1
|
Elhaie M, Koozari A, Khademi MR. Prostate puzzle: Unconventional prostatic STUMP findings in a middle-aged patient prompt closer examination. Radiol Case Rep 2025; 20:882-885. [PMID: 39654588 PMCID: PMC11625099 DOI: 10.1016/j.radcr.2024.10.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024] Open
Abstract
A 41-year-old male presented with obstructive urinary symptoms and an enlarged prostate. Subsequent testing revealed a remarkably high PSA level of 150 ng/mL, considerably above normal limits, raising concern for possible malignancy. Transrectal ultrasound showed an enlarged heterogeneous prostate measuring 74×80×75mm. PSMA PET/CT detected intense tracer uptake. While MRI and biopsy ruled out carcinoma, they indicated Stromal Tumors of Uncertain Malignant Potential (STUMP), an uncommon diagnosis in younger patients. This complex case highlights the essential role of advanced multimodal imaging and immunohistochemistry in diagnosing atypical prostatic lesions of uncertain malignant potential like STUMP, given their histologic similarity to benign conditions posing diagnostic difficulties. A multidisciplinary approach led to the STUMP diagnosis and decision for long-term monitoring instead of radical prostatectomy due to STUMP's unpredictable behavior. This report reinforces the need for diligence when evaluating seemingly benign but diagnostically challenging presentations that could conceal conditions like STUMP, and the importance of a multidisciplinary approach for accurate diagnosis and management of such rare prostatic proliferations.
Collapse
Affiliation(s)
- Mohammadrzea Elhaie
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Iran
| | - Abolfazl Koozari
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Mohammad Reza Khademi
- Department of Radiooncology, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Iran
| |
Collapse
|
2
|
Li J, Xiang S, Song X. Screening Nonlinear miRNA Features of Breast Cancer by Using Ensemble Regularized Polynomial Logistic Regression. J Comput Biol 2024; 31:670-690. [PMID: 39017171 DOI: 10.1089/cmb.2023.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Differentiating breast cancer subtypes based on miRNA data helps doctors provide more personalized treatment plans for patients. This paper explored the interaction between miRNA pairs and developed a novel ensemble regularized polynomial logistic regression method for screening nonlinear features of breast cancer. Three different types of second-order polynomial logistic regression with elastic network penalty (SOPLR-EN) in which each type contains 10 identical models were integrated to determine the most suitable sample set for feature screening by using bootstrap sampling strategy. A single feature and 39 nonlinear features were obtained by screening features that appeared at least 15 times in 30 integrations and were involved in the classification of at least 4 subtypes. The second-order polynomial logistic regression with ridge penalty (SOPLR-R) built on screened feature set achieved 82.30% classification accuracy for distinguishing breast cancer subtypes, surpassing the performance of other six methods. Further, 11 nonlinear miRNA biomarkers were identified, and their significant relevance to breast cancer was illustrated through six types of biological analysis.
Collapse
Affiliation(s)
- Juntao Li
- College of Mathematics and Information Science, Henan Normal University, Xinxiang, China
- Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, Xinxiang, China
| | - Shan Xiang
- College of Mathematics and Information Science, Henan Normal University, Xinxiang, China
- Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, Xinxiang, China
| | - Xuekun Song
- College of Information Technology, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Watson EV, Lee JJK, Gulhan DC, Melloni GEM, Venev SV, Magesh RY, Frederick A, Chiba K, Wooten EC, Naxerova K, Dekker J, Park PJ, Elledge SJ. Chromosome evolution screens recapitulate tissue-specific tumor aneuploidy patterns. Nat Genet 2024; 56:900-912. [PMID: 38388848 PMCID: PMC11096114 DOI: 10.1038/s41588-024-01665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Whole chromosome and arm-level copy number alterations occur at high frequencies in tumors, but their selective advantages, if any, are poorly understood. Here, utilizing unbiased whole chromosome genetic screens combined with in vitro evolution to generate arm- and subarm-level events, we iteratively selected the fittest karyotypes from aneuploidized human renal and mammary epithelial cells. Proliferation-based karyotype selection in these epithelial lines modeled tissue-specific tumor aneuploidy patterns in patient cohorts in the absence of driver mutations. Hi-C-based translocation mapping revealed that arm-level events usually emerged in multiples of two via centromeric translocations and occurred more frequently in tetraploids than diploids, contributing to the increased diversity in evolving tetraploid populations. Isogenic clonal lineages enabled elucidation of pro-tumorigenic mechanisms associated with common copy number alterations, revealing Notch signaling potentiation as a driver of 1q gain in breast cancer. We propose that intrinsic, tissue-specific proliferative effects underlie tumor copy number patterns in cancer.
Collapse
Affiliation(s)
- Emma V Watson
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jake June-Koo Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Doga C Gulhan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giorgio E M Melloni
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Sergey V Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rayna Y Magesh
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Abdulrazak Frederick
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kunitoshi Chiba
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric C Wooten
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Tijhuis AE, Foijer F. Characterizing chromosomal instability-driven cancer evolution and cell fitness at a glance. J Cell Sci 2024; 137:jcs260199. [PMID: 38224461 DOI: 10.1242/jcs.260199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Chromosomal instability (CIN), an increased rate of chromosome segregation errors during mitosis, is a hallmark of cancer cells. CIN leads to karyotype differences between cells and thus large-scale heterogeneity among individual cancer cells; therefore, it plays an important role in cancer evolution. Studying CIN and its consequences is technically challenging, but various technologies have been developed to track karyotype dynamics during tumorigenesis, trace clonal lineages and link genomic changes to cancer phenotypes at single-cell resolution. These methods provide valuable insight not only into the role of CIN in cancer progression, but also into cancer cell fitness. In this Cell Science at a Glance article and the accompanying poster, we discuss the relationship between CIN, cancer cell fitness and evolution, and highlight techniques that can be used to study the relationship between these factors. To that end, we explore methods of assessing cancer cell fitness, particularly for chromosomally unstable cancer.
Collapse
Affiliation(s)
- Andréa E Tijhuis
- European Research Institute for the Biology of Ageing , University Medical Center Groningen, University of Groningen,9713 AV Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing , University Medical Center Groningen, University of Groningen,9713 AV Groningen, The Netherlands
| |
Collapse
|
5
|
Albert O, Sun S, Huttner A, Zhang Z, Suh Y, Campisi J, Vijg J, Montagna C. Chromosome instability and aneuploidy in the mammalian brain. Chromosome Res 2023; 31:32. [PMID: 37910282 PMCID: PMC10833588 DOI: 10.1007/s10577-023-09740-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
This review investigates the role of aneuploidy and chromosome instability (CIN) in the aging brain. Aneuploidy refers to an abnormal chromosomal count, deviating from the normal diploid set. It can manifest as either a deficiency or excess of chromosomes. CIN encompasses a broader range of chromosomal alterations, including aneuploidy as well as structural modifications in DNA. We provide an overview of the state-of-the-art methodologies utilized for studying aneuploidy and CIN in non-tumor somatic tissues devoid of clonally expanded populations of aneuploid cells.CIN and aneuploidy, well-established hallmarks of cancer cells, are also associated with the aging process. In non-transformed cells, aneuploidy can contribute to functional impairment and developmental disorders. Despite the importance of understanding the prevalence and specific consequences of aneuploidy and CIN in the aging brain, these aspects remain incompletely understood, emphasizing the need for further scientific investigations.This comprehensive review consolidates the present understanding, addresses discrepancies in the literature, and provides valuable insights for future research efforts.
Collapse
Affiliation(s)
- Olivia Albert
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Huttner
- Yale Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Yousin Suh
- Departments of Obstetrics and Gynecology, and Genetics and Development, Columbia University, New York, NY, USA
| | | | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
6
|
Keller A, Gao LL, Witten D, Dunham MJ. Condition-dependent fitness effects of large synthetic chromosome amplifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544269. [PMID: 37333112 PMCID: PMC10274924 DOI: 10.1101/2023.06.08.544269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Whole-chromosome aneuploidy and large segmental amplifications can have devastating effects in multicellular organisms, from developmental disorders and miscarriage to cancer. Aneuploidy in single-celled organisms such as yeast also results in proliferative defects and reduced viability. Yet, paradoxically, CNVs are routinely observed in laboratory evolution experiments with microbes grown in stressful conditions. The defects associated with aneuploidy are often attributed to the imbalance of many differentially expressed genes on the affected chromosomes, with many genes each contributing incremental effects. An alternate hypothesis is that a small number of individual genes are large effect 'drivers' of these fitness changes when present in an altered copy number. To test these two views, we have employed a collection of strains bearing large chromosomal amplifications that we previously assayed in nutrient-limited chemostat competitions. In this study, we focus on conditions known to be poorly tolerated by aneuploid yeast-high temperature, treatment with the Hsp90 inhibitor radicicol, and growth in extended stationary phase. To identify potential genes with a large impact on fitness, we fit a piecewise constant model to fitness data across chromosome arms, filtering breakpoints in this model by magnitude to focus on regions with a large impact on fitness in each condition. While fitness generally decreased as the length of the amplification increased, we were able to identify 91 candidate regions that disproportionately impacted fitness when amplified. Consistent with our previous work with this strain collection, nearly all candidate regions were condition specific, with only five regions impacting fitness in multiple conditions.
Collapse
Affiliation(s)
- Abigail Keller
- Molecular Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Genome Sciences Department, University of Washington, Seattle, WA 98195, USA
| | - Lucy L. Gao
- Statistics Department and Biostatistics Department, University of Washington, Seattle, WA 98195, USA
| | - Daniela Witten
- Statistics Department and Biostatistics Department, University of Washington, Seattle, WA 98195, USA
| | - Maitreya J. Dunham
- Genome Sciences Department, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Lin X, Lin X, Guo L, Wang Y, Zhang G. Distinct clinicopathological characteristics, genomic alteration and prognosis in breast cancer with concurrent TP53 mutation and MYC amplification. Thorac Cancer 2022; 13:3441-3450. [PMID: 36305094 PMCID: PMC9750818 DOI: 10.1111/1759-7714.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Both TP53 mutation and MYC amplification indicate poor outcomes in breast cancer (BC), but the clinical values of concurrent TP53 and MYC alterations have not been well-characterized. METHODS A total of 494 BC patients diagnosed at Guangdong Provincial People's Hospital (GDPH) were retrospectively analyzed. Genomic alterations were determined using next-generation sequencing. Survival analysis was applied to assess the effects of genetic alterations on relapse-free survival. The prognosis was verified based on 1405 patients from METABRIC cohort. Additionally, we used logistic regression to identify the factors associated with pathological complete response (pCR) after neoadjuvant chemotherapy. RESULTS In GDPH cohort, patients with TP53/MYC co-alteration exhibited higher grade and stage, more positive HER2 status and higher Ki67 levels, but less luminal A subtypes. They also had more mutations in genes involved in ERBB and TGF-β signaling pathways, as well as exclusive FANCG/CDKN2B/QKI copy number amplifications and SUFU/HIST3H3/ERCC4/JUN/BCR mutations. Concurrent TP53 and MYC alterations independently increased hazards of relapse (HR, 5.425; 95% CI: 2.019-14.579; p < 0.001). They maintained independent significance for relapse-free (HR, 1.310; 95% CI: 1.012-1.697; p = 0.041) and overall survival (HR, 1.373; 95% CI: 1.093-1.725; p = 0.006) in METABRIC cohort. Among the 81 patients receiving chemotherapy, TP53 mutation (OR, 5.750; 95% CI: 1.553-25.776; p = 0.013) and earlier stage (OR, 0.275; 95% CI 0.088-0.788; p = 0.020) were associated with pCR, while the co-alteration did not serve as an independent predictor (p = 0.199). CONCLUSIONS TP53/MYC co-alteration was associated with distinct clinicopathological and genomic features. They also conferred unfavorable prognosis in BC patients, and did not improve pCR after neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Xiaoyi Lin
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- Shantou University Medical CollegeShantouChina
| | - Xin Lin
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhouChina
| | - Lijuan Guo
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yulei Wang
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Guochun Zhang
- Department of Breast SurgeryGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
8
|
Paolini L, Hussain S, Galardy PJ. Chromosome instability in neuroblastoma: A pathway to aggressive disease. Front Oncol 2022; 12:988972. [PMID: 36338721 PMCID: PMC9633097 DOI: 10.3389/fonc.2022.988972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2023] Open
Abstract
For over 100-years, genomic instability has been investigated as a central player in the pathogenesis of human cancer. Conceptually, genomic instability includes an array of alterations from small deletions/insertions to whole chromosome alterations, referred to as chromosome instability. Chromosome instability has a paradoxical impact in cancer. In most instances, the introduction of chromosome instability has a negative impact on cellular fitness whereas in cancer it is usually associated with a worse prognosis. One exception is the case of neuroblastoma, the most common solid tumor outside of the brain in children. Neuroblastoma tumors have two distinct patterns of genome instability: whole-chromosome aneuploidy, which is associated with a better prognosis, or segmental chromosomal alterations, which is a potent negative prognostic factor. Through a computational screen, we found that low levels of the de- ubiquitinating enzyme USP24 have a highly significant negative impact on survival in neuroblastoma. At the molecular level, USP24 loss leads to destabilization of the microtubule assembly factor CRMP2 - producing mitotic errors and leading to chromosome missegregation and whole-chromosome aneuploidy. This apparent paradox may be reconciled through a model in which whole chromosome aneuploidy leads to the subsequent development of segmental chromosome alterations. Here we review the mechanisms behind chromosome instability and the evidence for the progressive development of segmental alterations from existing numerical aneuploidy in support of a multi-step model of neuroblastoma progression.
Collapse
Affiliation(s)
- Lucia Paolini
- Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital, Monza, MI, Italy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Sajjad Hussain
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Paul J. Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
- Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Fu X, Lei H, Tao Y, Heselmeyer-haddad K, Torres I, Dean M, Ried T, Schwartz R. Joint Clustering of Single-Cell Sequencing and Fluorescence In Situ Hybridization Data for Reconstructing Clonal Heterogeneity in Cancers. J Comput Biol 2021; 28:1035-1051. [PMID: 34612714 PMCID: PMC8819512 DOI: 10.1089/cmb.2021.0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aneuploidy and whole genome duplication (WGD) events are common features of cancers associated with poor outcomes, but the ways they influence trajectories of clonal evolution are poorly understood. Phylogenetic methods for reconstructing clonal evolution from genomic data have proven a powerful tool for understanding how clonal evolution occurs in the process of cancer progression, but extant methods so far have limited the ability to resolve tumor evolution via ploidy changes. This limitation exists in part because single-cell DNA-sequencing (scSeq), which has been crucial to developing detailed profiles of clonal evolution, has difficulty in resolving ploidy changes and WGD. Multiplex interphase fluorescence in situ hybridization (miFISH) provides a more unambiguous signal of single-cell ploidy changes but it is limited to profiling small numbers of single markers. Here, we develop a joint clustering method to combine these two data sources with the goal of better resolving ploidy changes in tumor evolution. We develop a probabilistic framework to maximize the probability of latent variables given the pre-clustered datasets, which we optimize via Markov chain Monte Carlo sampling combined with linear regression. We validate the method by using simulated data derived from a glioblastoma (GBM) case profiled by both scSeq and miFISH. We further apply the method to two GBM cases with scSeq and miFISH data by reconstructing a phylogenetic tree from the joint clustering results, demonstrating their synergistic value in understanding how focal copy number changes and WGD events can collectively contribute to tumor progression.
Collapse
Affiliation(s)
- Xuecong Fu
- Department of Biological Sciences, and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Haoyun Lei
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Yifeng Tao
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Kerstin Heselmeyer-haddad
- Genetics Branch, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Irianna Torres
- Genetics Branch, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Thomas Ried
- Genetics Branch, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Schwartz
- Department of Biological Sciences, and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Lei H, Gertz EM, Schäffer AA, Fu X, Tao Y, Heselmeyer-Haddad K, Torres I, Li G, Xu L, Hou Y, Wu K, Shi X, Dean M, Ried T, Schwartz R. Tumor heterogeneity assessed by sequencing and fluorescence in situ hybridization (FISH) data. Bioinformatics 2021; 37:4704-4711. [PMID: 34289030 PMCID: PMC8665747 DOI: 10.1093/bioinformatics/btab504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Computational reconstruction of clonal evolution in cancers has become a crucial tool for understanding how tumors initiate and progress and how this process varies across patients. The field still struggles, however, with special challenges of applying phylogenetic methods to cancers, such as the prevalence and importance of copy number alteration (CNA) and structural variation (SV) events in tumor evolution, which are difficult to profile accurately by prevailing sequencing methods in such a way that subsequent reconstruction by phylogenetic inference algorithms is accurate. RESULTS In the present work, we develop computational methods to combine sequencing with multiplex interphase fluorescence in situ hybridization (miFISH) to exploit the complementary advantages of each technology in inferring accurate models of clonal CNA evolution accounting for both focal changes and aneuploidy at whole-genome scales. By integrating such information in an integer linear programming (ILP) framework, we demonstrate on simulated data that incorporation of FISH data substantially improves accurate inference of focal CNA and ploidy changes in clonal evolution from deconvolving bulk sequence data. Analysis of real glioblastoma data for which FISH, bulk sequence, and single cell sequence are all available confirms the power of FISH to enhance accurate reconstruction of clonal copy number evolution in conjunction with bulk and optionally single-cell sequence data. AVAILABILITY Source code is available on Github at https://github.com/CMUSchwartzLab/FISH_deconvolution.
Collapse
Affiliation(s)
- Haoyun Lei
- Computational Biology Dept, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - E Michael Gertz
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuecong Fu
- Shenzhen Luohu People's Hospital, Shenzhen, 518000, China
| | - Yifeng Tao
- Computational Biology Dept, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Kerstin Heselmeyer-Haddad
- Genetics Branch, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Irianna Torres
- Genetics Branch, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guibo Li
- Department of Biology, University of Copenhagen, Copenhagen, 1599, Denmark
| | - Liqin Xu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Soltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Yong Hou
- Department of Biology, University of Copenhagen, Copenhagen, 1599, Denmark
| | - Kui Wu
- Department of Biology, University of Copenhagen, Copenhagen, 1599, Denmark
| | - Xulian Shi
- Shenzhen Luohu People's Hospital, Shenzhen, 518000, China
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, U.S. National Institutes of Health, Gaithersburg, MD, 20814, USA
| | - Thomas Ried
- Genetics Branch, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Russell Schwartz
- Computational Biology Dept, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
11
|
Liegmann AS, Heselmeyer-Haddad K, Lischka A, Hirsch D, Chen WD, Torres I, Gemoll T, Rody A, Thorns C, Gertz EM, Alkemade H, Hu Y, Habermann JK, Ried T. Single Cell Genetic Profiling of Tumors of Breast Cancer Patients Aged 50 Years and Older Reveals Enormous Intratumor Heterogeneity Independent of Individual Prognosis. Cancers (Basel) 2021; 13:3366. [PMID: 34282768 PMCID: PMC8267950 DOI: 10.3390/cancers13133366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Older breast cancer patients are underrepresented in cancer research even though the majority (81.4%) of women dying of breast cancer are 55 years and older. Here we study a common phenomenon observed in breast cancer which is a large inter- and intratumor heterogeneity; this poses a tremendous clinical challenge, for example with respect to treatment stratification. To further elucidate genomic instability and tumor heterogeneity in older patients, we analyzed the genetic aberration profiles of 39 breast cancer patients aged 50 years and older (median 67 years) with either short (median 2.4 years) or long survival (median 19 years). The analysis was based on copy number enumeration of eight breast cancer-associated genes using multiplex interphase fluorescence in situ hybridization (miFISH) of single cells, and by targeted next-generation sequencing of 563 cancer-related genes. RESULTS We detected enormous inter- and intratumor heterogeneity, yet maintenance of common cancer gene mutations and breast cancer specific chromosomal gains and losses. The gain of COX2 was most common (72%), followed by MYC (69%); losses were most prevalent for CDH1 (74%) and TP53 (69%). The degree of intratumor heterogeneity did not correlate with disease outcome. Comparing the miFISH results of diploid with aneuploid tumor samples significant differences were found: aneuploid tumors showed significantly higher average signal numbers, copy number alterations (CNAs) and instability indices. Mutations in PIKC3A were mostly restricted to luminal A tumors. Furthermore, a significant co-occurrence of CNAs of DBC2/MYC, HER2/DBC2 and HER2/TP53 and mutual exclusivity of CNAs of HER2 and PIK3CA mutations and CNAs of CCND1 and PIK3CA mutations were revealed. CONCLUSION Our results provide a comprehensive picture of genome instability profiles with a large variety of inter- and intratumor heterogeneity in breast cancer patients aged 50 years and older. In most cases, the distribution of chromosomal aneuploidies was consistent with previous results; however, striking exceptions, such as tumors driven by exclusive loss of chromosomes, were identified.
Collapse
Affiliation(s)
- Anna-Sophie Liegmann
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Kerstin Heselmeyer-Haddad
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Annette Lischka
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
| | - Daniela Hirsch
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Wei-Dong Chen
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Irianna Torres
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Timo Gemoll
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
| | - Achim Rody
- Department of Gynecology and Obstetrics, Campus Lübeck, University Hospital of Schleswig-Holstein, 23562 Lübeck, Germany;
| | - Christoph Thorns
- Institute of Pathology, Marienkrankenhaus Hamburg, 22087 Hamburg, Germany;
- Institute of Pathology, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Edward Michael Gertz
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Hendrik Alkemade
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
| | - Yue Hu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| | - Jens K. Habermann
- Section of Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany; (A.-S.L.); (A.L.); (T.G.); (H.A.)
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.-H.); (D.H.); (W.-D.C.); (I.T.); (Y.H.)
| |
Collapse
|
12
|
Shrestha RL, Rossi A, Wangsa D, Hogan AK, Zaldana KS, Suva E, Chung YJ, Sanders CL, Difilippantonio S, Karpova TS, Karim B, Foltz DR, Fachinetti D, Aplan PD, Ried T, Basrai MA. CENP-A overexpression promotes aneuploidy with karyotypic heterogeneity. J Cell Biol 2021; 220:211820. [PMID: 33620383 PMCID: PMC7905998 DOI: 10.1083/jcb.202007195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chromosomal instability (CIN) is a hallmark of many cancers. Restricting the localization of centromeric histone H3 variant CENP-A to centromeres prevents CIN. CENP-A overexpression (OE) and mislocalization have been observed in cancers and correlate with poor prognosis; however, the molecular consequences of CENP-A OE on CIN and aneuploidy have not been defined. Here, we show that CENP-A OE leads to its mislocalization and CIN with lagging chromosomes and micronuclei in pseudodiploid DLD1 cells and xenograft mouse model. CIN is due to reduced localization of proteins to the kinetochore, resulting in defects in kinetochore integrity and unstable kinetochore–microtubule attachments. CENP-A OE contributes to reduced expression of cell adhesion genes and higher invasion of DLD1 cells. We show that CENP-A OE contributes to aneuploidy with karyotypic heterogeneity in human cells and xenograft mouse model. In summary, our results provide a molecular link between CENP-A OE and aneuploidy, and suggest that karyotypic heterogeneity may contribute to the aggressive phenotype of CENP-A–overexpressing cancers.
Collapse
Affiliation(s)
- Roshan L Shrestha
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Austin Rossi
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ann K Hogan
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL
| | - Kimberly S Zaldana
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Evelyn Suva
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Chelsea L Sanders
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Baktiar Karim
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, France
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Tao Y, Rajaraman A, Cui X, Cui Z, Chen H, Zhao Y, Eaton J, Kim H, Ma J, Schwartz R. Assessing the contribution of tumor mutational phenotypes to cancer progression risk. PLoS Comput Biol 2021; 17:e1008777. [PMID: 33711014 PMCID: PMC7990181 DOI: 10.1371/journal.pcbi.1008777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/24/2021] [Accepted: 02/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer occurs via an accumulation of somatic genomic alterations in a process of clonal evolution. There has been intensive study of potential causal mutations driving cancer development and progression. However, much recent evidence suggests that tumor evolution is normally driven by a variety of mechanisms of somatic hypermutability, which act in different combinations or degrees in different cancers. These variations in mutability phenotypes are predictive of progression outcomes independent of the specific mutations they have produced to date. Here we explore the question of how and to what degree these differences in mutational phenotypes act in a cancer to predict its future progression. We develop a computational paradigm using evolutionary tree inference (tumor phylogeny) algorithms to derive features quantifying single-tumor mutational phenotypes, followed by a machine learning framework to identify key features predictive of progression. Analyses of breast invasive carcinoma and lung carcinoma demonstrate that a large fraction of the risk of future clinical outcomes of cancer progression-overall survival and disease-free survival-can be explained solely from mutational phenotype features derived from the phylogenetic analysis. We further show that mutational phenotypes have additional predictive power even after accounting for traditional clinical and driver gene-centric genomic predictors of progression. These results confirm the importance of mutational phenotypes in contributing to cancer progression risk and suggest strategies for enhancing the predictive power of conventional clinical data or driver-centric biomarkers.
Collapse
Affiliation(s)
- Yifeng Tao
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Joint Carnegie Mellon-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America
| | - Ashok Rajaraman
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Xiaoyue Cui
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Joint Carnegie Mellon-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America
| | - Ziyi Cui
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Haoran Chen
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Joint Carnegie Mellon-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America
| | - Yuanqi Zhao
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jesse Eaton
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Hannah Kim
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Russell Schwartz
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
14
|
Voutsadakis IA. The Landscape of Chromosome Instability in Breast Cancers and Associations with the Tumor Mutation Burden: An Analysis of Data from TCGA. Cancer Invest 2020; 39:25-38. [PMID: 33306412 DOI: 10.1080/07357907.2020.1863418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chromosomal instability (CIN) is a defining characteristic of cancer and is part of the genetic instability of cancer. CIN results in both numeric alterations of chromosomes also called aneuploidy and in gains or losses of parts of chromosome arms but both usually coexist. The frequency and distribution of CIN varies between cancer types and even in the same cancer and breast cancer is no exception. Its presence may provide prognostic and therapeutic opportunities. METHODS CIN as measured with a score named Aneuploidy Score (AS) derived from single nucleotide polymorphism array studies was examined using the breast cancer study from the Cancer Genome Atlas (TCGA). Correlations of the AS with sub-types of breast cancer and with the tumor mutation burden (TMB) were examined. Specific copy number alterations contributing to the AS and their associations with sub-types were also investigated. RESULTS Most breast cancers (about 75% in the series) present some degree of CIN, having an AS of above 5. The remaining 25% have AS of 5 or below. Luminal A sub-type is over-represented in cancers with low AS while the reverse is true for cancers with high AS where the percentage of the three other sub-types, luminal B, Her2 positive and basal is higher. Common gains of chromosomal arms are observed in 1q, 8q and 16p and losses are commonly present in 16q, 17p and 8p but with variability among sub-types. A chromosome loss characterizing basal cancers is observed at 5q. No association of AS with TMB is observed in breast cancer. AS was not predictive for survival outcomes in the entire cohort of breast cancers, but PFS was significant worse in luminal B cancers with high AS. CONCLUSION The copy number alterations landscape of breast cancer reveals specific abnormalities in each sub-type and may help further characterize these sub-types in order to refine classification of these cancers and promote prognostic and therapeutic advancements in the clinic.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada.,Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
15
|
Gemble S, Basto R. CHRONOCRISIS: When Cell Cycle Asynchrony Generates DNA Damage in Polyploid Cells. Bioessays 2020; 42:e2000105. [PMID: 32885500 DOI: 10.1002/bies.202000105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/19/2020] [Indexed: 12/16/2022]
Abstract
Polyploid cells contain multiple copies of all chromosomes. Polyploidization can be developmentally programmed to sustain tissue barrier function or to increase metabolic potential and cell size. Programmed polyploidy is normally associated with terminal differentiation and poor proliferation capacity. Conversely, non-programmed polyploidy can give rise to cells that retain the ability to proliferate. This can fuel rapid genome rearrangements and lead to diseases like cancer. Here, the mechanisms that generate polyploidy are reviewed and the possible challenges upon polyploid cell division are discussed. The discussion is framed around a recent study showing that asynchronous cell cycle progression (an event that is named "chronocrisis") of different nuclei from a polyploid cell can generate DNA damage at mitotic entry. The potential mechanisms explaining how mitosis in non-programmed polyploid cells can generate abnormal karyotypes and genetic instability are highlighted.
Collapse
Affiliation(s)
- Simon Gemble
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| |
Collapse
|
16
|
Koçak A, Heselmeyer-Haddad K, Lischka A, Hirsch D, Fiedler D, Hu Y, Doberstein N, Torres I, Chen WD, Gertz EM, Schäffer AA, Freitag-Wolf S, Kirfel J, Auer G, Habermann JK, Ried T. High Levels of Chromosomal Copy Number Alterations and TP53 Mutations Correlate with Poor Outcome in Younger Breast Cancer Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1643-1656. [PMID: 32416097 DOI: 10.1016/j.ajpath.2020.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Prognosis in young patients with breast cancer is generally poor, yet considerable differences in clinical outcomes between individual patients exist. To understand the genetic basis of the disparate clinical courses, tumors were collected from 34 younger women, 17 with good and 17 with poor outcomes, as determined by disease-specific survival during a follow-up period of 17 years. The clinicopathologic parameters of the tumors were complemented with DNA image cytometry profiles, enumeration of copy numbers of eight breast cancer genes by multicolor fluorescence in situ hybridization, and targeted sequence analysis of 563 cancer genes. Both groups included diploid and aneuploid tumors. The degree of intratumor heterogeneity was significantly higher in aneuploid versus diploid cases, and so were gains of the oncogenes MYC and ZNF217. Significantly more copy number alterations were observed in the group with poor outcome. Almost all tumors in the group with long survival were classified as luminal A, whereas triple-negative tumors predominantly occurred in the short survival group. Mutations in PIK3CA were more common in the group with good outcome, whereas TP53 mutations were more frequent in patients with poor outcomes. This study shows that TP53 mutations and the extent of genomic imbalances are associated with poor outcome in younger breast cancer patients and thus emphasize the central role of genomic instability vis-a-vis tumor aggressiveness.
Collapse
Affiliation(s)
- Ayla Koçak
- Section for Translational Surgical Oncology and Biobanking, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany; Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | | | - Annette Lischka
- Section for Translational Surgical Oncology and Biobanking, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Daniela Hirsch
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - David Fiedler
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yue Hu
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Natalie Doberstein
- Section for Translational Surgical Oncology and Biobanking, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Irianna Torres
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Wei-Dong Chen
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - E Michael Gertz
- Computational Biology Branch, National Center for Biotechnology Information, NIH, Bethesda, Maryland; Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, Maryland
| | - Alejandro A Schäffer
- Computational Biology Branch, National Center for Biotechnology Information, NIH, Bethesda, Maryland; Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Gert Auer
- Department of Oncology-Pathology, Karolinska Biomic Center, Karolinska Institute, Stockholm, Sweden
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany; Department of Oncology-Pathology, Karolinska Biomic Center, Karolinska Institute, Stockholm, Sweden
| | - Thomas Ried
- Genetics Branch, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
17
|
Miller ET, You S, Cadaneanu RM, Kim M, Yoon J, Liu ST, Li X, Kwan L, Hodge J, Quist MJ, Grasso CS, Lewis MS, Knudsen BS, Freeman MR, Garraway IP. Chromosomal instability in untreated primary prostate cancer as an indicator of metastatic potential. BMC Cancer 2020; 20:398. [PMID: 32380981 PMCID: PMC7204307 DOI: 10.1186/s12885-020-06817-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Metastatic prostate cancer (PC) is highly lethal. The ability to identify primary tumors capable of dissemination is an unmet need in the quest to understand lethal biology and improve patient outcomes. Previous studies have linked chromosomal instability (CIN), which generates aneuploidy following chromosomal missegregation during mitosis, to PC progression. Evidence of CIN includes broad copy number alterations (CNAs) spanning > 300 base pairs of DNA, which may also be measured via RNA expression signatures associated with CNA frequency. Signatures of CIN in metastatic PC, however, have not been interrogated or well defined. We examined a published 70-gene CIN signature (CIN70) in untreated and castration-resistant prostate cancer (CRPC) cohorts from The Cancer Genome Atlas (TCGA) and previously published reports. We also performed transcriptome and CNA analysis in a unique cohort of untreated primary tumors collected from diagnostic prostate needle biopsies (PNBX) of localized (M0) and metastatic (M1) cases to determine if CIN was linked to clinical stage and outcome. Methods PNBX were collected from 99 patients treated in the VA Greater Los Angeles (GLA-VA) Healthcare System between 2000 and 2016. Total RNA was extracted from high-grade cancer areas in PNBX cores, followed by RNA sequencing and/or copy number analysis using OncoScan. Multivariate logistic regression analyses permitted calculation of odds ratios for CIN status (high versus low) in an expanded GLA-VA PNBX cohort (n = 121). Results The CIN70 signature was significantly enriched in primary tumors and CRPC metastases from M1 PC cases. An intersection of gene signatures comprised of differentially expressed genes (DEGs) generated through comparison of M1 versus M0 PNBX and primary CRPC tumors versus metastases revealed a 157-gene “metastasis” signature that was further distilled to 7-genes (PC-CIN) regulating centrosomes, chromosomal segregation, and mitotic spindle assembly. High PC-CIN scores correlated with CRPC, PC-death and all-cause mortality in the expanded GLA-VA PNBX cohort. Interestingly, approximately 1/3 of M1 PNBX cases exhibited low CIN, illuminating differential pathways of lethal PC progression. Conclusions Measuring CIN in PNBX by transcriptome profiling is feasible, and the PC-CIN signature may identify patients with a high risk of lethal progression at the time of diagnosis.
Collapse
Affiliation(s)
- Eric T Miller
- Department of Urology, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA
| | - Sungyong You
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, California, Los Angeles, USA
| | - Radu M Cadaneanu
- Department of Urology, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA
| | - Minhyung Kim
- Department of Surgery, Cedars-Sinai Medical Center, California, Los Angeles, USA
| | - Junhee Yoon
- Department of Surgery, Cedars-Sinai Medical Center, California, Los Angeles, USA
| | - Sandy T Liu
- Department of Urology, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA.,Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, California, Los Angeles, USA
| | - Xinmin Li
- Department of Pathology, David Geffen School of Medicine at UCLA, California, Los Angeles, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA
| | - Lorna Kwan
- Department of Urology, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA
| | - Jennelle Hodge
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, California, Los Angeles, USA
| | - Michael J Quist
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, California, Los Angeles, USA
| | - Catherine S Grasso
- Department of Surgery, Cedars-Sinai Medical Center, California, Los Angeles, USA
| | - Michael S Lewis
- Department of Pathology, Greater Los Angeles Veterans Affairs Health System, California, Los Angeles, USA
| | - Beatrice S Knudsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, California, Los Angeles, USA
| | - Michael R Freeman
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, California, Los Angeles, USA
| | - Isla P Garraway
- Department of Urology, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA. .,Division of Urology, Greater Los Angeles Veterans Affairs Healthcare Center, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Larson K, Kannaiyan R, Pandey R, Chen Y, Babiker HM, Mahadevan D. A Comparative Analysis of Tumors and Plasma Circulating Tumor DNA in 145 Advanced Cancer Patients Annotated by 3 Core Cellular Processes. Cancers (Basel) 2020; 12:E701. [PMID: 32188081 PMCID: PMC7140098 DOI: 10.3390/cancers12030701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
Matched-targeted and immune checkpoint therapies have improved survival in cancer patients, but tumor heterogeneity contributes to drug resistance. Our study categorized gene mutations from next generation sequencing (NGS) into three core processes. This annotation helps decipher complex biologic interactions to guide therapy. We collected NGS data on 145 patients who have failed standard therapy (2016 to 2018). One hundred and forty two patients had data for tissue (Caris MI/X) and plasma cell-free circulating tumor DNA (Guardant360) platforms. The mutated genes were categorized into cell fate (CF), cell survival (CS), and genome maintenance (GM). Comparative analysis was performed for concordance and discordance, unclassified mutations, trends in TP53 alterations, and PD-L1 expression. Two gene mutation maps were generated to compare each NGS platform. Mutated genes predominantly matched to CS with concordance between Guardant360 (64.4%) and Caris (51.5%). TP53 alterations comprised a significant proportion of the mutation pool in Caris and Guardant360, 14.7% and 13.1%, respectively. Twenty-six potentially actionable gene alterations were detected from matching ctDNA to Caris unclassified alterations. The CS core cellular process was the most prevalent in our study population. Clinical trials are warranted to investigate biomarkers for the three core cellular processes in advanced cancer patients to define the next best therapies.
Collapse
Affiliation(s)
- Kristian Larson
- University of Arizona College of Medicine, 1501 N Campbell Ave, Tucson, AZ 85724, USA;
| | | | - Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, 1515 N Campbell Ave, Tucson, AZ 85724, USA;
| | - Yuliang Chen
- University of Arizona Cancer Center, 1515 N Campbell Ave, Tucson, AZ 85724, USA;
| | - Hani M. Babiker
- Early Phase Clinical Trials Program, University of Arizona Cancer Center, 1515 N Campbell Ave, Tucson, AZ 85724, USA;
| | - Daruka Mahadevan
- Early Phase Clinical Trials Program, University of Arizona Cancer Center, 1515 N Campbell Ave, Tucson, AZ 85724, USA;
| |
Collapse
|
19
|
Intratumor heterogeneity and homologous recombination deficiency of high-grade serous ovarian cancer are associated with prognosis and molecular subtype and change in treatment course. Gynecol Oncol 2020; 156:415-422. [DOI: 10.1016/j.ygyno.2019.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 01/19/2023]
|
20
|
Davidson M, Aronson LI, Howard-Reeves J, Bryant H, Cutts RJ, Hulkki-Wilson S, Kouvelakis K, Kalaitzaki E, Watkins D, Starling N, Rao S, Cardenosa ML, Begum R, Rana I, Lazaro-Alcausi R, Terlizzo M, Wotherspoon A, Brown G, Swansbury J, Lord CJ, Cunningham D, Chau I, Chong IY. Clonal diversity of MYC amplification evaluated by fluorescent in situ hybridisation and digital droplet polymerase chain reaction in oesophagogastric cancer: Results from a prospective clinical trial screening programme. Eur J Cancer 2019; 122:12-21. [PMID: 31606655 DOI: 10.1016/j.ejca.2019.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/19/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The MYC proto-oncogene is among the most commonly dysregulated genes in human cancers. We report screening data from the iMYC trial, an ongoing phase II study assessing ibrutinib monotherapy in advanced pretreated MYC- and/or HER2-amplified oesophagogastric cancer, representing the first attempt to prospectively identify MYC amplifications in this tumour type for the purposes of therapeutic targeting. METHODS Screening utilising a fluorescent in situ hybridisation (FISH) assay for assessment of tumour MYC amplification has been instituted. An experimental digital droplet polymerase chain reaction (ddPCR) assay to assess MYC amplification in both tumour and circulating-tumour (ct)DNA has been developed and investigated. RESULTS One hundred thirty-five archival tumour specimens have undergone successful FISH analysis with 23% displaying evidence of MYC amplification. Intertumour heterogeneity was observed, with the percentage of cancer cells harbouring MYC amplification ranging widely between samples (median 51%, range 11-94%). Intratumoural clonal diversity of MYC amplification was also observed, with a significant degree of variance in amplification ratios (Bartlett's test for equal variance p < 0.001), and an association between greater variance in MYC amplification and improved outcome with prior first-line chemotherapy. ddPCR was most accurate in quantifying MYC amplification in tumour-derived DNA from cases with a high proportion (>70%) of amplified cells within the tumour specimen but was not reliable in samples containing a low proportion of amplified cells or in ctDNA. CONCLUSIONS Our results illustrate the utility of FISH to assess MYC amplification prospectively for a biomarker-selected trial by providing reliable and reproducible results in real time, with a high degree of heterogeneity of MYC amplification observed. We show that ddPCR can potentially detect high-level MYC amplifications in tumour tissue.
Collapse
Affiliation(s)
- Michael Davidson
- Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - Lauren I Aronson
- Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | | | - Hanna Bryant
- Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Rosalind J Cutts
- Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | | | | | | | - David Watkins
- Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - Naureen Starling
- Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - Sheela Rao
- Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | | | - Ruwaida Begum
- Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - Isma Rana
- Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | | | - Monica Terlizzo
- Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | | | - Gina Brown
- Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - John Swansbury
- Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - Christopher J Lord
- Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK; The Breast Cancer Now Toby Robins Research Centre, 237 Fulham Road, London, SW3 6JB, UK
| | - David Cunningham
- Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK
| | - Ian Chau
- Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK.
| | - Irene Y Chong
- Royal Marsden NHS Foundation Trust, Downs Road, Surrey, SM2 5PT, UK; Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
21
|
Pelham CJ, Nagane M, Madan E. Cell competition in tumor evolution and heterogeneity: Merging past and present. Semin Cancer Biol 2019; 63:11-18. [PMID: 31323289 DOI: 10.1016/j.semcancer.2019.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
In many cases, cancers are difficult to eliminate because they develop resistance to a primary chemotherapy or targeted therapy. Tumors grow into diverse cell subpopulations, increasing the ability to resist elimination. The phenomenon of 'cell competition' describes our body's natural surveillance system to optimize tissue fitness by forcing viable but aberrant cells to undergo cell death. Cell competition is not simply comparison of cell division potential. Competition factors signal for 'loser' cell elimination and 'winner' cell dominance. New evidence demonstrates it is possible to restrict cancer growth by strengthening the cell fitness of surrounding healthy tissue via anti-apoptotic pathways. Hence, cell competition provides strong conceptual explanation for oncogenesis, tumor growth and suppression. Tumor heterogeneity is a hallmark of many cancers and establishes gradients in which competitive interactions are able to occur among tumor cell subpopulations as well as neighboring stromal tissue. Here we review cellular/molecular competition pathways in the context of tumor evolution, heterogeneity and response to interventions. We propose strategies to exploit these mediators and design novel broad-spectrum therapeutic approaches that eliminate cancer and enhance fitness of neighboring tissue to improve patient outcomes.
Collapse
Affiliation(s)
- Christopher J Pelham
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
22
|
Biermann J, Nemes S, Parris TZ, Engqvist H, Werner Rönnerman E, Kovács A, Karlsson P, Helou K. A 17-marker panel for global genomic instability in breast cancer. Genomics 2019; 112:1151-1161. [PMID: 31260745 DOI: 10.1016/j.ygeno.2019.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022]
Abstract
Genomic instability is a hallmark of cancer that plays a pivotal role in breast cancer development and evolution. A number of existing prognostic gene expression signatures for breast cancer are based on proliferation-related genes. Here, we identified a 17-marker panel associated with genome stability. A total of 136 primary breast carcinomas were stratified by genome stability. Matched gene expression profiles showed an innate segregation based on genome stability. We identified a 17-marker panel stratifying the training and validation cohorts into high- and low-risk patients. The 17 genes associated with genomic instability strongly impacted clinical outcome in breast cancer. Pathway analyses determined chromosome organisation, cell cycle regulation, and RNA processing as the underlying biological processes, thereby offering options for drug development and treatment tailoring. Our work supports the applicability of the 17-marker panel to improve clinical outcome prediction for breast cancer patients based on a signature accounting for genomic instability.
Collapse
Affiliation(s)
- Jana Biermann
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Szilárd Nemes
- Swedish Hip Arthroplasty Register, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Tijhuis AE, Johnson SC, McClelland SE. The emerging links between chromosomal instability (CIN), metastasis, inflammation and tumour immunity. Mol Cytogenet 2019; 12:17. [PMID: 31114634 PMCID: PMC6518824 DOI: 10.1186/s13039-019-0429-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Many cancers possess an incorrect number of chromosomes, a state described as aneuploidy. Aneuploidy is often caused by Chromosomal Instability (CIN), a process of continuous chromosome mis-segregation. CIN is believed to endow tumours with enhanced evolutionary capabilities due to increased intratumour heterogeneity, and facilitating adaptive resistance to therapies. Recently, however, additional consequences and associations with CIN have been revealed, prompting the need to understand this universal hallmark of cancer in a multifaceted context. This review is focused on the investigation of possible links between CIN, metastasis and the host immune system in cancer development and treatment. We specifically focus on these links since most cancer deaths are due to the consequences of metastasis, and immunotherapy is a rapidly expanding novel avenue of cancer therapy.
Collapse
Affiliation(s)
- Andréa E. Tijhuis
- Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Sarah C. Johnson
- Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Sarah E. McClelland
- Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| |
Collapse
|
24
|
He Y, Liu ZX, Jiang ZH, Wang XS. Identification of genomic features associated with immunotherapy response in gastrointestinal cancers. World J Gastrointest Oncol 2019; 11:270-280. [PMID: 31040893 PMCID: PMC6475671 DOI: 10.4251/wjgo.v11.i4.270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) cancers prevail and account for an extremely high number of cancer deaths worldwide. The traditional treatment strategies, including surgery, chemotherapy, radiotherapy, and targeted therapy, have a limited therapeutic effect for advanced GI cancers. Recently, immunotherapy has shown promise in treating various refractory malignancies, including the GI cancers with mismatch repair deficiency (dMMR) or microsatellite instability (MSI). Thus, immunotherapy could be a promising treatment approach for GI cancers. Unfortunately, only a small proportion of GI cancer patients currently respond to immunotherapy. Therefore, it is important to discover predictive biomarkers for stratifying GI cancer patients response to immunotherapy. Certain genomic features, such as dMMR/MSI, tumor mutation burden (TMB), and tumor aneuploidy have been associated with tumor immunity and im-munotherapy response and may serve as predictive biomarkers for cancer immunotherapy. In this review, we examined the correlations between tumor immunity and three genomic features: dMMR/MSI, TMB, and tumor aneuploidy. We also explored their correlations using The Cancer Genome Atlas data and confirmed that the dMMR/MSI status, high TMB, and low tumor aneuploidy are associated with elevated tumor immunity in GI cancers. To improve the immunotherapeutic potential in GI cancers, more genetic or genomic features associated with tumor immune response need to be identified. Furthermore, it is worth exploring the combination of different immunotherapeutic methods and the combination of immunotherapy with other therapeutic approaches for cancer therapy.
Collapse
Affiliation(s)
- Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, Jiangsu Province, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, Jiangsu Province, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Zhi-Xian Liu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, Jiangsu Province, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, Jiangsu Province, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Ze-Hang Jiang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, Jiangsu Province, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, Jiangsu Province, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Xiao-Sheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, Jiangsu Province, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, Nanjing 211198, Jiangsu Province, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| |
Collapse
|
25
|
Liu Y, Yuan Z, Song C. Methylcrotonoyl-CoA carboxylase 2 overexpression predicts an unfavorable prognosis and promotes cell proliferation in breast cancer. Biomark Med 2019; 13:427-436. [PMID: 30895811 DOI: 10.2217/bmm-2018-0475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Methylcrotonoyl-CoA carboxylase 2 (MCCC2), a subunit of 3-Methylcrotonyl-CoA carboxylase (MCC), is reported to be involved in tumor formation and development. However, the role of MCCC2 in breast cancer is unknown. Materials & methods: MCCC2 expression was examined in 138 cases of breast cancer and matched adjacent normal tissues by quantitative reverse transcription PCR and immunohistochemistry. The influence of MCCC2 expression on cell proliferation was evaluated by CCK-8 and colony formation assay. Results: Quantitative reverse transcription PCR results show MCCC2 mRNA levels were significantly greater in breast cancer tissues than normal tissues (p < 0.05). Immunohistochemistry analysis revealed that MCCC2 overexpression was significantly associated with Tumor, Node, Metastasis stage and lymph node metastasis and predicted an unfavorable prognosis (p < 0.05). CCK-8 and colony formation assay indicated that MCCC2 overexpression significantly promoted cell proliferation. Discussion & conclusion: These data indicate MCCC2 overexpression predicts an unfavorable prognosis and promotes cell proliferation in breast cancer, which may serve as a potential prognostic biomarker.
Collapse
Affiliation(s)
- Yu Liu
- Heze Municipal Hospital, Heze City, Shandong Province 276800, PR China
| | - Zonghuai Yuan
- People's Hospital of Rizhao, Rizhao City, Shandong Province 276800, PR China
| | - Chuanwei Song
- Heze Municipal Hospital, Heze City, Shandong Province 276800, PR China
| |
Collapse
|
26
|
Abstract
Polyploid cells, which contain multiple copies of the typically diploid genome, are widespread in plants and animals. Polyploidization can be developmentally programmed or stress induced, and arises from either cell-cell fusion or a process known as endoreplication, in which cells replicate their DNA but either fail to complete cytokinesis or to progress through M phase entirely. Polyploidization offers cells several potential fitness benefits, including the ability to increase cell size and biomass production without disrupting cell and tissue structure, and allowing improved cell longevity through higher tolerance to genomic stress and apoptotic signals. Accordingly, recent studies have uncovered crucial roles for polyploidization in compensatory cell growth during tissue regeneration in the heart, liver, epidermis and intestine. Here, we review current knowledge of the molecular pathways that generate polyploidy and discuss how polyploidization is used in tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Bruce A Edgar
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
27
|
Yan X, Yu Y, Li L, Chen N, Song W, He H, Dong J, Liu X, Cui J. Friend leukemia virus integration 1 is a predictor of poor prognosis of breast cancer and promotes metastasis and cancer stem cell properties of breast cancer cells. Cancer Med 2018; 7:3548-3560. [PMID: 29869379 PMCID: PMC6089157 DOI: 10.1002/cam4.1589] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide; despite the developments in diagnosis and therapy, recurrence and metastasis remain the main causes of death among patients with breast cancer. This study aimed to identify a promising biomarker for this disease. The study clarified (1) the association between Friend leukemia virus integration 1 (FLI-1) and various molecular subtypes and (2) the prognostic value of FLI-1 in breast cancer. To the best of our knowledge, this study is the first to report that FLI-1 is a predictor of poor prognosis in patients with breast cancer and overexpressed in the triple negative breast cancer (TNBC) subtype. To further verify the effect of FLI-1 in promoting the metastasis of TNBC, we performed a series of functional experiments in vitro and orthotopic xenograft experiments in the mammary fat pad of nude mice. FLI-1, as a transcription factor, bound to the promoters of key EMT-related genes (CDH1 and VIM), and regulated their expressions at the transcriptional level, thus induced epithelial-mesenchymal transition (EMT). The overexpression of FLI-1 significantly upregulated the expression of mesenchymal markers. After the modulation of FLI-1, the changes in mammary stem cell markers (ALDH1A1 and CD133) and the capacity to form mammospheres were consistent with those of the EMT-related markers. The orthotopic xenograft models further confirmed that the attenuation of stem cell traits after silencing FLI-1 decreased the ability of tumorigenesis. These results indicate that FLI-1 is a useful predictor of poor prognosis in patients with breast cancer. Furthermore, the preliminary exploration of metastatic mechanism in the patients with TNBC will provide a potential target to treat breast cancer in the near future.
Collapse
Affiliation(s)
- Xu Yan
- Pathological Diagnostic Center, The First Hospital of Jilin University, Changchun, Jilin, China.,Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lingyu Li
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Naifei Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hua He
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jie Dong
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiangliang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|