1
|
Patel MS, Almubarak M, Matta J, Ortiz-Sanchez C, Encarnacion J, Ruiz-Deya G, Dutil J, Dhillon J, Yamoah K, Berglund A, Park H, Kilari D, Balagurunathan Y, Wang L, Park JY. 5hmC-profiles in Puerto Rican Hispanic/Latino men with aggressive prostate cancer. Front Oncol 2025; 15:1541878. [PMID: 40265030 PMCID: PMC12011585 DOI: 10.3389/fonc.2025.1541878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Puerto Rican (PR) Hispanic/Latino (H/L) men are an understudied population that has the highest prostate cancer (PCa) specific mortality among other Hispanic populations. Little information is known about the higher mortality in PR H/L men. It is thought that epigenetic changes in key genes may play a critical role in aggressive tumors. Methods We aimed to identify key 5-hydroxymethylcytosine (5hmC) changes in PR H/L men with aggressive PCa. We performed sequencing analysis using the 5hmC-enriched DNA from 22 prostate tumors and 24 adjacent normal FFPE samples. Results We identified 808 differentially methylated genes (DMGs) in tumors compared to adjacent normal tissues. These genes suggest key mechanisms, including upregulated signatures of negative Androgen Receptor (AR) regulation, Wnt/β-catenin pathway activation, and downregulation of tumor suppressor genes. Pathway analysis of DMGs demonstrated that DNA repair pathway was most upregulated in tumors. Since 5hmC abundance positively correlates with gene expression levels, we further investigated 808 DMGs in TCGA PCa gene expression data. Further, we identified 59 DMGs with significant gene expression changes in the same direction. Additionally, we identified 111 aggressiveness-related DMGs, of which, two hypomethylated genes (CCDC122, NUDT15) and four hypermethylated genes (PVT1, RPL30, TRMT12, UBR5) were found to be altered at transcriptomic level in a concordant manner in PR H/L PCa patients. Aberrant 5hmC and GE changes in these six genes were also associated with progression-free survival in the mixed PCa population. Discussion The 5hmC modifications and associated gene expression changes in these six genes could be linked to the highest prostate cancer (PCa)-specific mortality in PR H/L men. In conclusion, our study identified 59 DMGs showing concordant epigenetic and transcriptomic changes in tumor tissues and 111 DMGs showing association with aggressive PCa among PR H/L men. Our findings have significant implications for understanding these key genes' molecular mechanisms, which may drive PCa progression and mortality in this population. This will help in developing potential biomarkers or therapeutic targets for personalized treatment strategies in this high-risk subgroup. Future research will explore how these genes contribute to PCa-specific mortality through molecular analyses, with plans to validate them in a larger validation cohort.
Collapse
Affiliation(s)
- Manishkumar S. Patel
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Mousa Almubarak
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Carmen Ortiz-Sanchez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Jarline Encarnacion
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Gilberto Ruiz-Deya
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Julie Dutil
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Hyun Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Deepak Kilari
- Division of Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yoganand Balagurunathan
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Liang Wang
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jong Y. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
2
|
Pedrani M, Barizzi J, Salfi G, Nepote A, Testi I, Merler S, Castelo-Branco L, Mestre RP, Turco F, Tortola L, Theurillat JP, Gillessen S, Vogl U. The Emerging Predictive and Prognostic Role of Aggressive-Variant-Associated Tumor Suppressor Genes Across Prostate Cancer Stages. Int J Mol Sci 2025; 26:318. [PMID: 39796175 PMCID: PMC11719667 DOI: 10.3390/ijms26010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in TP53, RB1, and/or PTEN (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising. Alterations in TP53, RB1, and PTEN, as well as the combined loss of AVPC-TSGs, may have significant implications for prognosis and treatment. These biomarkers might help predict responses to various therapies, including hormonal treatments, cytotoxic agents, radiotherapy, and targeted therapies. Understanding the impact of these molecular alterations in patients with PCa is crucial for personalized management. In this review, we provide a comprehensive overview of the emerging prognostic and predictive roles of AVPC-TSG alterations across PCa stages. Moreover, we discuss the implications of different methods used for detecting AVPC-TSG alterations and summarize factors influencing their prevalence. As our comprehension of the genomic landscape of PCa disease deepens, incorporating genomic profiling into clinical decision making will become increasingly important for improving patient outcomes.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jessica Barizzi
- Istituto Cantonale di Patologia, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Alessandro Nepote
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- AOU San Luigi Gonzaga, Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, 37126 Verona, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| |
Collapse
|
3
|
Patel MS, Almubarak M, Matta J, Ortiz-Sanchez C, Encarnacion J, Ruiz-Deya G, Dutil J, Dhillon J, Yamoah K, Berglund A, Park H, Kilari D, Balagurunathan Y, Wang L, Park JY. 5hmC-profiles in Puerto Rican Hispanic/Latino men with aggressive prostate cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.26.24315621. [PMID: 39502659 PMCID: PMC11537326 DOI: 10.1101/2024.10.26.24315621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Puerto Rican (PR) Hispanic/Latino (H/L) men are an understudied population that has the highest prostate cancer (PCa) specific mortality among other Hispanic populations. Little information is known about the higher mortality in PR H/L men. It is thought that epigenetic changes in key genes may play a critical role in aggressive tumors. We aimed to identify key 5-hydroxymethylcytosine (5hmC) changes in PR H/L men with aggressive PCa. We performed sequencing analysis using the 5hmC-enriched DNA from 22 prostate tumors and 24 adjacent normal FFPE samples. We identified 808 differentially methylated genes (DMGs) in tumors compared to adjacent normal tissues (FDR<0.05, log2FC>|0.4|). Pathway analysis of DMGs demonstrated that DNA repair pathway was most upregulated in tumors. Since 5hmC abundance positively correlates with gene expression levels, we further investigated 808 DMGs in TCGA PCa gene expression data. Further, we identified 59 DMGs (80.1%, FDR<0.05, ΔGE (gene expression) >|1|) with significant gene expression changes in the same direction. Additionally, we identified 111 aggressiveness-related DMGs, of which, two hypomethylated genes ( CCDC122 , NUDT15 ) and four hypermethylated genes ( PVT1 , RPL30 , TRMT12 , UBR5 ) were found to be altered at transcriptomic level in a concordant manner in PR H/L PCa patients (N=86). The aberrant 5hmC (N=55) and GE (N=497) changes in these six genes were also associated with progression-free survival in the mixed PCa population. In conclusion, our study identified 59 DMGs showing concordant epigenetic and transcriptomic changes in tumor tissues and 111 DMGs showing association with aggressive PCa among PR H/L men.
Collapse
|
4
|
Ma M, Zhu Y, Xiao C, Li R, Cao X, Kang R, Wang X, Li E. Novel insights into RB1 in prostate cancer lineage plasticity and drug resistance. TUMORI JOURNAL 2024; 110:252-263. [PMID: 38316605 DOI: 10.1177/03008916231225576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.
Collapse
Affiliation(s)
- Min Ma
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yazhi Zhu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruidong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyu Cao
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ermao Li
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Carmichael J, Figueiredo I, Gurel B, Beije N, Yuan W, Rekowski J, Seed G, Carreira S, Bertan C, Fenor de La Maza MDLD, Chandran K, Neeb A, Welti J, Gallagher L, Bogdan D, Crespo M, Riisnaes R, Ferreira A, Miranda S, Lu J, Shen MM, Hall E, Porta N, Westaby D, Guo C, Grochot R, Lord CJ, Mateo J, Sharp A, de Bono J. RNASEH2B loss and PARP inhibition in advanced prostate cancer. J Clin Invest 2024; 134:e178278. [PMID: 38833311 PMCID: PMC11527451 DOI: 10.1172/jci178278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUNDClinical trials have suggested antitumor activity from PARP inhibition beyond homologous recombination deficiency (HRD). RNASEH2B loss is unrelated to HRD and preclinically sensitizes to PARP inhibition. The current study reports on RNASEH2B protein loss in advanced prostate cancer and its association with RB1 protein loss, clinical outcome, and clonal dynamics during treatment with PARP inhibition in a prospective clinical trial.METHODSWhole tumor biopsies from multiple cohorts of patients with advanced prostate cancer were interrogated using whole-exome sequencing (WES), RNA-Seq (bulk and single nucleus), and IHC for RNASEH2B and RB1. Biopsies from patients treated with olaparib in the TOPARP-A and TOPARP-B clinical trials were used to evaluate RNASEH2B clonal selection during olaparib treatment.RESULTSShallow codeletion of RNASEH2B and adjacent RB1 - colocated at chromosome 13q14 - was common, deep codeletion infrequent, and gene loss associated with lower mRNA expression. In castration-resistant prostate cancer (CRPC) biopsies, RNASEH2B and RB1 mRNA expression correlated, but single nucleus RNA-Seq indicated discordant loss of expression. IHC studies showed that loss of the 2 proteins often occurred independently, arguably due to stochastic second allele loss. Pre- and posttreatment metastatic CRPC (mCRPC) biopsy studies from BRCA1/2 WT tumors, treated on the TOPARP phase II trial, indicated that olaparib eradicated RNASEH2B-loss tumor subclones.CONCLUSIONPARP inhibition may benefit men suffering from mCRPC by eradicating tumor subclones with RNASEH2B loss.TRIAL REGISTRATIONClinicaltrials.gov NCT01682772.FUNDINGAstraZeneca; Cancer Research UK; Medical Research Council; Cancer Research UK; Prostate Cancer UK; Movember Foundation; Prostate Cancer Foundation.
Collapse
Affiliation(s)
- Juliet Carmichael
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Bora Gurel
- The Institute of Cancer Research, London, United Kingdom
| | - Nick Beije
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Jan Rekowski
- The Institute of Cancer Research, London, United Kingdom
| | - George Seed
- The Institute of Cancer Research, London, United Kingdom
| | | | - Claudia Bertan
- The Institute of Cancer Research, London, United Kingdom
| | | | - Khobe Chandran
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Antje Neeb
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | | | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Mateus Crespo
- The Institute of Cancer Research, London, United Kingdom
| | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
| | - Ana Ferreira
- The Institute of Cancer Research, London, United Kingdom
| | - Susana Miranda
- The Institute of Cancer Research, London, United Kingdom
| | - Jinqiu Lu
- Departments of Medicine, Genetics & Development, Urology, and Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael M Shen
- Departments of Medicine, Genetics & Development, Urology, and Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Emma Hall
- The Institute of Cancer Research, London, United Kingdom
| | - Nuria Porta
- The Institute of Cancer Research, London, United Kingdom
| | - Daniel Westaby
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Christina Guo
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Rafael Grochot
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Joaquin Mateo
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Johann de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Salachan PV, Ulhøi BP, Borre M, Sørensen KD. Association between copy number alterations estimated using low-pass whole genome sequencing of formalin-fixed paraffin-embedded prostate tumor tissue and cancer-specific clinical parameters. Sci Rep 2023; 13:22445. [PMID: 38105358 PMCID: PMC10725894 DOI: 10.1038/s41598-023-49811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Copy number alterations (CNAs) are frequently observed in early-stage prostate cancer and are associated with disease recurrence and tumor aggressiveness. Cost-effective assessment of CNAs could enhance clinical utility of CNAs. Here, we combined the cost-effectiveness of low-pass (low coverage) whole genome sequencing (LPWGS) and the routine availability of formalin-fixed paraffin-embedded (FFPE) tumor tissue for assessing CNAs in a cohort of 187 men with early-stage localised prostate cancer. We detected well known CNAs in 8p, 8q, 13q and 16q and recurrent gains of the oncogene MYC and losses of the tumor suppressor genes NKX3-1, PTEN and RB1, indicating assay reliability. The estimated burden of CNAs was significantly associated with Gleason score, pathological T stage, surgical margin status and biochemical recurrence. Further, genomic losses or gains in specific chromosomal arms were significantly associated with worse BCR-free survival. Copy number signatures extracted from the LPWGS data showed potential for risk stratifying patients, where signatures S1 and S2 showed significant association to worse BCR-free survival compared to S3. Our study provides clinical validation of the associations between CNAs and tumor aggressiveness in an independent and representative RP cohort, while demonstrating the feasibility of performing LPWGS of FFPE tumor tissue for cost-effective assessment of CNAs.
Collapse
Affiliation(s)
- Paul Vinu Salachan
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | - Michael Borre
- Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
| | - Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
| |
Collapse
|
7
|
Soh PXY, Mmekwa N, Petersen DC, Gheybi K, van Zyl S, Jiang J, Patrick SM, Campbell R, Jaratlerdseri W, Mutambirwa SBA, Bornman MSR, Hayes VM. Prostate cancer genetic risk and associated aggressive disease in men of African ancestry. Nat Commun 2023; 14:8037. [PMID: 38052806 PMCID: PMC10697980 DOI: 10.1038/s41467-023-43726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
African ancestry is a significant risk factor for prostate cancer and advanced disease. Yet, genetic studies have largely been conducted outside the context of Sub-Saharan Africa, identifying 278 common risk variants contributing to a multiethnic polygenic risk score, with rare variants focused on a panel of roughly 20 pathogenic genes. Based on this knowledge, we are unable to determine polygenic risk or differentiate prostate cancer status interrogating whole genome data for 113 Black South African men. To further assess for potentially functional common and rare variant associations, here we interrogate 247,780 exomic variants for 798 Black South African men using a case versus control or aggressive versus non-aggressive study design. Notable genes of interest include HCP5, RFX6 and H3C1 for risk, and MKI67 and KLF5 for aggressive disease. Our study highlights the need for further inclusion across the African diaspora to establish African-relevant risk models aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Pamela X Y Soh
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Naledi Mmekwa
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Desiree C Petersen
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kazzem Gheybi
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Smit van Zyl
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | | | - Weerachai Jaratlerdseri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa, South Africa
| | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
- Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa.
- Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
8
|
Nørgaard M, Bjerre MT, Fredsøe J, Vang S, Jensen JB, De Laere B, Grönberg H, Borre M, Lindberg J, Sørensen KD. Prognostic Value of Low-Pass Whole Genome Sequencing of Circulating Tumor DNA in Metastatic Castration-Resistant Prostate Cancer. Clin Chem 2023; 69:386-398. [PMID: 36762756 DOI: 10.1093/clinchem/hvac224] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023]
Abstract
BACKGROUND Multiple treatments are available for metastatic castration-resistant prostate cancer (mCRPC), including androgen receptor signaling inhibitors (ARSI) enzalutamide and abiraterone, but therapy resistance remains a major clinical obstacle. We examined the clinical utility of low-pass whole-genome sequencing (LPWGS) of circulating tumor DNA (ctDNA) for prognostication in mCRPC. METHODS A total of 200 plasma samples from 143 mCRPC patients collected at the start of first-line ARSI treatment (baseline) and at treatment termination (n = 57, matched) were analyzed by LPWGS (median: 0.50X) to access ctDNA% and copy number alteration (CNA) patterns. The best confirmed prostate specific antigen (PSA) response (≥50% decline [PSA50]), PSA progression-free survival (PFS), and overall survival (OS) were used as endpoints. For external validation, we used plasma LPWGS data from an independent cohort of 70 mCRPC patients receiving first-line ARSI. RESULTS Baseline ctDNA% ranged from ≤3.0% to 73% (median: 6.6%) and CNA burden from 0% to 82% (median: 13.1%) in the discovery cohort. High ctDNA% and high CNA burden at baseline was associated with poor PSA50 response (P = 0.0123/0.0081), poor PFS (P < 0.0001), and poor OS (P < 0.0001). ctDNA% and CNA burden was higher at PSA progression than at baseline in 32.7% and 42.3% of the patients. High ctDNA% and high CNA burden at baseline was also associated with poor PFS and OS (P ≤ 0.0272) in the validation cohort. CONCLUSIONS LPWGS of ctDNA provides clinically relevant information about the tumor genome in mCRPC patients. Using LPWGS data, we show that high ctDNA% and CNA burden at baseline is associated with short PFS and OS in 2 independent cohorts.
Collapse
Affiliation(s)
- Maibritt Nørgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marianne T Bjerre
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Urology, Aarhus University Hospital, Aarhus, Denmark.,Department of Urology, Regional Hospital West Jutland, Holstebro, Denmark
| | - Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Vang
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jørgen B Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Urology, Regional Hospital West Jutland, Holstebro, Denmark
| | - Bram De Laere
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.,Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Tsujino T, Takai T, Hinohara K, Gui F, Tsutsumi T, Bai X, Miao C, Feng C, Gui B, Sztupinszki Z, Simoneau A, Xie N, Fazli L, Dong X, Azuma H, Choudhury AD, Mouw KW, Szallasi Z, Zou L, Kibel AS, Jia L. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nat Commun 2023; 14:252. [PMID: 36650183 PMCID: PMC9845315 DOI: 10.1038/s41467-023-35880-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Prostate cancer harboring BRCA1/2 mutations are often exceptionally sensitive to PARP inhibitors. However, genomic alterations in other DNA damage response genes have not been consistently predictive of clinical response to PARP inhibition. Here, we perform genome-wide CRISPR-Cas9 knockout screens in BRCA1/2-proficient prostate cancer cells and identify previously unknown genes whose loss has a profound impact on PARP inhibitor response. Specifically, MMS22L deletion, frequently observed (up to 14%) in prostate cancer, renders cells hypersensitive to PARP inhibitors by disrupting RAD51 loading required for homologous recombination repair, although this response is TP53-dependent. Unexpectedly, loss of CHEK2 confers resistance rather than sensitivity to PARP inhibition through increased expression of BRCA2, a target of CHEK2-TP53-E2F7-mediated transcriptional repression. Combined PARP and ATR inhibition overcomes PARP inhibitor resistance caused by CHEK2 loss. Our findings may inform the use of PARP inhibitors beyond BRCA1/2-deficient tumors and support reevaluation of current biomarkers for PARP inhibition in prostate cancer.
Collapse
Affiliation(s)
- Takuya Tsujino
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Tomoaki Takai
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kunihiko Hinohara
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fu Gui
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Takeshi Tsutsumi
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Xiao Bai
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Chenkui Miao
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Chao Feng
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Bin Gui
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Zsofia Sztupinszki
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Antoine Simoneau
- Department of Pathology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Ning Xie
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Atish D Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute & Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Zoltan Szallasi
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Lee Zou
- Department of Pathology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Adam S Kibel
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Li Jia
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Nukaya T, Sumitomo M, Sugihara E, Takeda M, Nohara S, Tanishima S, Takenaka M, Zennami K, Takahara K, Shiroki R, Saya H. Estimating copy number to determine BRCA2 deletion status and to expect prognosis in localized prostate cancer. Cancer Med 2023; 12:8154-8165. [PMID: 36645189 PMCID: PMC10134377 DOI: 10.1002/cam4.5617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The significance of BRCA alterations has been implicated in the development of metastatic castration-resistant prostate cancer (PC). The details of the frequency and significance of BRCA alterations in localized PC remain unknown. In this study, we investigated the frequency and clinical significance of BRCA alterations in localized PCs using an in-house next-generation sequencer (NGS) system. METHODS DNA was extracted from formalin-fixed paraffin-embedded tissues of surgical specimens from 126 patients with clinically localized PC who underwent radical prostatectomy. The mutation information of 164 cancer genes was analyzed using the PleSSision-Rapid test. Both copy number (CN) variation and loss of heterozygosity of various genes, such as BRCA1 and BRCA2, were estimated and reported. RESULTS Next-generation sequencer analyses revealed that the BRCA2 CN was decreased in 17 patients (13.5%) and the BRCA1 CN in six (4.8%) patients. NGS-based CN values were shown to be highly correlated with droplet digital PCR-based CN values. Tissue-specific BRCA expression investigated using the Human Protein Atlas showed that the decreased CN of BRCA2, but not BRCA1, is responsible for the decreased BRCA activity in PC. Ten of the 22 patients with decreased BRCA2 CN were presumed to have somatic heterozygous deletion. There were no observed associations between the heterozygous deletion of BRCA2 and various clinicopathological parameters. Furthermore, three of 10 patients developed biochemical recurrence within 3 months after surgery. Multivariate analyses revealed that the initial prostate-specific antigen levels and BRCA2 CN were independent factors for biochemical recurrence. CONCLUSION Our results suggest that a decrease in BRCA2 CN may be used as a biomarker for predicting recurrence after surgery in localized PC. Early screening for somatic alterations in BRCA2 using NGS may help to broadly predict the risk of PC progression.
Collapse
Affiliation(s)
- Takuhisa Nukaya
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan.,Department of Urology School of Medicine, Fujita Health University, Toyoake, Japan
| | - Makoto Sumitomo
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan.,Department of Urology School of Medicine, Fujita Health University, Toyoake, Japan.,Department of Medical Research for Intractable Disease, Fujita Health University, Toyoake, Japan
| | - Eiji Sugihara
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan.,Research Promotion Headquarters, Open Facility Center, Fujita Health University, Toyoake, Japan
| | - Mayu Takeda
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan.,Department of Medical Research for Intractable Disease, Fujita Health University, Toyoake, Japan
| | - Sachio Nohara
- Department of Bio Informatics, Communication Engineering Center, Electronic System Business Group, Mitsubishi Electric Software Corp, Tokyo, Japan
| | - Shigeki Tanishima
- Department of Bio Informatics, Communication Engineering Center, Electronic System Business Group, Mitsubishi Electric Software Corp, Tokyo, Japan
| | - Masashi Takenaka
- Department of Urology School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kenji Zennami
- Department of Urology School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kiyoshi Takahara
- Department of Urology School of Medicine, Fujita Health University, Toyoake, Japan
| | - Ryoichi Shiroki
- Department of Urology School of Medicine, Fujita Health University, Toyoake, Japan
| | - Hideyuki Saya
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan
| |
Collapse
|
11
|
Kensler KH, Baichoo S, Pathania S, Rebbeck TR. The tumor mutational landscape of BRCA2-deficient primary and metastatic prostate cancer. NPJ Precis Oncol 2022; 6:39. [PMID: 35715489 PMCID: PMC9205939 DOI: 10.1038/s41698-022-00284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/17/2022] [Indexed: 02/08/2023] Open
Abstract
Carriers of germline BRCA2 pathogenic sequence variants have elevated aggressive prostate cancer risk and are candidates for precision oncology treatments. We examined whether BRCA2-deficient (BRCA2d) prostate tumors have distinct genomic alterations compared with BRCA2-intact (BRCA2i) tumors. Among 2536 primary and 899 metastatic prostate tumors from the ICGC, GENIE, and TCGA databases, we identified 138 primary and 85 metastatic BRCA2d tumors. Total tumor mutation burden (TMB) was higher among primary BRCA2d tumors, although pathogenic TMB did not differ by tumor BRCA2 status. Pathogenic and total single nucleotide variant (SNV) frequencies at KMT2D were higher in BRCA2d primary tumors, as was the total SNV frequency at KMT2D in BRCA2d metastatic tumors. Homozygous deletions at NEK3, RB1, and APC were enriched in BRCA2d primary tumors, and RB1 deletions in metastatic BRCA2d tumors as well. TMPRSS2-ETV1 fusions were more common in BRCA2d tumors. These results identify somatic alterations that hallmark etiological and prognostic differences between BRCA2d and BRCA2i prostate tumors.
Collapse
Affiliation(s)
- Kevin H Kensler
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Shakuntala Baichoo
- Department of Digital Technologies, FoICDT, University of Mauritius, Réduit, Mauritius
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Timothy R Rebbeck
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
12
|
Miao C, Tsujino T, Takai T, Gui F, Tsutsumi T, Sztupinszki Z, Wang Z, Azuma H, Szallasi Z, Mouw KW, Zou L, Kibel AS, Jia L. RB1 loss overrides PARP inhibitor sensitivity driven by RNASEH2B loss in prostate cancer. SCIENCE ADVANCES 2022; 8:eabl9794. [PMID: 35179959 PMCID: PMC8856618 DOI: 10.1126/sciadv.abl9794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Current targeted cancer therapies are largely guided by mutations of a single gene, which overlooks concurrent genomic alterations. Here, we show that RNASEH2B, RB1, and BRCA2, three closely located genes on chromosome 13q, are frequently deleted in prostate cancer individually or jointly. Loss of RNASEH2B confers cancer cells sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition due to impaired ribonucleotide excision repair and PARP trapping. When co-deleted with RB1, however, cells lose their sensitivity, in part, through E2F1-induced BRCA2 expression, thereby enhancing homologous recombination repair capacity. Nevertheless, loss of BRCA2 resensitizes RNASEH2B/RB1 co-deleted cells to PARP inhibition. Our results may explain some of the disparate clinical results from PARP inhibition due to interaction between multiple genomic alterations and support a comprehensive genomic test to determine who may benefit from PARP inhibition. Last, we show that ATR inhibition can disrupt E2F1-induced BRCA2 expression and overcome PARP inhibitor resistance caused by RB1 loss.
Collapse
Affiliation(s)
- Chenkui Miao
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Takuya Tsujino
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Tomoaki Takai
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Fu Gui
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Takeshi Tsutsumi
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Zsofia Sztupinszki
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, USA
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Zoltan Szallasi
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, USA
| | - Kent W. Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam S. Kibel
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Li Jia
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Corresponding author.
| |
Collapse
|
13
|
A first Japanese case of BRCA2 and RB1 co-loss organ-confined prostate cancer successfully treated by radical prostatectomy. Int Cancer Conf J 2021; 10:170-173. [PMID: 34221826 DOI: 10.1007/s13691-021-00469-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2022] Open
Abstract
We report a rare case of localized prostate cancer with BRCA2 and RB1 co-loss, which is usually found at a more advanced stage with a poor prognosis. A 59-year-old male with prostate cancer was referred to our hospital for surgical treatment. He had schizophrenia that was well controlled by medicine. He had no family history of prostate cancer, breast cancer, or ovarian cancer. His initial PSA was 4.5 ng/mL, and Gleason score 3 + 4 adenocarcinoma was detected in one of 12 needle biopsy cores. Imaging studies demonstrated the clinical stage to be cT2aN0M0. Therefore, robot-assisted laparoscopic radical prostatectomy (RALP) with bilateral nerve sparing was performed. Based on histopathological analysis, the Gleason score was 4 + 3 and the pathological stage was pT2N0M0 with a negative surgical margin. Genetic sequencing identified BRCA2 and RB1 co-loss with limited loss of heterogeneity (LOH). At 12 months after surgery, his PSA level remained < 0.01 ng/mL. This case suggests the importance of early detection of prostate cancer and the possibility of cure for prostate cancer with high malignant potential. Supplementary Information The online version contains supplementary material available at 10.1007/s13691-021-00469-z.
Collapse
|
14
|
Lv SD, Wang HY, Yu XP, Zhai QL, Wu YB, Wei Q, Huang WH. Integrative molecular characterization of Chinese prostate cancer specimens. Asian J Androl 2021; 22:162-168. [PMID: 31134918 PMCID: PMC7155802 DOI: 10.4103/aja.aja_36_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) exhibits epidemiological and molecular heterogeneity. Despite extensive studies of its phenotypic and genetic properties in Western populations, its molecular basis is not clear in Chinese patients. To determine critical molecular characteristics and explore correlations between genomic markers and clinical parameters in Chinese populations, we applied an integrative genetic/transcriptomic assay that combines targeted next-generation sequencing and quantitative real-time PCR (qRT-PCR) on samples from 46 Chinese patients with PCa. Lysine (K)-specific methyltransferase 2D (KMT2D), zinc finger homeobox 3 (ZFHX3), A-kinase anchoring protein 9 (AKAP9), and GLI family zinc finger 1 (GLI1) were frequently mutated in our cohort. Moreover, a clinicopathological analysis showed that RB transcriptional corepressor 1 (RB1) deletion was common in patients with a high risk of disease progression. Remarkably, four genomic events, MYC proto-oncogene (MYC) amplification, RB1 deletion, APC regulator of WNT signaling pathway (APC) mutation or deletion, and cyclin-dependent kinase 12 (CDK12) mutation, were correlated with poor disease-free survival. In addition, a close link between KMT2D expression and the androgen receptor (AR) signaling pathway was observed both in our cohort and in The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data. In summary, our results demonstrate the feasibility and benefits of integrative molecular characterization of PCa samples in disease pathology research and personalized medicine.
Collapse
Affiliation(s)
- Shi-Dong Lv
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou 510515, China.,Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hong-Yi Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin-Pei Yu
- Department of Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Qi-Liang Zhai
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yao-Bin Wu
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou 510515, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen-Hua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangzhou 510515, China
| |
Collapse
|
15
|
CORRIGENDUM. Genes Chromosomes Cancer 2021; 60:293. [PMID: 33580982 DOI: 10.1002/gcc.22927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
16
|
Marx A, Koopmann L, Höflmayer D, Büscheck F, Hube-Magg C, Steurer S, Eichenauer T, Clauditz TS, Wilczak W, Simon R, Sauter G, Izbicki JR, Huland H, Heinzer H, Graefen M, Haese A, Schlomm T, Bernreuther C, Lebok P, Bonk S. Reduced anoctamin 7 (ANO7) expression is a strong and independent predictor of poor prognosis in prostate cancer. Cancer Biol Med 2021; 18:245-255. [PMID: 33628598 PMCID: PMC7877177 DOI: 10.20892/j.issn.2095-3941.2019.0324] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/09/2022] Open
Abstract
Objective Anoctamin 7 (ANO7) is a calcium2+-dependent chloride ion channel protein. Its expression is restricted to prostate epithelial cells. The exact function is unknown. This study aimed to analyze ANO7 expression and its clinical significance in prostate cancer (PCa). Methods ANO7 expression was assessed by immunohistochemistry in 17,747 clinical PCa specimens. Results ANO7 was strongly expressed in normal prostate glandular cells but often less abundant in cancer cells. ANO7 staining was interpretable in 13,594 cancer tissues and considered strong in 34.4%, moderate in 48.7%, weak in 9.3%, and negative in 7.6%. Reduced staining was tightly linked to adverse tumor features [high classical and quantitative Gleason grade, lymph node metastasis, advanced tumor stage, high Ki67 labeling index, positive surgical margin, and early biochemical recurrence (P < 0.0001 each)]. The univariate Cox hazard ratio for prostate-specific antigen (PSA) recurrence after prostatectomy in patients with negative vs. strong ANO7 expression was 2.98 (95% confidence interval 2.61-3.38). The prognostic impact was independent of established pre- or postoperatively available parameters (P < 0.0001). Analysis of annotated molecular data showed that low ANO7 expression was linked to TMPRSS2:ERG fusions (P < 0.0001), elevated androgen receptor expression (P < 0.0001), as well as presence of 9 of 11 chromosomal deletions (P < 0.05 each). A particularly strong association of low ANO7 expression with phosphatase and tensin homolog (PTEN) deletion may indicate a functional relationship with the PTEN/AKT pathway. Conclusions These data identify reduced ANO7 protein expression as a strong and independent predictor of poor prognosis in PCa. ANO7 measurement, either alone or in combination, might provide clinically useful prognostic information in PCa.
Collapse
Affiliation(s)
- Andreas Marx
- Institute of Pathology, Klinikum Fürth, Fürth 90766, Germany
| | - Lena Koopmann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till Eichenauer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jakob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sarah Bonk
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
17
|
Epithelial splicing regulatory protein 1 and 2 (ESRP1 and ESRP2) upregulation predicts poor prognosis in prostate cancer. BMC Cancer 2020; 20:1220. [PMID: 33339518 PMCID: PMC7749503 DOI: 10.1186/s12885-020-07682-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/23/2020] [Indexed: 01/26/2023] Open
Abstract
Background Epithelial splicing regulatory protein 1 (ESRP1) and 2 (ESRP2) regulate alternative splicing events of various pre-mRNAs. Some of these targets play a role in cancer-associated processes, including cytoskeleton reorganization and DNA-repair processes. This study was undertaken to estimate the impact of ESRP1 and ESRP2 alterations on prostate cancer patient prognosis. Methods A tissue microarray made from 17,747 individual cancer samples with comprehensive, pathological, clinical and molecular data was analyzed by immunohistochemistry for ESRP1 and ESRP2. Results Nuclear staining for ESRP1 was seen in 38.6% (36.0% low, 2.6% high) of 12,140 interpretable cancers and in 41.9% (36.4% low, 5.3% high) of 12,962 interpretable cancers for ESRP2. Nuclear protein expression was linked to advanced tumor stage, high Gleason score, presence of lymph node metastasis, early biochemical recurrence, and ERG-positive cancers (p < 0.0001 each). Expression of ESRPs was significantly linked to 11 (ESRP1)/9 (ESRP2) of 11 analyzed deletions in all cancers and to 8 (ESRP1)/9 (ESRP2) of 11 deletions in ERG-negative cancers portending a link to genomic instability. Combined ESRPs expression analysis suggested an additive effect and showed the worst prognosis for cancers with high ESRP1 and ESRP2 expression. Multivariate analyses revealed that the prognostic impact of ESRP1, ESRP2 and combined ESRP1/ESRP2 expression was independent of all established pre- and postoperative prognostic features. Conclusions Our data show a striking link between nuclear ESRP expression and adverse features in prostate cancer and identifies expression of ESRP1 and/or ESRP2 as independent prognostic markers with a potential for routine application.
Collapse
|
18
|
Increased Cytoplasmic CD138 Expression Is Associated with Aggressive Characteristics in Prostate Cancer and Is an Independent Predictor for Biochemical Recurrence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5845374. [PMID: 33195694 PMCID: PMC7641694 DOI: 10.1155/2020/5845374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023]
Abstract
Syndecan-1 (CD138) is a transmembrane proteoglycan expressed in various normal and malignant tissues. It is of interest due to a possible prognostic effect in tumors and its role as a target for the antibody-drug conjugate indatuximab ravtansine. Here, we analyzed 17,747 prostate cancers by immunohistochemistry. Membranous and cytoplasmic CD138 staining was separately recorded. In normal prostate glands, CD138 staining was limited to basal cells. In cancers, membranous CD138 positivity was seen in 19.6% and cytoplasmic CD138 staining in 11.2% of 12,851 interpretable cases. A comparison with clinico-pathological features showed that cytoplasmic CD138 staining was more linked to unfavorable tumor features than membranous staining. Cytoplasmic CD138 immunostaining was associated with high tumor stage (p < 0.0001), high Gleason grade (p < 0.0001), nodal metastases (p < 0.0001), positive surgical margin (p < 0.0001), and biochemical recurrence (p < 0.0001). This also holds true for both V-ets avian erythroblastosis virus E26 oncogene homolog (ERG) fusion positive and ERG fusion negative tumors although the cytoplasmic CD138 expression was markedly more frequent in ERG positive than in ERG negative tumors (p < 0.0001). Comparison with 11 previously analyzed chromosomal deletions identified a conspicuous association between cytoplasmic CD138 expression and 8p deletions (p < 0.0001) suggesting a possible functional interaction of CD138 with one or several 8p genes. Multivariate analysis revealed the cytoplasmic CD138 expression as an independent prognostic parameter in all cancers and in the ERG positive subgroup. In summary, our study indicates the cytoplasmic CD138 expression as a strong and independent predictor of poor prognosis in prostate cancer. Immunohistochemical measurement of CD138 protein may thus—perhaps in combination with other parameters—become clinically useful in the future.
Collapse
|
19
|
Möller K, Kluth M, Ahmed M, Burkhardt L, Möller-Koop C, Büscheck F, Weidemann S, Tsourlakis MC, Minner S, Heinzer H, Huland H, Graefen M, Sauter G, Schlomm T, Dum D, Simon R. Chromosome 5 harbors two independent deletion hotspots at 5q13 and 5q21 that characterize biologically different subsets of aggressive prostate cancer. Int J Cancer 2020; 148:748-758. [PMID: 33045100 DOI: 10.1002/ijc.33344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Deletion of chromosome 5q is common in prostate cancer and is linked to aggressive disease. Most previous studies focused on 5q21 where CHD1 is located, but deletion of mapping studies has identified a second deletion hotspot at 5q13. To clarify the prevalence and clinical relevance of 5q13 deletions and to determine the relative importance of 5q13 and 5q21 abnormalities, a tissue microarray containing samples from 12 427 prostate cancers was analyzed by fluorescence in situ hybridization. Deletion of 5q13 and 5q21 was found in 13.5% and 10%, respectively, of 7932 successfully analyzed cancers. Deletion was restricted to 5q13 in 49.4% and to 5q21 in 32.0% of cancers with a 5q deletion. Only 18.6% of 5q-deleted cancers had deletions of both loci. Both 5q13 and 5q21 deletions were significantly linked to advanced tumor stage, high Gleason grade, nodal metastasis and early biochemical recurrence (P < .005 each). Cancers with co-deletion of 5q13 and 5q21 had a worse prognosis than cancers with isolated 5q13 or 5q21 deletion (P = .0080). Comparison with TMPRSS2:ERG fusion status revealed that 5q21 deletions were tightly linked to ERG negativity (P < .0001) while 5q13 deletions were unrelated to the ERG status. In summary, 5q13 deletion and 5q21 deletion are common, but independent genomic alterations with different functional effects lead to aggressive prostate cancer.
Collapse
Affiliation(s)
- Katharina Möller
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Malik Ahmed
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Lia Burkhardt
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | | | - Franziska Büscheck
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | | | - Sarah Minner
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center at University Medical Center, Hamburg-Eppendorf, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center at University Medical Center, Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center at University Medical Center, Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - David Dum
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| |
Collapse
|
20
|
Bonk S, Kluth M, Jansen K, Hube-Magg C, Makrypidi-Fraune G, Höflmayer D, Weidemann S, Möller K, Uhlig R, Büscheck F, Luebke AM, Burandt E, Clauditz TS, Steurer S, Schlomm T, Huland H, Heinzer H, Sauter G, Simon R, Dum D. Reduced KLK2 expression is a strong and independent predictor of poor prognosis in ERG-negative prostate cancer. Prostate 2020; 80:1097-1107. [PMID: 32628300 DOI: 10.1002/pros.24038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Kallikrein-related peptidase 2 (KLK2)-like KLK3 (prostate-specific antigen [PSA])-belongs to the highly conserved serine proteases of the glandular kallikrein protein family (KLK family). Studies suggested that measurement of KLK2 serum levels advanced the predictive accuracy of PSA testing in prostate cancer. METHODS To clarify the potential utility of KLK2 as a prognostic tissue biomarker, KLK2 expression was analyzed by immunohistochemistry in more than 12 000 prostate cancers. RESULTS Normal epithelium cells usually showed weak to moderate KLK2 immunostaining, whereas KLK2 was negative in 23%, weak in 38%, moderate in 35%, and strong in 4% of 9576 analyzable cancers. Lost or reduced KLK2 immunostaining was associated with advanced tumor stage, high Gleason score, lymph node metastasis, increased cell proliferation, positive resection margin, and early PSA recurrence (P < .0001). Comparison with previously analyzed molecular alterations revealed a strong association of KLK2 loss and presence of TMPRSS2:ERG fusion (P < .0001), most of all analyzed common deletions (9 of 11; P ≤ .03), and decreased PSA immunostaining (P < .0001 each). Cancers with combined negative or weak immunostaining of KLK2 and PSA showed worse prognosis than cancers with at least moderate staining of one or both proteins (P < .0001). Multivariate analyses including established preoperative and postoperative prognostic parameters showed a strong independent prognostic impact of KLK2 loss alone or in combination of PSA, especially in erythroblast transformation-specific-negative cancers (P ≤ .006). CONCLUSIONS Loss of KLK2 expression is a potentially useful prognostic marker in prostate cancer. Analysis of KLK2 alone or in combination with PSA may be useful for estimating cancer aggressiveness at the time of biopsy.
Collapse
Affiliation(s)
- Sarah Bonk
- Department of General, Visceral and Thoracic Surgery and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristina Jansen
- Department of General, Visceral and Thoracic Surgery and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Prostate Cancer Center (Martini-Clinic), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Prostate Cancer Center (Martini-Clinic), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Bonk S, Tasdelen P, Kluth M, Hube-Magg C, Makrypidi-Fraune G, Möller K, Höflmayer D, Dwertmann Rico S, Büscheck F, Minner S, Heinzer H, Graefen M, Hinsch A, Luebke AM, Dum D, Uhlig R, Schlomm T, Sauter G, Simon R, Weidemann SA. High B7-H3 expression is linked to increased risk of prostate cancer progression. Pathol Int 2020; 70:733-742. [PMID: 32776718 DOI: 10.1111/pin.12999] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022]
Abstract
B7-H3 is a member of the B7 superfamily of immune checkpoint molecules. B7-H3 up regulation has been linked to cancer development and progression in many tumors including prostate cancer. To clarify the potential utility of B7-H3 as a prognostic biomarker, B7-H3 expression was analyzed by immunohistochemistry in more than 17 000 prostate cancers. Normal prostatic glands were largely B7-H3 negative, while membranous B7-H3 immunostaining was seen in 47.0% of analyzed cancers. B7-H3 immunostaining was weak in 12.3%, moderate in 21.1% and strong in 13.5% of cases. High B7-H3 expression was associated with pT, Gleason score, lymph node metastasis, high Ki67 labeling index and early prostate-specific antigen recurrence (P < 0.0001 each). High B7-H3 expression was also linked to high androgen receptor expression and TMPRSS2:V-ets avian erythroblastosis virus E26 oncogene homolog (ERG) fusions (P < 0.0001 each). Multivariate analyses showed a strong independent prognostic impact of high B7-H3 expression in all cancers and in the ERG negative subgroup. Comparison with previously analyzed frequent chromosomal deletions revealed a close association with Phosphatase and Tensin Homolog deletions. Analysis of B7-H3, alone or in combination with other markers, might be of clinical utility, especially in the subgroup of ERG negative prostate cancers.
Collapse
Affiliation(s)
- Sarah Bonk
- Department of General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pinar Tasdelen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören A Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Ebrahimizadeh W, Guérard KP, Rouzbeh S, Bramhecha YM, Scarlata E, Brimo F, Patel PG, Jamaspishvili T, Aprikian AG, Berman D, Bartlett JMS, Chevalier S, Lapointe J. Design and Development of a Fully Synthetic Multiplex Ligation-Dependent Probe Amplification-Based Probe Mix for Detection of Copy Number Alterations in Prostate Cancer Formalin-Fixed, Paraffin-Embedded Tissue Samples. J Mol Diagn 2020; 22:1246-1263. [PMID: 32763409 DOI: 10.1016/j.jmoldx.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
DNA copy number alterations (CNAs) are promising biomarkers to predict prostate cancer (PCa) outcome. However, fluorescence in situ hybridization (FISH) cannot assess complex CNA signatures because of low multiplexing capabilities. Multiplex ligation-dependent probe amplification (MLPA) can detect multiple CNAs in a single PCR assay, but PCa-specific probe mixes available commercially are lacking. Synthetic MLPA probes were designed to target 10 CNAs relevant to PCa: 5q15-21.1 (CHD1), 6q15 (MAP3K7), 8p21.2 (NKX3-1), 8q24.21 (MYC), 10q23.31 (PTEN), 12p13.1 (CDKN1B), 13q14.2 (RB1), 16p13.3 (PDPK1), 16q23.1 (GABARAPL2), and 17p13.1 (TP53), with 9 control probes. In cell lines, CNAs were detected when the cancer genome was as low as 30%. Compared with FISH in radical prostatectomy formalin-fixed, paraffin-embedded samples (n = 18: 15 cancers and 3 matched benign), the MLPA assay showed median sensitivity and specificity of 80% and 93%, respectively, across all CNAs assessed. In the validation set (n = 40: 20 tumors sampled in two areas), the respective sensitivity and specificity of MLPA compared advantageously with FISH and TaqMan droplet digital PCR (ddPCR) when assessing PTEN deletion (FISH: 85% and 100%; ddPCR: 100% and 83%) and PDPK1 gain (FISH: 100% and 92%; ddPCR: 93% and 100%). This new PCa probe mix accurately identifies CNAs by MLPA across multiple genes using low quality and quantities (50 ng) of DNA extracted from clinical formalin-fixed, paraffin-embedded samples.
Collapse
Affiliation(s)
- Walead Ebrahimizadeh
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Karl-Philippe Guérard
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Shaghayegh Rouzbeh
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Yogesh M Bramhecha
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Eleonora Scarlata
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Palak G Patel
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | | | - Armen G Aprikian
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - David Berman
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | - John M S Bartlett
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Simone Chevalier
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacques Lapointe
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Secreted Frizzled-Related Protein 4 (SFRP4) Is an Independent Prognostic Marker in Prostate Cancers Lacking TMPRSS2: ERG Fusions. Pathol Oncol Res 2020; 26:2709-2722. [PMID: 32677026 PMCID: PMC7471174 DOI: 10.1007/s12253-020-00861-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
Secreted frizzled-related protein 4 (SFRP4) controls WNT signaling and is thought to play a role for tumor aggressiveness. Here, we analyzed a tissue microarray containing 11,152 prostate cancers with pathological, clinical and molecular data by immunohistochemistry. SFRP4 expression was higher in cancer than in non-neoplastic acinar cells. SFRP4 staining was seen in 64.9% of tumors and classified as weak in 33.2%, moderate in 23.9% and strong in 7.8% of cancers. SFRP4 overexpression was linked to advanced tumor stage, high classical/quantitative Gleason grade (p < 0.0001 each), lymph node metastasis (p = 0.0002), and a positive surgical margin (p = 0.0017). SFRP4 positivity was markedly more frequent in ERG positive (77.4%) than in ERG negative cancers (57.4% p < 0.0001). Subset analyses in 2725 cancers with and 3592 cancers without TMPRSS2:ERG fusion revealed that associations with tumor phenotype and patient outcome were largely driven by the subset of ERG negative tumors. In a multivariate analysis including various postoperative and prognostic clinico-pathological features, SFRP4 protein expression emerged as an independent prognostic parameter in ERG negative cancers. SFRP4 immunostaining was significantly linked with 10 of 11 previously analyzed chromosomal deletions (p < 0.05 each). In conclusion, high SFRP4 immunostaining is associated with poor prognosis and genomic instability in ERG negative prostate cancers.
Collapse
|
24
|
Up regulation of the Hippo signalling effector YAP1 is linked to early biochemical recurrence in prostate cancers. Sci Rep 2020; 10:8916. [PMID: 32488048 PMCID: PMC7265544 DOI: 10.1038/s41598-020-65772-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The transcriptional coactivator YAP1 controls the balance between cell proliferation and apoptosis. YAP1 overexpression is linked to poor prognosis in many cancer types, yet its role in prostate cancer is unknown. Here, we applied YAP1 immunohistochemistry to a tissue microarray containing 17,747 clinical prostate cancer specimens. Cytoplasmic and nuclear YAP1 staining was seen in 81% and 63% of tumours. For both cytoplasmic and nuclear YAP1 staining, high levels were associated with advanced tumour stage, classical and quantitative Gleason grade, positive nodal stage, positive surgical margin, high KI67 labelling index, and early biochemical recurrence (p < 0.0001 each). The prognostic role of YAP1 staining was independent of established prognostic features in multivariate models (p < 0.001). Comparison with previously studied molecular markers identified associations between high YAP1 staining, TMPRSS2:ERG fusion (p < 0.0001), high androgen receptor (AR) expression (p < 0.0001), high Ki67 labelling index (p < 0.0001), and PTEN and 8p deletions (p < 0.0001 each). In conclusion, high YAP1 protein expression is an independent predictor of unfavourable disease course in prostate cancer. That cytoplasmic and nuclear YAP1 staining is equally linked to phenotype and prognosis fits well to a model where YAP1 activation during tumour progression includes up regulation, cytoplasmic accumulation and subsequent translocation to the nucleus.
Collapse
|
25
|
Möller K, Wecker AL, Höflmayer D, Fraune C, Makrypidi-Fraune G, Hube-Magg C, Kluth M, Steurer S, Clauditz TS, Wilczak W, Simon R, Sauter G, Huland H, Heinzer H, Haese A, Schlomm T, Weidemann S, Luebke AM, Minner S, Bernreuther C, Bonk S, Marx A. Upregulation of the heterogeneous nuclear ribonucleoprotein hnRNPA1 is an independent predictor of early biochemical recurrence in TMPRSS2:ERG fusion-negative prostate cancers. Virchows Arch 2020; 477:625-636. [PMID: 32417965 PMCID: PMC7581599 DOI: 10.1007/s00428-020-02834-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) is a ubiquitous RNA splicing factor that is overexpressed and prognostically relevant in various human cancer types. To study the impact of hnRNPA1 expression in prostate cancer, we analyzed a tissue microarray containing 17,747 clinical prostate cancer specimens by immunohistochemistry. hnRNPA1 was expressed in normal prostate glandular cells but often overexpressed in cancer cells. hnRNPA1 immunostaining was interpretable in 14,258 cancers and considered strong in 33.4%, moderate in 45.9%, weak in 15.3%, and negative in 5.4%. Moderate to strong hnRNPA1 immunostaining was strongly linked to adverse tumor features including high classical and quantitative Gleason score, lymph node metastasis, advanced tumor stage, positive surgical margin, and early biochemical recurrence (p < 0.0001 each). The prognostic impact of hnRNPA1 immunostaining was independent of established preoperatively or postoperatively available prognostic parameters (p < 0.0001). Subset analyses revealed that all these associations were strongly driven by the fraction of cancers lacking the TMPRSS2:ERG gene fusion. Comparison with other key molecular data that were earlier obtained on the same TMA showed that hnRNPA1 overexpression was linked to high levels of androgen receptor (AR) expression (p < 0.0001) as well as presence of 9 of 11 chromosomal deletions (p < 0.05 each). A strong association between hnRNPA1 upregulation and tumor cell proliferation that was independent from the Gleason score supports a role for tumor cell aggressiveness. In conclusion, hnRNPA1 overexpression is an independent predictor of poor prognosis in ERG-negative prostate cancer. hnRNPA1 measurement, either alone or in combination, might provide prognostic information in ERG-negative prostate cancer.
Collapse
Affiliation(s)
- Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Anna Lena Wecker
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Georgia Makrypidi-Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Marx
- Institute of Pathology, Klinikum Fürth, Fürth, Germany
| |
Collapse
|
26
|
Upregulation of Phosphatase 1 Nuclear-Targeting Subunit (PNUTS) Is an Independent Predictor of Poor Prognosis in Prostate Cancer. DISEASE MARKERS 2020; 2020:7050146. [PMID: 32377272 PMCID: PMC7196962 DOI: 10.1155/2020/7050146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 01/07/2023]
Abstract
Protein phosphatase 1 nuclear-targeting subunit (PNUTS) is ubiquitously expressed and associates with PTEN and protein phosphatase 1 (PP1) to control its activity. The role of PNUTS overexpression has hardly been studied in cancer. In this study, we used immunohistochemistry to quantitate PNUTS expression on a tissue microarray containing 17,747 clinical prostate cancer specimens. As compared to normal prostate epithelium, PNUTS expression was often higher in cancer. Among 12,235 interpretable tumors, PNUTS staining was negative in 21%, weak in 34%, moderate in 35%, and strong in 10% of cases. High PNUTS expression was associated with higher tumor stage, classical and quantitative Gleason grade, nodal stage, surgical margin, Ki67 labeling index, and early biochemical recurrence (p < 0.0001 each). PNUTS expression proved to be a moderate prognostic parameter with a maximal univariable Cox proportional hazard for PSA recurrence-free survival of 2.21 compared with 5.91 for Gleason grading. It was independent from established prognostic parameters in multivariable analysis. Comparison with molecular data available from earlier studies using the same TMA identified associations between high PNUTS expression and elevated androgen receptor expression (p < 0.0001), presence of TMPRSS2:ERG fusion (p < 0.0001), and 8 of 11 chromosomal deletions (3p13, 5q21, 8p21, 10q23, 12p13, 13q14, 16q24, and 17p13; p < 0.05 each). Particularly strong associations with PTEN and 12p13 deletions (p < 0.0001 each) may indicate a functional relationship, which has already been established for PNUTS and PTEN. PNUTS had no additional role on outcome in PTEN-deleted cancers. In conclusion, the results of our study identify high PNUTS protein levels as a predictor of poor prognosis possibly linked to increased levels of genomic instability. PNUTS measurement, either alone or in combination, might be of clinical utility in prostate cancers.
Collapse
|
27
|
Fraune C, Yehorov S, Luebke AM, Steurer S, Hube-Magg C, Büscheck F, Höflmayer D, Tsourlakis MC, Clauditz TS, Simon R, Sauter G, Weidemann S, Dum D, Kind S, Minner S, Schlomm T, Huland H, Heinzer H, Graefen M, Burandt E. Upregulation of PTTG1 is associated with poor prognosis in prostate cancer. Pathol Int 2020; 70:441-451. [PMID: 32314536 DOI: 10.1111/pin.12938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Pituitary tumor-transforming gene 1 (PTTG1) is a regulator of chromosome stability. PTTG1 overexpression had been associated with tumor aggressiveness in several cancer types. To examine its prognostic utility in prostate cancer, a tissue microarray including 12 427 tumors with clinical and molecular data was analyzed by immunohistochemistry. PTTG1 immunostaining was largely absent in normal prostate epithelial cells. In cancers, staining was considered weak in 5.4%, moderate in 5.6% and strong in 0.8%. Strong staining was linked to advanced pT stage, high classical and quantitative Gleason grade, high Ki67-labeling index (all P < 0.0001) and lymph node metastasis (P = 0.0083). The prognostic impact of PTTG1 expression was independent of established preoperative and postoperative prognostic features. Comparison with molecular features revealed that PTTG1 upregulation was associated with nine of 12 common genomic deletions (P < 0.05), p53 alterations and high androgen receptor levels (P < 0.001 each), but was unrelated to the TMPRSS2:ERG fusion status. In conclusion, these data identify PTTG1 as a strong and independent prognostic feature in prostate cancer. PTTG1 measurement, either alone or in combination with other biomarkers might be instrumental for determining prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serhiy Yehorov
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, University Medical Center Charité-Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Eichenauer T, Federlein F, Möller K, Chirico V, Kind S, Lennartz M, Lutz F, Hube-Magg C, Höflmayer D, Fisch M, Huland H, Heinzer H, Graefen M, Haese A, Schroeder C, Lebok P, Minner S, Simon R, Sauter G, Schlomm T, Wilczak W, Steurer S, Luebke AM. High CHK2 protein expression is a strong and independent prognostic feature in ERG negative prostate cancer. Pathology 2020; 52:421-430. [PMID: 32317175 DOI: 10.1016/j.pathol.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Checkpoint kinase 2 (CHK2) is a serine-threonine kinase with a role in DNA repair, cell cycle arrest or apoptosis in response to DNA damage. Both reduced and increased CHK2 expression has been described in different tumour types with impact on patient prognosis. To evaluate prevalence and significance of altered CHK2 expression in prostate cancer, a tissue microarray containing 17,747 tumours was analysed by immunohistochemistry. Nuclear CHK2 immunostaining was absent or weak in benign prostate epithelium but often more prominent in cancers. CHK2 immunostaining was considered weak in 38.8%, moderate in 33.6% and strong in 11.2% of prostate cancers. High CHK2 expression was strongly associated with TMPRSS2:ERG fusions (p<0.0001). Subgroup analysis of ERG positive and negative cancers revealed that high CHK2 staining was significantly linked to advanced tumour stage, high Gleason score, positive nodal status, positive surgical margin, high preoperative PSA (p<0.0001 each) and early prostate-specific antigen (PSA) recurrence (p=0.0001) in the subset of ERG negative cancers, while most of these associations were absent in ERG positive cancers. In ERG negative cancers, high CHK2 expression was an independent predictor of patient prognosis, even if parameters were included that were only available postoperatively. High CHK2 expression was also linked to presence of chromosomal deletions, high level of androgen receptor expression, positive p53 immunostaining, and high Ki-67 labelling index. These provide further in vivo evidence for previously described functional interactions. In summary, high CHK2 expression is linked to adverse tumour features and independently predicts early biochemical recurrence in ERG negative prostate cancer. CHK2 measurement, either alone or in combination, might be of clinical utility in this prostate cancer subgroup.
Collapse
Affiliation(s)
- Till Eichenauer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Germany
| | - Felix Federlein
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Cornelia Schroeder
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
29
|
Luebke AM, Ricken W, Kluth M, Hube-Magg C, Schroeder C, Büscheck F, Möller K, Dum D, Höflmayer D, Weidemann S, Fraune C, Hinsch A, Wittmer C, Schlomm T, Huland H, Heinzer H, Graefen M, Haese A, Minner S, Simon R, Sauter G, Wilczak W, Meiners J. Loss of the adhesion molecule CEACAM1 is associated with early biochemical recurrence in TMPRSS2:ERG fusion-positive prostate cancers. Int J Cancer 2020; 147:575-583. [PMID: 32150281 DOI: 10.1002/ijc.32957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
Altered expression of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) has been linked to adverse tumor features in various cancer types. To better understand the role of CEACAM1 in prostate cancer, we analyzed a tissue microarray containing tumor spots from 17,747 prostate cancer patients by means of immunohistochemistry. Normal prostate glands showed intense membranous CEACAM1 positivity. Immunostaining was interpretable in 13,625 cancers and was considered high in 28%, low in 43% and absent in 29% of tumors. Low and lost CEACAM1 expression was strongly linked to adverse tumor features including high classical and quantitative Gleason grade, lymph node metastasis, advanced tumor stage, positive surgical margin, a high number of genomic deletions and early biochemical recurrence (p < 0.0001 each). Subset analysis of molecularly defined cancer subsets revealed that these associations were strongest in V-ets avian erythroblastosis virus E26 oncogene homolog (ERG) fusion-positive cancers and that CEACAM1 loss was prognostic even in tumors harboring genomic deletions of the phosphatase and tensin homolog tumor suppressor (p < 0.0001). Multivariate analysis suggested that CEACAM1 analysis can provide independent prognostic information beyond established prognosis parameters at the stage of the initial biopsy when therapy decisions must be taken. In conclusion, loss of CEACAM1 expression predicts poor prognosis in prostate cancer and might provide clinically useful prognostic information particularly in cancers harboring the TMPRSS2:ERG fusion.
Collapse
Affiliation(s)
- Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Ricken
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Schroeder
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Meiners
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Fraune C, Harms L, Büscheck F, Höflmayer D, Tsourlakis MC, Clauditz TS, Simon R, Möller K, Luebke AM, Möller-Koop C, Steurer S, Hube-Magg C, Sauter G, Weidemann S, Lebok P, Dum D, Kind S, Minner S, Izbicki JR, Schlomm T, Huland H, Heinzer H, Burandt E, Haese A, Graefen M, Schroeder C. Upregulation of the transcription factor TFAP2D is associated with aggressive tumor phenotype in prostate cancer lacking the TMPRSS2:ERG fusion. Mol Med 2020; 26:24. [PMID: 32143573 PMCID: PMC7060561 DOI: 10.1186/s10020-020-00148-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/13/2020] [Indexed: 01/15/2023] Open
Abstract
Background TFAP2D is a transcription factor important for modulating gene expression in embryogenesis. Its expression and prognostic role in prostate cancer has not been evaluated. Methods Therefore, a tissue microarray containing 17,747 prostate cancer specimens with associated pathological, clinical, and molecular data was analyzed by immunohistochemistry to assess the role of TFAP2D. Results TFAP2D expression was typically increased in prostate cancer as compared to adjacent non-neoplastic glands. TFAP2D staining was considered negative in 24.3% and positive in 75.7% of 13,545 interpretable cancers. TFAP2D staining was significantly linked to advanced tumor stage, high classical and quantitative Gleason grade, lymph node metastasis, and a positive surgical margin (p ≤ 0.0045). TFAP2D positivity was more common in ERG fusion positive (88.7%) than in ERG negative cancers (66.8%; p < 0.0001). Subset analyses in 3776 cancers with and 4722 cancers without TMPRSS2:ERG fusion revealed that associations with tumor phenotype and patient outcome were largely driven by the subset of ERG negative tumors. Multivariate analysis did not identify TFAP2D protein expression levels as a robust independent prognostic parameter. Positive TFAP2D immunostaining was significantly associated with 10 of 11 previously analyzed chromosomal deletions in ERG negative cancers (p ≤ 0.0244 each) indicating that elevated TFAP2D expression parallels genomic instability in prostate cancer. Conclusion These data demonstrate that TFAP2D protein overexpression is linked to prostate cancer progression and genomic instability in ERG negative prostate cancers.
Collapse
Affiliation(s)
- Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Luisa Harms
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Maria Christina Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany.
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Jakob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Schroeder
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Chakraborty G, Armenia J, Mazzu YZ, Nandakumar S, Stopsack KH, Atiq MO, Komura K, Jehane L, Hirani R, Chadalavada K, Yoshikawa Y, Khan NA, Chen Y, Abida W, Mucci LA, Lee GSM, Nanjangud GJ, Kantoff PW. Significance of BRCA2 and RB1 Co-loss in Aggressive Prostate Cancer Progression. Clin Cancer Res 2019; 26:2047-2064. [PMID: 31796516 DOI: 10.1158/1078-0432.ccr-19-1570] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Previous sequencing studies revealed that alterations of genes associated with DNA damage response (DDR) are enriched in men with metastatic castration-resistant prostate cancer (mCRPC). BRCA2, a DDR and cancer susceptibility gene, is frequently deleted (homozygous and heterozygous) in men with aggressive prostate cancer. Here we show that patients with prostate cancer who have lost a copy of BRCA2 frequently lose a copy of tumor suppressor gene RB1; importantly, for the first time, we demonstrate that co-loss of both genes in early prostate cancer is sufficient to induce a distinct biology that is likely associated with worse prognosis. EXPERIMENTAL DESIGN We prospectively investigated underlying molecular mechanisms and genomic consequences of co-loss of BRCA2 and RB1 in prostate cancer. We used CRISPR-Cas9 and RNAi-based methods to eliminate these two genes in prostate cancer cell lines and subjected them to in vitro studies and transcriptomic analyses. We developed a 3-color FISH assay to detect genomic deletions of BRCA2 and RB1 in prostate cancer cells and patient-derived mCRPC organoids. RESULTS In human prostate cancer cell lines (LNCaP and LAPC4), loss of BRCA2 leads to the castration-resistant phenotype. Co-loss of BRCA2-RB1 in human prostate cancer cells induces an epithelial-to-mesenchymal transition, which is associated with invasiveness and a more aggressive disease phenotype. Importantly, PARP inhibitors attenuate cell growth in human mCRPC-derived organoids and human CRPC cells harboring single-copy loss of both genes. CONCLUSIONS Our findings suggest that early identification of this aggressive form of prostate cancer offers potential for improved outcomes with early introduction of PARP inhibitor-based therapy.See related commentary by Mandigo and Knudsen, p. 1784.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua Armenia
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying Z Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohammad O Atiq
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kazumasa Komura
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Urology, Osaka Medical College, Osaka, Japan
| | - Lina Jehane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rahim Hirani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kalyani Chadalavada
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuki Yoshikawa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nabeela A Khan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gwo-Shu Mary Lee
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gouri J Nanjangud
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
32
|
Claudin-1 upregulation is associated with favorable tumor features and a reduced risk for biochemical recurrence in ERG-positive prostate cancer. World J Urol 2019; 38:2185-2196. [PMID: 31745645 DOI: 10.1007/s00345-019-03017-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/07/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Claudin-1 is a membrane-tight junction protein and important for the sealing of the paracellular cleft in epithelial and endothelial cells. Differential expression of Claudin-1 is linked to disease outcome in various cancers. MATERIAL AND METHODS To evaluate the potential relevance of Claudin-1 expression in prostate cancer, a tissue microarray containing samples of 17,747 tumors with annotated clinico-pathological and molecular data was immunohistochemically analyzed for Claudin-1 expression. RESULTS In normal prostate, glandular cells were always Claudin-1-negative while there was a strong staining of gland-surrounding basal cells. In contrast to normal prostatic glands, a positive Claudin-1 immunostaining, was found, however, in 38.7% of 12,441 interpretable cancers and was considered weak in 12.7%, moderate in 13.2%, and strong in 12.8% of cases. Positive Claudin-1 immunostaining was associated with favorable tumor features like low pT (p = 0.0032), low Gleason grade (p< 0.0001), and a reduced risk of PSA recurrence (p = 0.0005). A positive Claudin-1 staining was markedly more frequent in ERG-positive (63%) than in ERG-negative cancers (23%; p < 0.0001). Subset analyses revealed that all associations of Claudin-1 expression and favorable phenotype and prognosis were driven by ERG-positive cancers. Multivariate analyses revealed, however, that even in ERG-positive cancers, the prognostic impact of high Claudin-1 expression was not independent of established clinico-pathological parameters. Comparison with 12 previously analyzed chromosomal deletions identified conspicuous associations with PTEN and 12p13 deletions potentially indicating functional interactions. CONCLUSION These data identify a peculiar role for Claudin-1 in prostate cancer. The protein is overexpressed in a fraction of prostate cancers and increased Claudin-1 expression levels predict a favorable prognosis in ERG-positive cancer.
Collapse
|
33
|
Weidemann SA, Sauer C, Luebke AM, Möller-Koop C, Steurer S, Hube-Magg C, Büscheck F, Höflmayer D, Tsourlakis MC, Clauditz TS, Simon R, Sauter G, Göbel C, Lebok P, Dum D, Fraune C, Kind S, Minner S, Izbicki J, Schlomm T, Huland H, Heinzer H, Burandt E, Haese A, Graefen M, Heumann A. High-level expression of protein tyrosine phosphatase non-receptor 12 is a strong and independent predictor of poor prognosis in prostate cancer. BMC Cancer 2019; 19:944. [PMID: 31606028 PMCID: PMC6790047 DOI: 10.1186/s12885-019-6182-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/20/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Protein tyrosine phosphatase non-receptor 12 (PTPN12) is ubiquitously tyrosine phosphatase with tumor suppressive properties. METHODS PTPN12 expression was analyzed by immunohistochemistry on a tissue microarray with 13,660 clinical prostate cancer specimens. RESULTS PTPN12 staining was typically absent or weak in normal prostatic epithelium but seen in the majority of cancers, where staining was considered weak in 26.5%, moderate in 39.9%, and strong in 4.7%. High PTPN12 staining was associated with high pT category, high classical and quantitative Gleason grade, lymph node metastasis, positive surgical margin, high Ki67 labeling index and early prostate specific antigen recurrence (p < 0.0001 each). PTPN12 staining was seen in 86.4% of TMPRSS2:ERG fusion positive but in only 58.4% of ERG negative cancers. Subset analyses discovered that all associations with unfavorable phenotype and prognosis were markedly stronger in ERG positive than in ERG negative cancers but still retained in the latter group. Multivariate analyses revealed an independent prognostic impact of high PTPN12 expression in all cancers and in the ERG negative subgroup and to a lesser extent also in ERG positive cancers. Comparison with 12 previously analyzed chromosomal deletions revealed that high PTPN12 expression was significantly associated with 10 of 12 deletions in ERG negative and with 7 of 12 deletions in ERG positive cancers (p < 0.05 each) indicating that PTPN12 overexpression parallels increased genomic instability in prostate cancer. CONCLUSIONS These data identify PTPN12 as an independent prognostic marker in prostate cancer. PTPN12 analysis, either alone or in combination with other biomarkers might be of clinical utility in assessing prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Sören A Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Charlotte Sauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Maria Christina Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jakob Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Asmus Heumann
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
34
|
Meiners J, Schulz K, Möller K, Höflmayer D, Burdelski C, Hube-Magg C, Simon R, Göbel C, Hinsch A, Reiswich V, Weidemann S, Izbicki JR, Sauter G, Jacobsen F, Möller-Koop C, Mandelkow T, Blessin NC, Lutz F, Viehweger F, Lennartz M, Fraune C, Heinzer H, Minner S, Bonk S, Huland H, Graefen M, Schlomm T, Büscheck F. Upregulation of SPDEF is associated with poor prognosis in prostate cancer. Oncol Lett 2019; 18:5107-5118. [PMID: 31612022 PMCID: PMC6781494 DOI: 10.3892/ol.2019.10885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
SAM pointed domain-containing Ets transcription factor (SPDEF), a member of the ETS transcription factor family, has been associated with prostate cancer development; however, its role in tumour development and progression is controversial. In the present study, SPDEF expression was analysed on a tissue microarray with >12,000 prostate cancer samples. SPDEF expression levels were higher in most prostate cancer samples than in normal prostate epithelium, suggesting SPDEF was upregulated in cancer. Nuclear SPDEF expression was identified in 80% of prostate cancer samples, and considered weak in 26.4%, moderate in 40.1% and strong in 13.5% of cases. SPDEF positivity was significantly associated with tumour stage, Gleason grade, lymph node metastasis and PSA recurrence (all P<0.0001). SPDEF overexpression was more common in ERG positive (94%) than in ERG negative cancer (69%; P<0.0001). Elevated SPDEF expression predicted poor prognosis independent from established prognostic parameters, including Gleason grade, pT, pN, serum PSA level and nodal status (P<0.01). In summary, SPDEF overexpression was associated with aggressive behaviour, particularly in ERG negative prostate cancer, and may have potential for clinical application.
Collapse
Affiliation(s)
- Jan Meiners
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Schulz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Möller
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christoph Burdelski
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Cosima Göbel
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Andrea Hinsch
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Viktor Reiswich
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Jacob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Frank Jacobsen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christina Möller-Koop
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Tim Mandelkow
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Niclas C Blessin
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Florian Lutz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Florian Viehweger
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Maximillian Lennartz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hans Heinzer
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hartwig Huland
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Markus Graefen
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,Department of Urology, Charité, Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|