1
|
Liu JC, Lei SY, Zhang DH, He QY, Sun YY, Zhu HJ, Qu Y, Zhou SY, Yang Y, Li C, Guo ZN. The pleiotropic effects of statins: a comprehensive exploration of neurovascular unit modulation and blood-brain barrier protection. Mol Med 2024; 30:256. [PMID: 39707228 DOI: 10.1186/s10020-024-01025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The blood-brain barrier (BBB) is the most central component of the neurovascular unit (NVU) and is crucial for the maintenance of the internal environment of the central nervous system and the regulation of homeostasis. A multitude of neuroprotective agents have been developed to exert neuroprotective effects and improve the prognosis of patients with ischemic stroke. These agents have been designed to maintain integrity and promote BBB repair. Statins are widely used as pharmacological agents for the treatment and prevention of ischemic stroke, making them a cornerstone in the pharmacological armamentarium for this condition. The primary mechanism of action is the reduction of serum cholesterol through the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which results in a decrease in low-density lipoprotein cholesterol (LDL-C) and an increase in cholesterol clearance. Nevertheless, basic and clinical research has indicated that statins may exert additional pleiotropic effects beyond LDL-C reduction. Previous studies on ischemic stroke have demonstrated that statins can enhance neurological function, reduce inflammation, and promote angiogenic and synaptic processes following ischemic stroke. The BBB has been increasingly recognized for its role in the development and progression of ischemic stroke. Statins have also been found to play a potential BBB protective role by affecting members of the NVU. This review aimed to provide a comprehensive theoretical basis for the clinical application of statins by systematically detailing how statins influence the BBB, particularly focusing on the regulation of the function of each member of the NVU.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Shuang-Yin Lei
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Ying-Ying Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China
| | - Chao Li
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China.
- Neuroscience Research Center, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| |
Collapse
|
2
|
Wang Q, Yang F, Duo K, Liu Y, Yu J, Wu Q, Cai Z. The Role of Necroptosis in Cerebral Ischemic Stroke. Mol Neurobiol 2024; 61:3882-3898. [PMID: 38038880 DOI: 10.1007/s12035-023-03728-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Cerebral ischemia, also known as ischemic stroke, accounts for nearly 85% of all strokes and is the leading cause of disability worldwide. Due to disrupted blood supply to the brain, cerebral ischemic injury is trigged by a series of complex pathophysiological events including excitotoxicity, oxidative stress, inflammation, and cell death. Currently, there are few treatments for cerebral ischemia owing to an incomplete understanding of the molecular and cellular mechanisms. Accumulated evidence indicates that various types of programmed cell death contribute to cerebral ischemic injury, including apoptosis, ferroptosis, pyroptosis and necroptosis. Among these, necroptosis is morphologically similar to necrosis and is mediated by receptor-interacting serine/threonine protein kinase-1 and -3 and mixed lineage kinase domain-like protein. Necroptosis inhibitors have been shown to exert inhibitory effects on cerebral ischemic injury and neuroinflammation. In this review, we will discuss the current research progress regarding necroptosis in cerebral ischemia as well as the application of necroptosis inhibitors for potential therapeutic intervention in ischemic stroke.
Collapse
Affiliation(s)
- Qingsong Wang
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Fan Yang
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Kun Duo
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Qihui Wu
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyu Cai
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China.
- Shanghai Tenth People's Hospital, School of MedicineTongji University Cancer Center, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Athiraman U, Giri T. Isoflurane preconditioning induced genomic changes in mouse cortex. BJA OPEN 2024; 10:100268. [PMID: 38545566 PMCID: PMC10966196 DOI: 10.1016/j.bjao.2024.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/26/2024] [Indexed: 05/16/2024]
Abstract
Background Altered patterns of genetic expression induced by isoflurane preconditioning in mouse brain have not yet been investigated. The aim of our pilot study is to examine the temporal sequence of changes in the transcriptome of mouse brain cortex produced by isoflurane preconditioning. Methods Twelve-wk-old wild-type (C57BL/6J) male mice were randomly assigned for the experiments. Mice were exposed to isoflurane 2% in air for 1 h and brains were harvested at the following time points-immediately (0 h), and at 6, 12, 24, 36, 48, and 72 h after isoflurane exposure. A separate cohort of mice were exposed to three doses of isoflurane on days 1, 2, and 3 and brains were harvested after the third exposure. The NanoString mouse neuropathology panel was used to analyse isoflurane-induced gene expression in the cortex. The neuropathology panel included 760 genes covering pathways involved in neurodegeneration and other nervous system diseases, and 10 internal reference genes for data normalisation. Results Genes involving several pathways were upregulated and downregulated by isoflurane preconditioning. Interestingly, a biphasic response was noted, meaning, an early expression of genes (until 6 h), followed by a transient pause (until 24 h), and a second wave of genomic response beginning at 36 h of isoflurane exposure was noted. Conclusions Isoflurane preconditioning induces significant alterations in the genes involved in neurodegeneration and other nervous system disorders in a temporal sequence. These data could aid in the identification of molecular mechanisms behind isoflurane preconditioning-induced neuroprotection in various central nervous system diseases.
Collapse
Affiliation(s)
- Umeshkumar Athiraman
- Department of Anesthesiology, Washington University, St. Louis, MO, USA
- Department of Neurological Surgery, Washington University, St. Louis, MO, USA
| | - Tusar Giri
- Department of Anesthesiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
4
|
Gomez-Cruz C, Fernandez-de la Torre M, Lachowski D, Prados-de-Haro M, Del Río Hernández AE, Perea G, Muñoz-Barrutia A, Garcia-Gonzalez D. Mechanical and Functional Responses in Astrocytes under Alternating Deformation Modes Using Magneto-Active Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312497. [PMID: 38610101 DOI: 10.1002/adma.202312497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/21/2024] [Indexed: 04/14/2024]
Abstract
This work introduces NeoMag, a system designed to enhance cell mechanics assays in substrate deformation studies. NeoMag uses multidomain magneto-active materials to mechanically actuate the substrate, transmitting reversible mechanical cues to cells. The system boasts full flexibility in alternating loading substrate deformation modes, seamlessly adapting to both upright and inverted microscopes. The multidomain substrates facilitate mechanobiology assays on 2D and 3D cultures. The integration of the system with nanoindenters allows for precise evaluation of cellular mechanical properties under varying substrate deformation modes. The system is used to study the impact of substrate deformation on astrocytes, simulating mechanical conditions akin to traumatic brain injury and ischemic stroke. The results reveal local heterogeneous changes in astrocyte stiffness, influenced by the orientation of subcellular regions relative to substrate strain. These stiffness variations, exceeding 50% in stiffening and softening, and local deformations significantly alter calcium dynamics. Furthermore, sustained deformations induce actin network reorganization and activate Piezo1 channels, leading to an initial increase followed by a long-term inhibition of calcium events. Conversely, fast and dynamic deformations transiently activate Piezo1 channels and disrupt the actin network, causing long-term cell softening. These findings unveil mechanical and functional alterations in astrocytes during substrate deformation, illustrating the multiple opportunities this technology offers.
Collapse
Affiliation(s)
- Clara Gomez-Cruz
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
| | - Miguel Fernandez-de la Torre
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
| | - Dariusz Lachowski
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Martin Prados-de-Haro
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Av. Doctor Arce, 37., 28002, Leganés, Madrid, Spain
| | - Arrate Muñoz-Barrutia
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
- Área de Ingeniería Biomédica, Instituto de Investigación Sanitaria Gregorio Marañón, Calle del Doctor Esquerdo 46, Leganés, Madrid, ES28007, Spain
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland, 21218, USA
| | - Daniel Garcia-Gonzalez
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
| |
Collapse
|
5
|
Guo YS, Bi X. Enriched environment enhanced the astrocyte-derived BDNF and VEGF expression and alleviate white matter injuries of rats with ischemic stroke. Neurol Res 2024; 46:272-283. [PMID: 38145566 DOI: 10.1080/01616412.2023.2298136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES Numerous studies have shown that an enriched environment can promote ischemic stroke and improve cognitive function. In addition, white matter is closely related to cognitive function. The effects and mechanisms of the enriched environment on white matter recovery after stroke have not been elucidated. This study will analyse the effects of the enriched environment on white matter and cognitive function in the post-stroke brain from the perspective of astrocytes and their secretions. METHODS Stroke models were used for middle cerebral artery occlusion model. post-operative rats were divided into sham-operated, standard and enriched environment groups. The degree of cerebral infarction was assessed by TTC staining and the degree of white matter damage was assessed by Luxol-Fast Blue staining. The prognosis after stroke was assessed using the longa score and Morris water maze test. Western Blot and immunofluorescence were used to quantify and localize astrocytes and their associated secretory factors and myelin protein markers. RESULTS We found that ischemic stroke can cause severe demyelination. After EE treatment, there was a significant increase in cerebral remyelination and a significant improvement in neurological and cognitive functions. Astrocyte, BDNF, and VEGF expression were significantly higher than in rats in the standard circumstances of stroke model. CONCLUSION These data suggest that the enriched environment contributes to brain white matter recovery and improvement of cognitive function after stroke. The mechanism is related to astrocytes and their secretions. EE can activate astrocytes to secrete BDNF and VEGF, which may be crucial to promote white matter recovery.
Collapse
Affiliation(s)
- Yi-Sha Guo
- Department of Physical Therapy, Affiliated Yangzhi Rehabilitation Hospital of Tongji University, Shanghai, China
- Department of rehabilitation medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xia Bi
- Department of rehabilitation medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
6
|
Jung BK, Ryu KY. Lipocalin-2: a therapeutic target to overcome neurodegenerative diseases by regulating reactive astrogliosis. Exp Mol Med 2023; 55:2138-2146. [PMID: 37779143 PMCID: PMC10618504 DOI: 10.1038/s12276-023-01098-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023] Open
Abstract
Glial cell activation precedes neuronal cell death during brain aging and the progression of neurodegenerative diseases. Under neuroinflammatory stress conditions, lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin or 24p3, is produced and secreted by activated microglia and reactive astrocytes. Lcn2 expression levels are known to be increased in various cells, including reactive astrocytes, through the activation of the NF-κB signaling pathway. In the central nervous system, as LCN2 exerts neurotoxicity when secreted from reactive astrocytes, many researchers have attempted to identify various strategies to inhibit LCN2 production, secretion, and function to minimize neuroinflammation and neuronal cell death. These strategies include regulation at the transcriptional, posttranscriptional, and posttranslational levels, as well as blocking its functions using neutralizing antibodies or antagonists of its receptor. The suppression of NF-κB signaling is a strategy to inhibit LCN2 production, but it may also affect other cellular activities, raising questions about its effectiveness and feasibility. Recently, LCN2 was found to be a target of the autophagy‒lysosome pathway. Therefore, autophagy activation may be a promising therapeutic strategy to reduce the levels of secreted LCN2 and overcome neurodegenerative diseases. In this review, we focused on research progress on astrocyte-derived LCN2 in the central nervous system.
Collapse
Affiliation(s)
- Byung-Kwon Jung
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
7
|
Liu M, Jayaraman K, Mehla J, Diwan D, Nelson JW, Hussein AE, Vellimana AK, Abu-Amer Y, Zipfel GJ, Athiraman U. Isoflurane Conditioning Provides Protection against Subarachnoid Hemorrhage Induced Delayed Cerebral Ischemia through NF-kB Inhibition. Biomedicines 2023; 11:biomedicines11041163. [PMID: 37189781 DOI: 10.3390/biomedicines11041163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Delayed cerebral ischemia (DCI) is the largest treatable cause of poor outcome after aneurysmal subarachnoid hemorrhage (SAH). Nuclear Factor Kappa-light-chain-enhancer of Activated B cells (NF-kB), a transcription factor known to function as a pivotal mediator of inflammation, is upregulated in SAH and is pathologically associated with vasospasm. We previously showed that a brief exposure to isoflurane, an inhalational anesthetic, provided multifaceted protection against DCI after SAH. The aim of our current study is to investigate the role of NF-kB in isoflurane-conditioning-induced neurovascular protection against SAH-induced DCI. Twelve-week-old wild type male mice (C57BL/6) were divided into five groups: sham, SAH, SAH + Pyrrolidine dithiocarbamate (PDTC, a selective NF-kB inhibitor), SAH + isoflurane conditioning, and SAH + PDTC with isoflurane conditioning. Experimental SAH was performed via endovascular perforation. Anesthetic conditioning was performed with isoflurane 2% for 1 h, 1 h after SAH. Three doses of PDTC (100 mg/kg) were injected intraperitoneally. NF-kB and microglial activation and the cellular source of NF-kB after SAH were assessed by immunofluorescence staining. Vasospasm, microvessel thrombosis, and neuroscore were assessed. NF-kB was activated after SAH; it was attenuated by isoflurane conditioning. Microglia was activated and found to be a major source of NF-kB expression after SAH. Isoflurane conditioning attenuated microglial activation and NF-kB expression in microglia after SAH. Isoflurane conditioning and PDTC individually attenuated large artery vasospasm and microvessel thrombosis, leading to improved neurological deficits after SAH. The addition of isoflurane to the PDTC group did not provide any additional DCI protection. These data indicate isoflurane-conditioning-induced DCI protection after SAH is mediated, at least in part, via downregulating the NF-kB pathway.
Collapse
Affiliation(s)
- Meizi Liu
- Department of Anesthesiology, Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Keshav Jayaraman
- Department of Anesthesiology, Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jogender Mehla
- Department of Anesthesiology, Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Deepti Diwan
- Department of Anesthesiology, Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - James W Nelson
- Department of Anesthesiology, Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ahmed E Hussein
- Department of Anesthesiology, Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ananth K Vellimana
- Department of Anesthesiology, Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yousef Abu-Amer
- Department of Orthopedic Surgery and Cell Biology & Physiology, Shriners Hospital for Children, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory J Zipfel
- Department of Anesthesiology, Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology, Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
E G, Sun B, Liu B, Xu G, He S, Wang Y, Feng L, Wei H, Zhang J, Chen J, Gao Y, Zhang E. Enhanced BPGM/2,3-DPG pathway activity suppresses glycolysis in hypoxic astrocytes via FIH-1 and TET2. Brain Res Bull 2023; 192:36-46. [PMID: 36334804 DOI: 10.1016/j.brainresbull.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Bisphosphoglycerate mutase (BPGM) is expressed in human erythrocytes and responsible for the production of 2,3-bisphosphoglycerate (2,3-DPG). However, the expression and role of BPGM in other cells have not been reported. In this work, we found that BPGM was significantly upregulated in astrocytes upon acute hypoxia, and the role of this phenomenon will be clarified in the following report. METHODS The mRNA and protein expression levels of BPGM and the content of 2,3-DPG with hypoxia treatment were determined in vitro and in vivo. Furthermore, glycolysis was evaluated upon in hypoxic astrocytes with BPGM knockdown and in normoxic astrocytes with BPGM overexpression or 2,3-DPG treatment. To investigate the mechanism by which BPGM/2,3-DPG regulated glycolysis in hypoxic astrocytes, we detected the expression of HIF-1α, FIH-1 and TET2 with silencing or overexpression of BPGM and 2,3-DPG treatment. RESULTS The expression of glycolytic genes and the capacity of lactate markedly increased with 6 h, 12 h, 24 h, 36 h and 48 h 1 % O2 hypoxic treatment in astrocytes. The expression of BPGM was upregulated, and the production of 2,3-DPG was accelerated upon hypoxia. Moreover, when BPGM expression was knocked down, glycolysis was promoted in HEB cells. However, overexpression of BPGM and addition of 2,3-DPG to the cellular medium in normoxic cells could downregulate glycolytic genes. Furthermore, HIF-1α and TET2 exhibited higher expression levels and FIH-1 showed a lower expression level upon BPGM silencing, while these changes were reversed under BPGM overexpression and 2,3-DPG treatment. CONCLUSIONS Our study revealed that the BPGM/2,3-DPG pathway presented a suppressive effect on glycolysis in hypoxic astrocytes by negatively regulating HIF-1α and TET2.
Collapse
Affiliation(s)
- Guoji E
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Binda Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Shu He
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Yu Wang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Lan Feng
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Hannan Wei
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Jianyang Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Jian Chen
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Erlong Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| |
Collapse
|
9
|
P2X7 Receptors in Astrocytes: A Switch for Ischemic Tolerance. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123655. [PMID: 35744780 PMCID: PMC9228417 DOI: 10.3390/molecules27123655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
A sub-lethal ischemic episode (preconditioning [PC]) protects neurons against a subsequent lethal ischemic injury. This phenomenon is known as ischemic tolerance. PC itself does not cause brain damage, but affects glial responses, especially astrocytes, and transforms them into an ischemia-resistant phenotype. P2X7 receptors (P2X7Rs) in astrocytes play essential roles in PC. Although P2X7Rs trigger inflammatory and toxic responses, PC-induced P2X7Rs in astrocytes function as a switch to protect the brain against ischemia. In this review, we focus on P2X7Rs and summarize recent developments on how astrocytes control P2X7Rs and what molecular mechanisms they use to induce ischemic tolerance.
Collapse
|
10
|
Diaz A, Woo Y, Martin-Jimenez C, Merino P, Torre E, Yepes M. Tissue-type plasminogen activator induces TNF-α-mediated preconditioning of the blood-brain barrier. J Cereb Blood Flow Metab 2022; 42:667-682. [PMID: 34796748 PMCID: PMC9051146 DOI: 10.1177/0271678x211060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022]
Abstract
Ischemic tolerance is a phenomenon whereby transient exposure to a non-injurious preconditioning stimulus triggers resistance to a subsequent lethal ischemic insult. Despite the fact that not only neurons but also astrocytes and endothelial cells have a unique response to preconditioning stimuli, current research has been focused mostly on the effect of preconditioning on neuronal death. Thus, it is unclear if the blood-brain barrier (BBB) can be preconditioned independently of an effect on neuronal survival. The release of tissue-type plasminogen activator (tPA) from perivascular astrocytes in response to an ischemic insult increases the permeability of the BBB. In line with these observations, treatment with recombinant tPA increases the permeability of the BBB and genetic deficiency of tPA attenuates the development of post-ischemic edema. Here we show that tPA induces ischemic tolerance in the BBB independently of an effect on neuronal survival. We found that tPA renders the BBB resistant to an ischemic injury by inducing TNF-α-mediated astrocytic activation and increasing the abundance of aquaporin-4-immunoreactive astrocytic end-feet processes in the neurovascular unit. This is a new role for tPA, that does not require plasmin generation, and with potential therapeutic implications for patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes
National Primate Research Center, Atlanta, GA, USA
- Department of Neurology & Center for Neurodegenerative
Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Veterans Affairs Medical Center,
Atlanta, GA, USA
| |
Collapse
|
11
|
Gonzales NR, Grotta JC. Pharmacologic Modification of Acute Cerebral Ischemia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Zhang S, Zhu T, Li Q, Sun G, Sun X. Long Non-Coding RNA-Mediated Competing Endogenous RNA Networks in Ischemic Stroke: Molecular Mechanisms, Therapeutic Implications, and Challenges. Front Pharmacol 2021; 12:765075. [PMID: 34867389 PMCID: PMC8635732 DOI: 10.3389/fphar.2021.765075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke (IS) is a disease that is characterized by high mortality and disability. Recent studies have shown that LncRNA-mediated competing endogenous RNA (ceRNA) networks play roles in the occurrence and development of cerebral I/R injury by regulating different signaling pathways. However, no systematic analysis of ceRNA mechanisms in IS has been reported. In this review, we discuss molecular mechanisms of LncRNA-mediated ceRNA networks under I/R injury. The expression levels of LncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) and their effects in four major cell types of the neurovascular unit (NVU) are also involved. We further summarize studies of LncRNAs as biomarkers and therapeutic targets. Finally, we analyze the advantages and limitations of using LncRNAs as therapeutics for IS.
Collapse
Affiliation(s)
- Shuxia Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Ting Zhu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Qiaoyu Li
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Zhao Z, Hu X, Wang J, Wang J, Hou Y, Chen S. Zinc finger E-Box binding homeobox 2 (ZEB2)-induced astrogliosis protected neuron from pyroptosis in cerebral ischemia and reperfusion injury. Bioengineered 2021; 12:12917-12930. [PMID: 34852714 PMCID: PMC8809936 DOI: 10.1080/21655979.2021.2012551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/15/2022] Open
Abstract
Ischemia injury can cause cell death or impairment of neuron and astrocytes, and thus induce loss of nerve function. central nervous systems injury induces an aberrant activation of astrocytes called astrogliosis. Pyroptosis, which is a kind of programmed cell death, was proved play an important role in ischemia injury. Zinc Finger E-Box Binding Homeobox 2 (ZEB2) promoted neuron astrogliosis, which play a protected role in neuron regeneration. However, its precise mechanism remains unclear. This study investigated the mechanism of ZEB2 on astrogliosis and neuron regeneration after cerebral ischemia reperfusion condition. To confirm our hypothesis, Neurons and astrocytes were isolated from fetal Sprague Dawley rats, in vivo Middle Cerebral Artery Occlusion/reperfusion (MCAO/R) rat model and in vitro oxygen-glucose deprivation/reperfusion (OGD/R)-treated astrocytes and neurocytes model were constructed. Our results showed that ZEB2 was expressed in nucleus of astrocyte and upregulated after OGD/R induction, ZEB2 promoted astrogliosis. Further upregulation of ZEB2 promoted the astrogliosis, which promoted neuron proliferation and regeneration by decreased pyroptosis. Moreover, this finding was further confirmed in vivo MCAO/R rat model. Overexpression of ZEB2 promoted astrogliosis, which decreased infarct volume and accumulated recovery of neurological function by alleviated pyroptosis. This finding revealed that ZEB2 was a regulator of the astrogliosis after ischemia/reperfusion injury, and then astrogliosis promoted neuron regeneration via decreased neuron pyroptosis. Therefore, ZEB2 may be a potential therapeutic target for ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zhixin Zhao
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Xiaoming Hu
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Jie Wang
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Jianfeng Wang
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Yong Hou
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Suyun Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| |
Collapse
|
14
|
Cheng CY, Huang HC, Kao ST, Lee YC. Angelica sinensis extract promotes neuronal survival by enhancing p38 MAPK-mediated hippocampal neurogenesis and dendritic growth in the chronic phase of transient global cerebral ischemia in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114301. [PMID: 34090910 DOI: 10.1016/j.jep.2021.114301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/05/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (Oliv.) Diels (ASD), commonly known as Dang Gui, is a popular Chinese herb that has long been used to treat ischemic stroke. However, the effects of ASD in chronic cerebral ischemia and its underlying mechanisms still remain unclear. AIM OF THE STUDY This study aimed to determine the effects of the ASD extract on hippocampal neuronal survival at 28 d after transient global cerebral ischemia (GCI) and to investigate the precise mechanisms underlying the p38 mitogen-activated protein kinase (MAPK)-related signaling pathway's involvement in hippocampal neurogenesis. MATERIALS AND METHODS Rats underwent 25 min of four-vessel occlusion. The ASD extract was intragastrically administered at doses of 0.25 g/kg (ASD-0.25 g), 0.5 g/kg (ASD-0.5 g), 1 g/kg (ASD-1 g), 1 g/kg after dimethyl sulfoxide administration (D + ASD-1 g), or 1 g/kg after SB203580 (a p38 MAPK inhibitor) administration (SB + ASD-1 g) at 1, 3, 7, 10, 14, 17, 21, and 24 d after transient GCI. RESULTS ASD-0.5 g, ASD-1 g, and D + ASD-1 g treatments had the following effects: upregulation of bromodeoxyuridine (BrdU) and Ki67 expression, and BrdU/neuronal nuclei (NeuN) and Ki67/nestin co-expression in the hippocampal dentate gyrus (DG); upregulation of microtubule-associated protein 2/NeuN co-expression, and NeuN and glial fibrillary acidic protein (GFAP) expression, and downregulation of tumor necrosis factor-α/GFAP co-expression in the hippocampal CA1 region; upregulation of phospho-p38 MAPK (p-p38 MAPK), phospho-cAMP response element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and vascular endothelial growth factor A (VEGF-A) expression in the hippocampus. SB + ASD-1 g treatment abrogated the effects of ASD-1 g on the expression of these proteins. CONCLUSIONS ASD-0.5 g and ASD-1 g treatments promotes neuronal survival by enhancing hippocampal neurogenesis. The effects of the ASD extract on astrocyte-associated hippocampal neurogenesis and dendritic growth are caused by the activation of p38 MAPK-mediated CREB/BDNF, GDNF, and VEGF-A signaling pathways in the hippocampus at 28 d after transient GCI.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Chinese Medicine, Hui-Sheng Hospital, Taichung, 42056, Taiwan.
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Yu-Chen Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 42056, Taiwan; Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, 40402, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
15
|
Lyden P, Buchan A, Boltze J, Fisher M. Top Priorities for Cerebroprotective Studies-A Paradigm Shift: Report From STAIR XI. Stroke 2021; 52:3063-3071. [PMID: 34289707 PMCID: PMC8384700 DOI: 10.1161/strokeaha.121.034947] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite years of basic research and pioneering clinical work, ischemic stroke remains a major public health concern. Prior STAIR (Stroke Treatment Academic Industry Roundtable) conferences identified both failures of clinical trial design and failures in preclinical assessment in developing putative ischemic stroke treatments. At STAIR XI, participants in workshop no. 1 Top Priorities for Neuroprotection sought to redefine the neuroprotection paradigm and given the paucity of evidence underlying preclinical assessment, offer consensus-based recommendations. STAIR proposes the term brain cytoprotection or cerebroprotection to replace the term neuroprotection when the intention of an investigation is to demonstrate that a new, candidate treatment benefits the entire brain. Although "time is still brain," tissue imaging techniques have been developed to identify patients with both predicted core injury and penumbral, salvageable brain tissue, regardless of time after stroke symptom onset. STAIR XI workshop participants called this imaging approach a tissue window to select patients for recanalization. Elements of the neurovascular unit show differential vulnerability evolving over differing time scales in different brain regions. STAIR proposes the term target window to suggest therapies that target the different elements of the neurovascular unit at different times. Based on contemporary principles of rigor and transparency, the workshop updated, revised, and enhanced the STAIR preclinical recommendations for developing new treatments in 2 phases: an exploratory qualification phase and a definitive validation phase. For new, putative treatments, investigators should carefully characterize the mechanism of action, the pharmacokinetics/pharmacodynamics, demonstrate target engagement, and confirm penetration through the blood-brain barrier. Before clinical trials, testing of candidate molecules in stroke models could proceed in a comprehensive manner using animals of both sexes and to include significant variables such as age and comorbid conditions. Comprehensive preclinical assessment might include multicenter, collaborative testing, for example, network trials. In the absence of a proven cerebroprotective agent to use as a gold standard, however, it remains speculative whether such comprehensive preclinical assessment can effectively predict clinical outcome.
Collapse
Affiliation(s)
- Patrick Lyden
- Department of Physiology and Neuroscience, Department of Neurology, Keck School of Medicine, Los Angeles (P.L.)
| | - Alastair Buchan
- Radcliffe Department of Medicine, University of Oxford, Oxford (A.B.)
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry (J.B.)
| | - Marc Fisher
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston (M.F.)
| |
Collapse
|
16
|
Wu XM, Qian C, Jiang F, Bao YX, Qian ZM, Ke Y. The involvement of nuclear factor-κB in astroprotection against ischemia-reperfusion injury by ischemia-preconditioned neurons. J Cell Physiol 2021; 236:4515-4527. [PMID: 33442879 DOI: 10.1002/jcp.30168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 11/12/2022]
Abstract
Ischemic preconditioned (IP) neurons protect astrocytes against ischemia/reperfusion (I/R)-induced injury by inhibiting oxidative stress. However, the relevant mechanisms are unknown. Based on the role of nuclear factor-κB (NF-κB) in cell survival and adaption to oxidative stress, we hypothesized that NF-κB might be associated with astroprotection induced by IP neurons via upregulation of antioxidant enzymes. Here, we investigated the effects of IP neurons on NF-κB activation, cell viability, reactive oxygen species (ROS), expression of antioxidant enzymes, erythropoietin (EPO), and tumor necrosis factor α (TNF-α), in the presence or absence of BAY11-7082 (an NF-κB inhibitor), anti-EPO, and anti-TNF-α antibodies, in astrocytes treated with or without I/R. We found that IP neurons could keep NF-κB activation at a relatively higher but beneficial level, and in turn, upregulated the activity of antioxidant enzymes and hence enhanced cell viability and reduced ROS in I/R treated astrocytes. The results collectively indicated that IP neurons are able to significantly inhibit the I/R-induced NF-κB overactivation, probably via EPO and TNF-α, being essential for IP neuron-induced astroprotection under the conditions of I/R. We concluded that NF-κB-mediated antioxidative stress is one of the mechanisms by which IP neurons protect astrocytes against I/R injury.
Collapse
Affiliation(s)
- Xiao-Mei Wu
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Fei Jiang
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhong-Ming Qian
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- Laboratory of Neuropharmacology, School of Pharmacy & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
17
|
Role of SIRT1 in Isoflurane Conditioning-Induced Neurovascular Protection against Delayed Cerebral Ischemia Secondary to Subarachnoid Hemorrhage. Int J Mol Sci 2021; 22:ijms22084291. [PMID: 33924243 PMCID: PMC8074752 DOI: 10.3390/ijms22084291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
We recently reported that isoflurane conditioning provided multifaceted protection against subarachnoid hemorrhage (SAH)-induced delayed cerebral ischemia (DCI), and this protection was through the upregulation of endothelial nitric oxide synthase (eNOS). SIRT1, an NAD-dependent deacetylase, was shown to be one of the critical regulators of eNOS. The aim of our current study is to examine the role of SIRT1 in isoflurane conditioning-induced neurovascular protection against SAH-induced DCI. Mice were divided into four groups: sham, SAH, or SAH with isoflurane conditioning (with and without EX-527). Experimental SAH via endovascular perforation was performed. Anesthetic conditioning was performed with isoflurane 2% for 1 h, 1 h after SAH. EX-527, a selective SIRT1 inhibitor, 10 mg/kg was injected intraperitoneally immediately after SAH in the EX-527 group. SIRT1 mRNA expression and activity levels were measured. Vasospasm, microvessel thrombosis, and neurological outcome were assessed. SIRT1 mRNA expression was downregulated, and no difference in SIRT1 activity was noted after isoflurane exposure. Isoflurane conditioning with and without EX-527 attenuated vasospasm, microvessel thrombosis and improved neurological outcomes. Our data validate our previous findings that isoflurane conditioning provides strong protection against both the macro and micro vascular deficits induced by SAH, but this protection is likely not mediated through the SIRT1 pathway.
Collapse
|
18
|
Patabendige A, Singh A, Jenkins S, Sen J, Chen R. Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke. Int J Mol Sci 2021; 22:4280. [PMID: 33924191 PMCID: PMC8074612 DOI: 10.3390/ijms22084280] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Transient or permanent loss of tissue perfusion due to ischaemic stroke can lead to damage to the neurovasculature, and disrupt brain homeostasis, causing long-term motor and cognitive deficits. Despite promising pre-clinical studies, clinically approved neuroprotective therapies are lacking. Most studies have focused on neurons while ignoring the important roles of other cells of the neurovascular unit, such as astrocytes and pericytes. Astrocytes are important for the development and maintenance of the blood-brain barrier, brain homeostasis, structural support, control of cerebral blood flow and secretion of neuroprotective factors. Emerging data suggest that astrocyte activation exerts both beneficial and detrimental effects following ischaemic stroke. Activated astrocytes provide neuroprotection and contribute to neurorestoration, but also secrete inflammatory modulators, leading to aggravation of the ischaemic lesion. Astrocytes are more resistant than other cell types to stroke pathology, and exert a regulative effect in response to ischaemia. These roles of astrocytes following ischaemic stroke remain incompletely understood, though they represent an appealing target for neurovascular protection following stroke. In this review, we summarise the astrocytic contributions to neurovascular damage and repair following ischaemic stroke, and explore mechanisms of neuroprotection that promote revascularisation and neurorestoration, which may be targeted for developing novel therapies for ischaemic stroke.
Collapse
Affiliation(s)
- Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2321, Australia;
- Priority Research Centre for Stroke and Brain Injury, and Priority Research Centre for Brain & Mental Health, University of Newcastle, Callaghan, NSW 2321, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Institute of Infection & Global Health, University of Liverpool, Liverpool L7 3EA, UK
| | - Ayesha Singh
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| | - Stuart Jenkins
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (S.J.); (J.S.)
- Neural Tissue Engineering: Keele (NTEK), Keele University, Staffordshire ST5 5BG, UK
| | - Jon Sen
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (S.J.); (J.S.)
- Clinical Informatics and Neurosurgery Fellow, The Cleveland Clinic, 33 Grosvenor Square, London SW1X 7HY, UK
| | - Ruoli Chen
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
19
|
Bratek - Gerej E, Bronisz A, Ziembowicz A, Salinska E. Pretreatment with mGluR2 or mGluR3 Agonists Reduces Apoptosis Induced by Hypoxia-Ischemia in Neonatal Rat Brains. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8848015. [PMID: 33763176 PMCID: PMC7963909 DOI: 10.1155/2021/8848015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Hypoxia-ischemia (HI) in an immature brain results in energy depletion and excessive glutamate release resulting in excitotoxicity and oxidative stress. An increase in reactive oxygen species (ROS) production induces apoptotic processes resulting in neuronal death. Activation of group II mGluR was shown to prevent neuronal damage after HI. The application of agonists of mGluR3 (N-acetylaspartylglutamate; NAAG) or mGluR2 (LY379268) inhibits the release of glutamate and reduces neurodegeneration in a neonatal rat model of HI, although the exact mechanism is not fully recognized. In the present study, the effects of NAAG (5 mg/kg) and LY379268 (5 mg/kg) application (24 h or 1 h before experimental birth asphyxia) on apoptotic processes as the potential mechanism of neuroprotection in 7-day-old rats were investigated. Intraperitoneal application of NAAG or LY379268 at either time point before HI significantly reduced the number of TUNEL-positive cells in the CA1 region of the ischemic brain hemisphere. Both agonists reduced expression of the proapoptotic Bax protein and increased expression of Bcl-2. Decreases in HI-induced caspase-9 and caspase-3 activity were also observed. Application of NAAG or LY379268 24 h or 1 h before HI reduced HIF-1α formation likely by reducing ROS levels. It was shown that LY379268 concentration remains at a level that is required for activation of mGluR2 for up to 24 h; however, NAAG is quickly metabolized by glutamate carboxypeptidase II (GCPII) into glutamate and N-acetyl-aspartate. The observed effect of LY379268 application 24 h or 1 h before HI is connected with direct activation of mGluR2 and inhibition of glutamate release. Based on the data presented in this study and on our previous findings, we conclude that the neuroprotective effect of NAAG applied 1 h before HI is most likely the result of a combination of mGluR3 and NMDA receptor activation, whereas the beneficial effects of NAAG pretreatment 24 h before HI can be explained by the activation of NMDA receptors and induction of the antioxidative/antiapoptotic defense system triggered by mild excitotoxicity in neurons. This response to NAAG pretreatment is consistent with the commonly accepted mechanism of preconditioning.
Collapse
Affiliation(s)
- Ewelina Bratek - Gerej
- Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Apolonia Ziembowicz
- Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Iravanpour F, Dargahi L, Rezaei M, Haghani M, Heidari R, Valian N, Ahmadiani A. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinson's disease. CNS Neurosci Ther 2021; 27:308-319. [PMID: 33497031 PMCID: PMC7871791 DOI: 10.1111/cns.13609] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Aims Experimental and clinical evidences demonstrate that common dysregulated pathways are involved in Parkinson’s disease (PD) and type 2 diabetes. Recently, insulin treatment through intranasal (IN) approach has gained attention in PD, although the underlying mechanism of its potential therapeutic effects is still unclear. In this study, we investigated the effects of insulin treatment in a rat model of PD with emphasis on mitochondrial function indices in striatum. Methods Rats were treated with a daily low dose (4IU/day) of IN insulin, starting 72 h after 6‐OHDA‐induced lesion and continued for 14 days. Motor performance, dopaminergic cell survival, mitochondrial dehydrogenases activity, mitochondrial swelling, mitochondria permeability transition pore (mPTP), mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) formation, and glutathione (GSH) content in mitochondria, mitochondrial adenosine triphosphate (ATP), and the gene expression of PGC‐1α, TFAM, Drp‐1, GFAP, and Iba‐1 were assessed. Results Intranasal insulin significantly reduces 6‐OHDA‐induced motor dysfunction and dopaminergic cell death. In parallel, it improves mitochondrial function indices and modulates mitochondria biogenesis and fission as well as activation of astrocytes and microglia. Conclusion Considering the prominent role of mitochondrial dysfunction in PD pathology, IN insulin as a disease‐modifying therapy for PD should be considered for extensive research.
Collapse
Affiliation(s)
- Farideh Iravanpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Haghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Xue NY, Ge DY, Dong RJ, Kim HH, Ren XJ, Tu Y. Effect of electroacupuncture on glial fibrillary acidic protein and nerve growth factor in the hippocampus of rats with hyperlipidemia and middle cerebral artery thrombus. Neural Regen Res 2021; 16:137-142. [PMID: 32788468 PMCID: PMC7818884 DOI: 10.4103/1673-5374.286973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Electroacupuncture (EA) has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia. However, there are few studies on the results and mechanism of the effect of EA in reducing blood lipid level or promoting neural repair after stroke in hyperlipidemic subjects. In this study, EA was applied to a rat model of hyperlipidemia and middle cerebral artery thrombosis and the condition of neurons and astrocytes after hippocampal injury was assessed. Except for the normal group, rats in other groups were fed a high-fat diet throughout the whole experiment. Hyperlipidemia models were established in rats fed a high-fat diet for 6 weeks. Middle cerebral artery thrombus models were induced by pasting 50% FeCl3 filter paper on the left middle cerebral artery for 20 minutes on day 50 as the model group. EA1 group rats received EA at bilateral ST40 (Fenglong) for 7 days before the thrombosis. Rats in the EA1 and EA2 groups received EA at GV20 (Baihui) and bilateral ST40 for 14 days after model establishment. Neuronal health was assessed by hematoxylin-eosin staining in the brain. Hyperlipidemia was assessed by biochemical methods that measured total cholesterol, triglyceride, low-density lipoprotein and high-density lipoprotein in blood sera. Behavioral analysis was used to confirm the establishment of the model. Immunohistochemical methods were used to detect the expression of glial fibrillary acidic protein and nerve growth factor in the hippocampal CA1 region. The results demonstrated that, compared with the model group, blood lipid levels significantly decreased, glial fibrillary acidic protein immunoreactivity was significantly weakened and nerve growth factor immunoreactivity was significantly enhanced in the EA1 and EA2 groups. The repair effect was superior in the EA1 group than in the EA2 group. These findings confirm that EA can reduce blood lipid, inhibit glial fibrillary acidic protein expression and promote nerve growth factor expression in the hippocampal CA1 region after hyperlipidemia and middle cerebral artery thrombosis. All experimental procedures and protocols were approved by the Animal Use and Management Committee of Beijing University of Chinese Medicine, China (approval No. BUCM-3-2018022802-1002) on April 12, 2018.
Collapse
Affiliation(s)
- Na-Ying Xue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Dong-Yu Ge
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rui-Juan Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hyung-Hwan Kim
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xiu-Jun Ren
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ya Tu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Vincenzi F, Pasquini S, Setti S, Salati S, Cadossi R, Borea PA, Varani K. Pulsed Electromagnetic Fields Stimulate HIF-1α-Independent VEGF Release in 1321N1 Human Astrocytes Protecting Neuron-Like SH-SY5Y Cells from Oxygen-Glucose Deprivation. Int J Mol Sci 2020; 21:ijms21218053. [PMID: 33126773 PMCID: PMC7663527 DOI: 10.3390/ijms21218053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
Pulsed electromagnetic fields (PEMFs) are emerging as an innovative, non-invasive therapeutic option in different pathological conditions of the central nervous system, including cerebral ischemia. This study aimed to investigate the mechanism of action of PEMFs in an in vitro model of human astrocytes, which play a key role in the events that occur following ischemia. 1321N1 cells were exposed to PEMFs or hypoxic conditions and the release of relevant neurotrophic and angiogenic factors, such as VEGF, EPO, and TGF-β1, was evaluated by means of ELISA or AlphaLISA assays. The involvement of the transcription factor HIF-1α was studied by using the specific inhibitor chetomin and its expression was measured by flow cytometry. PEMF exposure induced a time-dependent, HIF-1α-independent release of VEGF from 1321N1 cells. Astrocyte conditioned medium derived from PEMF-exposed astrocytes significantly reduced the oxygen-glucose deprivation-induced cell proliferation and viability decrease in the neuron-like cells SH-SY5Y. These findings contribute to our understanding of PEMFs action in neuropathological conditions and further corroborate their therapeutic potential in cerebral ischemia.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (K.V.)
- Correspondence: ; Tel.: +39-0532-455214
| | - Silvia Pasquini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (K.V.)
| | - Stefania Setti
- Igea Biophysics Laboratory, 41012 Carpi, Italy; (S.S.); (S.S.); (R.C.)
| | - Simona Salati
- Igea Biophysics Laboratory, 41012 Carpi, Italy; (S.S.); (S.S.); (R.C.)
| | - Ruggero Cadossi
- Igea Biophysics Laboratory, 41012 Carpi, Italy; (S.S.); (S.S.); (R.C.)
| | | | - Katia Varani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (K.V.)
| |
Collapse
|
23
|
Athiraman U, Liu M, Jayaraman K, Yuan J, Mehla J, Zipfel GJ. Anesthetic and subanesthetic doses of isoflurane conditioning provides strong protection against delayed cerebral ischemia in a mouse model of subarachnoid hemorrhage. Brain Res 2020; 1750:147169. [PMID: 33132166 DOI: 10.1016/j.brainres.2020.147169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/23/2022]
Abstract
Delayed cerebral ischemia (DCI) is identified as one of the significant contributors to poor patient outcome after aneurysmal subarachnoid hemorrhage (SAH). We previously reported that a supratherapeutic dose of isoflurane conditioning (2%) provided robust protection against SAH-induced DCI. The aim of our current study is to compare the efficacy of the supratherapeutic dose of isoflurane to that typically used to establish general anesthesia or sedation. After IRB approval for animal studies, ten to fourteen-week-old wild-type male mice (C57BL/6) were divided into five groups - sham, SAH alone, or SAH with isoflurane conditioning (0.5%, 1%, and 2%). Conditioning was performed with one-hour of isoflurane initiated one-hour after induction of SAH via endovascular perforation technique. Vasospasm measurement in the middle cerebral artery was assessed 72 h after SAH. Neurological assessment was performed at baseline and for next three days after SAH. It was identified that all tested doses of isoflurane conditioning (0.5%, 1%, and 2%) significantly attenuated large artery vasospasm and markedly improved neurological deficits following SAH. No significant differences in neurovascular outcome were noted between the three doses of isoflurane conditioning. Our data show that isoflurane dosing typically used for general anesthesia (1%) or sedation (0.5%) provide similar levels of DCI protection in SAH as that provided by a supratherapeutic dose (2%). This result has important implications for future translational studies. Additional studies examining the therapeutic potential of anesthetic conditioning for SAH are therefore warranted.
Collapse
Affiliation(s)
- Umeshkumar Athiraman
- Department of Anesthesiology, Washington University, St. Louis, MO 63110, United States.
| | - Meizi Liu
- Department of Anesthesiology, Washington University, St. Louis, MO 63110, United States
| | - Keshav Jayaraman
- Department of Neurological Surgery, Washington University, St. Louis, MO 63110, United States
| | - Jane Yuan
- Department of Anesthesiology, Washington University, St. Louis, MO 63110, United States
| | - Jogender Mehla
- Department of Neurological Surgery, Washington University, St. Louis, MO 63110, United States
| | - Gregory J Zipfel
- Departments of Neurological Surgery and Neurology, Washington University, St. Louis, MO 63110, United States
| |
Collapse
|
24
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
25
|
Zhu J, Yang LK, Wang QH, Lin W, Feng Y, Xu YP, Chen WL, Xiong K, Wang YH. NDRG2 attenuates ischemia-induced astrocyte necroptosis via the repression of RIPK1. Mol Med Rep 2020; 22:3103-3110. [PMID: 32945444 PMCID: PMC7453600 DOI: 10.3892/mmr.2020.11421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia results in severe brain damage, and is a leading cause of death and long-term disability. Previous studies have investigated methods to activate astrocytes in order to promote repair in injured brain tissue and inhibit cell death. It has previously been shown that N-myc downstream-regulated gene 2 (NDRG2) was highly expressed in astrocytes and associated with cell activity, but the underlying mechanism is largely unknown. The present study generated NDRG2 conditional knockout (Ndrg2-/-) mice to investigate whether NDRG2 can block ischemia-induced astrocyte necroptosis by suppressing receptor interacting protein kinase 1 (RIPK1) expression. This study investigated astrocyte activity in cerebral ischemia, and identified that ischemic brain injuries could trigger RIP-dependent astrocyte necroptosis. The depletion of NDRG2 was found to accelerate permanent middle cerebral artery occlusion-induced necroptosis in the brain tissue of Ndrg2-/- mice, indicating that NDRG2 may act as a neuroprotector during cerebral ischemic injury. The present study suggested that NDRG2 attenuated astrocytic cell death via the suppression of RIPK1. The pharmacological inhibition of astrocyte necroptosis by necrostatin-1 provided neuroprotection against ischemic brain injuries after NDRG2 knockdown. Therefore, NDRG2 could be considered as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Li-Kun Yang
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Qiu-Hong Wang
- Department of Ophthalmology, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Wei Lin
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Yi Feng
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Ye-Ping Xu
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Wei-Liang Chen
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
26
|
Xu J, Zheng Y, Lv S, Kang J, Yu Y, Hou K, Li Y, Chi G. Lactate Promotes Reactive Astrogliosis and Confers Axon Guidance Potential to Astrocytes under Oxygen-Glucose Deprivation. Neuroscience 2020; 442:54-68. [PMID: 32634533 DOI: 10.1016/j.neuroscience.2020.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Abstract
During cerebral ischemia, brain lactate concentration increases, and astrogliosis is triggered. Herein, we investigated lactate's role in astrogliosis and explored the functions of lactate-activated astrocytes in vitro. In rat models of cerebral ischemia, we observed increased glial fibrillary acidic protein (GFAP) expression, reflecting astrogliosis, and increased lactate levels in the ischemic brain region. Lactate upregulated GFAP and SRY-box transcription factor 9 (SOX9) expression and activated Akt and signal transducer and activator of transcription 3 (STAT3) signaling pathways in astrocytes cultured under oxygen-glucose deprivation (OGD); these effects were abrogated upon monocarboxylate transporter 1 (MCT1) knockdown. RNA-Seq analysis revealed 221 differentially expressed genes (DEGs) between lactate-treated and untreated astrocytes. Genes upregulated by lactate treatment included those regulating astrogliosis and axon guidance. Consistently, lactate-treated astrocytes induced neuronal outgrowth upon coculture. Our results suggest that lactate promotes reactive astrogliosis and confers axon guidance potential to astrocytes under OGD.
Collapse
Affiliation(s)
- Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Juanjuan Kang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Yifei Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China
| | - Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, PR China.
| |
Collapse
|
27
|
Mendonça IP, Duarte-Silva E, Chaves-Filho AJM, Andrade da Costa BLDS, Peixoto CA. Neurobiological findings underlying depressive behavior in Parkinson's disease: A review. Int Immunopharmacol 2020; 83:106434. [PMID: 32224442 DOI: 10.1016/j.intimp.2020.106434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases in the world with a harmful impact on the quality of life. Although its clinical diagnosis is based on motor symptoms such as resting tremor, postural instability, slow gait, and muscle stiffness, this disorder is also characterized by the presence of early emotional impairment, including features such as depression, anxiety, fatigue, and apathy. Depression is the main emotional manifestation associated with PD and the mechanisms involved in its pathophysiology have been extensively investigated however, it is not yet completely elucidated. In addition to monoaminergic imbalance, immunological and gut microbiota changes have been associated with depression in PD. Besides, a patient group appears be refractory to the treatment available currently. This review emphasizes the mainly neuromolecular findings of the PD-associated depression as well as discuss novel and potential pharmacological and non-pharmacological therapeutic strategies.
Collapse
Affiliation(s)
- Ingrid Prata Mendonça
- Laboratory of Ultrastructure, AggeuMagalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Brazil.
| | - Eduardo Duarte-Silva
- Laboratory of Ultrastructure, AggeuMagalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), PE, Brazil; Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/AggeuMagalhães Institute (IAM), Recife, PE, Brazil
| | - Adriano José Maia Chaves-Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, AggeuMagalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Cha M, Lee KH, Lee BH. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci Rep 2020; 10:943. [PMID: 31969638 PMCID: PMC6976635 DOI: 10.1038/s41598-020-57797-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Although astrocytes are known to regulate synaptic transmission and affect new memory formation by influencing long-term potentiation and functional synaptic plasticity, their role in pain modulation is poorly understood. Motor cortex stimulation (MCS) has been used to reduce neuropathic pain through the incertothalamic pathway, including the primary motor cortex (M1) and the zona incerta (ZI). However, there has been no in-depth study of these modulatory effects and region-specific changes in neural plasticity. In this study, we investigated the effects of MCS-induced pain modulation as well as the relationship between the ZI neuroplasticity and MCS-induced pain alleviation in neuropathic pain (NP). MCS-induced threshold changes were evaluated after daily MCS. Then, the morphological changes of glial cells were compared by tissue staining. In order to quantify the neuroplasticity, MAP2, PSD95, and synapsin in the ZI and M1 were measured and analyzed with western blot. In behavioral test, repetitive MCS reduced NP in nerve-injured rats. We also observed recovered GFAP expression in the NP with MCS rats. In the NP with sham MCS rats, increased CD68 level was observed. In the NP with MCS group, increased mGluR1 expression was observed. Analysis of synaptogenesis-related molecules in the M1 and ZI revealed that synaptic changes occured in the M1, and increased astrocytes in the ZI were more closely associated with pain alleviation after MCS. Our findings suggest that MCS may modulate the astrocyte activities in the ZI and synaptic changes in the M1. Our results may provide new insight into the important and numerous roles of astrocytes in the formation and function.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, 47011, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Brain Research Institute, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
29
|
Bao XQ, Wang L, Yang HY, Hou LY, Wang QS, Zhang D. Induction of glial cell line-derived neurotrophic factor by the squamosamide derivative FLZ in astroglia has neuroprotective effects on dopaminergic neurons. Brain Res Bull 2020; 154:32-42. [PMID: 31669104 DOI: 10.1016/j.brainresbull.2019.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/27/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has neurotrophic activity for the survival of dopaminergic neurons, which is under active investigation for Parkinson's disease (PD) therapy. FLZ is a potential new drug for PD treatment. However, it is unclear whether neurotrophic activity contributes to the neuroprotective effects of FLZ. Here we found that FLZ markedly improved the function of dopaminergic neurons in primary mesencephalic neuron/glia cultures. Further investigation demonstrated that astroglia were required for FLZ to function as a neurotrophic regulator, as FLZ failed to show neurotrophic effects in the absence of astroglia. We clarified that GDNF was responsible for the neurotrophic effects of FLZ since FLZ selectively stimulated GDNF production, which was confirmed by the finding that the neurotrophic effect of FLZ was attenuated by GDNF-neutralizing antibody. Mechanistic study demonstrated that GDNF induction by FLZ was CREB-dependent and that PI3K/Akt was the main pathway regulating CREB activity, which was confirmed by in vivo studies. We also validated that the induction of GDNF by FLZ contributed to PD treatment in vivo. In conclusion, the present data provided evidence that FLZ had robust neurotrophic effects on dopaminergic neurons through sustained induction of GDNF in astroglia by activating the PI3K/Akt/CREB pathway.
Collapse
Affiliation(s)
- Xiu-Qi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Xian Nong Tan Street, Beijing, 100050, China
| | - Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Xian Nong Tan Street, Beijing, 100050, China
| | - Han-Yu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Xian Nong Tan Street, Beijing, 100050, China
| | - Li-Yan Hou
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qing-Shan Wang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
30
|
Zhang Y, Gao Q, Wu Z, Xue H, Liu B, Zhao P. Dexmedetomidine Promotes Hippocampal Neurogenesis and Improves Spatial Learning and Memory in Neonatal Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4439-4449. [PMID: 32099322 PMCID: PMC6997224 DOI: 10.2147/dddt.s228220] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Background Dexmedetomidine (Dex) is a highly selective α2-adrenoceptor agonist used as an off-label medication for pediatric sedation and analgesia. Recently, Dex was reported to exhibit neuroprotective efficacy in several brain injury models. Here we investigate whether neonatal Dex administration promotes hippocampal neurogenesis and enhances hippocampus-dependent spatial learning and memory under physiological conditions. Methods Postnatal day 7 (P7) pups were administered saline (vehicle control) or Dex (10, 20, or 40 µg/kg) by intraperitoneal injection. Neurogenesis and astrogenesis were examined in brain slices by BrdU immunostaining on P8 and changes in the expression levels of GDNF, NCAM, CREB, PSD95, and GAP43 were assessed by Western blotting on P35, respectively. Open field and Morris water maze (MWM) tests were conducted from P28 to P36 in order to assess effects on general motor activity and spatial learning, respectively. Results Dexmedetomidine at 20 µg/kg significantly enhanced neurogenesis and astrogenesis in hippocampus and upregulated GDNF, NCAM, CREB, PSD95, and GAP43 compared to vehicle and other Dex doses. Moreover, 20 µg/kg Dex-injected rats showed no changes in motor or anxiety-like behavior but performed better in the MWM test compared to all other groups. Conclusion Neonatal injection of Dex (20 µg/kg) enhances spatial learning and memory in rat pups, potentially by promoting hippocampal neurogenesis and synaptic plasticity via activation of GDNF/NCAM/CREB signaling.
Collapse
Affiliation(s)
- Yahan Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Qiushi Gao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Hang Xue
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Bo Liu
- Department of Animal Laboratory of Experimental Research Center, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
31
|
Wu Z, Liang Y, Yu S. Downregulation of microRNA-103a reduces microvascular endothelial cell injury in a rat model of cerebral ischemia by targeting AXIN2. J Cell Physiol 2019; 235:4720-4733. [PMID: 31650542 DOI: 10.1002/jcp.29350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023]
Abstract
Multiple microRNAs (miRNAs) have been found to be linked with cerebral ischemia. Thus, this study was employed to characterize the capabilities of miRNA-103a (miR-103a) on the brain microvascular endothelial cells (BMECs) injury in rat models of middle cerebral artery occlusion (MCAO) by regulating AXIN2. The MCAO rat model was developed by the suture method, where normal saline, miR-103a inhibitors, or its negative control were separately injected into the lateral ventricle to assess the function of miR-103a inhibitors in BMECs apoptosis, microvessel density, as well as angiogenesis. In addition, the oxygen-glucose deprivation model was induced in primarily cultured BMECs to unearth the functions of miR-103a inhibitors on cell viability and apoptosis, lactate dehydrogenase (LDH) release and tube formation ability. Furthermore, the relationship between miR-103a and AXIN2 was verified. The modeled rats of MCAO showed robustly expressed miR-103a, poorly expressed AXIN2, severe neurological deficits, accelerated apoptosis and reduced angiogenesis. miR-103a expression had a negative correlation with AXIN2 messenger RNA expression (r = -0.799; p < .05). In response to the treatment of miR-103a inhibitors, the BMECs apoptosis was suppressed and angiogenesis was restored, corresponding to upregulated Bcl-2, VEGF, and Ang-1, in addition to downregulated caspase-3 and Bax. Meanwhile, AXIN2 was verified to be the miR-103a's target gene. More important, miR-103a inhibitors led to promoted BMEC viability and tube formation and suppressed apoptosis and LDH release rate. This study highlights that miR-103a targets and negatively regulates AXIN2, whereby reducing BMEC injury in cerebral ischemia.
Collapse
Affiliation(s)
- Zhiyan Wu
- Department of Encephalopathy, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China.,Department of Encephalopathy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yudan Liang
- Department of Rehabilitation, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| | - Shangzhen Yu
- Department of Encephalopathy, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| |
Collapse
|
32
|
Dal-Cim T, Poluceno GG, Lanznaster D, de Oliveira KA, Nedel CB, Tasca CI. Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of A 1 and A 2A adenosine receptors and PI3K, MEK, and PKC pathways. Purinergic Signal 2019; 15:465-476. [PMID: 31520282 DOI: 10.1007/s11302-019-09679-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Glial cells are involved in multiple cerebral functions that profoundly influence brain tissue viability during ischemia, and astrocytes are the main source of extracellular purines as adenosine and guanosine. The endogenous guanine-based nucleoside guanosine is a neuromodulator implicated in important processes in the brain, such as modulation of glutamatergic transmission and protection against oxidative and inflammatory damage. We evaluated if the neuroprotective effect of guanosine is also observed in cultured cortical astrocytes subjected to oxygen/glucose deprivation (OGD) and reoxygenation. We also assessed the involvement of A1 and A2A adenosine receptors and phosphatidylinositol-3 kinase (PI3K), MAPK, and protein kinase C (PKC) signaling pathways on the guanosine effects. OGD/reoxygenation decreased cell viability and glutamate uptake and increased reactive oxygen species (ROS) production in cultured astrocytes. Guanosine treatment prevented these OGD-induced damaging effects. Dipropyl-cyclopentyl-xanthine (an adenosine A1 receptor antagonist) and 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl] benzenepropanoic acid hydrochloride (an adenosine A2A receptor agonist) abolished guanosine-induced protective effects on ROS production, glutamate uptake, and cell viability. The PI3K pathway inhibitor 2-morpholin-4-yl-8-phenylchromen-4-one, the extracellular-signal regulated kinase kinase (MEK) inhibitor 2'-amino-3'-methoxyflavone, or the PKC inhibitor chelerythrine abolished the guanosine effect of preventing OGD-induced cells viability reduction. PI3K inhibition partially prevented the guanosine effect of reducing ROS production, whereas MEK and PKC inhibitions prevented the guanosine effect of restoring glutamate uptake. The total immunocontent of the main astrocytic glutamate transporter glutamate transporter-1 (GLT-1) was not altered by OGD and guanosine. However, MEK and PKC inhibitions also abolished the guanosine effect of increasing cell-surface expression of GLT-1 in astrocytes subjected to OGD. Then, guanosine prevents oxidative damage and stimulates astrocytic glutamate uptake during ischemic events via adenosine A1 and A2A receptors and modulation of survival signaling pathways, contributing to microenvironment homeostasis that culminates in neuroprotection.
Collapse
Affiliation(s)
- Tharine Dal-Cim
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Gabriela G Poluceno
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Débora Lanznaster
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Karen A de Oliveira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Claudia B Nedel
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil.
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
33
|
Lyden PD, Lamb J, Kothari S, Toossi S, Boitano P, Rajput PS. Differential effects of hypothermia on neurovascular unit determine protective or toxic results: Toward optimized therapeutic hypothermia. J Cereb Blood Flow Metab 2019; 39:1693-1709. [PMID: 30461327 PMCID: PMC6727141 DOI: 10.1177/0271678x18814614] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Therapeutic hypothermia (TH) benefits survivors of cardiac arrest and neonatal hypoxic-ischemic injury and may benefit stroke patients. Large TH clinical trials, however, have shown mixed results. Given the substantial pre-clinical literature supporting TH, we explored possible mechanisms for clinical trial variability. Using a standard rodent stroke model (n = 20 per group), we found smaller infarctions after 2 h pre- or post-reperfusion TH compared to 4 h. To explore the mechanism of this discrepancy, we used primary cell cultures of rodent neurons, astrocytes, or endothelial cells subjected to oxygen-glucose deprivation (OGD). Then, cells were randomly assigned to 33℃, 35℃ or 37℃ for varying durations after varying delay times. Both 33 and 35℃ TH effectively preserved all cell types, although 33℃ was superior. Longer cooling durations overcame moderate delays to cooling initiation. In contrast, TH interfered with astrocyte paracrine protection of neurons in a temperature-dependent manner. These findings suggest that longer TH is needed to overcome delays to TH onset, but shorter TH durations may be superior to longer, perhaps due to suppression of astrocytic paracrine support of neurons during injury. We propose a scheme for optimizing TH after cerebral injury to stimulate further studies of cardiac arrest and stroke.
Collapse
Affiliation(s)
- Patrick D Lyden
- 1 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Lamb
- 1 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shweta Kothari
- 1 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shahed Toossi
- 1 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,2 Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul Boitano
- 1 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Padmesh S Rajput
- 1 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
34
|
Bosiacki M, Gąssowska-Dobrowolska M, Kojder K, Fabiańska M, Jeżewski D, Gutowska I, Lubkowska A. Perineuronal Nets and Their Role in Synaptic Homeostasis. Int J Mol Sci 2019; 20:ijms20174108. [PMID: 31443560 PMCID: PMC6747153 DOI: 10.3390/ijms20174108] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular matrix (ECM) molecules that are released by neurons and glial cells form perineuronal nets (PNNs) and modulate many neuronal and glial functions. PNNs, whose structure is still not known in detail, surround cell bodies and dendrites, which leaves free space for synapses to come into contact. A reduction in the expression of many neuronal ECM components adversely affects processes that are associated with synaptic plasticity, learning, and memory. At the same time, increased ECM activity, e.g., as a result of astrogliosis following brain damage or in neuroinflammation, can also have harmful consequences. The therapeutic use of enzymes to attenuate elevated neuronal ECM expression after injury or in Alzheimer’s disease has proven to be beneficial by promoting axon growth and increasing synaptic plasticity. Yet, severe impairment of ECM function can also lead to neurodegeneration. Thus, it appears that to ensure healthy neuronal function a delicate balance of ECM components must be maintained. In this paper we review the structure of PNNs and their components, such as hyaluronan, proteoglycans, core proteins, chondroitin sulphate proteoglycans, tenascins, and Hapln proteins. We also characterize the role of ECM in the functioning of the blood-brain barrier, neuronal communication, as well as the participation of PNNs in synaptic plasticity and some clinical aspects of perineuronal net impairment. Furthermore, we discuss the participation of PNNs in brain signaling. Understanding the molecular foundations of the ways that PNNs participate in brain signaling and synaptic plasticity, as well as how they change in physiological and pathological conditions, may help in the development of new therapies for many degenerative and inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Mateusz Bosiacki
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Fabiańska
- Institute of Philosophy, University of Szczecin, Krakowska 71-79 Str., 71-017 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Izabela Gutowska
- Department of Human Nutrition and Metabolomics, Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Broniewskiego 24 Str., 71-252 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland.
| |
Collapse
|
35
|
Mages B, Aleithe S, Blietz A, Krueger M, Härtig W, Michalski D. Simultaneous alterations of oligodendrocyte-specific CNP, astrocyte-specific AQP4 and neuronal NF-L demarcate ischemic tissue after experimental stroke in mice. Neurosci Lett 2019; 711:134405. [PMID: 31374325 DOI: 10.1016/j.neulet.2019.134405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/11/2019] [Accepted: 07/27/2019] [Indexed: 12/16/2022]
Abstract
Ischemic stroke not only affects neurons, but also glial and vascular elements. The development of novel neuroprotective strategies thus requires an improved pathophysiological understanding of ischemia-affected cell types that comprise the 'neurovascular unit' (NVU). To explore spatiotemporal alterations of oligodendrocytes, astrocytes and neurons after experimental ischemic stroke, we applied a permanent middle cerebral artery occlusion model in mice for 4 and 24 h. Using fluorescence microscopy, the oligodendrocyte marker 2',3'-cyclic nucleotide phosphodiesterase (CNP), the neuronal neurofilament light chain (NF-L) and the astroglial aquaporin-4 (AQP4) were analyzed in regional relation to one another. Immunofluorescence intensities of CNP and NF-L were simultaneously increased in the ischemic neocortex and striatum. AQP4 immunoreactivity was decreased in the ischemic striatum, which represents the initial and potentially strongest affected site of infarction. The more distant ischemic neocortex and infarct border zones exhibited areas with alternately increased or decreased AQP4 immunoreactivity, leading to an increase of fluorescence intensity in total. Further, deformed CNP-immunopositive processes were found around axonal spheroids, indicating a combined affection of oligodendrocytes and neurons due to ischemia. Importantly, altered AQP4 immunosignals were not limited to the ischemic core, but were also detectable in penumbral areas. This applies for CNP and NF-L also, since altered immunosignals of all three markers coincided regionally at both time points. In conclusion, the present study provides evidence for a simultaneous affection of oligodendrocytes, astrocytes and neurons after experimental focal cerebral ischemia. Consequently, CNP, AQP4 and NF-L immunofluorescence alterations can be utilized to identify ischemia-affected tissue. The simultaneity of the described alterations further strengthens the concept of interdependent NVU components and distinguishes NF-L, CNP and AQP4 as highly ischemia-sensitive elements. Consequently, future therapeutic approaches might influence stroke evolution via strategies simultaneously addressing both neuronal and glial functions.
Collapse
Affiliation(s)
- Bianca Mages
- Department of Neurology, University of Leipzig, Germany; Institute of Anatomy, University of Leipzig, Germany.
| | | | | | | | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, University of Leipzig, Germany
| | | |
Collapse
|
36
|
Kurisu K, Kim JY, You J, Yenari MA. Therapeutic Hypothermia and Neuroprotection in Acute Neurological Disease. Curr Med Chem 2019; 26:5430-5455. [PMID: 31057103 PMCID: PMC6913523 DOI: 10.2174/0929867326666190506124836] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 04/11/2019] [Indexed: 01/07/2023]
Abstract
Therapeutic hypothermia has consistently been shown to be a robust neuroprotectant in many labs studying different models of neurological disease. Although this therapy has shown great promise, there are still challenges at the clinical level that limit the ability to apply this routinely to each pathological condition. In order to overcome issues involved in hypothermia therapy, understanding of this attractive therapy is needed. We review methodological concerns surrounding therapeutic hypothermia, introduce the current status of therapeutic cooling in various acute brain insults, and review the literature surrounding the many underlying molecular mechanisms of hypothermic neuroprotection. Because recent work has shown that body temperature can be safely lowered using pharmacological approaches, this method may be an especially attractive option for many clinical applications. Since hypothermia can affect multiple aspects of brain pathophysiology, therapeutic hypothermia could also be considered a neuroprotection model in basic research, which would be used to identify potential therapeutic targets. We discuss how research in this area carries the potential to improve outcome from various acute neurological disorders.
Collapse
Affiliation(s)
- Kota Kurisu
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | - Jong Youl Kim
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Departments of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jesung You
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| |
Collapse
|
37
|
Subcortical axonal loss with glial reactions following partial status epilepticus with neuroradiological findings of reduced subcortical diffusion. Neurol Sci 2018; 40:851-855. [PMID: 30443827 DOI: 10.1007/s10072-018-3635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
Abstract
Hyperintensity in the subcortical white matter on the diffusion-weighted magnetic resonance image has been described recently, in association with partial status epilepticus. Although this reduced subcortical diffusion is typically seen in patients with acute encephalopathy with biphasic seizures and late reduced diffusion (AESD), the exact pathophysiological mechanism is unclear. We report the case of a 3-month-old boy who underwent surgery for intractable epilepsy associated with cortical dysplasia in the left peri-Rolandic area, coincident with the appearance of reduced subcortical diffusion. Neurohistological findings revealed that the most prominent finding was axonal loss with marked astroglial and microglial reactions in the white matter. Neither degenerated neurons nor neurophagocytic microglial accumulation was evident in the cortex. These findings confirm that white matter can be secondarily damaged in patients with partial status epilepticus, and possible pathomechanism of reduced subcortical diffusion is discussed.
Collapse
|
38
|
S100B promotes microglia M1 polarization and migration to aggravate cerebral ischemia. Inflamm Res 2018; 67:937-949. [DOI: 10.1007/s00011-018-1187-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 01/20/2023] Open
|
39
|
Li W, Liu J, Chen JR, Zhu YM, Gao X, Ni Y, Lin B, Li H, Qiao SG, Wang C, Zhang HL, Ao GZ. Neuroprotective Effects of DTIO, A Novel Analog of Nec-1, in Acute and Chronic Stages After Ischemic Stroke. Neuroscience 2018; 390:12-29. [PMID: 30076999 DOI: 10.1016/j.neuroscience.2018.07.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 02/04/2023]
Abstract
Receptor-interacting protein 1 kinase (RIP1K) plays a key role in necroptosis. Necrostatin-1 (Nec-1), a specific inhibitor of RIP1K, provides neuroprotection against ischemic brain injury, associating with inhibition of inflammation. Recently, our group synthesized a novel analog of Nec-1, 5-(3',5'-dimethoxybenzal)-2-thio-imidazole-4-ketone (DTIO). The present study investigated the effect of DTIO on ischemic stroke-induced brain injury in both acute and chronic phase and its underlying mechanism. In vivo, DTIO treatment reduced infarct volume and improved neurological deficits in the acute phase after permanent middle cerebral artery occlusion (pMCAO) and it also attenuated brain atrophy and promoted brain functional recovery in the chronic phase post-cerebral ischemia/reperfusion (I/R). In vitro, DTIO treatment decreased lactate dehydrogenase (LDH) leakage and necrotic cell death in the oxygen and glucose deprivation (OGD) or oxygen and glucose deprivation and reoxygenation (OGD/R)-induced neuronal or astrocytic cell injury. Simultaneously, DTIO suppressed the production and release of inflammatory cytokines, and reduced the formation of glial scar. Homology modeling analysis illustrated that DTIO had an ability of binding to RIP1K. Furthermore, immunoprecipitation analysis showed that DTIO inhibited the phosphorylation of RIP1K and decreased the interaction between the RIP1K and RIP3K. In addition, knockdown of RIP1K had neuroprotective effects and inhibited the release of proinflammatory cytokines, but didn't have a significant effect on DTIO-mediated neuroprotection. In conclusion, DTIO has protective effects on acute ischemic stroke and promotes functional recovery during chronic phase, associating with protecting ischemic neurons and astrocytes, inhibiting inflammation, and lessening the glial scar formation via inhibiting of the RIP1K.
Collapse
Affiliation(s)
- Wei Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie-Ru Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xue Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yong Ni
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bo Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huanqiu Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shi-Gang Qiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China; Department of Anesthesiology and Perioperative Medicine, Suzhou Science and Technology Town Hospital, and Institute of Clinical Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215153, China
| | - Chen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China; Department of Anesthesiology and Perioperative Medicine, Suzhou Science and Technology Town Hospital, and Institute of Clinical Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215153, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Gui-Zhen Ao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
40
|
McDonough A, Weinstein JR. Correction to: Neuroimmune Response in Ischemic Preconditioning. Neurotherapeutics 2018; 15:511-524. [PMID: 29110213 PMCID: PMC5935631 DOI: 10.1007/s13311-017-0580-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ischemic preconditioning (IPC) is a robust neuroprotective phenomenon in which a brief period of cerebral ischemia confers transient tolerance to subsequent ischemic challenge. Research on IPC has implicated cellular, molecular, and systemic elements of the immune response in this phenomenon. Potent molecular mediators of IPC include innate immune signaling pathways such as Toll-like receptors and type 1 interferons. Brain ischemia results in release of pro- and anti-inflammatory cytokines and chemokines that orchestrate the neuroinflammatory response, resolution of inflammation, and transition to neurological recovery and regeneration. Cellular mediators of IPC include microglia, the resident central nervous system immune cells, astrocytes, and neurons. All of these cell types engage in cross-talk with each other using a multitude of signaling pathways that modulate activation/suppression of each of the other cell types in response to ischemia. As the postischemic neuroimmune response evolves over time there is a shift in function toward provision of trophic support and neuroprotection. Peripheral immune cells infiltrate the central nervous system en masse after stroke and are largely detrimental, with a few subtypes having beneficial, protective effects, though the role of these immune cells in IPC is largely unknown. The role of neural progenitor cells in IPC-mediated neuroprotection is another active area of investigation as is the role of microglial proliferation in this setting. A mechanistic understanding of these molecular and cellular mediators of IPC may not only facilitate more effective direct application of IPC to specific clinical scenarios, but also, more broadly, reveal novel targets for therapeutic intervention in stroke.
Collapse
Affiliation(s)
- Ashley McDonough
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
41
|
Mo JL, Liu Q, Kou ZW, Wu KW, Yang P, Chen XH, Sun FY. MicroRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6. Glia 2018; 66:1346-1362. [PMID: 29451327 PMCID: PMC6001668 DOI: 10.1002/glia.23308] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
Abstract
Reactive astrocytes induced by ischemia can transdifferentiate into mature neurons. This neurogenic potential of astrocytes may have therapeutic value for brain injury. Epigenetic modifications are widely known to involve in developmental and adult neurogenesis. PAX6, a neurogenic fate determinant, contributes to the astrocyte‐to‐neuron conversion. However, it is unclear whether microRNAs (miRs) modulate PAX6‐mediated astrocyte‐to‐neuron conversion. In the present study we used bioinformatic approaches to predict miRs potentially targeting Pax6, and transient middle cerebral artery occlusion (MCAO) to model cerebral ischemic injury in adult rats. These rats were given striatal injection of glial fibrillary acidic protein targeted enhanced green fluorescence protein lentiviral vectors (Lv‐GFAP‐EGFP) to permit cell fate mapping for tracing astrocytes‐derived neurons. We verified that miR‐365 directly targets to the 3′‐UTR of Pax6 by luciferase assay. We found that miR‐365 expression was significantly increased in the ischemic brain. Intraventricular injection of miR‐365 antagomir effectively increased astrocytic PAX6 expression and the number of new mature neurons derived from astrocytes in the ischemic striatum, and reduced neurological deficits as well as cerebral infarct volume. Conversely, miR‐365 agomir reduced PAX6 expression and neurogenesis, and worsened brain injury. Moreover, exogenous overexpression of PAX6 enhanced the astrocyte‐to‐neuron conversion and abolished the effects of miR‐365. Our results demonstrate that increase of miR‐365 in the ischemic brain inhibits astrocyte‐to‐neuron conversion by targeting Pax6, whereas knockdown of miR‐365 enhances PAX6‐mediated neurogenesis from astrocytes and attenuates neuronal injury in the brain after ischemic stroke. Our findings provide a foundation for developing novel therapeutic strategies for brain injury.
Collapse
Affiliation(s)
- Jia-Lin Mo
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi Liu
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zeng-Wei Kou
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kun-Wei Wu
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ping Yang
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xian-Hua Chen
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Feng-Yan Sun
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
42
|
Koizumi S, Hirayama Y, Morizawa YM. New roles of reactive astrocytes in the brain; an organizer of cerebral ischemia. Neurochem Int 2018; 119:107-114. [PMID: 29360494 DOI: 10.1016/j.neuint.2018.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 01/16/2023]
Abstract
The brain consists of neurons and much higher number of glial cells. They communicate each other, by which they control brain functions. The brain is highly vulnerable to several insults such as ischemia, but has a self-protective and self-repairing mechanisms against these. Ischemic tolerance or preconditioning is an endogenous neuroprotective phenomenon, where a mild non-lethal ischemic episode can induce resistance to a subsequent severe ischemic injury in the brain. Because of its neuroprotective effects against cerebral ischemia or stroke, ischemic tolerance has been widely studied. However, almost all studies have been performed from the viewpoint of neurons. Glial cells are structurally in close association with synapses. Recent studies have uncovered the active roles of astrocytes in modulating synaptic connectivity, such as synapse formation, elimination and maturation, during development or pathology. However, glia-mediated ischemic tolerance and/or neuronal repairing have received only limited attention. We and others have demonstrated that glial cells, especially astrocytes, play a pivotal role in regulation of induction of ischemic tolerance as well as repairing/remodeling of neuronal networks by phagocytosis. Here, we review our current understanding of (1) glial-mediated ischemic tolerance and (2) glia-mediated repairing/remodeling of the penumbra neuronal networks, and highlight their mechanisms as well as their potential benefits, problems, and therapeutic application.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Yuri Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Yosuke M Morizawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
43
|
Song JJ, Oh SM, Kwon OC, Wulansari N, Lee HS, Chang MY, Lee E, Sun W, Lee SE, Chang S, An H, Lee CJ, Lee SH. Cografting astrocytes improves cell therapeutic outcomes in a Parkinson's disease model. J Clin Invest 2017; 128:463-482. [PMID: 29227284 DOI: 10.1172/jci93924] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transplantation of neural progenitor cells (NPCs) is a potential therapy for treating neurodegenerative disorders, but this approach has faced many challenges and limited success, primarily because of inhospitable host brain environments that interfere with enriched neuron engraftment and function. Astrocytes play neurotrophic roles in the developing and adult brain, making them potential candidates for helping with modification of hostile brain environments. In this study, we examined whether astrocytic function could be utilized to overcome the current limitations of cell-based therapies in a murine model of Parkinson's disease (PD) that is characterized by dopamine (DA) neuron degeneration in the midbrain. We show here that cografting astrocytes, especially those derived from the midbrain, remarkably enhanced NPC-based cell therapeutic outcomes along with robust DA neuron engraftment in PD rats for at least 6 months after transplantation. We further show that engineering of donor astrocytes with Nurr1 and Foxa2, transcription factors that were recently reported to polarize harmful immunogenic glia into the neuroprotective form, further promoted the neurotrophic actions of grafted astrocytes in the cell therapeutic approach. Collectively, these findings suggest that cografting astrocytes could be a potential strategy for successful cell therapeutic outcomes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jae-Jin Song
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Sang-Min Oh
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Oh-Chan Kwon
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Noviana Wulansari
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Hyun-Seob Lee
- Genomic Core Facility, Transdisciplinary Research and Collaboration Division, Translational Research Institute, and.,Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Mi-Yoon Chang
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and
| | - Eunsoo Lee
- Department of Anatomy and Division of Brain Korea 21 PLUS Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 PLUS Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Heeyoung An
- Center for Neuroscience and.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - C Justin Lee
- Center for Neuroscience and.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
44
|
Astrocytes and ischemic tolerance. Neurosci Res 2017; 126:53-59. [PMID: 29225139 DOI: 10.1016/j.neures.2017.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 11/22/2022]
Abstract
A mild non-lethal ischemic episode can induce resistance to a subsequent severe ischemic injury in the brain. This phenomenon is termed ischemic tolerance or ischemic preconditioning, and is an endogenous mechanism that can provide robust neuroprotection. Because of its neuroprotective effects against cerebral ischemia or stroke, ischemic tolerance has been widely studied. However, almost all studies have been performed from the viewpoint of neurons. Accumulating evidence suggests that glial cells have various roles in regulation of brain function, including modulation of synaptic transmission, neuronal excitation, and neuronal structure. In addition, astrocytes are closely related to homeostasis, stability of brain function, and protection of neurons. However, glial cells have received only limited attention with regard to ischemic tolerance. Cross-ischemic preconditioning is a phenomenon whereby non-ischemic preconditioning such as mechanical, thermal, and chemical treatment can induce ischemic tolerance. Of these, chemical treatments that affect the immune system can strongly induce ischemic tolerance, suggesting that glial cells may have important roles in this process. Indeed, we and others have demonstrated that glial cells, especially astrocytes, play a pivotal role in the induction of ischemic tolerance. This glial-mediated ischemic tolerance provides a robust and long-lasting neuroprotection against ischemic injury. In this review, we discuss the mechanisms underlying glial-mediated ischemic tolerance, as well as its potential benefits, problems, and therapeutic application.
Collapse
|
45
|
Kurisu K, Yenari MA. Therapeutic hypothermia for ischemic stroke; pathophysiology and future promise. Neuropharmacology 2017; 134:302-309. [PMID: 28830757 DOI: 10.1016/j.neuropharm.2017.08.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/12/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023]
Abstract
Therapeutic hypothermia, or cooling of the body or brain for the purposes of preserving organ viability, is one of the most robust neuroprotectants at both the preclinical and clinical levels. Although therapeutic hypothermia has been shown to improve outcome from related clinical conditions, the significance in ischemic stroke is still under investigation. Numerous pre-clinical studies of therapeutic hypothermia has suggested optimal cooling conditions, such as depth, duration, and temporal therapeutic window for effective neuroprotection. Several studies have also explored mechanisms underlying the mechanisms of neuroprotection by therapeutic hypothermia. As such, it appears that cooling affects multiple aspects of brain pathophysiology, and regulates almost every pathway involved in the evolution of ischemic stroke. This multifaceted mechanism is thought to contribute to its strong neuroprotective effect. In order to carry out this therapy in optimal clinical settings, methodological and pathophysiological understanding is crucial. However, more investigation is still needed to better understand the underlying mechanisms of this intervention, and to overcome clinical barriers which seem to preclude the routine use therapeutic hypothermia in stroke. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Kota Kurisu
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| |
Collapse
|
46
|
Wu XM, Qian C, Zhou YF, Yan YC, Luo QQ, Yung WH, Zhang FL, Jiang LR, Qian ZM, Ke Y. Bi-directionally protective communication between neurons and astrocytes under ischemia. Redox Biol 2017; 13:20-31. [PMID: 28551085 PMCID: PMC5447396 DOI: 10.1016/j.redox.2017.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/10/2023] Open
Abstract
The extensive existing knowledge on bi-directional communication between astrocytes and neurons led us to hypothesize that not only ischemia-preconditioned (IP) astrocytes can protect neurons but also IP neurons protect astrocytes from lethal ischemic injury. Here, we demonstrated for the first time that neurons have a significant role in protecting astrocytes from ischemic injury. The cultured medium from IP neurons (IPcNCM) induced a remarkable reduction in LDH and an increase in cell viability in ischemic astrocytes in vitro. Selective neuronal loss by kainic acid injection induced a significant increase in apoptotic astrocyte numbers in the brain of ischemic rats in vivo. Furthermore, TUNEL analysis, DNA ladder assay, and the measurements of ROS, GSH, pro- and anti-apoptotic factors, anti-oxidant enzymes and signal molecules in vitro and/or in vivo demonstrated that IP neurons protect astrocytes by an EPO-mediated inhibition of pro-apoptotic signals, activation of anti-apoptotic proteins via the P13K/ERK/STAT5 pathways and activation of anti-oxidant proteins via up-regulation of anti-oxidant enzymes. We demonstrated the existence of astro-protection by IP neurons under ischemia and proposed that the bi-directionally protective communications between cells might be a common activity in the brain or peripheral organs under most if not all pathological conditions.
Collapse
Affiliation(s)
- Xiao-Mei Wu
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China; Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong 226001, China
| | - Christopher Qian
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Yu-Fu Zhou
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China; Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China
| | - Yick-Chun Yan
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Qian-Qian Luo
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China; Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong 226001, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Fa-Li Zhang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China
| | - Li-Rong Jiang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China
| | - Zhong Ming Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China.
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
47
|
Santos AS, Almeida W, Popik B, Sbardelotto BM, Torrejais MM, Souza MA, Centenaro LA. Characterization of a cerebral palsy‐like model in rats: Analysis of gait pattern and of brain and spinal cord motor areas. Int J Dev Neurosci 2017; 60:48-55. [DOI: 10.1016/j.ijdevneu.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Adriana Souza Santos
- Laboratório de Morfologia Experimental, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Wellington Almeida
- Laboratório de Morfologia Experimental, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Bruno Popik
- Laboratório de Morfologia Experimental, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Bruno Marques Sbardelotto
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Márcia Miranda Torrejais
- Laboratório de Morfologia Experimental, Programa de Pós‐Graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| | - Marcelo Alves Souza
- Universidade Federal do Paraná, Rua General Rondon2195, ToledoParanáCEP: 85902‐090Brazil
| | - Lígia Aline Centenaro
- Laboratório de Morfologia Experimental, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária1619, CascavelParanáCEP: 85819‐110Brazil
| |
Collapse
|
48
|
Wang S, Li M, Guo Y, Li C, Wu L, Zhou XF, Luo Y, An D, Li S, Luo H, Pu L. Effects of Panax notoginseng ginsenoside Rb1 on abnormal hippocampal microenvironment in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:138-146. [PMID: 28065779 DOI: 10.1016/j.jep.2017.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
UNLABELLED Cerebral ischemia damages central neurons, and abnormal microenvironment in ischemic condition is the key factor to the damages. The increase of local concentration of glutamic acid, the overload of Ca2+, and the mitochondrial stress caused by release of cytochrome C are important factors of abnormal microenvironment in cerebral ischemia. In this study ginsenoside Rb1, a compound from Panax Notoginseng, was used to intervene abnormal environment of neurons in the hippocampal CA1 region in two animal models (microperfusion model and photothrombosis model). RESULTS Compared with the vehicle in the sham group, ginsenoside had following effects. a) ginsenoside Rb1 increased the regional cerebral blood flow (rCBF) and the stability of neuronal ultrastructure in in the hippocampal CA1 region and improved the adaptability of neurons in two models. b) ginsenoside Rb1 improved the expression level of glial glutamate transporter1 (GLT-1) and reversed the uptake of glutamate (Glu) after ischemia, and as a result thereby decreased the excitability of Glu and the expression level of GLT-1 was proportional to the dose of ginsenoside Rb1 and similar to that of Nimodipine. c) ginsenoside Rb1 inhibited the expression level of NMDAR and the overload of Ca2+, thereby reducing neuronal damages. Meanwhile, the expression level of NMDAR was inversely proportional to the dose of ginsenoside Rb1, which was similar to that of Nimodipine. d) ginsenoside Rb1 decreased the release of cytochrome C (Cyt-C) and reduced the damages caused by neuronal mitochondrial stress. Meanwhile, the release of Cyt-C was inversely proportional to the dose of ginsenoside Rb1, which was similar to that of Nimodipine. Ginsenoside Rb1 may be as an effective drug for neuroprotection and improve cerebral blood flow after acute ischemia and prevent the secondary brain damage induced by stroke.
Collapse
Affiliation(s)
- Shiyun Wang
- Department of Pharmacology, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China; Department of Pharmacology, Affiliated hospital of Xiangnan university, Chenzhou, Hunan, PR China
| | - Minghong Li
- Department of Physiology, College of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, PR China
| | - Ying Guo
- Department of Pharmacology, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China
| | - Chen Li
- Department of Pharmacology, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China
| | - Lanou Wu
- Department of Pharmacology, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China
| | - Xin-Fu Zhou
- School of Pharmacology and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Yaohui Luo
- Department of Basic Medical Experiment, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China
| | - Dong An
- Department of Pharmacology, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China
| | - Shude Li
- Department of Biochemistry, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China
| | - Haiyun Luo
- Department of Pharmacology, College of Basic Medicine, Kunming medical university, Kunming, Yunnan, PR China.
| | - Lijin Pu
- Department of Cardiology, First affiliated hospital of Kunming medical university, Kunming, Yunnan, PR China.
| |
Collapse
|
49
|
Pengyue Z, Tao G, Hongyun H, Liqiang Y, Yihao D. Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra. Biomed Pharmacother 2017; 90:69-76. [PMID: 28343073 DOI: 10.1016/j.biopha.2017.03.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/31/2022] Open
Abstract
Breviscapine is a flavonoid derived from a traditional Chinese herb Erigerin breviscapus (Vant.) Hand-Mazz, and has been extensively used in clinical treatment for cerebral stroke in China, but the underlying pharmacological mechanisms are still unclear. In present study, we investigated whether breviscapine could confer a neuroprotection against cerebral ischemia injury by targeting autophagy mechanisms. A cerebral stroke model in Sprague-Dawley rats was prepared by middle cerebral artery occlusion (MCAO), rats were then randomly divided into 5 groups: MCAO+Bre group, rats were treated with breviscapine; MCAO+Tat-Beclin-1 group, animals were administrated with specific autophagy inducer Tat-Beclin-1; MCAO+Bre+Tat-Beclin-1 group, rats were treated with both breviscapine and Tat-Beclin-1, MCAO+saline group, rats received the same volume of physiological saline, and Sham surgery group. The autophagy levels in infarct penumbra were evaluated by western blotting, real-time PCR and immunofluorescence 7days after the insult. Meanwhile, infarct volume, brain water content and neurological deficit score were assessed. The results illustrated that the infarct volume, brain water content and neurofunctional deficiency were significantly reduced by 7days of breviscapine treatment in MCAO+Bre group, compared with those in MCAO+saline group. Meanwhile, the western blotting, quantitative PCR and immunofluorescence showed that the autophagy in both neurons and astrocytes at the penumbra were markedly attenuated by breviscapine admininstration. Moreover, these pharmacological effects of breviscapine could be counteracted by autophagy inducer Tat-Beclin-1. Our study suggests that breviscapine can provide a neuroprotection against transient focal cerebral ischemia, and this biological function is associated with attenuating autophagy in both neurons and astrocytes.
Collapse
Affiliation(s)
- Zhang Pengyue
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Guo Tao
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - He Hongyun
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Liqiang
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Deng Yihao
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
50
|
Dexmedetomidine Attenuates Lipopolysaccharide Induced MCP-1 Expression in Primary Astrocyte. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6352159. [PMID: 28286770 PMCID: PMC5329661 DOI: 10.1155/2017/6352159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/29/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022]
Abstract
Background. Neuroinflammation which presents as a possible mechanism of delirium is associated with MCP-1, an important proinflammatory factor which is expressed on astrocytes. It is known that dexmedetomidine (DEX) possesses potent anti-inflammatory properties. This study aimed to investigate the potential effects of DEX on the production of MCP-1 in lipopolysaccharide-stimulated astrocytes. Materials and Methods. Astrocytes were treated with LPS (10 ng/ml, 50 ng/ml, 100 ng/ml, and 1000 ng/ml), DEX (500 ng/mL), LPS (100 ng/ml), and DEX (10, 100, and 500 ng/mL) for a duration of three hours; expression levels of MCP-1 were measured by real-time PCR. The double immunofluorescence staining protocol was utilized to determine the expression of α2-adrenoceptors (α2AR) and glial fibrillary acidic protein (GFAP) on astrocytes. Results. Expressions of MCP-1 mRNA in astrocytes were induced dose-dependently by LPS. Administration of DEX significantly inhibited the expression of MCP-1 mRNA (P < 0.001). Double immunofluorescence assay showed that α2AR colocalize with GFAP, which indicates the expression of α2-adrenoceptors in astrocytes. Conclusions. DEX is a potent suppressor of MCP-1 in astrocytes induced with lipopolysaccharide through α2A-adrenergic receptors, which potentially explains its beneficial effects in the treatment of delirium by attenuating neuroinflammation.
Collapse
|