1
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Griffin MN, Dammer EB, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg-AD mice exposed to successive mild traumatic brain injuries. J Neuroinflammation 2024; 21:156. [PMID: 38872143 PMCID: PMC11177462 DOI: 10.1186/s12974-024-03128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/12/2024] [Indexed: 06/15/2024] Open
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, a comprehensive study relating acute changes in immune signaling and glial reactivity to neuronal changes and pathological markers after single and repetitive mTBIs is currently lacking. In the current study, we addressed the question of how repeated injuries affect the brain neuroimmune response in the acute phase of injury (< 24 h) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x-5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30 min, 4 h, and 24 h after each injury. We used young adult 2-4 month old 3xTg-AD mice to model the effects of rmTBI in the absence of significant tau and Aβ pathology. We identified pronounced sexual dimorphism in this model, with females eliciting more diverse changes after injury compared to males. Specifically, females showed: (1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression and an increase in AD-related genes within 24 h, (2) each injury significantly increased a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which co-labeled with neurons and correlated with phospho-tau, and (3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and macrophage-associated immune function. Collectively our data suggest that neurons respond to a single injury within 24 h, while other cell types, including astrocytes, transition to inflammatory phenotypes within days of repetitive injury.
Collapse
Affiliation(s)
- Alyssa F Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rowan O Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alivia Rohrer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Arushi Khaitan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felix Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kareena Udeshi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brae Davies
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sydney Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Martin N Griffin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Erin M Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Hasan GM, Anwar S, Shamsi A, Sohal SS, Hassan MI. The neuroprotective potential of phytochemicals in traumatic brain injury: mechanistic insights and pharmacological implications. Front Pharmacol 2024; 14:1330098. [PMID: 38239205 PMCID: PMC10794744 DOI: 10.3389/fphar.2023.1330098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Traumatic brain injury (TBI) leads to brain damage, comprising both immediate primary damage and a subsequent cascade of secondary injury mechanisms. The primary injury results in localized brain damage, while the secondary damage initiates inflammatory responses, followed by the disruption of the blood-brain barrier, infiltration of peripheral blood cells, brain edema, and the release of various immune mediators, including chemotactic factors and interleukins. TBI disrupts molecular signaling, cell structures, and functions. In addition to physical tissue damage, such as axonal injuries, contusions, and haemorrhages, TBI interferes with brain functioning, impacting cognition, decision-making, memory, attention, and speech capabilities. Despite a deep understanding of the pathophysiology of TBI, an intensive effort to evaluate the underlying mechanisms with effective therapeutic interventions is imperative to manage the repercussions of TBI. Studies have commenced to explore the potential of employing natural compounds as therapeutic interventions for TBI. These compounds are characterized by their low toxicity and limited interactions with conventional drugs. Moreover, many natural compounds demonstrate the capacity to target various aspects of the secondary injury process. While our understanding of the pathophysiology of TBI, there is an urgent need for effective therapeutic interventions to mitigate its consequences. Here, we aimed to summarize the mechanism of action and the role of phytochemicals against TBI progression. This review discusses the therapeutic implications of various phytonutrients and addresses primary and secondary consequences of TBI. In addition, we highlighted the roles of emerging phytochemicals as promising candidates for therapeutic intervention of TBI. The review highlights the neuroprotective roles of phytochemicals against TBI and the mechanistic approach. Furthermore, our efforts focused on the underlying mechanisms, providing a better understanding of the therapeutic potential of phytochemicals in TBI therapeutics.
Collapse
Affiliation(s)
- Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Reyes C, Mokalled MH. Astrocyte-Neuron Interactions in Spinal Cord Injury. ADVANCES IN NEUROBIOLOGY 2024; 39:213-231. [PMID: 39190077 PMCID: PMC11684398 DOI: 10.1007/978-3-031-64839-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Spinal cord injuries cause irreversible loss of sensory and motor functions. In mammals, intrinsic and extrinsic inhibitions of neuronal regeneration obstruct neural repair after spinal cord injury. Although astrocytes have been involved in a growing list of vital homeostatic functions in the nervous system, their roles after injury have fascinated and puzzled scientists for decades. Astrocytes undergo long-lasting morphological and functional changes after injury, referred to as reactive astrogliosis. Although reactive astrogliosis is required to contain spinal cord lesions and restore the blood-spinal cord barrier, reactive astrocytes have detrimental effects that inhibit neuronal repair and remyelination. Intriguingly, elevated regenerative capacity is preserved in some non-mammalian vertebrates, where astrocyte-like glial cells display exclusively pro-regenerative effects after injury. A detailed molecular and phenotypic catalog of the continuum of astrocyte reactivity states is an essential first step toward the development of glial cell manipulations for spinal cord repair.
Collapse
Affiliation(s)
- Catrina Reyes
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
4
|
Khananshvili D. Neuronal and astrocyte NCX isoform/splice variants: How do they participate in Na + and Ca 2+ signalling? Cell Calcium 2023; 116:102818. [PMID: 37918135 DOI: 10.1016/j.ceca.2023.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
NCX1, NCX2, and NCX3 gene isoforms and their splice variants are characteristically expressed in different regions of the brain. The tissue-specific splice variants of NCX1-3 isoforms show specific expression profiles in neurons and astrocytes, whereas the relevant NCX isoform/splice variants exhibit diverse allosteric modes of Na+- and Ca2+-dependent regulation. In general, overexpression of NCX1-3 genes leads to neuroprotective effects, whereas their ablation gains the opposite results. At this end, the partial contributions of NCX isoform/splice variants to neuroprotective effects remain unresolved. The glutamate-dependent Na+ entry generates Na+ transients (in response to neuronal cell activities), whereas the Na+-driven Ca2+ entry (through the reverse NCX mode) raises Ca2+ transients. This special mode of signal coupling translates Na+ transients into the Ca2+ signals while being a part of synaptic neurotransmission. This mechanism is of general interest since disease-related conditions (ischemia, metabolic stress, and stroke among many others) trigger Na+ and Ca2+ overload with deadly outcomes of downstream apoptosis and excitotoxicity. The recently discovered mechanisms of NCX allosteric regulation indicate that some NCX variants might play a critical role in the dynamic coupling of Na+-driven Ca2+ entry. In contrast, the others are less important or even could be dangerous under altered conditions (e.g., metabolic stress). This working hypothesis can be tested by applying advanced experimental approaches and highly focused computational simulations. This may allow the development of structure-based blockers/activators that can selectively modulate predefined NCX variants to lessen the life-threatening outcomes of excitotoxicity, ischemia, apoptosis, metabolic deprivation, brain injury, and stroke.
Collapse
Affiliation(s)
- Daniel Khananshvili
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
5
|
Rubino V, La Rosa G, Pipicelli L, Carriero F, Damiano S, Santillo M, Terrazzano G, Ruggiero G, Mondola P. Insights on the Multifaceted Roles of Wild-Type and Mutated Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis Pathogenesis. Antioxidants (Basel) 2023; 12:1747. [PMID: 37760050 PMCID: PMC10525763 DOI: 10.3390/antiox12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neurodegenerative disease. Cell damage in ALS is the result of many different, largely unknown, pathogenetic mechanisms. Astrocytes and microglial cells play a critical role also for their ability to enhance a deranged inflammatory response. Excitotoxicity, due to excessive glutamate levels and increased intracellular Ca2+ concentration, has also been proposed to play a key role in ALS pathogenesis/progression. Reactive Oxygen Species (ROS) behave as key second messengers for multiple receptor/ligand interactions. ROS-dependent regulatory networks are usually mediated by peroxides. Superoxide Dismutase 1 (SOD1) physiologically mediates intracellular peroxide generation. About 10% of ALS subjects show a familial disease associated with different gain-of-function SOD1 mutations. The occurrence of sporadic ALS, not clearly associated with SOD1 defects, has been also described. SOD1-dependent pathways have been involved in neuron functional network as well as in immune-response regulation. Both, neuron depolarization and antigen-dependent T-cell activation mediate SOD1 exocytosis, inducing increased interaction of the enzyme with a complex molecular network involved in the regulation of neuron functional activity and immune response. Here, alteration of SOD1-dependent pathways mediating increased intracellular Ca2+ levels, altered mitochondria functions and defective inflammatory process regulation have been proposed to be relevant for ALS pathogenesis/progression.
Collapse
Affiliation(s)
- Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Luca Pipicelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Flavia Carriero
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| |
Collapse
|
6
|
Zhao Y, Ning YL, Zhou YG. A 2AR and traumatic brain injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:225-265. [PMID: 37741693 DOI: 10.1016/bs.irn.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Accumulating evidence has revealed the adenosine 2A receptor is a key tuner for neuropathological and neurobehavioral changes following traumatic brain injury by experimental animal models and a few clinical trials. Here, we highlight recent data involving acute/sub-acute and chronic alterations of adenosine and adenosine 2A receptor-associated signaling in pathological conditions after trauma, with an emphasis of traumatic brain injury, including neuroinflammation, cognitive and psychiatric disorders, and other severe consequences. We expect this would lead to the development of therapeutic strategies for trauma-related disorders with novel mechanisms of action.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
7
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Dammer E, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg mice exposed to successive mild traumatic brain injuries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544838. [PMID: 37397993 PMCID: PMC10312742 DOI: 10.1101/2023.06.13.544838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, we have limited understanding of how successive injuries acutely affect the brain to result in these devastating long-term consequences. In the current study, we addressed the question of how repeated injuries affect the brain in the acute phase of injury (<24hr) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x, 3x, 5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30min, 4hr, and 24hr after each injury. We used young adult mice (2-4 months old) to model the effects of rmTBI relevant to young adult athletes, and in the absence of significant tau and Aβ pathology. Importantly, we identified pronounced sexual dimorphism, with females eliciting more differentially expressed proteins after injury compared to males. Specifically, females showed: 1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression as well as an increase in AD-related genes within 24hr, 2) each injury significantly increased expression of a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which were co-labeled with neurons and correlated with phospho-tau, and 3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and immune function. Collectively our data suggest that neurons respond to a single injury within 24h, while other cell types including astrocytes transition to inflammatory phenotypes within days of repetitive injury.
Collapse
|
8
|
Sabetta Z, Krishna G, Curry T, Adelson PD, Thomas TC. Aging with TBI vs. Aging: 6-month temporal profiles for neuropathology and astrocyte activation converge in behaviorally relevant thalamocortical circuitry of male and female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527058. [PMID: 36798182 PMCID: PMC9934568 DOI: 10.1101/2023.02.06.527058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Traumatic brain injury (TBI) manifests late-onset and persisting clinical symptoms with implications for sex differences and increased risk for the development of age-related neurodegenerative diseases. Few studies have evaluated chronic temporal profiles of neuronal and glial pathology that include sex as a biological variable. After experimental diffuse TBI, late-onset and persisting somatosensory hypersensitivity to whisker stimulation develops at one-month post-injury and persists to at least two months post-injury in male rats, providing an in vivo model to evaluate the temporal profile of pathology responsible for morbidity. Whisker somatosensation is dependent on signaling through the thalamocortical relays of the whisker barrel circuit made up of glutamatergic projections between the ventral posteromedial nucleus of the thalamus (VPM) and primary somatosensory barrel cortex (S1BF) with inhibitory (GABA) innervation from the thalamic reticular nucleus (TRN) to the VPM. To evaluate the temporal profiles of pathology, male and female Sprague Dawley rats ( n = 5-6/group) were subjected to sham surgery or midline fluid percussion injury (FPI). At 7-, 56-, and 168-days post-injury (DPI), brains were processed for amino-cupric silver stain and glial fibrillary acidic protein (GFAP) immunoreactivity, where pixel density of staining was quantified to determine the temporal profile of neuropathology and astrocyte activation in the VPM, S1BF, and TRN. FPI induced significant neuropathology in all brain regions at 7 DPI. At 168 DPI, neuropathology remained significantly elevated in the VPM and TRN, but returned to sham levels in the S1BF. GFAP immunoreactivity was increased as a function of FPI and DPI, with an FPI × DPI interaction in all regions and an FPI × Sex interaction in the S1BF. The interactions were driven by increased GFAP immunoreactivity in shams over time in the VPM and TRN. In the S1BF, GFAP immunoreactivity increased at 7 DPI and declined to age-matched sham levels by 168 DPI, while GFAP immunoreactivity in shams significantly increased between 7 and 168 days. The FPI × Sex interaction was driven by an overall greater level of GFAP immunoreactivity in FPI males compared to FPI females. Increased GFAP immunoreactivity was associated with an increased number of GFAP-positive soma, predominantly at 7 DPI. Overall, these findings indicate that FPI, time post-injury, sex, region, and aging with injury differentially contribute to chronic changes in neuronal pathology and astrocyte activation after diffuse brain injury. Thus, our results highlight distinct patterns of pathological alterations associated with the development and persistence of morbidity that supports chronic neuropathology, especially within the thalamus. Further, data indicate a convergence between TBI-induced and age-related pathology where further investigation may reveal a role for divergent astrocytic phenotypes associated with increased risk for neurodegenerative diseases.
Collapse
|
9
|
Arora K, Vats V, Kaushik N, Sindhawani D, Saini V, Arora DM, Kumar Y, Vashisht E, Singh G, Verma PK. A Systematic Review on Traumatic Brain Injury Pathophysiology and Role of Herbal Medicines in its Management. Curr Neuropharmacol 2023; 21:2487-2504. [PMID: 36703580 PMCID: PMC10616914 DOI: 10.2174/1570159x21666230126151208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a worldwide problem. Almost about sixtynine million people sustain TBI each year all over the world. Repetitive TBI linked with increased risk of neurodegenerative disorder such as Parkinson, Alzheimer, traumatic encephalopathy. TBI is characterized by primary and secondary injury and exerts a severe impact on cognitive, behavioral, psychological and other health problem. There were various proposed mechanism to understand complex pathophysiology of TBI but still there is a need to explore more about TBI pathophysiology. There are drugs present for the treatment of TBI in the market but there is still need of more drugs to develop for better and effective treatment of TBI, because no single drug is available which reduces the further progression of this injury. OBJECTIVE The main aim and objective of structuring this manuscript is to design, develop and gather detailed data regarding about the pathophysiology of TBI and role of medicinal plants in its treatment. METHOD This study is a systematic review conducted between January 1995 to June 2021 in which a consultation of scientific articles from indexed periodicals was carried out in Science Direct, United States National Library of Medicine (Pubmed), Google Scholar, Elsvier, Springer and Bentham. RESULTS A total of 54 studies were analyzed, on the basis of literature survey in the research area of TBI. CONCLUSION Recent studies have shown the potential of medicinal plants and their chemical constituents against TBI therefore, this review targets the detailed information about the pathophysiology of TBI and role of medicinal plants in its treatment.
Collapse
Affiliation(s)
- Kaushal Arora
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vishal Vats
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nalin Kaushik
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Deepanshu Sindhawani
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vaishali Saini
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Divy Mohan Arora
- Department of Pharmaceutical Sciences Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Yogesh Kumar
- Sat Priya College of Pharmacy, Rohtak, Haryana, 124001, India
| | - Etash Vashisht
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
10
|
Small C, Dagra A, Martinez M, Williams E, Lucke-Wold B. Examining the role of astrogliosis and JNK signaling in post-traumatic epilepsy. EGYPTIAN JOURNAL OF NEUROSURGERY 2022; 37:1. [PMID: 35035475 PMCID: PMC8758075 DOI: 10.1186/s41984-021-00141-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
Abstract
Objective
Post-traumatic epilepsy is a devastating complication of traumatic brain injury that has no targeted pharmacological therapy. Previous literature has explored the role of the c-Jun N-terminal kinase (JNK) pathway in epilepsy and the creation of epileptogenic foci by reactive astrogliosis; however, the relationship between reactive astrogliosis and the c-Jun N-terminal kinase signaling pathway in the development of post-traumatic epilepsy has not been thoroughly examined.
Methods
Four experimental groups, consisting of c57/b16 male mice, were examined: (1) control, (2) traumatic brain injury of graded severity (mild, moderate, severe), (3) sub-convulsive kainic acid alone without traumatic brain injury (15 mg/kg i.p.), and (4) sub-convulsive kainic acid administered 72 h after moderate traumatic brain injury. Modified Racine scale from 1 to 72 h and total beam breaks at 72 h were used to assess seizure activity. Immunohistochemistry and western blot were utilized to examine astrogliosis (GFAP), microglia activation (IBA-1), and phosphorylated JNK in prefrontal cortex samples collected from the contracoup side at 72 h post-injury.
Results
Astrogliosis, measured by GFAP, was increased after traumatic brain injury and increased commensurately based on the degree of injury. Mice with traumatic brain injury demonstrated a four-fold increase in phosphorylated JNK: p < 0.001. Sub-convulsive kainic acid administration did not increase seizure activity nor phosphorylation of JNK in mice without traumatic brain injury; however, sub-convulsive kainic acid administration in mice with moderate traumatic brain injury did increase phosphorylated JNK. Seizure activity was worse in mice, with traumatic brain injury, administered kainic acid than mice administered kainic acid.
Conclusions
Reactive astrocytes may have dysfunctional glutamate regulation causing an increase in phosphorylated JNK after kainic acid administration. Future studies exploring the effects of JNK inhibition on post-traumatic epilepsy are recommended.
Collapse
|
11
|
Yilmaz İ, Karaarslan N, Somay H, Ozbek H, Ates O. Curcumin-Impregnated Drug Delivery Systems May Show Promise in the Treatment of Diseases Secondary to Traumatic Brain Injury: Systematic Review. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major social health problem, especially in young adults, and progresses with advanced functional losses. In this study, curcumin was directed to the damaged brain tissue by crossing the blood–brain barrier through drug delivery systems. Thus, the study asked whether it can be effective in the treatment of TBI, which has not had a radical treatment method in clinics yet. Methods A comprehensive and systematic literature search in the PubMed electronic database was performed. Descriptive statistics were used to evaluate the data obtained. The results were presented as frequency and percentage (%) or amount. Results Two clinical trials investigated curcumin for the treatment of TBI. One study tested curcumin in living mammalian subjects using an amyloLipid nanovesicle. In three studies, curcumin was investigated together with the drug delivery system for the treatment of TBI. Conclusion Drug delivery systems prepared with nanomaterials may have a potential therapeutic effect in treating TBI by increasing neuroprotection because they can penetrate the central nervous system more rapidly.
Collapse
Affiliation(s)
- İbrahim Yilmaz
- Ministry of Health, Dr Ismail Fehmi Cumalioglu City Hospital, Unit of Pharmacovigilance and Rational Use of Drugs, Tekirdag, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Istanbul Rumeli University, Istanbul, Istanbul, Turkey
| | - Numan Karaarslan
- Department of Neurosurgery, Halic University School of Medicine, Istanbul, Istanbul, Turkey
| | - Hakan Somay
- Department of Neurosurgery, Kadikoy Medicana Hospital, Istanbul, Istanbul, Turkey
| | - Hanefi Ozbek
- Department of Medical Pharmacology, İzmir Bakırçay University School of Medicine, Izmir, Izmir, Turkey
| | - Ozkan Ates
- Department of Neurosurgery, Istanbul Koc University School of Medicine, Istanbul, Istanbul, Turkey
| |
Collapse
|
12
|
Wang R, Zhou R, Chen Z, Gao S, Zhou F. The Glial Cells Respond to Spinal Cord Injury. Front Neurol 2022; 13:844497. [PMID: 35599739 PMCID: PMC9120539 DOI: 10.3389/fneur.2022.844497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
It is been over 100 years since glial cells were discovered by Virchow. Since then, a great deal of research was carried out to specify these further roles and properties of glial cells in central nervous system (CNS). As it is well-known that glial cells, such as astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs) play an important role in supporting and enabling the effective nervous system function in CNS. After spinal cord injury (SCI), these glial cells play different roles in SCI and repair. In this review, we will discuss in detail about the role of glial cells in the healthy CNS and how they respond to SCI.
Collapse
|
13
|
Beeraka NM, Vikram PRH, Greeshma MV, Uthaiah CA, Huria T, Liu J, Kumar P, Nikolenko VN, Bulygin KV, Sinelnikov MY, Sukocheva O, Fan R. Recent Investigations on Neurotransmitters' Role in Acute White Matter Injury of Perinatal Glia and Pharmacotherapies-Glia Dynamics in Stem Cell Therapy. Mol Neurobiol 2022; 59:2009-2026. [PMID: 35041139 DOI: 10.1007/s12035-021-02700-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023]
Abstract
Periventricular leukomalacia (PVL) and cerebral palsy are two neurological disease conditions developed from the premyelinated white matter ischemic injury (WMI). The significant pathophysiology of these diseases is accompanied by the cognitive deficits due to the loss of function of glial cells and axons. White matter makes up 50% of the brain volume consisting of myelinated and non-myelinated axons, glia, blood vessels, optic nerves, and corpus callosum. Studies over the years have delineated the susceptibility of white matter towards ischemic injury especially during pregnancy (prenatal, perinatal) or immediately after child birth (postnatal). Impairment in membrane depolarization of neurons and glial cells by ischemia-invoked excitotoxicity is mediated through the overactivation of NMDA receptors or non-NMDA receptors by excessive glutamate influx, calcium, or ROS overload and has been some of the well-studied molecular mechanisms conducive to the injury of white matter. Expression of glutamate receptors (GluR) and transporters (GLT1, EACC1, and GST) has significant influence in glial and axonal-mediated injury of premyelinated white matter during PVL and cerebral palsy. Predominantly, the central premyelinated axons express extensive levels of functional NMDA GluR receptors to confer ischemic injury to premyelinated white matter which in turn invoke defects in neural plasticity. Several underlying molecular mechanisms are yet to be unraveled to delineate the complete pathophysiology of these prenatal neurological diseases for developing the novel therapeutic modalities to mitigate pathophysiology and premature mortality of newborn babies. In this review, we have substantially discussed the above multiple pathophysiological aspects of white matter injury along with glial dynamics, and the pharmacotherapies including recent insights into the application of MSCs as therapeutic modality in treating white matter injury.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - P R Hemanth Vikram
- Department of Pharmaceutical Chemistry, JSS Pharmacy College, Mysuru, Karnataka, India
| | - M V Greeshma
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Tahani Huria
- Faculty of Medicine, Benghazi University, Benghazi, Libya
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 7RH, UK
| | - Junqi Liu
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), SilaKatamur (Halugurisuk), Changsari, Kamrup, 781101, Assam, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V Bulygin
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Mikhail Y Sinelnikov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Olga Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Ruitai Fan
- Cancer Center, Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
14
|
Mahamane Salissou MT, Razak MYA, Wang X, Magaji RA. The role of protein phosphatase 2A tau axis in traumatic brain injury therapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Traumatic brain injury (TBI) is a debilitating disorder due to trauma caused by an external mechanical force eventually leading to disruption in the normal function of the brain, with possible outcomes including permanent or temporary dysfunction of cognitive, physical, and psychosocial abilities. There have been several studies focusing on the search and innovation of neuroprotective agents that could have therapeutic relevance in TBI management. Due to its complexity, TBI is divided into two major components. The first initial event is known as the primary injury; it is a result of the mechanical insult itself and is known to be irreversible and resistant to a vast variety of therapeutics. The secondary event or secondary brain injury is viewed as a cellular injury that does not manifest immediately after the trauma but evolved after a delay period of hours or several days. This category of injury is known to respond favorably to different pharmacological treatment approaches.
Main body
Due to the complexity in the pathophysiology of the secondary injury, the therapeutic strategy needs to be in a multi-facets model and to have the ability to simultaneously regulate different cellular changes. Several studies have investigated in deep the possible approaches relying on natural compounds as an alternative therapeutic strategy for the management of TBI. In addition, many natural compounds have the potential to target numerous different components of the secondary injury including neuroinflammation, apoptosis, PP2A, tau, and Aβ among others. Here, we review past and current strategies in the therapeutic management of TBI, focusing on the PP2A-tau axis both in animal and human subjects. This review uncovers, in addition, a variety of compounds used in TBI therapy.
Conclusion
Despite beneficial therapeutic effects observed in animals for many compounds, studies are still needed to be conducted on human subjects to validate their therapeutic virtues. Furthermore, potential therapeutic virtues observed among studies might likely be dependent on the TBI animal model used and the type of induced injury. In addition, specificity and side effects are challenges in TBI therapy specifically which site of PP2A dysfunction to be targeted.
Collapse
|
15
|
Piccialli I, Ciccone R, Secondo A, Boscia F, Tedeschi V, de Rosa V, Cepparulo P, Annunziato L, Pannaccione A. The Na +/Ca 2+ Exchanger 3 Is Functionally Coupled With the Na V1.6 Voltage-Gated Channel and Promotes an Endoplasmic Reticulum Ca 2+ Refilling in a Transgenic Model of Alzheimer's Disease. Front Pharmacol 2021; 12:775271. [PMID: 34955845 PMCID: PMC8692738 DOI: 10.3389/fphar.2021.775271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 01/15/2023] Open
Abstract
The remodelling of neuronal ionic homeostasis by altered channels and transporters is a critical feature of the Alzheimer's disease (AD) pathogenesis. Different reports converge on the concept that the Na+/Ca2+ exchanger (NCX), as one of the main regulators of Na+ and Ca2+ concentrations and signalling, could exert a neuroprotective role in AD. The activity of NCX has been found to be increased in AD brains, where it seemed to correlate with an increased neuronal survival. Moreover, the enhancement of the NCX3 currents (INCX) in primary neurons treated with the neurotoxic amyloid β 1-42 (Aβ1-42) oligomers prevented the endoplasmic reticulum (ER) stress and neuronal death. The present study has been designed to investigate any possible modulation of the INCX, the functional interaction between NCX and the NaV1.6 channel, and their impact on the Ca2+ homeostasis in a transgenic in vitro model of AD, the primary hippocampal neurons from the Tg2576 mouse, which overproduce the Aβ1-42 peptide. Electrophysiological studies, carried in the presence of siRNA and the isoform-selective NCX inhibitor KB-R7943, showed that the activity of a specific NCX isoform, NCX3, was upregulated in its reverse, Ca2+ influx mode of operation in the Tg2576 neurons. The enhanced NCX activity contributed, in turn, to increase the ER Ca2+ content, without affecting the cytosolic Ca2+ concentrations of the Tg2576 neurons. Interestingly, our experiments have also uncovered a functional coupling between NCX3 and the voltage-gated NaV1.6 channels. In particular, the increased NaV1.6 currents appeared to be responsible for the upregulation of the reverse mode of NCX3, since both TTX and the Streptomyces griseolus antibiotic anisomycin, by reducing the NaV1.6 currents, counteracted the increase of the INCX in the Tg2576 neurons. In agreement, our immunofluorescence analyses revealed that the NCX3/NaV1.6 co-expression was increased in the Tg2576 hippocampal neurons in comparison with the WT neurons. Collectively, these findings indicate that NCX3 might intervene in the Ca2+ remodelling occurring in the Tg2576 primary neurons thus emerging as a molecular target with a neuroprotective potential, and provide a new outcome of the NaV1.6 upregulation related to the modulation of the intracellular Ca2+ concentrations in AD neurons.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
16
|
Cammarota M, de Rosa V, Pannaccione A, Secondo A, Tedeschi V, Piccialli I, Fiorino F, Severino B, Annunziato L, Boscia F. Rebound effects of NCX3 pharmacological inhibition: A novel strategy to accelerate myelin formation in oligodendrocytes. Biomed Pharmacother 2021; 143:112111. [PMID: 34481380 DOI: 10.1016/j.biopha.2021.112111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
The Na+/Ca2+ exchanger NCX3 is an important regulator of sodium and calcium homeostasis in oligodendrocyte lineage. To date, no information is available on the effects resulting from prolonged exposure to NCX3 blockers and subsequent drug washout in oligodendroglia. Here, we investigated, by means of biochemical, morphological and functional analyses, the pharmacological effects of the NCX3 inhibitor, the 5-amino-N-butyl-2-(4-ethoxyphenoxy)-benzamide hydrochloride (BED), on NCXs expression and activity, as well as intracellular [Na+]i and [Ca2+]i levels, during treatment and following drug washout both in human MO3.13 oligodendrocytes and rat primary oligodendrocyte precursor cells (OPCs). BED exposure antagonized NCX activity, induced OPCs proliferation and [Na+]i accumulation. By contrast, 2 days of BED washout after 4 days of treatment significantly upregulated low molecular weight NCX3 proteins, reversed NCX activity, and increased intracellular [Ca2+]i. This BED-free effect was accompanied by an upregulation of NCX3 expression in oligodendrocyte processes and accelerated expression of myelin markers in rat primary oligodendrocytes. Collectively, our findings show that the pharmacological inhibition of the NCX3 exchanger with BED blocker maybe followed by a rebound increase in NCX3 expression and reversal activity that accelerate myelin sheet formation in oligodendrocytes. In addition, they indicate that a particular attention should be paid to the use of NCX inhibitors for possible rebound effects, and suggest that further studies will be necessary to investigate whether selective pharmacological modulation of NCX3 exchanger may be exploited to benefit demyelination and remyelination in demyelinating diseases.
Collapse
Affiliation(s)
- Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | - Beatrice Severino
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | | | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
17
|
Keating CE, Cullen DK. Mechanosensation in traumatic brain injury. Neurobiol Dis 2020; 148:105210. [PMID: 33259894 DOI: 10.1016/j.nbd.2020.105210] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is distinct from other neurological disorders because it is induced by a discrete event that applies extreme mechanical forces to the brain. This review describes how the brain senses, integrates, and responds to forces under both normal conditions and during injury. The response to forces is influenced by the unique mechanical properties of brain tissue, which differ by region, cell type, and sub-cellular structure. Elements such as the extracellular matrix, plasma membrane, transmembrane receptors, and cytoskeleton influence its properties. These same components also act as force-sensors, allowing neurons and glia to respond to their physical environment and maintain homeostasis. However, when applied forces become too large, as in TBI, these components may respond in an aberrant manner or structurally fail, resulting in unique pathological sequelae. This so-called "pathological mechanosensation" represents a spectrum of cellular responses, which vary depending on the overall biomechanical parameters of the injury and may be compounded by repetitive injuries. Such aberrant physical responses and/or damage to cells along with the resulting secondary injury cascades can ultimately lead to long-term cellular dysfunction and degeneration, often resulting in persistent deficits. Indeed, pathological mechanosensation not only directly initiates secondary injury cascades, but this post-physical damage environment provides the context in which these cascades unfold. Collectively, these points underscore the need to use experimental models that accurately replicate the biomechanics of TBI in humans. Understanding cellular responses in context with injury biomechanics may uncover therapeutic targets addressing various facets of trauma-specific sequelae.
Collapse
Affiliation(s)
- Carolyn E Keating
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA.
| |
Collapse
|
18
|
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
19
|
Lee EJ, Han JC, Park DY, Kee C. A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head. Prog Retin Eye Res 2020; 77:100840. [PMID: 31982595 DOI: 10.1016/j.preteyeres.2020.100840] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Neuroretinal rim thinning (NRR) is a characteristic glaucomatous optic disc change. However, the precise mechanism of the rim thinning has not been completely elucidated. This review focuses on the structural role of the glioarchitecture in the formation of the glaucomatous NRR thinning. The NRR is a glia-framed structure, with honeycomb geometry and mechanically reinforced astrocyte processes along the transverse plane. When neural damage selectively involves the neuron and spares the glia, the gross structure of the tissue is preserved. The disorganization and loss of the glioarchitecture are the two hallmarks of optic nerve head (ONH) remodeling in glaucoma that leads to the thinning of NRR tissue upon axonal loss. This is in contrast to most non-glaucomatous optic neuropathies with optic disc pallor where hypertrophy of the glioarchitecture is associated with the seemingly absent optic disc cupping. Arteritic anterior ischemic optic neuropathy is an exception where pan-necrosis of ONH tissue leads to NRR thinning. Milder ischemia indicates selective neuronal loss that spares glia in non-arteritic anterior ischemic optic neuropathy. The biological reason is the heterogeneous glial response determined by the site, type, and severity of the injury. The neuroglial interpretation explains how the cellular changes underlie the clinical findings. Updated understandings on glial responses illustrate the mechanical, microenvironmental, and microglial modulation of activated astrocytes in glaucoma. Findings relevant to the possible mechanism of the astrocyte death in advanced glaucoma are also emerging. Ultimately, a better understanding of glaucomatous glial response may lead to glia-targeting neuroprotection in the future.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
20
|
Dehghanian F, Soltani Z, Khaksari M. Can Mesenchymal Stem Cells Act Multipotential in Traumatic Brain Injury? J Mol Neurosci 2020; 70:677-688. [PMID: 31897971 DOI: 10.1007/s12031-019-01475-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI), a leading cause of morbidity and mortality throughout the world, will probably become the third cause of death in the world by the year 2020. Lack of effective treatments approved for TBI is a major health problem. TBI is a heterogeneous disease due to the different mechanisms of injury. Therefore, it requires combination therapies or multipotential therapy that can affect multiple targets. In recent years, mesenchymal stem cells (MSCs) transplantation has considered one of the most promising therapeutic strategies to repair of brain injuries including TBI. In these studies, it has been shown that MSCs can migrate to the site of injury and differentiate into the cells secreting growth factors and anti-inflammatory cytokines. The reduction in brain edema, neuroinflammation, microglia accumulation, apoptosis, ischemia, the improvement of motor and cognitive function, and the enhancement in neurogenesis, angiogenesis, and neural stem cells survival, proliferation, and differentiation have been indicated in these studies. However, translation of MSCs research in TBI into a clinical setting will require additional preclinical trials.
Collapse
Affiliation(s)
- Fatemeh Dehghanian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Bam University of Medical Sciences, Bam, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
21
|
Rose CR, Ziemens D, Verkhratsky A. On the special role of NCX in astrocytes: Translating Na +-transients into intracellular Ca 2+ signals. Cell Calcium 2019; 86:102154. [PMID: 31901681 DOI: 10.1016/j.ceca.2019.102154] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
As a solute carrier electrogenic transporter, the sodium/calcium exchanger (NCX1-3/SLC8A1-A3) links the trans-plasmalemmal gradients of sodium and calcium ions (Na+, Ca2+) to the membrane potential of astrocytes. Classically, NCX is considered to serve the export of Ca2+ at the expense of the Na+ gradient, defined as a "forward mode" operation. Forward mode NCX activity contributes to Ca2+ extrusion and thus to the recovery from intracellular Ca2+ signals in astrocytes. The reversal potential of the NCX, owing to its transport stoichiometry of 3 Na+ to 1 Ca2+, is, however, close to the astrocytes' membrane potential and hence even small elevations in the astrocytic Na+ concentration or minor depolarisations switch it into the "reverse mode" (Ca2+ import/Na+ export). Notably, transient Na+ elevations in the millimolar range are induced by uptake of glutamate or GABA into astrocytes and/or by the opening of Na+-permeable ion channels in response to neuronal activity. Activity-related Na+ transients result in NCX reversal, which mediates Ca2+ influx from the extracellular space, thereby generating astrocyte Ca2+ signalling independent from InsP3-mediated release from intracellular stores. Under pathological conditions, reverse NCX promotes cytosolic Ca2+ overload, while dampening Na+ elevations of astrocytes. This review provides an overview on our current knowledge about this fascinating transporter and its special functional role in astrocytes. We shall delineate that Na+-driven, reverse NCX-mediated astrocyte Ca2+ signals are involved neurone-glia interaction. Na+ transients, translated by the NCX into Ca2+ elevations, thereby emerge as a new signalling pathway in astrocytes.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany.
| | - Daniel Ziemens
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| |
Collapse
|
22
|
Leenen FHH, Wang HW, Hamlyn JM. Sodium pumps, ouabain and aldosterone in the brain: A neuromodulatory pathway underlying salt-sensitive hypertension and heart failure. Cell Calcium 2019; 86:102151. [PMID: 31954234 DOI: 10.1016/j.ceca.2019.102151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/15/2019] [Indexed: 02/08/2023]
Abstract
Accumulating evidence obtained over the last three decades has revealed a neuroendocrine system in the brain that mediates long term increases in blood pressure. The system involves distinct ion transport pathways including the alpha-2 isoform of the Na,K pump and epithelial sodium channels, as well as critical hormone elements such as angiotensin II, aldosterone, mineralocorticoid receptors and endogenous ouabain. Activation of this system either by circulating or central sodium ions and/or angiotensin II leads to a cascading sequence of events that begins in the hypothalamus and involves the participation of several brain nuclei including the subfornical organ, supraoptic and paraventricular nuclei and the rostral ventral medulla. Key events include heightened aldosterone synthesis and mineralocorticoid receptor activation, upregulation of epithelial sodium channels, augmented synthesis and secretion of endogenous ouabain from hypothalamic magnocellular neurons, and sustained increases in sympathetic outflow. The latter step depends upon increased production of angiotensin II and the primary amplification of angiotensin II type I receptor signaling from the paraventricular nucleus to the rostral ventral lateral medulla. The transmission of sympathetic traffic is secondarily amplified in the periphery by increased short- and long-term potentiation in sympathetic ganglia and by sustained actions of endogenous ouabain in the vascular wall that augment expression of sodium calcium exchange, increase cytosolic Ca2+ and heighten myogenic tone and contractility. Upregulation of this multi-amplifier system participates in forms of hypertension where salt, angiotensin and/or aldosterone are elevated and contributes to adverse outcomes in heart failure.
Collapse
Affiliation(s)
- Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - John M Hamlyn
- Department of Physiology, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
23
|
Xu S, Sun Q, Fan J, Jiang Y, Yang W, Cui Y, Yu Z, Jiang H, Li B. Role of Astrocytes in Post-traumatic Epilepsy. Front Neurol 2019; 10:1149. [PMID: 31798512 PMCID: PMC6863807 DOI: 10.3389/fneur.2019.01149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury, a common cause of acquired epilepsy, is typical to find necrotic cell death within the injury core. The dynamic changes in astrocytes surrounding the injury core contribute to epileptic seizures associated with intense neuronal firing. However, little is known about the molecular mechanisms that activate astrocytes during traumatic brain injury or the effect of functional changes of astrocytes on seizures. In this comprehensive review, we present our cumulated understanding of the complex neurological affection in astrocytes after traumatic brain injury. We approached the problem through describing the changes of cell morphology, neurotransmitters, biochemistry, and cytokines in astrocytes during post-traumatic epilepsy. In addition, we also discussed the relationship between dynamic changes in astrocytes and seizures and the current pharmacologic agents used for treatment. Hopefully, this review will provide a more detailed knowledge from which better therapeutic strategies can be developed to treat post-traumatic epilepsy.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Qihan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yuanyuan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yifeng Cui
- Department of Pediatrics, Yanbian Maternal and Child Health Hospital, Yanji, China
| | - Zhenxiang Yu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Huiyi Jiang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Gerkau NJ, Rakers C, Durry S, Petzold GC, Rose CR. Reverse NCX Attenuates Cellular Sodium Loading in Metabolically Compromised Cortex. Cereb Cortex 2019; 28:4264-4280. [PMID: 29136153 DOI: 10.1093/cercor/bhx280] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023] Open
Abstract
In core regions of ischemic stroke, disruption of blood flow causes breakdown of ionic gradients and, ultimately, calcium overload and cell death. In the surrounding penumbra, cells may recover upon reperfusion, but recovery is hampered by additional metabolic demands imposed by peri-infarct depolarizations (PIDs). There is evidence that sodium influx drives PIDs, but no data exist on PID-related sodium accumulations in vivo. Here, we found that PIDs in mouse neocortex are associated with propagating sodium elevations in neurons and astrocytes. Similar transient sodium elevations were induced in acute tissue slices by brief chemical ischemia. Blocking NMDA-receptors dampened sodium and accompanying calcium loads of neurons in tissue slices, while inhibiting glutamate transport diminished sodium influx into astrocytes, but amplified neuronal sodium loads. In both cell types, inhibition of sodium/calcium exchange (NCX) increased sodium transients. Blocking NCX also significantly reduced calcium transients, a result confirmed in vivo. Our study provides the first quantitative data on sodium elevations in peri-infarct regions in vivo. They suggest that sodium influx drives reversal of NCX, triggering a massive secondary calcium elevation while promoting export of sodium. Reported neuroprotective effects of NCX activity in stroke models might thus be related to its dampening of ischemia-induced sodium loading.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | - Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn, Germany
| | - Simone Durry
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn, Germany.,Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| |
Collapse
|
25
|
Ladak AA, Enam SA, Ibrahim MT. A Review of the Molecular Mechanisms of Traumatic Brain Injury. World Neurosurg 2019; 131:126-132. [PMID: 31301445 DOI: 10.1016/j.wneu.2019.07.039] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Traumatic brain injury (TBI) refers to any insult to the brain resulting in primary (direct) and secondary (indirect) damage to the brain parenchyma. Secondary damage is often linked to the molecular mechanisms that occur post TBI and result in excitotoxicity, neuroinflammation and cytokine damage, oxidative damage, and eventual cell death as prominent mechanisms of cell damage. We present a review highlighting the relation of each of these mechanisms with TBI, their mode of damaging brain tissue, and therapeutic correlation. We also mention the long-term sequelae and their pathophysiology in relation to TBI focusing on Parkinson disease, Alzheimer disease, epilepsy, and chronic traumatic encephalopathy. Understanding of the molecular mechanisms is important in order to realize the secondary and long-term sequelae that follow primary TBI and to devise targeted therapy for quick recovery accordingly.
Collapse
Affiliation(s)
- Asma Akbar Ladak
- Medical College, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| | | |
Collapse
|
26
|
Hlavac N, VandeVord PJ. Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Front Neurol 2019; 10:99. [PMID: 30853931 PMCID: PMC6395392 DOI: 10.3389/fneur.2019.00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Primary blast neurotrauma represents a unique injury paradigm characterized by high-rate overpressure effects on brain tissue. One major hallmark of blast neurotrauma is glial reactivity, notably prolonged astrocyte activation. This cellular response has been mainly defined in primary blast neurotrauma by increased intermediate filament expression. Because the intermediate filament networks physically interface with transmembrane proteins for junctional support, it was hypothesized that cell junction regulation is altered in the reactive phenotype as well. This would have implications for downstream transcriptional regulation via signal transduction pathways like nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Therefore, a custom high-rate overpressure simulator was built for in vitro testing using mechanical conditions based on intracranial pressure measurements in a rat model of blast neurotrauma. Primary rat astrocytes were exposed to isolated high-rate mechanical stimulation to study cell junction dynamics in relation to their mechano-activation. First, a time course for "classical" features of reactivity was devised by evaluation of glial fibrillary acidic protein (GFAP) and proliferating cell nuclear antigen (PCNA) expression. This was followed by gene and protein expression for both gap junction (connexins) and anchoring junction proteins (integrins and cadherins). Signal transduction analysis was carried out by nuclear localization of two molecules, NF-κB p65 and mitogen-activated protein kinase (MAPK) p38. Results indicated significant increases in connexin-43 expression and PCNA first at 24 h post-overpressure (p < 0.05), followed by structural reactivity (via increased GFAP, p < 0.05) corresponding to increased anchoring junction dynamics at 48 h post-overpressure (p < 0.05). Moreover, increased phosphorylation of focal adhesion kinase (FAK) was observed in addition to increased nuclear localization of both p65 and p38 (p < 0.05) during the period of structural reactivity. To evaluate the transcriptional activity of p65 in the nucleus, electrophoretic mobility shift assay was conducted for a binding site on the promoter region for intracellular adhesion molecule-1 (ICAM-1), an antagonist of tight junctions. A significant increase in the interaction of nuclear proteins with the NF-κB site on the ICAM-1 corresponded to increased gene and protein expression of ICAM-1 (p < 0.05). Altogether, these results indicate multiple targets and corresponding signaling pathways which involve cell junction dynamics in the mechano-activation of astrocytes following high-rate overpressure.
Collapse
Affiliation(s)
- Nora Hlavac
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute, Blacksburg, VA, United States
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute, Blacksburg, VA, United States.,Department of Research, Salem Veterans Affairs Medical Center, Salem, VA, United States
| |
Collapse
|
27
|
Pavlova V, Filipova E, Uzunova K, Kalinov K, Vekov T. Pioglitazone Therapy and Fractures: Systematic Review and Meta- Analysis. Endocr Metab Immune Disord Drug Targets 2019; 18:502-507. [PMID: 29683100 DOI: 10.2174/1871530318666180423121833] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Thiazolidinediones are a group of synthetic medications used in type 2 diabetes treatment. Among available thiazolidinediones, pioglitazone is gaining increased attention due to its lower cardiovascular risk in type 2 diabetes mellitus sufferers and seems a promising future therapy. Accumulating evidence suggests that diabetic patients may exert bone fractures due to such treatments. Simultaneously, the female population is thought to be at greater risk. Still, the safety outcomes of pioglitazone treatment especially in terms of fractures are questionable and need to be clarified. METHODS We searched MEDLINE, Scopus, PsyInfo, eLIBRARY.ru electronic databases and clinical trial registries for studies reporting an association between pioglitazone and bone fractures in type 2 diabetes mellitus patients published before Feb 15, 2016. Among 1536 sources that were initially identified, six studies including 3172 patients proved relevant for further analysis. RESULT Pooled analysis of the included studies demonstrated that after treatment with pioglitazone patients with type 2 diabetes mellitus had no significant increase in fracture risk [odds ratio (OR): 1.18, 95% confidence interval (CI): 0.82 to 1.71, p=0.38] compared to other antidiabetic drugs or placebo. Additionally, no association was found between the risk of fractures and pioglitazone therapy duration. The gender of the patients involved was not relevant to the risk of fractures, too. CONCLUSION Pioglitazone treatment in diabetic patients does not increase the incidence of bone fractures. Moreover, there is no significant association between patients' fractures, their gender and the period of exposure to pioglitazone. Additional longitudinal studies need to be undertaken to obtain more detailed information on bone fragility and pioglitazone therapy.
Collapse
Affiliation(s)
- Velichka Pavlova
- Science Department, Tchaikapharma High-Quality Medicines, Inc., 1 G.M. Dimitrov Blvd, 1172 Sofia, Bulgaria
| | - Elena Filipova
- Science Department, Tchaikapharma High-Quality Medicines, Inc., 1 G.M. Dimitrov Blvd, 1172 Sofia, Bulgaria
| | - Katya Uzunova
- Science Department, Tchaikapharma High-Quality Medicines, Inc., 1 G.M. Dimitrov Blvd, 1172 Sofia, Bulgaria
| | - Krassimir Kalinov
- Department of Informatics, New Bulgarian University, 21 Montevideo Street, 1618 Sofia, Bulgaria
| | - Toni Vekov
- Medical University, Faculty of Pharmacy, Dean, Pleven, Bulgaria
| |
Collapse
|
28
|
Martin-Jiménez C, Gaitán-Vaca DM, Areiza N, Echeverria V, Ashraf GM, González J, Sahebkar A, Garcia-Segura LM, Barreto GE. Astrocytes Mediate Protective Actions of Estrogenic Compounds after Traumatic Brain Injury. Neuroendocrinology 2019; 108:142-160. [PMID: 30391959 DOI: 10.1159/000495078] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health problem. It may result in severe neurological disabilities and in a variety of cellular metabolic alterations for which available therapeutic strategies are limited. In the last decade, the use of estrogenic compounds, which activate protective mechanisms in astrocytes, has been explored as a potential experimental therapeutic approach. Previous works have suggested estradiol (E2) as a neuroprotective hormone that acts in the brain by binding to estrogen receptors (ERs). Several steroidal and nonsteroidal estrogenic compounds can imitate the effects of estradiol on ERs. These include hormonal estrogens, phytoestrogens and synthetic estrogens, such as selective ER modulators or tibolone. Current evidence of the role of astrocytes in mediating protective actions of estrogenic compounds after TBI is reviewed in this paper. We conclude that the use of estrogenic compounds to modulate astrocytic properties is a promising therapeutic approach for the treatment of TBI.
Collapse
Affiliation(s)
- Cynthia Martin-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diana Milena Gaitán-Vaca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Natalia Areiza
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Concepción, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, Florida, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia,
| |
Collapse
|
29
|
Xing P, Ma K, Li L, Wang D, Hu G, Long W. The protection effect and mechanism of hyperbaric oxygen therapy in rat brain with traumatic injury. Acta Cir Bras 2018; 33:341-353. [PMID: 29768537 DOI: 10.1590/s0102-865020180040000006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To investigate the effect of hyperbaric oxygen therapy (HBOT) on traumatic brain injury (TBI) outcome. METHODS The modified Marmarou's weight drop device was used to generate non-lethal moderate TBI rat model, and further developed in vitro astrocytes culturing system. Then, we analyzed the expression changes of interested genes and protein by quantitative PCR and western blot. RESULTS Multiple HBO treatments significantly reduced the expression of apoptosis promoting genes, such as c-fos, c-jun, Bax and weakened the activation of Caspase-3 in model rats. On the contrary, HBOT alleviated the decrease of anti-apoptosis gene Bcl-2 and promoted the expression of neurotrophic factors (NTFs), such as NGF, BDNF, GDNF and NT-3 in vivo. As a consequent, the neuropathogenesis was remarkably relied with HBOT. Astrocytes from TBI brain or those cultured with 21% O2 density expressed higher NTFs than that of corresponding controls, from sham brain and cultured with 7% O2, respectively. The NTFs expression was the highest in astrocytes form TBI brain and cultured with 21% O2, suggesting a synergistic effect existed between TBI and the following HBO treatment in astrocytes. CONCLUSION Our findings provided evidence for the clinical usage of HBO treating brain damages.
Collapse
Affiliation(s)
- Pengcheng Xing
- MD, Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital East, China. Acquisition, analysis and interpretation of data; manuscript preparation
| | - Ke Ma
- MD, Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital East, China. Conception and design of the study, manuscript preparation, final approval
| | - Lijuan Li
- MD, Physician, Department of Geriatrics, Shanghai Sixth People's Hospital East, China. Acquisition of data, technical procedures
| | - Donglian Wang
- MD, Physician, Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital East, China. Technical procedures
| | - Guoyong Hu
- MD, Physician, Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital East, China. Technical procedures
| | - Wei Long
- MD, Physician, Department of Geriatrics, Shanghai Sixth People's Hospital East, China. Technical procedures
| |
Collapse
|
30
|
Chandel S, Gupta SK, Medhi B. Epileptogenesis following experimentally induced traumatic brain injury - a systematic review. Rev Neurosci 2018; 27:329-46. [PMID: 26581067 DOI: 10.1515/revneuro-2015-0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a complex neurotrauma in civilian life and the battlefield with a broad spectrum of symptoms, long-term neuropsychological disability, as well as mortality worldwide. Posttraumatic epilepsy (PTE) is a common outcome of TBI with unknown mechanisms, followed by posttraumatic epileptogenesis. There are numerous rodent models of TBI available with varying pathomechanisms of head injury similar to human TBI, but there is no evidence for an adequate TBI model that can properly mimic all aspects of clinical TBI and the first successive spontaneous focal seizures follow a single episode of neurotrauma with respect to epileptogenesis. This review aims to provide current information regarding the various experimental animal models of TBI relevant to clinical TBI. Mossy fiber sprouting, loss of dentate hilar neurons along with recurrent seizures, and epileptic discharge similar to human PTE have been studied in fluid percussion injury, weight-drop injury, and cortical impact models, but further refinement of animal models and functional test is warranted to better understand the underlying pathophysiology of posttraumatic epileptogenesis. A multifaceted research approach in TBI model may lead to exploration of the potential treatment measures, which are a major challenge to the research community and drug developers. With respect to clinical setting, proper patient data collection, improved clinical trials with advancement in drug delivery strategies, blood-brain barrier permeability, and proper monitoring of level and effects of target drug are also important.
Collapse
|
31
|
Stokum JA, Kwon MS, Woo SK, Tsymbalyuk O, Vennekens R, Gerzanich V, Simard JM. SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia 2017; 66:108-125. [PMID: 28906027 DOI: 10.1002/glia.23231] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/23/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022]
Abstract
Astrocyte swelling occurs after central nervous system injury and contributes to brain swelling, which can increase mortality. Mechanisms proffered to explain astrocyte swelling emphasize the importance of either aquaporin-4 (AQP4), an astrocyte water channel, or of Na+ -permeable channels, which mediate cellular osmolyte influx. However, the spatio-temporal functional interactions between AQP4 and Na+ -permeable channels that drive swelling are poorly understood. We hypothesized that astrocyte swelling after injury is linked to an interaction between AQP4 and Na+ -permeable channels that are newly upregulated. Here, using co-immunoprecipitation and Förster resonance energy transfer, we report that AQP4 physically co-assembles with the sulfonylurea receptor 1-transient receptor potential melastatin 4 (SUR1-TRPM4) monovalent cation channel to form a novel heteromultimeric water/ion channel complex. In vitro cell-swelling studies using calcein fluorescence imaging of COS-7 cells expressing various combinations of AQP4, SUR1, and TRPM4 showed that the full tripartite complex, comprised of SUR1-TRPM4-AQP4, was required for fast, high-capacity transmembrane water transport that drives cell swelling, with these findings corroborated in cultured primary astrocytes. In a murine model of brain edema involving cold-injury to the cerebellum, we found that astrocytes newly upregulate SUR1-TRPM4, that AQP4 co-associates with SUR1-TRPM4, and that genetic inactivation of the solute pore of the SUR1-TRPM4-AQP4 complex blocked in vivo astrocyte swelling measured by diolistic labeling, thereby corroborating our in vitro functional studies. Together, these findings demonstrate a novel molecular mechanism involving the SUR1-TRPM4-AQP4 complex to account for bulk water influx during astrocyte swelling. These findings have broad implications for the understanding and treatment of AQP4-mediated pathological conditions.
Collapse
Affiliation(s)
- Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595
| | - Min S Kwon
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595
| | - Seung K Woo
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595
| | - Rudi Vennekens
- Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Katholieke Universiteit Leuven, Leuven, 3000, Belgium
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201-1595
| |
Collapse
|
32
|
Schurman LD, Lichtman AH. Endocannabinoids: A Promising Impact for Traumatic Brain Injury. Front Pharmacol 2017; 8:69. [PMID: 28261100 PMCID: PMC5314139 DOI: 10.3389/fphar.2017.00069] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/02/2017] [Indexed: 02/01/2023] Open
Abstract
The endogenous cannabinoid (endocannabinoid) system regulates a diverse array of physiological processes and unsurprisingly possesses considerable potential targets for the potential treatment of numerous disease states, including two receptors (i.e., CB1 and CB2 receptors) and enzymes regulating their endogenous ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonyl glycerol (2-AG). Increases in brain levels of endocannabinoids to pathogenic events suggest this system plays a role in compensatory repair mechanisms. Traumatic brain injury (TBI) pathology remains mostly refractory to currently available drugs, perhaps due to its heterogeneous nature in etiology, clinical presentation, and severity. Here, we review pre-clinical studies assessing the therapeutic potential of cannabinoids and manipulations of the endocannabinoid system to ameliorate TBI pathology. Specifically, manipulations of endocannabinoid degradative enzymes (e.g., fatty acid amide hydrolase, monoacylglycerol lipase, and α/β-hydrolase domain-6), CB1 and CB2 receptors, and their endogenous ligands have shown promise in modulating cellular and molecular hallmarks of TBI pathology such as; cell death, excitotoxicity, neuroinflammation, cerebrovascular breakdown, and cell structure and remodeling. TBI-induced behavioral deficits, such as learning and memory, neurological motor impairments, post-traumatic convulsions or seizures, and anxiety also respond to manipulations of the endocannabinoid system. As such, the endocannabinoid system possesses potential drugable receptor and enzyme targets for the treatment of diverse TBI pathology. Yet, full characterization of TBI-induced changes in endocannabinoid ligands, enzymes, and receptor populations will be important to understand that role this system plays in TBI pathology. Promising classes of compounds, such as the plant-derived phytocannabinoids, synthetic cannabinoids, and endocannabinoids, as well as their non-cannabinoid receptor targets, such as TRPV1 receptors, represent important areas of basic research and potential therapeutic interest to treat TBI.
Collapse
Affiliation(s)
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, RichmondVA, USA
| |
Collapse
|
33
|
Scheff SW, Ansari MA. Natural Compounds as a Therapeutic Intervention following Traumatic Brain Injury: The Role of Phytochemicals. J Neurotrauma 2016; 34:1491-1510. [PMID: 27846772 DOI: 10.1089/neu.2016.4718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There has been a tremendous focus on the discovery and development of neuroprotective agents that might have clinical relevance following traumatic brain injury (TBI). This type of brain injury is very complex and is divided into two major components. The first component, a primary injury, occurs at the time of impact and is the result of the mechanical insult itself. This primary injury is thought to be irreversible and resistant to most treatments. A second component or secondary brain injury, is defined as cellular damage that is not immediately obvious after trauma, but that develops after a delay of minutes, hours, or even days. This injury appears to be amenable to treatment. Because of the complexity of the secondary injury, any type of therapeutic intervention needs to be multi-faceted and have the ability to simultaneously modulate different cellular changes. Because of diverse pharmaceutical interactions, combinations of different drugs do not work well in concert and result in adverse physiological conditions. Research has begun to investigate the possibility of using natural compounds as a therapeutic intervention following TBI. These compounds normally have very low toxicity and have reduced interactions with other pharmaceuticals. In addition, many natural compounds have the potential to target numerous different components of the secondary injury. Here, we review 33 different plant-derived natural compounds, phytochemicals, which have been investigated in experimental animal models of TBI. Some of these phytochemicals appear to have potential as possible therapeutic interventions to offset key components of the secondary injury cascade. However, not all studies have used the same scientific rigor, and one should be cautious in the interpretation of studies using naturally occurring phytochemical in TBI research.
Collapse
Affiliation(s)
- Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky
| | - Mubeen A Ansari
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
34
|
Zhang Z, Bassam B, Thomas AG, Williams M, Liu J, Nance E, Rojas C, Slusher BS, Kannan S. Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain. Neurobiol Dis 2016; 94:116-28. [PMID: 27326668 PMCID: PMC5394739 DOI: 10.1016/j.nbd.2016.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/05/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Astrocyte dysfunction and excessive activation of glutamatergic systems have been implicated in a number of neurologic disorders, including periventricular leukomalacia (PVL) and cerebral palsy (CP). However, the role of chorioamnionitis on glutamate homeostasis in the fetal and neonatal brains is not clearly understood. We have previously shown that intrauterine endotoxin administration results in intense microglial 'activation' and increased pro-inflammatory cytokines in the periventricular region (PVR) of the neonatal rabbit brain. In this study, we assessed the effect of maternal inflammation on key components of the glutamate pathway and its relationship to astrocyte and microglial activation in the fetal and neonatal New Zealand white rabbit brain. We found that intrauterine endotoxin exposure at gestational day 28 (G28) induced acute and prolonged glutamate elevation in the PVR of fetal (G29, 1day post-injury) and postnatal day 1 (PND1, 3days post-injury) brains along with prominent morphological changes in the astrocytes (soma hypertrophy and retracted processes) in the white matter tracts. There was a significant increase in glutaminase and N-Methyl-d-Aspartate receptor (NMDAR) NR2 subunit expression along with decreased glial L-glutamate transporter 1 (GLT-1) in the PVR at G29, that would promote acute dysregulation of glutamate homeostasis. This was accompanied with significantly decreased TGF-β1 at PND1 in CP kits indicating ongoing neuroinflammation. We also show for the first time that glutamate carboxypeptidase II (GCPII) was significantly increased in the activated microglia at the periventricular white matter area in both G29 and PND1 CP kits. This was confirmed by in vitro studies demonstrating that LPS activated primary microglia markedly upregulate GCPII enzymatic activity. These results suggest that maternal intrauterine endotoxin exposure results in early onset and long-lasting dysregulation of glutamate homeostasis, which may be mediated by impaired astrocyte function and GCPII upregulation in activated microglia.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Bassam Bassam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Monica Williams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Jinhuan Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Elizabeth Nance
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Camilo Rojas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Barbara S Slusher
- Neurology, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA; Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA.
| |
Collapse
|
35
|
Boscia F, Begum G, Pignataro G, Sirabella R, Cuomo O, Casamassa A, Sun D, Annunziato L. Glial Na(+) -dependent ion transporters in pathophysiological conditions. Glia 2016; 64:1677-97. [PMID: 27458821 DOI: 10.1002/glia.23030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh Medical School
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical School.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania, 15213
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
36
|
Dorsett CR, McGuire JL, DePasquale EAK, Gardner AE, Floyd CL, McCullumsmith RE. Glutamate Neurotransmission in Rodent Models of Traumatic Brain Injury. J Neurotrauma 2016; 34:263-272. [PMID: 27256113 DOI: 10.1089/neu.2015.4373] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in people younger than 45 and is a significant public health concern. In addition to primary mechanical damage to cells and tissue, TBI involves additional molecular mechanisms of injury, termed secondary injury, that continue to evolve over hours, days, weeks, and beyond. The trajectory of recovery after TBI is highly unpredictable and in many cases results in chronic cognitive and behavioral changes. Acutely after TBI, there is an unregulated release of glutamate that cannot be buffered or cleared effectively, resulting in damaging levels of glutamate in the extracellular space. This initial loss of glutamate homeostasis may initiate additional changes in glutamate regulation. The excitatory amino acid transporters (EAATs) are expressed on both neurons and glia and are the principal mechanism for maintaining extracellular glutamate levels. Diffusion of glutamate outside the synapse due to impaired uptake may lead to increased extrasynaptic glutamate signaling, secondary injury through activation of cell death pathways, and loss of fidelity and specificity of synaptic transmission. Coordination of glutamate release and uptake is critical to regulating synaptic strength, long-term potentiation and depression, and cognitive processes. In this review, we will discuss dysregulation of extracellular glutamate and glutamate uptake in the acute stage of TBI and how failure to resolve acute disruptions in glutamate homeostatic mechanisms may play a causal role in chronic cognitive symptoms after TBI.
Collapse
Affiliation(s)
- Christopher R Dorsett
- 1 Biological and Biomedical Sciences Doctoral Program, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Jennifer L McGuire
- 2 Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati, Ohio
| | - Erica A K DePasquale
- 2 Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati, Ohio
| | - Amanda E Gardner
- 2 Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati, Ohio
| | - Candace L Floyd
- 3 Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert E McCullumsmith
- 2 Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
37
|
Zander NE, Piehler T, Banton R, Benjamin R. Effects of repetitive low-pressure explosive blast on primary neurons and mixed cultures. J Neurosci Res 2016; 94:827-36. [PMID: 27317559 DOI: 10.1002/jnr.23786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/28/2016] [Accepted: 05/23/2016] [Indexed: 02/05/2023]
Abstract
Repetitive mild traumatic brain injury represents a considerable health concern, particularly for athletes and military personnel. For blast-induced brain injury, threshold shock-impulse levels required to induce such injuries and cumulative effects with single and/or multiple exposures are not well characterized. Currently, there is no established in vitro experimental model with blast pressure waves generated by live explosives. This study presents results of primary neurons and mixed cultures subjected to our unique in vitro indoor experimental platform that uses real military explosive charges to probe the effects of primary explosive blast at the cellular level. The effects of the blast on membrane permeability, generation of reactive oxygen species (ROS), uptake of sodium ions, intracellular calcium, and release of glutamate were probed 2 and 24 hr postblast. Significant changes in membrane permeability and sodium uptake among the sham, single-blast-injured, and triple-blast-injured samples were observed. A significant increase in ROS and glutamate release was observed for the triple-blast-injured samples compared with the sham. Changes in intracellular calcium were not significant. These results suggest that blast exposure disrupts the integrity of the plasma membrane, leading to the upset of ion homeostasis, formation of ROS, and glutamate release. Published 2016. †This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Nicole E Zander
- United States Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Thuvan Piehler
- United States Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Rohan Banton
- United States Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Richard Benjamin
- United States Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Aberdeen, Maryland
| |
Collapse
|
38
|
Pappalardo LW, Black JA, Waxman SG. Sodium channels in astroglia and microglia. Glia 2016; 64:1628-45. [PMID: 26919466 DOI: 10.1002/glia.22967] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels are required for electrogenesis in excitable cells. Their activation, triggered by membrane depolarization, generates transient sodium currents that initiate action potentials in neurons, cardiac, and skeletal muscle cells. Cells that have not traditionally been considered to be excitable (nonexcitable cells), including glial cells, also express sodium channels in physiological conditions as well as in pathological conditions. These channels contribute to multiple functional roles that are seemingly unrelated to the generation of action potentials. Here, we discuss the dynamics of sodium channel expression in astrocytes and microglia, and review evidence for noncanonical roles in effector functions of these cells including phagocytosis, migration, proliferation, ionic homeostasis, and secretion of chemokines/cytokines. We also examine possible mechanisms by which sodium channels contribute to the activity of glial cells, with an eye toward therapeutic implications for central nervous system disease. GLIA 2016;64:1628-1645.
Collapse
Affiliation(s)
- Laura W Pappalardo
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| | - Joel A Black
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
39
|
Abstract
Alkali metals, especially sodium and potassium, are plentiful and vital in biological systems. They take on important roles in health and disease. Such roles include the regulation of homeostasis, osmosis, blood pressure, electrolytic equilibria, and electric current. However, there is a limit to our present understanding; the ions have a great ability and capacity for action in health and disease, much greater than our current understanding. For the regulation of physiological homeostasis, there is a crucial regulator (renin-angiotensin system, RAS), found at both peripheral and central levels. Misregulation of the Na(+)-K(+) pump, and sodium channels in RAS are important for the understanding of disease progression, hypertension, diabetes, and neurodegenerative diseases, etc. In particular, RAS displays direct or indirect interaction important to Parkinson's disease (PD). In this chapter, the relationship between the regulation of sodium/potassium concentration and PD was sought. In addition, some recent biochemical and clinical findings are also discussed that help describe sodium and potassium in the context of traumatic brain injury (TBI). TBI is caused from the heavy striking of the head; this strongly affects ion flux in the affected tissue (brain) and damages cellular regulation systems. Thus, inappropriate concentrations of ions (hyper- and hyponatremia, and hyper- and hypokalemia) will perturb homeostasis giving rise to important and far reaching effects. These changes also impact osmotic pressure and the concentration of other metal ions, such as the calcium(II) ion.
Collapse
|
40
|
Lazarus RC, Buonora JE, Flora MN, Freedy JG, Holstein GR, Martinelli GP, Jacobowitz DM, Mueller GP. Protein Citrullination: A Proposed Mechanism for Pathology in Traumatic Brain Injury. Front Neurol 2015; 6:204. [PMID: 26441823 PMCID: PMC4585288 DOI: 10.3389/fneur.2015.00204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/07/2015] [Indexed: 11/23/2022] Open
Abstract
Protein citrullination is a calcium-driven post-translational modification proposed to play a causative role in the neurodegenerative disorders of Alzheimer’s disease, multiple sclerosis (MS), and prion disease. Citrullination can result in the formation of antigenic epitopes that underlie pathogenic autoimmune responses. This phenomenon, which is best understood in rheumatoid arthritis, may play a role in the chronic dysfunction following traumatic brain injury (TBI). Despite substantial evidence of aberrations in calcium signaling following TBI, there is little understanding of how TBI alters citrullination in the brain. The present investigation addressed this gap by examining the effects of TBI on the distribution of protein citrullination and on the specific cell types involved. Immunofluorescence revealed that controlled cortical impact in rats profoundly up-regulated protein citrullination in the cerebral cortex, external capsule, and hippocampus. This response was exclusively seen in astrocytes; no such effects were observed on the status of protein citrullination in neurons, oligodendrocytes or microglia. Further, proteomic analyses demonstrated that the effects of TBI on citrullination were confined to a relatively small subset of neural proteins. Proteins most notably affected were those also reported to be citrullinated in other disorders, including prion disease and MS. In vivo findings were extended in an in vitro model of simulated TBI employing normal human astrocytes. Pharmacologically induced calcium excitotoxicity was shown to activate the citrullination and breakdown of glial fibrillary acidic protein, producing a novel candidate TBI biomarker and potential target for autoimmune recognition. In summary, these findings demonstrate that the effects of TBI on protein citrullination are selective with respect to brain region, cell type, and proteins modified, and may contribute to a role for autoimmune dysfunction in chronic pathology following TBI.
Collapse
Affiliation(s)
- Rachel C Lazarus
- Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - John E Buonora
- US Army Graduate Program in Anesthesia Nursing , Fort Sam Houston, TX , USA
| | - Michael N Flora
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - James G Freedy
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - David M Jacobowitz
- Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Gregory P Mueller
- Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
41
|
Tanriverdi F, Schneider HJ, Aimaretti G, Masel BE, Casanueva FF, Kelestimur F. Pituitary dysfunction after traumatic brain injury: a clinical and pathophysiological approach. Endocr Rev 2015; 36:305-42. [PMID: 25950715 DOI: 10.1210/er.2014-1065] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) is a growing public health problem worldwide and is a leading cause of death and disability. The causes of TBI include motor vehicle accidents, which are the most common cause, falls, acts of violence, sports-related head traumas, and war accidents including blast-related brain injuries. Recently, pituitary dysfunction has also been described in boxers and kickboxers. Neuroendocrine dysfunction due to TBI was described for the first time in 1918. Only case reports and small case series were reported until 2000, but since then pituitary function in TBI victims has been investigated in more detail. The frequency of hypopituitarism after TBI varies widely among different studies (15-50% of the patients with TBI in most studies). The estimates of persistent hypopituitarism decrease to 12% if repeated testing is applied. GH is the most common hormone lost after TBI, followed by ACTH, gonadotropins (FSH and LH), and TSH. The underlying mechanisms responsible for pituitary dysfunction after TBI are not entirely clear; however, recent studies have shown that genetic predisposition and autoimmunity may have a role. Hypopituitarism after TBI may have a negative impact on the pace or degree of functional recovery and cognition. What is not clear is whether treatment of hypopituitarism has a beneficial effect on specific function. In this review, the current data related to anterior pituitary dysfunction after TBI in adult patients are updated, and guidelines for the diagnosis, follow-up strategies, and therapeutic approaches are reported.
Collapse
Affiliation(s)
- Fatih Tanriverdi
- Erciyes University Medical School (F.T., F.K.), Department of Endocrinology, 38039 Kayseri, Turkey
| | - Harald Jörn Schneider
- Medizinische Klinik und Poliklinik IV (H.J.S.), Ludwig-Maximilians University, 80539 Munich, Germany
| | - Gianluca Aimaretti
- Department of Translational Medicine (G.A.), University “A. Avogadro” of the Eastern Piedmont, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | - Brent E. Masel
- Department of Neurology (B.E.M.), Transitional Learning Center at Galveston, The Moody Center for Traumatic Brain & Spinal Cord Injury Research/Mission Connect, The University of Texas Medical Branch, Galveston, Texas 77550
| | - Felipe F. Casanueva
- Faculty of Medicine (F.F.C.), Santiago de Compostela University, Complejo Hospitalario Universitario de Santiago; CIBER de Fisiopatologia Obesidad y Nutricion, Instituto Salud Carlos III, Santiago de Compostela 15782, Spain
| | - Fahrettin Kelestimur
- Erciyes University Medical School (F.T., F.K.), Department of Endocrinology, 38039 Kayseri, Turkey
| |
Collapse
|
42
|
Shenoda B. The role of Na+/Ca2+ exchanger subtypes in neuronal ischemic injury. Transl Stroke Res 2015; 6:181-90. [PMID: 25860439 DOI: 10.1007/s12975-015-0395-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
The Na(+)/Ca(2+) exchanger (NCX) plays an important role in the maintenance of Na(+) and Ca(2+) homeostasis in most cells including neurons under physiological and pathological conditions. It exists in three subtypes (NCX1-3) with different tissue distributions but all of them are present in the brain. NCX transports Na(+) and Ca(2+) in either Ca(2+)-efflux (forward) or Ca(2+)-influx (reverse) mode, depending on membrane potential and transmembrane ion gradients. During neuronal ischemia, Na(+) and Ca(2+) ionic disturbances favor NCX to work in reverse mode, giving rise to increased intracellular Ca(2+) levels, while it may regain its forward mode activity on reperfusion. The exact significance of NCX in neuronal ischemic and reperfusion states remains unclear. The differential role of NCX subtypes in ischemic neuronal injury has been extensively investigated using various pharmacological tools as well as genetic models. This review discusses the mode of action of NCX in ischemic and reperfusion states, the differential roles played by NCX subtypes in these states as well as the role of NCX in pre- and postconditioning. NCX subtypes carry variable roles in ischemic injury. Furthermore, the mode of action of each subtype varies in ischemia and reperfusion states. Thus, therapeutic targeting of NCX in stroke should be based on appropriate timing of the administration of NCX subtype-specific strategies.
Collapse
Affiliation(s)
- Botros Shenoda
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop #488, Philadelphia, PA, 19102, USA,
| |
Collapse
|
43
|
Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol 2015; 275 Pt 3:305-315. [PMID: 25828533 DOI: 10.1016/j.expneurol.2015.03.020] [Citation(s) in RCA: 547] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/28/2015] [Accepted: 03/08/2015] [Indexed: 01/15/2023]
Abstract
Astrocytes sense changes in neural activity and extracellular space composition. In response, they exert homeostatic mechanisms critical for maintaining neural circuit function, such as buffering neurotransmitters, modulating extracellular osmolarity and calibrating neurovascular coupling. In addition to upholding normal brain activities, astrocytes respond to diverse forms of brain injury with heterogeneous and progressive changes of gene expression, morphology, proliferative capacity and function that are collectively referred to as reactive astrogliosis. Traumatic brain injury (TBI) sets in motion complex events in which noxious mechanical forces cause tissue damage and disrupt central nervous system (CNS) homeostasis, which in turn trigger diverse multi-cellular responses that evolve over time and can lead either to neural repair or secondary cellular injury. In response to TBI, astrocytes in different cellular microenvironments tune their reactivity to varying degrees of axonal injury, vascular disruption, ischemia and inflammation. Here we review different forms of TBI-induced astrocyte reactivity and the functional consequences of these responses for TBI pathobiology. Evidence regarding astrocyte contribution to post-traumatic tissue repair and synaptic remodeling is examined, and the potential for targeting specific aspects of astrogliosis to ameliorate TBI sequelae is considered.
Collapse
Affiliation(s)
- Joshua E Burda
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095-1763, USA
| | - Alexander M Bernstein
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095-1763, USA
| | - Michael V Sofroniew
- Department of Neurobiology and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
44
|
Minieri L, Pivonkova H, Harantova L, Anderova M, Ferroni S. Intracellular Na+
inhibits volume-regulated anion channel in rat cortical astrocytes. J Neurochem 2015; 132:286-300. [DOI: 10.1111/jnc.12962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/04/2014] [Accepted: 09/25/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Laura Minieri
- Department of Pharmacy and Biotechnology; University of Bologna; Bologna Italy
| | - Helena Pivonkova
- Department of Cellular Neurophysiology; Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Lenka Harantova
- Department of Cellular Neurophysiology; Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology; Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Stefano Ferroni
- Department of Pharmacy and Biotechnology; University of Bologna; Bologna Italy
| |
Collapse
|
45
|
Dilmen ÖK, Akçıl EF, Tunalı Y. Intensive Care Treatment in Traumatic Brain Injury. Turk J Anaesthesiol Reanim 2014; 43:1-6. [PMID: 27366456 DOI: 10.5152/tjar.2014.26680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/24/2014] [Indexed: 11/22/2022] Open
Abstract
Head injury remains a serious public problem, especially in the young population. The understanding of the mechanism of secondary injury and the development of appropriate monitoring and critical care treatment strategies reduced the mortality of head injury. The pathophysiology, monitoring and treatment principles of head injury are summarised in this article.
Collapse
Affiliation(s)
- Özlem Korkmaz Dilmen
- Department of Anaesthesiology and Reanimation, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Eren Fatma Akçıl
- Department of Anaesthesiology and Reanimation, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Yusuf Tunalı
- Department of Anaesthesiology and Reanimation, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
46
|
Pappalardo LW, Samad OA, Black JA, Waxman SG. Voltage-gated sodium channel Nav 1.5 contributes to astrogliosis in an in vitro model of glial injury via reverse Na+ /Ca2+ exchange. Glia 2014; 62:1162-75. [PMID: 24740847 DOI: 10.1002/glia.22671] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/19/2022]
Abstract
Astrogliosis is a prominent feature of many, if not all, pathologies of the brain and spinal cord, yet a detailed understanding of the underlying molecular pathways involved in the transformation from quiescent to reactive astrocyte remains elusive. We investigated the contribution of voltage-gated sodium channels to astrogliosis in an in vitro model of mechanical injury to astrocytes. Previous studies have shown that a scratch injury to astrocytes invokes dual mechanisms of migration and proliferation in these cells. Our results demonstrate that wound closure after mechanical injury, involving both migration and proliferation, is attenuated by pharmacological treatment with tetrodotoxin (TTX) and KB-R7943, at a dose that blocks reverse mode of the Na(+) /Ca(2+) exchanger (NCX), and by knockdown of Nav 1.5 mRNA. We also show that astrocytes display a robust [Ca(2+) ]i transient after mechanical injury and demonstrate that this [Ca(2+) ]i response is also attenuated by TTX, KB-R7943, and Nav 1.5 mRNA knockdown. Our results suggest that Nav 1.5 and NCX are potential targets for modulation of astrogliosis after injury via their effect on [Ca(2+) ]i .
Collapse
Affiliation(s)
- Laura W Pappalardo
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, Connecticut
| | | | | | | |
Collapse
|
47
|
Takeda T, Makinodan M, Fukami SI, Toritsuka M, Ikawa D, Yamashita Y, Kishimoto T. Primary cerebral and cerebellar astrocytes display differential sensitivity to extracellular sodium with significant effects on apoptosis. Cell Biochem Funct 2014; 32:395-400. [PMID: 24888443 DOI: 10.1002/cbf.3030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 11/09/2022]
Abstract
Central pontine myelinolysis is one of the idiopathic or iatrogenic brain dysfunction, and the most common cause is excessively rapid correction of chronic hyponatraemia. While myelin disruption is the main pathology, as the diagnostic name indicates, a previous study has reported that astrocyte death precedes the destruction of the myelin sheath after the rapid correction of chronic low Na(+) levels, and interestingly, certain brain regions (cerebral cortex, hippocampus, etc.) are specifically damaged but not cerebellum. Here, using primary astrocyte cultures derived from rat cerebral cortex and cerebellum, we examined how extracellular Na(+) alterations affect astrocyte death and whether the response is different between the two populations of astrocytes. Twice the amount of extracellular [Na(+) ] and voltage-gated Na(+) channel opening induced substantial apoptosis in both populations of astrocytes, while, in contrast, one half [Na(+) ] prevented apoptosis in cerebellar astrocytes, in which the Na(+) -Ca(2+) exchanger, NCX2, was highly expressed but not in cerebral astrocytes. Strikingly, the rapid correction of chronic one half [Na(+) ] exposure significantly increased apoptosis in cerebellar astrocytes but not in cerebral astrocytes. These results indicate that extracellular [Na(+) ] affects astrocyte apoptosis, and the response to alterations in [Na(+) ] is dependent on the brain region from which the astrocyte is derived.
Collapse
Affiliation(s)
- Tomohiko Takeda
- Department of Psychiatry, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Mendes Arent A, de Souza LF, Walz R, Dafre AL. Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:723060. [PMID: 24689052 PMCID: PMC3943200 DOI: 10.1155/2014/723060] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 11/23/2022]
Abstract
Traumatic brain injury (TBI) is frequently associated with abnormal blood-brain barrier function, resulting in the release of factors that can be used as molecular biomarkers of TBI, among them GFAP, UCH-L1, S100B, and NSE. Although many experimental studies have been conducted, clinical consolidation of these biomarkers is still needed to increase the predictive power and reduce the poor outcome of TBI. Interestingly, several of these TBI biomarkers are oxidatively modified to carbonyl groups, indicating that markers of oxidative stress could be of predictive value for the selection of therapeutic strategies. Some drugs such as corticosteroids and progesterone have already been investigated in TBI neuroprotection but failed to demonstrate clinical applicability in advanced phases of the studies. Dietary antioxidants, such as curcumin, resveratrol, and sulforaphane, have been shown to attenuate TBI-induced damage in preclinical studies. These dietary antioxidants can increase antioxidant defenses via transcriptional activation of NRF2 and are also known as carbonyl scavengers, two potential mechanisms for neuroprotection. This paper reviews the relevance of redox biology in TBI, highlighting perspectives for future studies.
Collapse
Affiliation(s)
- André Mendes Arent
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
- Faculty of Medicine, University of South Santa Catarina (Unisul), 88137-270 Palhoça, SC, Brazil
- Neurosurgery Service, São José Regional Hospital (HRSJ-HMG), 88103-901 São José, SC, Brazil
| | - Luiz Felipe de Souza
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
| | - Roger Walz
- Applied Neurosciences Centre (CeNAp) and Department of Medical Clinics, University Hospital, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
49
|
Algattas H, Huang JH. Traumatic Brain Injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int J Mol Sci 2013; 15:309-41. [PMID: 24381049 PMCID: PMC3907812 DOI: 10.3390/ijms15010309] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/02/2013] [Accepted: 12/20/2013] [Indexed: 12/25/2022] Open
Abstract
Traumatic Brain Injury (TBI) affects a large proportion and extensive array of individuals in the population. While precise pathological mechanisms are lacking, the growing base of knowledge concerning TBI has put increased emphasis on its understanding and treatment. Most treatments of TBI are aimed at ameliorating secondary insults arising from the injury; these insults can be characterized with respect to time post-injury, including early, intermediate, and late pathological changes. Early pathological responses are due to energy depletion and cell death secondary to excitotoxicity, the intermediate phase is characterized by neuroinflammation and the late stage by increased susceptibility to seizures and epilepsy. Current treatments of TBI have been tailored to these distinct pathological stages with some overlap. Many prophylactic, pharmacologic, and surgical treatments are used post-TBI to halt the progression of these pathologic reactions. In the present review, we discuss the mechanisms of the pathological hallmarks of TBI and both current and novel treatments which target the respective pathways.
Collapse
Affiliation(s)
- Hanna Algattas
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 441, Rochester, NY 14642, USA.
| | - Jason H Huang
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 441, Rochester, NY 14642, USA.
| |
Collapse
|
50
|
Cognitive impairments accompanying rodent mild traumatic brain injury involve p53-dependent neuronal cell death and are ameliorated by the tetrahydrobenzothiazole PFT-α. PLoS One 2013; 8:e79837. [PMID: 24312187 PMCID: PMC3842915 DOI: 10.1371/journal.pone.0079837] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/02/2013] [Indexed: 01/21/2023] Open
Abstract
With parallels to concussive mild traumatic brain injury (mTBI) occurring in humans, anesthetized mice subjected to a single 30 g weight drop mTBI event to the right parietal cortex exhibited significant diffuse neuronal degeneration that was accompanied by delayed impairments in recognition and spatial memory. To elucidate the involvement of reversible p53-dependent apoptosis in this neuronal loss and associated cognitive deficits, mice were subjected to experimental mTBI followed by the systemic administration of the tetrahydrobenzothiazole p53 inactivator, PFT-α, or vehicle. Neuronal loss was quantified immunohistochemically at 72 hr. post-injury by the use of fluoro-Jade B and NeuN within the dentate gyrus on both sides of the brain, and recognition and spatial memory were assessed by novel object recognition and Y-maze paradigms at 7 and 30 days post injury. Systemic administration of a single dose of PFT-α 1 hr. post-injury significantly ameliorated both neuronal cell death and cognitive impairments, which were no different from sham control animals. Cellular studies on human SH-SY5Y cells and rat primary neurons challenged with glutamate excitotoxicity and H2O2 induced oxidative stress, confirmed the ability of PFT-α and a close analog to protect against these TBI associated mechanisms mediating neuronal loss. These studies suggest that p53-dependent apoptotic mechanisms underpin the neuronal and cognitive losses accompanying mTBI, and that these are potentially reversible by p53 inactivation.
Collapse
|