, but has not previously been strongly implicated in osteosarcoma. This study points to the likely importance of histone modifications in osteosarcoma and highlights the strong genetic similarities between human and dog osteosarcoma, suggesting that canine osteosarcoma may serve as an excellent model for developing treatment strategies in both species.Significance: Canine osteosarcoma genomics identify SETD2 as a possible oncogenic driver of osteosarcoma, and findings establish the canine model as a useful comparative model for the corresponding human disease. Cancer Res; 78(13); 3421-31. ©2018 AACR.
Collapse
Affiliation(s)
- Sharadha Sakthikumar
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute, Cambridge, Massachusetts
| | - Ingegerd Elvers
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute, Cambridge, Massachusetts
| | - Jaegil Kim
- Broad Institute, Cambridge, Massachusetts
| | - Maja L Arendt
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg D, Denmark
| | - Rachael Thomas
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | | | | | | | | | | | - Erik Axelsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - C Guillermo Couto
- Department of Veterinary Clinical Sciences and Veterinary Medical Center, the Ohio State University, Columbus, Ohio
- Couto Veterinary Consultants, Hilliard, Ohio
| | - William C Kisseberth
- Department of Veterinary Clinical Sciences and Veterinary Medical Center, the Ohio State University, Columbus, Ohio
| | - Mats E Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gad Getz
- Broad Institute, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, College of Veterinary Medicine, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Institute for Engineering and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Matthew Breen
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Marcin Kierczak
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Voichita D Marinescu
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
44
|
Tarpey PS, Behjati S, Young MD, Martincorena I, Alexandrov LB, Farndon SJ, Guzzo C, Hardy C, Latimer C, Butler AP, Teague JW, Shlien A, Futreal PA, Shah S, Bashashati A, Jamshidi F, Nielsen TO, Huntsman D, Baumhoer D, Brandner S, Wunder J, Dickson B, Cogswell P, Sommer J, Phillips JJ, Amary MF, Tirabosco R, Pillay N, Yip S, Stratton MR, Flanagan AM, Campbell PJ. The driver landscape of sporadic chordoma. Nat Commun 2017; 8:890. [PMID: 29026114 PMCID: PMC5638846 DOI: 10.1038/s41467-017-01026-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022] Open
Abstract
Chordoma is a malignant, often incurable bone tumour showing notochordal differentiation. Here, we defined the somatic driver landscape of 104 cases of sporadic chordoma. We reveal somatic duplications of the notochordal transcription factor brachyury (T) in up to 27% of cases. These variants recapitulate the rearrangement architecture of the pathogenic germline duplications of T that underlie familial chordoma. In addition, we find potentially clinically actionable PI3K signalling mutations in 16% of cases. Intriguingly, one of the most frequently altered genes, mutated exclusively by inactivating mutation, was LYST (10%), which may represent a novel cancer gene in chordoma.Chordoma is a rare often incurable malignant bone tumour. Here, the authors investigate driver mutations of sporadic chordoma in 104 cases, revealing duplications in notochordal transcription factor brachyury (T), PI3K signalling mutations, and mutations in LYST, a potential novel cancer gene in chordoma.
Collapse
Affiliation(s)
- Patrick S Tarpey
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Sam Behjati
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Corpus Christi College, Cambridge, CB2 1RH, UK
| | - Matthew D Young
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Inigo Martincorena
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | | | - Sarah J Farndon
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Charlotte Guzzo
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Claire Hardy
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Calli Latimer
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Adam P Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jon W Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Adam Shlien
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada, M5G 1X8
| | - P Andrew Futreal
- Department of Genomic Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA
| | - Sohrab Shah
- University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Ali Bashashati
- University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Farzad Jamshidi
- University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | | | - David Huntsman
- University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Daniel Baumhoer
- Bone Tumour Reference Centre, Institute of Pathology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, The National Hospital for Neurology and Neurosurgery, University College Hospital NHS Foundation Trust and UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Jay Wunder
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada, M5G 1X5
| | - Brendan Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada, M5G 1X5
| | | | - Josh Sommer
- Chordoma Foundation, PO Box 2127, Durham, NC, 27702, USA
| | - Joanna J Phillips
- Department of Neurosurgery, University of California, San Francisco, CA, 94143, USA
| | - M Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Middlesex, Stanmore, HA7 4LP, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Middlesex, Stanmore, HA7 4LP, UK
| | - Nischalan Pillay
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Middlesex, Stanmore, HA7 4LP, UK
- University College London Cancer Institute, London, WC1E 6BT, UK
| | - Stephen Yip
- University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Michael R Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Middlesex, Stanmore, HA7 4LP, UK
- University College London Cancer Institute, London, WC1E 6BT, UK
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
- Department of Haematology, University of Cambridge, Cambridge, CB2 2XY, UK.
| |
Collapse
|
45
|
Ma X, Qi S, Duan Z, Liao H, Yang B, Wang W, Tan J, Li Q, Xia X. Long non-coding RNA LOC554202 modulates chordoma cell proliferation and invasion by recruiting EZH2 and regulating miR-31 expression. Cell Prolif 2017; 50. [PMID: 28963737 DOI: 10.1111/cpr.12388] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Chordoma is a rare malignant bone tumour arising from notochordal remnants. Long non-coding RNA LOC554202, as the host gene of miR-31, contributes to various cancer developments. However, little is known about the biological function of LOC554202 in chordoma. Here, the relationship between LncRNA LOC554202, miR-31 and EZH2 was elucidated in chordoma. MATERIALS AND METHODS The levels of LOC554402, miR-31, EZH2, RNF144B, and epithelial-mesenchymal transition (EMT) markers were measured in chordoma tissues and the chordoma cell lines via quantitative real-time PCR (qRT-PCR) or Western blot. FISH assay demonstrated the LOC554402 expression in chordoma tissues. The chordoma cell lines, U-CH1 and JHC7, were transfected with siRNA or miRNA mimics and analysed for cell proliferation ability, apoptosis, cell migration, and invasion. RNA pull down, RIP assay, and Luciferase Reporter Assay were used to analyze the interaction between LOC554202 and EZH2. Animal tumour xenografts were generated, and qRT-PCR was performed to investigate EZH2, miR-31, and RNB144B expression on tumour growth in vivo. RESULTS We found elevated expression of LOC554202 was associated with a decreased level of miR-31 in cancer tissues. Knockdown of LOC554202 or overexpression of miR-31 suppressed the proliferation, migration, and invasion of chordoma cells. Unexpectedly, EZH2 as a binding protein of LOC554202, and it was positively regulated by LOC554202, leading to the reduced expression of miR-31. Furthermore, the impaired function of miR-31 restored expression of the oncogene RNF144B and maintained the metastasis-promoting activity in vitro. The results in vivo confirmed the anti-tumour effects of knockdown of LOC554202, which inhibited EZH2/miR-31 to activate the oncogene RNF144B. CONCLUSION Our results suggest that LOC554202 may play an important role in the progression of chordoma by the direct upregulation of EZH2 and indirect promotion of RNF144B via miR-31.
Collapse
Affiliation(s)
- Xianli Ma
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Shengjin Qi
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhenying Duan
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Hongzhan Liao
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Baohua Yang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Wenbo Wang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, China
| | - Qinghua Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
46
|
Bosotti R, Magnaghi P, Di Bella S, Cozzi L, Cusi C, Bozzi F, Beltrami N, Carapezza G, Ballinari D, Amboldi N, Lupi R, Somaschini A, Raddrizzani L, Salom B, Galvani A, Stacchiotti S, Tamborini E, Isacchi A. Establishment and genomic characterization of the new chordoma cell line Chor-IN-1. Sci Rep 2017; 7:9226. [PMID: 28835717 PMCID: PMC5569021 DOI: 10.1038/s41598-017-10044-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022] Open
Abstract
Chordomas are rare, slowly growing tumors with high medical need, arising in the axial skeleton from notochord remnants. The transcription factor "brachyury" represents a distinctive molecular marker and a key oncogenic driver of chordomas. Tyrosine kinase receptors are also expressed, but so far kinase inhibitors have not shown clear clinical efficacy in chordoma patients. The need for effective therapies is extremely high, but the paucity of established chordoma cell lines has limited preclinical research. Here we describe the isolation of the new Chor-IN-1 cell line from a recurrent sacral chordoma and its characterization as compared to other chordoma cell lines. Chor-IN-1 displays genomic identity to the tumor of origin and has morphological features, growth characteristics and chromosomal abnormalities typical of chordoma, with expression of brachyury and other relevant biomarkers. Chor-IN-1 gene variants, copy number alterations and kinome gene expression were analyzed in comparison to other four chordoma cell lines, generating large scale DNA and mRNA genomic data that can be exploited for the identification of novel pharmacological targets and candidate predictive biomarkers of drug sensitivity in chordoma. The establishment of this new, well characterized chordoma cell line provides a useful tool for the identification of drugs active in chordoma.
Collapse
Affiliation(s)
| | - Paola Magnaghi
- Oncology, Nerviano Medical Sciences, Nerviano, (MI), Italy
| | | | - Liviana Cozzi
- Oncology, Nerviano Medical Sciences, Nerviano, (MI), Italy
| | - Carlo Cusi
- Oncology, Nerviano Medical Sciences, Nerviano, (MI), Italy
| | - Fabio Bozzi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | - Nadia Amboldi
- Oncology, Nerviano Medical Sciences, Nerviano, (MI), Italy
| | - Rosita Lupi
- Oncology, Nerviano Medical Sciences, Nerviano, (MI), Italy
| | | | | | - Barbara Salom
- Oncology, Nerviano Medical Sciences, Nerviano, (MI), Italy
| | - Arturo Galvani
- Oncology, Nerviano Medical Sciences, Nerviano, (MI), Italy
| | | | - Elena Tamborini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | |
Collapse
|
47
|
Colia V, Stacchiotti S. Medical treatment of advanced chordomas. Eur J Cancer 2017; 83:220-228. [PMID: 28750274 DOI: 10.1016/j.ejca.2017.06.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
Chordoma is a very rare bone sarcoma that can arise from any site along the spine and from the skull base. En bloc resection is the gold standard for treatment while radiation therapy has been shown to provide both curative and palliative benefit. Unfortunately, local recurrences are common, even after a complete surgical resection, and up to 40% of patients suffer from distant metastases, while salvage treatments are challenging. Patients carrying an advanced disease need a systemic treatment. Unluckily, conventional chordoma are insensitive to cytotoxic chemotherapy that is considered the standard treatment option in patients with metastatic sarcoma. In the last decade, innovative therapies have been introduced, positively impacting disease control and patients' quality of life. In addition, a better understanding of the molecular characteristics of chordoma allowed to detect new potential targets. This review is focused on the pharmacological management of patients affected by an advanced disease, starting with a summary of data available on conventional chemotherapy, then moving to a deeper analysis of available data on molecular agents and immunotherapy, and finally providing an update on ongoing clinical trials and future prospective.
Collapse
Affiliation(s)
- Vittoria Colia
- Adult Mesenchymal Tumour and Rare Cancer Medical Oncology Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy.
| | - Silvia Stacchiotti
- Adult Mesenchymal Tumour and Rare Cancer Medical Oncology Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy.
| |
Collapse
|
48
|
Migliorini D, Mach N, Aguiar D, Vernet R, Landis BN, Becker M, McKee T, Dutoit V, Dietrich PY. First report of clinical responses to immunotherapy in 3 relapsing cases of chordoma after failure of standard therapies. Oncoimmunology 2017; 6:e1338235. [PMID: 28919999 DOI: 10.1080/2162402x.2017.1338235] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 12/23/2022] Open
Abstract
Chordoma is a rare tumor of notochordal origin, currently principally treated by surgery and/or irradiation. Here, we describe the clinical outcome of 3 consecutive patients with metastatic and locally advanced chordoma, treated with different immunotherapeutic approaches. All patients presented fast growing tumors and failure of standard therapies. One was treated with a tumor-based vaccine, the 2 others with anti-PD1 antibodies, all with impressive clinical and radiological responses. We therefore propose that chordoma is an immunogenic tumor and thus that translational and clinical research is necessary to develop rationally designed immunotherapy approaches.
Collapse
Affiliation(s)
- Denis Migliorini
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Nicolas Mach
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland.,Cell Therapy Laboratory, Department of Oncology, Geneva University, Geneva, Switzerland
| | - Diego Aguiar
- Clinical Pathology Service, Geneva University Hospital, Geneva, Switzerland
| | - Rémi Vernet
- Cell Therapy Laboratory, Department of Oncology, Geneva University, Geneva, Switzerland
| | - Basile Nicolas Landis
- Department of Otorhinolaryngology, Head and Neck Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Minerva Becker
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | - Thomas McKee
- Clinical Pathology Service, Geneva University Hospital, Geneva, Switzerland
| | - Valérie Dutoit
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland.,Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
49
|
Genetic aberrations and molecular biology of skull base chordoma and chondrosarcoma. Brain Tumor Pathol 2017; 34:78-90. [PMID: 28432450 DOI: 10.1007/s10014-017-0283-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
Chordomas and chondrosarcomas are two major malignant bone neoplasms located at the skull base. These tumors are rarely metastatic, but can be locally invasive and resistant to conventional chemotherapies and radiotherapies. Accordingly, therapeutic approaches for the treatment of these tumors can be difficult. Additionally, their location at the skull base makes them problematic. Although accurate diagnosis of these tumors is important because of their distinct prognoses, distinguishing between these tumor types is difficult due to overlapping radiological and histopathological findings. However, recent accumulation of molecular and genetic studies, including extracranial location analysis, has provided us clues for accurate diagnosis. In this report, we review the genetic aberrations and molecular biology of these two tumor types. Among the abundant genetic features of these tumors, brachyury immunohistochemistry and direct sequencing of IDH1/2 are simple and useful techniques that can be used to distinguish between these tumors. Although it is still unclear why these tumors, which have such distinct genetic backgrounds, show similar histopathological findings, comparison of their genetic backgrounds could provide essential information.
Collapse
|
50
|
Clinical Decision Making: Integrating Advances in the Molecular Understanding of Spine Tumors. Spine (Phila Pa 1976) 2016; 41 Suppl 20:S171-S177. [PMID: 27488298 DOI: 10.1097/brs.0000000000001836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Literature review. OBJECTIVE To describe advancements in molecular techniques, biomarkers, technology, and targeted therapeutics and the potential these modalities hold to predict treatment paradigms, clinical outcomes, and/or survival in patients diagnosed with primary spinal column tumors. SUMMARY OF BACKGROUND DATA Advances in molecular technologies and techniques have influenced the prevention, diagnosis, and overall management of patients diagnosed with cancer. Assessment of genomic, proteomic alterations, epigenetic, and posttranslational modifications as well as developments in diagnostic modalities and targeted therapeutics, although the best studied in nonspinal metastatic disease, have led to increased understanding of spine oncology that is expected to improve patient outcomes. In this manuscript, the technological advancements that are expected to change the landscape of spinal oncology are discussed with a focus on how these technologies will aid in clinical decision-making for patients diagnosed with primary spinal tumors. METHODS A review of the literature was performed focusing on studies that integrated next-generation sequencing, circulating tumor cells/circulating tumor DNA, advances in imaging modalities and/or radiotherapy in the diagnosis and treatment of cancer. RESULTS We discuss genetic and epigenetic drivers, aberrations in receptor tyrosine kinase signaling, and emerging therapeutic strategies that include receptor tyrosine kinase inhibitors, immunotherapy strategies, and vaccine-based cancer prevention strategies. CONCLUSION The wide range of approaches currently in use and the emerging technologies yet to be fully realized will allow for better development of rationale therapeutics to improve patient outcomes. LEVEL OF EVIDENCE N/A.
Collapse
|