1
|
Malik F, Eldomery MK, Wang W, Gheorghe G, Khanlari M. Myeloid sarcomas with CBFA2T3 : GLIS2 fusion: clinicopathologic characterization of 4 cases mimicking small round cell tumors. Am J Clin Pathol 2025; 163:377-387. [PMID: 39418128 DOI: 10.1093/ajcp/aqae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVES Acute myeloid leukemia with CBFA2T3::GLIS2 fusion can initially present as extramedullary lesions (myeloid sarcoma), leading to a misdiagnosis of nonhematologic pediatric solid tumors. METHODS We characterized the clinicopathologic features of 4 cases of CBFA2T3::GLIS2 fusion-positive myeloid sarcoma in pediatric patients where the sarcoma presented either without leukemic involvement (isolated myeloid sarcoma; 3/4 [75%]) or had concurrent leukemic disease (1/4 [25%]). RESULTS All cases mimicked nonhematopoietic tumors at morphologic and immunophenotypic levels, so the initial evaluation did not raise suspicion for acute myeloid leukemia/myeloid sarcoma. After extensive workup, however, including molecular studies, the diagnosis of myeloid sarcoma with CBFA2T3::GLIS2 fusion was rendered. CONCLUSIONS This study highlights the need for a high suspicion index of GLIS2-rearranged myeloid sarcoma in the differential diagnosis of pediatric small round cell tumors in tissue biopsies and the application of adequate workup to avoid misdiagnosing this entity.
Collapse
MESH Headings
- Humans
- Sarcoma, Myeloid/genetics
- Sarcoma, Myeloid/pathology
- Sarcoma, Myeloid/diagnosis
- Diagnosis, Differential
- Female
- Male
- Child
- Oncogene Proteins, Fusion/genetics
- Child, Preschool
- Adolescent
- Sarcoma, Small Cell/diagnosis
- Sarcoma, Small Cell/genetics
- Sarcoma, Small Cell/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/pathology
Collapse
Affiliation(s)
- Faizan Malik
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| | - Mohammad K Eldomery
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| | - Wei Wang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, US
| | - Gabriela Gheorghe
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| | - Mahsa Khanlari
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| |
Collapse
|
2
|
Macedo RT, Baranovska‐Andrigo V, Pancsa T, Klubíčková N, Rubin BP, Kilpatrick SE, Goldblum JR, Fritchie KJ, Billings SD, Michal M, Švajdler M, Kinkor Z, Michal M, Dermawan JK. Nuclear DUX4 immunohistochemistry is a highly sensitive and specific marker for the presence of CIC::DUX4 fusion in CIC-rearranged sarcomas: a study of 48 molecularly confirmed cases. Histopathology 2025; 86:423-432. [PMID: 39381843 PMCID: PMC11707495 DOI: 10.1111/his.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
AIMS CIC-rearranged sarcomas (CRS) are clinically aggressive undifferentiated round cell sarcomas (URCS), commonly driven by CIC::DUX4. Due to the repetitive nature of DUX4 and the variability of the fusion breakpoints, CIC::DUX4 fusion may be missed by molecular testing. Immunohistochemical (IHC) stains have been studied as surrogates for the CIC::DUX4 fusion. We aim to assess the performance of DUX4 IHC in the work-up of CRS and its expression in non-CRS round cell or epithelioid neoplasms. METHODS AND RESULTS Cases of molecularly confirmed CRS (n = 48) and non-CRS (n = 105) were included. CRS cases consisted of 35 females and 13 males, with ages ranging from less than 1 year to 67 years (median = 41 years). Among the molecularly confirmed non-CRS cases, C-terminal DUX4 expression was investigated in Ewing sarcomas (38 cases), alveolar rhabdomyosarcomas (18 cases), desmoplastic small round cell tumours (12 cases) and synovial sarcomas (n = five), as well as in non-mesenchymal neoplasms such as SMARCA4/SMARCB1-deficient tumours (n = five), carcinomas of unknown primary (n = three) and haematolymphoid neoplasms (four cases). DUX4 IHC was considered positive when strong nuclear expression was detected in more than 50% of neoplastic cells. When used as a surrogate for the diagnosis of CRS, the sensitivity and specificity of DUX4 IHC was 98 and 100%, respectively. Only one CRS case was negative for DUX4 IHC and harboured a CIC::FOXO4 fusion. CONCLUSIONS DUX4 IHC is a highly sensitive and specific surrogate marker for the presence of CIC::DUX4 fusion, demonstrating its utility in establishing a diagnosis of CRS.
Collapse
Affiliation(s)
- Rodrigo T Macedo
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| | - Vira Baranovska‐Andrigo
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
| | - Tamás Pancsa
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
- Biopticka laborator LtdPilsenCzech Republic
| | - Natálie Klubíčková
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
- Biopticka laborator LtdPilsenCzech Republic
| | - Brian P Rubin
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| | - Scott E Kilpatrick
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| | - John R Goldblum
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| | - Karen J Fritchie
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| | - Steven D Billings
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| | - Michal Michal
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
- Biopticka laborator LtdPilsenCzech Republic
| | - Marián Švajdler
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
- Biopticka laborator LtdPilsenCzech Republic
| | | | - Michael Michal
- Department of PathologyCharles University, Faculty of Medicine in PilsenPilsenCzech Republic
- Biopticka laborator LtdPilsenCzech Republic
| | - Josephine K Dermawan
- Department of Pathology and Laboratory MedicineDiagnostic Institute, Cleveland ClinicClevelandOHUSA
| |
Collapse
|
3
|
Zeniya T, Emori M, Tsuchie H, Teramoto A, Nagasawa H, Mizushima E, Keira T, Shimizu J, Murahashi Y, Sugita S, Hasegawa T, Miyakoshi N, Yamashita T. Clinicopathological and immunohistochemical analysis of the risk factors of recurrence of atypical lipomatous tumor/well-differentiated liposarcoma of the extremities. Acta Orthop Belg 2024; 90:731-737. [PMID: 39869877 DOI: 10.52628/90.4.10536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Atypical lipomatous tumors/well-differentiated liposarcomas (ALT/WDLPS) are low-grade, slow-growing, and locally aggressive tumors. We investigated clinical outcomes and recurrence factors for ALT/WDLPS of the extremities. This is retrospective study across three institutions which included patients who underwent surgery for ALT/WDLPS from 2001 to 2019. We collected the data such as the patient demographics, anatomical locations of the tumors (subcutaneous, intramuscular, intermuscular, upper extreme/lower extremity), immunohistochemical data, and the resected margin status. The following variables were evaluated as potential recurrence factors: age, sex, tumor diameter, anatomical location of the tumor, immunohistochemical results, and resected margins. The 5- year local recurrence-free survival rate (RFS) was calculated and differences in survival were assessed. Sixty-two patients were identified, including 29 men and 33 women. The mean age was 63.7 years (range, 34-82 years). The average maximum tumor diameter was 15.9 cm (range, 5-28 cm). The maximum tumor diameter (≥20 cm) was significantly associated with local recurrence (p=0.042). Ten patients (16.1%) developed local recurrence, and the mean time to recurrence was 48.4 months (range, 5-161 months). In our series of 62 patients, the differences in local recurrences were not statistically significant for age, sex, tumor site, surgical margin (R0 or not) and immunohistochemical results. Tumor diameter ≥20 cm, which was the only identified factor for recurrence.
Collapse
|
4
|
Le MK, Oishi N, Mochizuki K, Kondo T. Immunohistochemical detection of cancer genetic abnormalities. Pathol Res Pract 2024; 255:155109. [PMID: 38340581 DOI: 10.1016/j.prp.2024.155109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
New applications of immunohistochemistry (IHC) expand rapidly due to the development of molecular analyses and an increased understanding of molecular biology. IHC becomes much more important as a screening or even a confirmatory test for molecular changes in cancer. The past decades have witnessed the release of many immunohistochemical markers of the new generation. The novel markers have extensively high specificity and sensitivity for the detection of genetic abnormalities. In addition to diagnostic utility, IHC has been validated to be a practical tool in terms of treatments, especially molecular targeted therapy. In this review, we first describe the common alterations of protein IHC staining in human cancer: overexpression, underexpression, or loss of expression and altered staining pattern. Next, we examine the relationship between staining patterns and genetic aberrations regarding both conventional and novel IHC markers. We also mention current mutant-specific and fusion-specific antibodies and their concordance with molecular techniques. We then describe the basic molecular mechanisms from genetic events to corresponding protein expression patterns (membranous, cytoplasmic, or nuclear patterns). Finally, we shortly discuss the applications of immunohistochemistry in molecular targeted therapy. IHC markers can serve as a complementary or companion diagnostic test to provide valuable information for targeted therapy. Moreover, immunohistochemistry is also crucial as a companion diagnostic test in immunotherapy. The increased number of IHC novel antibodies is broadening its application in anti-cancer therapies.
Collapse
Affiliation(s)
- Minh-Khang Le
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Naoki Oishi
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kunio Mochizuki
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan.
| |
Collapse
|
5
|
Lavernia J, Claramunt R, Romero I, López-Guerrero JA, Llombart-Bosch A, Machado I. Soft Tissue Sarcomas with Chromosomal Alterations in the 12q13-15 Region: Differential Diagnosis and Therapeutic Implications. Cancers (Basel) 2024; 16:432. [PMID: 38275873 PMCID: PMC10814159 DOI: 10.3390/cancers16020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The chromosomal region 12q13-15 is rich in oncogenes and contains several genes involved in the pathogenesis of various mesenchymal neoplasms. Notable genes in this region include MDM2, CDK4, STAT6, DDIT3, and GLI1. Amplification of MDM2 and CDK4 genes can be detected in various mesenchymal and nonmesenchymal neoplasms. Therefore, gene amplification alone is not entirely specific for making a definitive diagnosis and requires the integration of clinical, radiological, morphological, and immunohistochemical findings. Neoplasms with GLI1 alterations may exhibit either GLI1 rearrangements or amplifications of this gene. Despite the diagnostic implications that the overlap of genetic alterations in neoplasms with changes in genes within the 12q13-15 region could create, the discovery of coamplifications of MDM2 with CDK4 and GLI1 offers new therapeutic targets in neoplasms with MDM2/CDK4 amplification. Lastly, it is worth noting that MDM2 or CDK4 amplification is not exclusive to mesenchymal neoplasms; this genetic alteration has also been observed in other epithelial neoplasms or melanomas. This suggests the potential use of MDM2 or CDK4 inhibitors in neoplasms where alterations in these genes do not aid the pathological diagnosis but may help identify potential therapeutic targets. In this review, we delve into the diagnosis and therapeutic implications of tumors with genetic alterations involving the chromosomal region 12q13-15, mainly MDM2, CDK4, and GLI1.
Collapse
Affiliation(s)
- Javier Lavernia
- Oncology Unit, Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - Reyes Claramunt
- Laboratory of Molecular Biology, Instituto Valenciano de Oncología, 46009 Valencia, Spain; (R.C.); (J.A.L.-G.)
| | - Ignacio Romero
- Oncology Unit, Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - José Antonio López-Guerrero
- Laboratory of Molecular Biology, Instituto Valenciano de Oncología, 46009 Valencia, Spain; (R.C.); (J.A.L.-G.)
| | | | - Isidro Machado
- Pathology Department, University of Valencia, 46010 Valencia, Spain;
- Pathology Department, Instituto Valenciano de Oncología, 46010 Valencia, Spain
- CIBERONC Cancer, 28029 Madrid, Spain
- Patologika Laboratory, Hospital Quiron-Salud, 46010 Valencia, Spain
| |
Collapse
|
6
|
Miettinen M, Abdullaev Z, Turakulov R, Quezado M, Luiña Contreras A, Curcio CA, Rys J, Chlopek M, Lasota J, Aldape KD. Assessment of The Utility of The Sarcoma DNA Methylation Classifier In Surgical Pathology. Am J Surg Pathol 2024; 48:112-122. [PMID: 37921028 PMCID: PMC10842611 DOI: 10.1097/pas.0000000000002138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Diagnostic classification of soft tissue tumors is based on histology, immunohistochemistry, genetic findings, and radiologic and clinical correlations. Recently, a sarcoma DNA methylation classifier was developed, covering 62 soft tissue and bone tumor entities. The classifier is based on large-scale analysis of methylation sites across the genome. It includes DNA copy number analysis and determines O 6 methylguanine DNA methyl-transferase methylation status. In this study, we evaluated 619 well-studied soft tissue and bone tumors with the sarcoma classifier. Problem cases and typical examples of different entities were included. The classifier had high sensitivity and specificity for fusion sarcomas: Ewing, synovial, CIC -rearranged, and BCOR -rearranged. It also performed well for leiomyosarcoma, malignant peripheral nerve sheath tumors (MPNST), and malignant vascular tumors. There was low sensitivity for diagnoses of desmoid fibromatosis, neurofibroma, and schwannoma. Low specificity of matches was observed for angiomatoid fibrous histiocytoma, inflammatory myofibroblastic tumor, Langerhans histiocytosis, schwannoma, undifferentiated sarcoma, and well-differentiated/dedifferentiated liposarcoma. Diagnosis of lipomatous tumors was greatly assisted by the detection of MDM2 amplification and RB1 loss in the copy plot. The classifier helped to establish diagnoses for KIT-negative gastrointestinal stromal tumors, MPNSTs with unusual immunophenotypes, and undifferentiated melanomas. O 6 methylguanine DNA methyl-transferase methylation was infrequent and most common in melanomas (35%), MPNSTs (11%), and undifferentiated sarcomas (11%). The Sarcoma Methylation Classifier will likely evolve with the addition of new entities and refinement of the present methylation classes. The classifier may also help to define new entities and give new insight into the interrelationships of sarcomas.
Collapse
Affiliation(s)
- Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Rust Turakulov
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | | | | | - Janusz Rys
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Cracow Branch, Krakow, Poland
| | - Malgorzata Chlopek
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kenneth D. Aldape
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
7
|
Gambella A, Bertero L, Rondón-Lagos M, Verdun Di Cantogno L, Rangel N, Pitino C, Ricci AA, Mangherini L, Castellano I, Cassoni P. FISH Diagnostic Assessment of MDM2 Amplification in Liposarcoma: Potential Pitfalls and Troubleshooting Recommendations. Int J Mol Sci 2023; 24:ijms24021342. [PMID: 36674856 PMCID: PMC9863600 DOI: 10.3390/ijms24021342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
MDM2 amplification represents the leading oncogenic pathway and diagnostic hallmark of liposarcoma, whose assessment is based on Fluorescence In Situ Hybridization (FISH) analysis. Despite its diagnostic relevance, no univocal interpretation criteria regarding FISH assessments of MDM2 amplification have been established so far, leading to several different approaches and potential diagnostic misinterpretations. This study aims to address the most common issues and proposes troubleshooting guidelines for MDM2 amplification assessments by FISH. We retrospectively retrieved 51 liposarcomas, 25 Lipomas, 5 Spindle Cell Lipoma/Pleomorphic Lipomas, and 2 Atypical Spindle Cell Lipomatous Tumors and the corresponding MDM2 FISH analysis. We observed MDM2 amplification in liposarcomas cases only (43 out of 51 cases) and identified three MDM2-amplified patterns (scattered (50% of cases), clustered (14% of cases), and mixed (36% of cases)) and two nonamplified patterns (low number of signals (82% of cases) and polysomic (18% of cases)). Based on these data and published evidence in the literature, we propose a set of criteria to guide MDM2 amplification analysis in liposarcoma. Kindled by the compelling importance of MDM2 assessments to improve diagnostic and therapeutic liposarcoma management, these suggestions could represent the first step to develop a univocal interpretation model and consensus guidelines.
Collapse
Affiliation(s)
- Alessandro Gambella
- Division of Liver and Transplant Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Luca Bertero
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Ludovica Verdun Di Cantogno
- Department of Laboratory Medicine, Azienda Ospedaliera Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Chiara Pitino
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | | | - Luca Mangherini
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | | | - Paola Cassoni
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Correspondence: ; Tel.: +39-011-633-5588
| |
Collapse
|
8
|
Rottmann D, Abdulfatah E, Pantanowitz L. Molecular testing of soft tissue tumors. Diagn Cytopathol 2023; 51:12-25. [PMID: 35808975 PMCID: PMC10084007 DOI: 10.1002/dc.25013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The diagnosis of soft tissue tumors is challenging, especially when the evaluable material procured is limited. As a result, diagnostic ancillary testing is frequently needed. Moreover, there is a trend in soft tissue pathology toward increasing use of molecular results for tumor classification and prognostication. Hence, diagnosing newer tumor entities such as CIC-rearranged sarcoma explicitly requires molecular testing. Molecular testing can be accomplished by in situ hybridization, polymerase chain reaction, as well as next generation sequencing, and more recently such testing can even be accomplished leveraging an immunohistochemical proxy. CONCLUSION This review evaluates the role of different molecular tests in characterizing soft tissue tumors belonging to various cytomorphologic categories that have been sampled by small biopsy and cytologic techniques.
Collapse
Affiliation(s)
- Douglas Rottmann
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eman Abdulfatah
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Liron Pantanowitz
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
He J, Xu Y, Ni X, Zhang D, Zhao J. Case Report: An Adolescent Soft Tissue Sarcoma With YWHAE-NUTM2B Fusion Is Effectively Treated With Combined Therapy of Epirubicin and Anlotinib. Front Oncol 2022; 12:905994. [PMID: 35814390 PMCID: PMC9262382 DOI: 10.3389/fonc.2022.905994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Soft tissue sarcoma is a relatively rare entity that comprises heterogeneous types of tumors. Here we report the case of a 14-year-old girl with pelvic sarcoma with a YWHAE-NUTM2B fusion gene. This fusion transcript has been reported in endometrial stromal sarcomas and clear cell renal sarcomas, but its description in pelvic sarcomas is recent. To our knowledge, this is the first case report describing this translocation in an adolescent patient with soft tissue sarcoma. The patient underwent cytoreductive surgery, followed by systemic chemotherapy and targeted drug treatment. Surprisingly, the treatment was effective, and the young patient is being followed up in our department.
Collapse
Affiliation(s)
- Jiajia He
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
| | - Yanjie Xu
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
| | - Xuefeng Ni
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
| | - Dachuan Zhang
- Department of Pathology, First People’s Hospital of Changzhou, Changzhou, China
| | - Jiemin Zhao
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
- *Correspondence: Jiemin Zhao,
| |
Collapse
|
10
|
Van Bockstal MR, Beniuga G, Craciun L, Creytens D, Dedeurwaerdere F, Delvenne P, Demetter P, De Wiest B, Dewinne K, Habran L, Pauwels P, Theate I, Vander Borght S, Van Der Steen K, Weynand B. The Use of Pan-Tropomyosin Receptor Kinase Immunohistochemistry as a Screening Tool for the Detection of Neurotrophic Tropomyosin-Related Kinase Fusions: Real-World Data from a National Multicentric Retrospective Study. Pathobiology 2022; 89:393-406. [PMID: 35350025 DOI: 10.1159/000522426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/02/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION The neurotrophic tropomyosin-related kinase (NTRK) genes encode the tropomyosin receptor kinases (TRKs). Patients with solid tumors harboring an oncogenic NTRK fusion are eligible for treatment with TRK inhibitors. NTRK fusion is often associated with TRK overexpression. Pan-TRK immunohistochemistry (IHC) is used to screen for NTRK fusions, but immunoreactivity patterns are poorly defined. METHODS Data on pan-TRK immunoreactivity patterns in 2,669 solid tumors (comprising carcinomas, sarcomas, and melanocytic lesions) were retrospectively collected by nine laboratories and comprised tumor type, percentage of pan-TRK-positive tumor cells, staining intensity, cytoplasmic, membrane and/or nuclear staining pattern, and the presence or absence of NTRK fusion. RESULTS Overall, 2,457 tumors (92%) were pan-TRK negative and 212 neoplasms (8%) were pan-TRK positive. Twenty-two pan-TRK-positive tumors (0.8%) harbored an NTRK fusion, representing 10% of all pan-TRK-positive tumors. Cytoplasmic immunoreactivity was most often observed, followed by membrane immunoreactivity. Nuclear pan-TRK positivity was least frequent, but was most often (33%) associated with NTRK fusion. CONCLUSION Pan-TRK IHC can be used to screen for NTRK fusions, especially in commonly diagnosed solid tumors with low NTRK fusion prevalence. In case of pan-TRK immunoreactivity, regardless of its intensity and tumor cell percentage, subsequent molecular tests should be performed to formally confirm the presence or absence of NTRK fusions.
Collapse
Affiliation(s)
- Mieke R Van Bockstal
- Department of Pathology, Cliniques Universitaires Saint-Luc (CUSL), Woluwé-Saint-Lambert, Brussels, Belgium.,Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Gabriela Beniuga
- Institut de Pathologie et de Génétique (IPG), Charleroi, Belgium
| | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Brussels, Belgium
| | - David Creytens
- Department of Pathology, Ghent University Hospital (UZG), Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, CRIG, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | - Philippe Delvenne
- Anatomopathology Department, University Hospital of Liège (CHU Liège), Liège, Belgium
| | - Pieter Demetter
- Department of Pathology, Institut Jules Bordet, Brussels, Belgium
| | - Bart De Wiest
- Department of Pathology, Onze-Lieve-Vrouwziekenhuis (OLV) Aalst, Aalst, Belgium
| | - Koen Dewinne
- Department of Pathology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Lionel Habran
- Anatomopathology Department, University Hospital of Liège (CHU Liège), Liège, Belgium
| | - Patrick Pauwels
- Department of Pathology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Ivan Theate
- Institut de Pathologie et de Génétique (IPG), Charleroi, Belgium
| | - Sara Vander Borght
- Department of Pathology, University Hospitals Leuven (UZL), Leuven, Belgium
| | - Kris Van Der Steen
- Department of Pathology, Onze-Lieve-Vrouwziekenhuis (OLV) Aalst, Aalst, Belgium
| | - Birgit Weynand
- Department of Pathology, University Hospitals Leuven (UZL), Leuven, Belgium
| |
Collapse
|
11
|
The diagnostic utility of DNA copy number analysis of core needle biopsies from soft tissue and bone tumors. J Transl Med 2022; 102:838-845. [PMID: 35318454 PMCID: PMC9309094 DOI: 10.1038/s41374-022-00770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
Morphologic and immunohistochemical analysis of preoperative core needle biopsies (CNB) is important in the management of patients with soft tissue and bone tumors (STBTs). Most SBTB subtypes have more or less extensive DNA copy number aberrations (CNA), potentially providing useful diagnostic information. To evaluate the technical feasibility of single nucleotide polymorphism (SNP) array analysis and the diagnostic usefulness of the copy number profiles, we studied CNBs from 171 patients with suspected STBTs. SNP array analysis could be performed on 168 (98%) of the samples. The CNA profile was compatible with the CNB diagnosis in 87% of the cases. Discrepant cases were dominated by false-negative results due to nonrepresentative material or contamination with normal cells. 70 genomic profiles were indicative of specific histopathologic tumor entities and in agreement with the corresponding CNB diagnoses in 83%. In 96 of the cases with aberrant CNA profiles, the SNP profiles were of sufficient quality for segmentation, allowing clustering analysis on the basis of the Jaccard similarity index. The analysis of these segment files showed three major CNA clusters, based on the complexity levels and the predominance of gains versus losses. For 43 of these CNB samples, we had SNP array data also from their corresponding surgical samples. In 33 of these pairs, the two corresponding samples clustered next to each other, with Jaccard scores ranging from 0.61 to 0.99 (median 0.96). Also, for those tumor pairs that did not cluster together, the Jaccard scores were relatively high (median 0.9). 10 cases showed discrepant results, mainly due to varying degrees of normal cell contamination or technical issues. Thus, the copy number profile seen in a CNB is typically highly representative of the major cell population in the tumor.
Collapse
|
12
|
Papke DJ, Hornick JL. Recent advances in the diagnosis, classification and molecular pathogenesis of cutaneous mesenchymal neoplasms. Histopathology 2021; 80:216-232. [DOI: 10.1111/his.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022]
Affiliation(s)
- D J Papke
- Department of Pathology Brigham and Women’s Hospital and Harvard Medical School Boston MA USA
| | - J L Hornick
- Department of Pathology Brigham and Women’s Hospital and Harvard Medical School Boston MA USA
| |
Collapse
|
13
|
WNT/β-Catenin Pathway in Soft Tissue Sarcomas: New Therapeutic Opportunities? Cancers (Basel) 2021; 13:cancers13215521. [PMID: 34771683 PMCID: PMC8583315 DOI: 10.3390/cancers13215521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The WNT/β-catenin signaling pathway is involved in fundamental processes for the proliferation and differentiation of mesenchymal stem cells. However, little is known about its relevance for mesenchymal neoplasms, such us soft tissue sarcomas (STS). Chemotherapy based on doxorubicin (DXR) still remains the standard first-line treatment for locally advanced unresectable or metastatic STS, although overall survival could not be improved by combination with other chemotherapeutics. In this sense, the development of new therapeutic approaches continues to be an unmatched goal. This review covers the most important molecular alterations of the WNT signaling pathway in STS, broadening the current knowledge about STS as well as identifying novel drug targets. Furthermore, the current therapeutic options and drug candidates to modulate WNT signaling, which are usually classified by their interaction site upstream or downstream of β-catenin, and their presumable clinical impact on STS are discussed. Abstract Soft tissue sarcomas (STS) are a very heterogeneous group of rare tumors, comprising more than 50 different histological subtypes that originate from mesenchymal tissue. Despite their heterogeneity, chemotherapy based on doxorubicin (DXR) has been in use for forty years now and remains the standard first-line treatment for locally advanced unresectable or metastatic STS, although overall survival could not be improved by combination with other chemotherapeutics. In this sense, the development of new therapeutic approaches continues to be a largely unmatched goal. The WNT/β-catenin signaling pathway is involved in various fundamental processes for embryogenic development, including the proliferation and differentiation of mesenchymal stem cells. Although the role of this pathway has been widely researched in neoplasms of epithelial origin, little is known about its relevance for mesenchymal neoplasms. This review covers the most important molecular alterations of the WNT signaling pathway in STS. The detection of these alterations and the understanding of their functional consequences for those pathways controlling sarcomagenesis development and progression are crucial to broaden the current knowledge about STS as well as to identify novel drug targets. In this regard, the current therapeutic options and drug candidates to modulate WNT signaling, which are usually classified by their interaction site upstream or downstream of β-catenin, and their presumable clinical impact on STS are also discussed.
Collapse
|
14
|
Anderson WJ, Doyle LA. Updates from the 2020 World Health Organization Classification of Soft Tissue and Bone Tumours. Histopathology 2021; 78:644-657. [PMID: 33438273 DOI: 10.1111/his.14265] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
The fifth edition of the World Health Organization (WHO) classification of soft tissue and bone tumours was published in May 2020. This 'Blue Book', which is also available digitally for the first time, incorporates an array of new information on these tumours, amassed in the 7 years since the previous edition. Major advances in molecular characterisation have driven further refinements in classification and the development of ancillary diagnostic tests, and have improved our understanding of disease pathogenesis. Several new entities are also included. This review summarises the main changes introduced in the 2020 WHO classification for each subcategory of soft tissue and bone tumours.
Collapse
Affiliation(s)
- William J Anderson
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leona A Doyle
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Diagnostic Differences in Expert Second-Opinion Consultation Cases at a Tertiary Sarcoma Center. Sarcoma 2020; 2020:9810170. [PMID: 33061792 PMCID: PMC7542501 DOI: 10.1155/2020/9810170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 11/28/2022] Open
Abstract
Soft tissue tumors are diagnostically challenging, and it is recommended that these are reported or reviewed by specialist soft tissue pathologists. We present our experience with second-opinion (consultation) cases in a specialist tertiary sarcoma center. The aim of this study was to determine areas of diagnostic difficulty in soft tissue pathology. We assessed 581 second-opinion cases which were reviewed by two experienced pathologists in a period of one year. There was 62% concordance between the original and the second-opinion diagnosis, with diagnostic discrepancy in 38%. The largest group of soft tissue neoplasms received for second opinion was fibroblastic/myofibroblastic tumors, and most major diagnostic problems were encountered in adipocytic and so-called “fibrohistiocytic” tumors. Major diagnostic errors impacting management were found in 148 cases (25%). Morphologic assessment of tumors, judicious use of molecular techniques, newer immunostains and their interpretation, along with importance of knowledge of rarer entities were found to be most useful in avoiding errors.
Collapse
|
16
|
Zhao M, Yin M, Kuick CH, Chen H, Aw SJ, Merchant K, Ng EHQ, Gunaratne S, Loh AHP, Gu W, Tang H, Chang KTE. Congenital mesoblastic nephroma is characterised by kinase mutations including EGFR internal tandem duplications, the ETV6-NTRK3 fusion, and the rare KLHL7-BRAF fusion. Histopathology 2020; 77:611-621. [PMID: 32590884 DOI: 10.1111/his.14194] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/29/2022]
Abstract
AIMS Congenital mesoblastic nephroma (CMN) is histologically classified into classic, cellular and mixed subtypes. The aims of this study were to characterise the clinical, pathological and molecular features of a series of CMNs, and to determine the utility of pan-Trk and epidermal growth factor receptor (EGFR) immunohistochemistry as surrogate markers for NTRK gene fusions and EGFR internal tandem duplications (ITDs). METHODS AND RESULTS Twenty-two archival CMN cases (12 classic, five cellular, and five mixed) were tested for the ETV6-NTRK3 fusion and EGFR ITD transcripts by the use of reverse transcriptase polymerase chain reaction (PCR), and next-generation sequencing-based anchored multiplex PCR. All 12 classic CMNs had EGFR ITD. Of the five cellular CMNs, four had the ETV6-NTRK3 fusion and one had the KLHL7-BRAF fusion. Of the five mixed CMNs, four had EGFR ITD, and one had the ETV6-NTRK3 fusion. Pan-Trk immunoreactivity was 100% sensitive and 94.1% specific for the presence of NTRK rearrangement. However, EGFR staining was only 62.5% sensitive and 33.3% specific for EGFR ITD. CONCLUSIONS EGFR ITD is a consistent genetic event in classic CMN. A majority of cellular CMNs have the ETV6-NTRK3 fusion. Rare cellular CMNs may harbour non-canonical mutations such as the KLHL7-BRAF fusion, which was found in one case. Mixed CMNs may have either EGFR ITD or the ETV6-NTRK3 fusion. Pan-Trk immunohistochemistry is a sensitive, albeit not perfectly specific, marker for NTRK rearrangement. EGFR immunohistochemistry is not helpful as a marker of EGFR ITD.
Collapse
Affiliation(s)
- Manli Zhao
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Minzhi Yin
- Department of Pathology, Shanghai Children's Medical Centre, Shanghai, China
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | - Huiyi Chen
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | - Sze Jet Aw
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | - Khurshid Merchant
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | - Eileen Hui Qi Ng
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | | | - Amos Hong Pheng Loh
- Department of Paediatric Surgery, KK Women's and Children's Hospital.,Duke-NUS Medical School, Singapore
| | - Weizhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Hongfeng Tang
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore
| |
Collapse
|
17
|
Hou TC, Wu PS, Huang WY, Yang YT, Tan KT, Liu SH, Chen YJ, Chen SJ, Su YW. Over expression of CDK4 and MDM2 in a patient with recurrent ALK-negative mediastinal inflammatory myofibroblastic tumor: A case report. Medicine (Baltimore) 2020; 99:e19577. [PMID: 32195970 PMCID: PMC7220190 DOI: 10.1097/md.0000000000019577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE The diagnosis of anaplastic lymphoma kinase (ALK)-negative inflammatory myofibroblastic tumors (IMT) remains challenging because of their morphological resemblance with spindle cell sarcoma with myofibroblastic characteristics. PATIENT CONCERNS A 69-year-old female patient presented with loco-regional recurrent IMT several times within 8 years after primary treatment and neck lymph node metastasis 3.5 years after last recurrence. DIAGNOSIS The primary, recurrence, and lymph node metastasis lesions were diagnosed as ALK-negative IMTs based on the histopathological features. INTERVENTIONS Biopsy samples were obtained during repeated surgeries and evaluated for genomic alterations during first and recurrent presentations. The evaluation was done using pathway-driven massive parallel sequencing, and genomic alterations between primary and recurrent tumors were compared. OUTCOMES Copy number gains and overexpression of mouse double minute 2 homolog (MDM2) and cyclin dependent kinase 4 (CDK4) were observed in the primary lesion, and additional gene amplification of Discoidin Domain Receptor Tyrosine Kinase 2 (DDR2), Succinate Dehydrogenase Complex II subunit C (SDHC), and thyroid stimulating hormone receptor (TSHR) Q720H were found in the recurrent tumors. Metastases to the neck lymph node were observed 3.5 years after recurrence. LESSONS Our results indicated genetic evolution in a microscopically benign condition and highlighted the importance of molecular characterization of fibro-inflammatory lesions of uncertain malignant potential.
Collapse
Affiliation(s)
| | | | - Wen-Yu Huang
- Laboratory of Good Clinical Research Center, Mackay Memorial Hospital, Tamsui Branch, New Taipei City
| | | | | | | | | | | | - Ying-Wen Su
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|