1
|
Abasi M, Kianmehr A, Variji A, Sangali P, Mahrooz A. microRNAs as molecular tools for brain health: Neuroprotective potential in neurodegenerative disorders. Neuroscience 2025; 574:83-103. [PMID: 40210196 DOI: 10.1016/j.neuroscience.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/09/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
As research on microRNAs (miRNAs) advances, it is becoming increasingly clear that these small molecules play crucial roles in the central nervous system (CNS). They are involved in various essential neuronal functions, with specific miRNAs preferentially expressed in different cell types within the nervous system. Notably, certain miRNAs are found at higher levels in the brain and spinal cord compared to other tissues, suggesting they may have specialized functions in the CNS. miRNAs associated with long-term neurodegenerative changes could serve as valuable tools for early treatment decisions and disease monitoring. The significance of miRNAs such as miR-320, miR-146 and miR-29 in the early diagnosis of neurodegenerative disorders becomes evident, especially considering that many neurological and physical symptoms manifest only after substantial degeneration of specific neurons. Interestingly, serum miRNA levels such as miR-92 and miR-486 may correlate with various MRI parameters in multiple sclerosis. Targeting miRNAs using antisense strategies, such as antisense miR-146 and miR-485, may provide advantages over targeting mRNAs, as a single anti-miRNA can regulate multiple disease-related genes. In the future, anti-miRNA-based therapeutic approaches could be integrated into the clinical management of neurological diseases. Certain miRNAs, including miR-223, miR-106, miR-181, and miR-146, contribute to the pathogenesis of various neurodegenerative diseases and thus warrant greater attention. This knowledge could pave the way for the identification of new diagnostic, prognostic, and theranostic biomarkers, and potentially guiding the development of RNA-based therapeutic strategies. This review highlights recent research on the roles of miRNAs in the nervous system, particularly their protective functions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mozhgan Abasi
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anvarsadat Kianmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Athena Variji
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Parisa Sangali
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Liu G, Zhu D, Feng K, Peng H, Yang S, Huang L, Li P. The neurological damage caused by enterovirus 71 infection is associated with hsa_circ_0069335/miR-29b/PMP22 pathway. J Virol 2025; 99:e0084424. [PMID: 39636111 PMCID: PMC11784151 DOI: 10.1128/jvi.00844-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Enterovirus 71 (EV71) infection is usually accompanied by neurological damage, which is the leading cause of death in children with hand-foot-mouth disease. In this study, we demonstrated that EV71 infection can cause pathological damage in the nervous system, such as neuronal vacuolar degeneration, shrinkage of some neurons, edema of brain tissues in the hippocampus, and a decreased number of Nissl bodies in the infarction area. Also, EV71 infection caused apparent structural damage to Schwann cells, including a decreased number of cytoplasmic organelles and severe damage of rough endoplasmic reticulum and mitochondria. However, the pathological damage was alleviated with the decrease of EV71 viral load. The cell experiment in vitro showed that EV71 infection significantly reduced ATP levels and promoted Schwann cell apoptosis, thus inhibiting cell growth. The extended infection time and the decreased viral load resulted in the gradual improvement of cell growth status. Meanwhile, EV71 inhibited the expression of miR-29b and promoted the expression of PMP22 in a time-dependent manner at both mRNA and protein levels, with the most significant change at 36 h of infection. Subsequently, the expression of miR-29b and PMP22 was gradually restored with the reduction of EV71 viral load. In addition, EV71 regulated the expression of hsa_circ_0069335, which could bind and co-localize with miR-29b. Therefore, EV71 infection can cause significant damage to the nervous system and may be related to hsa_circ_0069335/miR-29b/PMP22 pathway. The present study provides a new therapeutic target for neurological damage induced by EV71 infection.IMPORTANCEEV71 can cause severe neurological damage and even death, but the mechanism remains unclear. In this study, we exhibited the pathological changes of nervous system in EV71 infection and revealed that the damage degree was consistent with the EV71 viral load. From the molecular perspective, EV71 infection up-regulated the PMP22 expression in Schwann cells, which is accompanied by apparent structural damage of Schwann cells and myelin sheaths. Furthermore, EV71 promoted the expression of PMP22 and inhibited the expression of miR-29b in a time-dependent manner, with the most significant change at 36 h of infection. Otherwise, the hsa_circ_0069335, which binds and co-localizes with miR-29b, was also regulated by EV71 infection. The hsa_circ_0069335/miR-29b/PMP22 axis may be a potential molecular mechanism involved in EV71 infection-induced fatal neuronal damage. Drug development targeting this pathway may bring clinical improvement of EV71-infected patients.
Collapse
Affiliation(s)
- Guangming Liu
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Danping Zhu
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kuan Feng
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongxia Peng
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sida Yang
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Huang
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peiqing Li
- Pediatric Emergency Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Wei C, Guo Y, Ci Z, Li M, Zhang Y, Zhou Y. Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. Biomed Pharmacother 2024; 175:116645. [PMID: 38729050 DOI: 10.1016/j.biopha.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.
Collapse
Affiliation(s)
- Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanxin Guo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mucong Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Nam YH, Park S, Yum Y, Jeong S, Park HE, Kim HJ, Lim J, Choi BO, Jung SC. Preclinical Efficacy of Peripheral Nerve Regeneration by Schwann Cell-like Cells Differentiated from Human Tonsil-Derived Mesenchymal Stem Cells in C22 Mice. Biomedicines 2023; 11:3334. [PMID: 38137555 PMCID: PMC10741921 DOI: 10.3390/biomedicines11123334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a hereditary disease with heterogeneous phenotypes and genetic causes. CMT type 1A (CMT1A) is a type of disease affecting the peripheral nerves and is caused by the duplication of the peripheral myelin protein 22 (PMP22) gene. Human tonsil-derived mesenchymal stem cells (TMSCs) are useful for stem cell therapy in various diseases and can be differentiated into Schwann cell-like cells (TMSC-SCs). We investigated the potential of TMSC-SCs called neuronal regeneration-promoting cells (NRPCs) for peripheral nerve and muscle regeneration in C22 mice, a model for CMT1A. We transplanted NRPCs manufactured in a good manufacturing practice facility into the bilateral thigh muscles of C22 mice and performed behavior and nerve conduction tests and histological and ultrastructural analyses. Significantly, the motor function was much improved, the ratio of myelinated axons was increased, and the G-ratio was reduced by the transplantation of NRPCs. The sciatic nerve and gastrocnemius muscle regeneration of C22 mice following the transplantation of NRPCs downregulated PMP22 overexpression, which was observed in a dose-dependent manner. These results suggest that NRPCs are feasible for clinical research for the treatment of CMT1A patients. Research applying NRPCs to other peripheral nerve diseases is also needed.
Collapse
Affiliation(s)
- Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
| | - Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
| | - Soyeon Jeong
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
| | - Hyo Eun Park
- Cellatoz Therapeutics Inc., Seongnam-si 13487, Gyeonggi-do, Republic of Korea; (H.E.P.); (H.J.K.); (J.L.)
| | - Ho Jin Kim
- Cellatoz Therapeutics Inc., Seongnam-si 13487, Gyeonggi-do, Republic of Korea; (H.E.P.); (H.J.K.); (J.L.)
| | - Jaeseung Lim
- Cellatoz Therapeutics Inc., Seongnam-si 13487, Gyeonggi-do, Republic of Korea; (H.E.P.); (H.J.K.); (J.L.)
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
5
|
Kumar A, Su Y, Sharma M, Singh S, Kim S, Peavey JJ, Suerken CK, Lockhart SN, Whitlow CT, Craft S, Hughes TM, Deep G. MicroRNA expression in extracellular vesicles as a novel blood-based biomarker for Alzheimer's disease. Alzheimers Dement 2023; 19:4952-4966. [PMID: 37071449 PMCID: PMC11663460 DOI: 10.1002/alz.13055] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 04/19/2023]
Abstract
INTRODUCTION Brain cell-derived small extracellular vesicles (sEVs) in blood offer unique cellular and molecular information related to the onset and progression of Alzheimer's disease (AD). We simultaneously enriched six specific sEV subtypes from the plasma and analyzed a selected panel of microRNAs (miRNAs) in older adults with/without cognitive impairment. METHODS Total sEVs were isolated from the plasma of participants with normal cognition (CN; n = 11), mild cognitive impairment (MCI; n = 11), MCI conversion to AD dementia (MCI-AD; n = 6), and AD dementia (n = 11). Various brain cell-derived sEVs (from neurons, astrocytes, microglia, oligodendrocytes, pericytes, and endothelial cells) were enriched and analyzed for specific miRNAs. RESULTS miRNAs in sEV subtypes differentially expressed in MCI, MCI-AD, and AD dementia compared to the CN group clearly distinguished dementia status, with an area under the curve (AUC) > 0.90 and correlated with the temporal cortical region thickness on magnetic resonance imaging (MRI). DISCUSSION miRNA analyses in specific sEVs could serve as a novel blood-based molecular biomarker for AD. HIGHLIGHTS Multiple brain cell-derived small extracellular vesicles (sEVs) could be isolated simultaneously from blood. MicroRNA (miRNA) expression in sEVs could detect Alzheimer's disease (AD) with high specificity and sensitivity. miRNA expression in sEVs correlated with cortical region thickness on magnetic resonance imaging (MRI). Altered expression of miRNAs in sEVCD31 and sEVPDGFRβ suggested vascular dysfunction. miRNA expression in sEVs could predict the activation state of specific brain cell types.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Yixin Su
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mitu Sharma
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sangeeta Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeremy J. Peavey
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Cynthia K. Suerken
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Samuel N. Lockhart
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christopher T. Whitlow
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Timothy M. Hughes
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
6
|
Pipis M, Won S, Poh R, Efthymiou S, Polke JM, Skorupinska M, Blake J, Rossor AM, Moran JJ, Munot P, Muntoni F, Laura M, Svaren J, Reilly MM. Post-transcriptional microRNA repression of PMP22 dose in severe Charcot-Marie-Tooth disease type 1. Brain 2023; 146:4025-4032. [PMID: 37337674 PMCID: PMC10545524 DOI: 10.1093/brain/awad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 06/21/2023] Open
Abstract
Copy number variation (CNV) may lead to pathological traits, and Charcot-Marie-Tooth disease type 1A (CMT1A), the commonest inherited peripheral neuropathy, is due to a genomic duplication encompassing the dosage-sensitive PMP22 gene. MicroRNAs act as repressors on post-transcriptional regulation of gene expression and in rodent models of CMT1A, overexpression of one such microRNA (miR-29a) has been shown to reduce the PMP22 transcript and protein level. Here we present genomic and functional evidence, for the first time in a human CNV-associated phenotype, of the 3' untranslated region (3'-UTR)-mediated role of microRNA repression on gene expression. The proband of the family presented with an early-onset, severe sensorimotor demyelinating neuropathy and harboured a novel de novo deletion in the PMP22 3'-UTR. The deletion is predicted to include the miR-29a seed binding site and transcript analysis of dermal myelinated nerve fibres using a novel platform, revealed a marked increase in PMP22 transcript levels. Functional evidence from Schwann cell lines harbouring the wild-type and mutant 3'-UTR showed significantly increased reporter assay activity in the latter, which was not ameliorated by overexpression of a miR-29a mimic. This shows the importance of miR-29a in regulating PMP22 expression and opens an avenue for therapeutic drug development.
Collapse
Affiliation(s)
- Menelaos Pipis
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Seongsik Won
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | - Roy Poh
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Stephanie Efthymiou
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - James M Polke
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mariola Skorupinska
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Julian Blake
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Alexander M Rossor
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - John J Moran
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | - Pinki Munot
- Dubowitz Neuromuscular Centre, NIHR Biomedical Research Centre at UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Biomedical Research Centre at UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Matilde Laura
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
7
|
Lim YJ, Jung GN, Park WT, Seo MS, Lee GW. Therapeutic potential of small extracellular vesicles derived from mesenchymal stem cells for spinal cord and nerve injury. Front Cell Dev Biol 2023; 11:1151357. [PMID: 37035240 PMCID: PMC10073723 DOI: 10.3389/fcell.2023.1151357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Neural diseases such as compressive, congenital, and traumatic injuries have diverse consequences, from benign mild sequelae to severe life-threatening conditions with associated losses of motor, sensory, and autonomic functions. Several approaches have been adopted to control neuroinflammatory cascades. Traditionally, mesenchymal stem cells (MSCs) have been regarded as therapeutic agents, as they possess growth factors and cytokines with potential anti-inflammatory and regenerative effects. However, several animal model studies have reported conflicting outcomes, and therefore, the role of MSCs as a regenerative source for the treatment of neural pathologies remains debatable. In addition, issues such as heterogeneity and ethical issues limited their use as therapeutic agents. To overcome the obstacles associated with the use of traditional agents, we explored the therapeutic potentials of extracellular vesicles (EVs), which contain nucleic acids, functional proteins, and bioactive lipids, and play crucial roles in immune response regulation, inflammation reduction, and cell-to-cell communication. EVs may surpass MSCs in size issue, immunogenicity, and response to the host environment. However, a comprehensive review is required on the therapeutic potential of EVs for the treatment of neural pathologies. In this review, we discuss the action mechanism of EVs, their potential for treating neural pathologies, and future perspectives regarding their clinical applications.
Collapse
Affiliation(s)
- Young-Ju Lim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Gyeong Na Jung
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Wook-Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Min-Soo Seo
- Department of Veterinary Tissue Engineering, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
8
|
Zhang N, Zhu HP, Huang W, Wen X, Xie X, Jiang X, Peng C, Han B, He G. Unraveling the structures, functions and mechanisms of epithelial membrane protein family in human cancers. Exp Hematol Oncol 2022; 11:69. [PMID: 36217151 PMCID: PMC9552464 DOI: 10.1186/s40164-022-00321-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023] Open
Abstract
Peripheral myelin protein 22 (PMP22) and epithelial membrane proteins (EMP-1, -2, and -3) belong to a small hydrophobic membrane protein subfamily, with four transmembrane structures. PMP22 and EMPs are widely expressed in various tissues and play important roles in cell growth, differentiation, programmed cell death, and metastasis. PMP22 presents its highest expression in the peripheral nerve and participates in normal physiological and pathological processes of the peripheral nervous system. The progress of molecular genetics has shown that the genetic changes of the PMP22 gene, including duplication, deletion, and point mutation, are behind various hereditary peripheral neuropathies. EMPs have different expression patterns in diverse tissues and are closely related to the risk of malignant tumor progression. In this review, we focus on the four members in this protein family which are related to disease pathogenesis and discuss gene mutations and post-translational modification of them. Further research into the interactions between structural alterations and function of PMP22 and EMPs will help understand their normal physiological function and role in diseases and might contribute to developing novel therapeutic tools.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re‑Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
9
|
Borger A, Stadlmayr S, Haertinger M, Semmler L, Supper P, Millesi F, Radtke C. How miRNAs Regulate Schwann Cells during Peripheral Nerve Regeneration-A Systemic Review. Int J Mol Sci 2022; 23:3440. [PMID: 35408800 PMCID: PMC8999002 DOI: 10.3390/ijms23073440] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/18/2023] Open
Abstract
A growing body of studies indicate that small noncoding RNAs, especially microRNAs (miRNA), play a crucial role in response to peripheral nerve injuries. During Wallerian degeneration and regeneration processes, they orchestrate several pathways, in particular the MAPK, AKT, and EGR2 (KROX20) pathways. Certain miRNAs show specific expression profiles upon a nerve lesion correlating with the subsequent nerve regeneration stages such as dedifferentiation and with migration of Schwann cells, uptake of debris, neurite outgrowth and finally remyelination of regenerated axons. This review highlights (a) the specific expression profiles of miRNAs upon a nerve lesion and (b) how miRNAs regulate nerve regeneration by acting on distinct pathways and linked proteins. Shedding light on the role of miRNAs associated with peripheral nerve regeneration will help researchers to better understand the molecular mechanisms and deliver targets for precision medicine.
Collapse
Affiliation(s)
- Anton Borger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Sarah Stadlmayr
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Maximilian Haertinger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Lorenz Semmler
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Paul Supper
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| |
Collapse
|
10
|
Jauhari A, Singh T, Yadav S. Neurodevelopmental Disorders and Neurotoxicity: MicroRNA in Focus. J Chem Neuroanat 2022; 120:102072. [DOI: 10.1016/j.jchemneu.2022.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
11
|
Shen Y, Cheng Z, Chen S, Zhang Y, Chen Q, Yi S. Dysregulated miR-29a-3p/PMP22 Modulates Schwann Cell Proliferation and Migration During Peripheral Nerve Regeneration. Mol Neurobiol 2021; 59:1058-1072. [PMID: 34837628 DOI: 10.1007/s12035-021-02589-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022]
Abstract
Schwann cells switch to a repair phenotype following peripheral nerve injury and create a favorable microenvironment to drive nerve repair. Many microRNAs (miRNAs) are differentially expressed in the injured peripheral nerves and play essential roles in regulating Schwann cell behaviors. Here, we examine the temporal expression patterns of miR-29a-3p after peripheral nerve injury and demonstrate significant up-regulation of miR-29a-3p in injured sciatic nerves. Elevated miR-29a-3p inhibits Schwann cell proliferation and migration, while suppressed miR-29a-3p executes reverse effects. In vivo injection of miR-29a-3p agomir to rat sciatic nerves hinders the proliferation and migration of Schwann cells, delays the elongation and myelination of axons, and retards the functional recovery of injured nerves. Mechanistically, miR-29a-3p modulates Schwann cell activities via negatively regulating peripheral myelin protein 22 (PMP22), and PMP22 extensively affects Schwann cell metabolism. Our results disclose the vital role of miR-29a-3p/PMP22 in regulating Schwann cell phenotype following sciatic nerve injury and shed light on the mechanistic basis of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhangchun Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China
| | - Sailing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yunsong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong, 226001, Jiangsu, China.
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
12
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
13
|
Wrestling and Wrapping: A Perspective on SUMO Proteins in Schwann Cells. Biomolecules 2021; 11:biom11071055. [PMID: 34356679 PMCID: PMC8301837 DOI: 10.3390/biom11071055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Schwann cell development and peripheral nerve myelination are finely orchestrated multistep processes; some of the underlying mechanisms are well described and others remain unknown. Many posttranslational modifications (PTMs) like phosphorylation and ubiquitination have been reported to play a role during the normal development of the peripheral nervous system (PNS) and in demyelinating neuropathies. However, a relatively novel PTM, SUMOylation, has not been studied in these contexts. SUMOylation involves the covalent attachment of one or more small ubiquitin-like modifier (SUMO) proteins to a substrate, which affects the function, cellular localization, and further PTMs of the conjugated protein. SUMOylation also regulates other proteins indirectly by facilitating non-covalent protein–protein interaction via SUMO interaction motifs (SIM). This pathway has important consequences on diverse cellular processes, and dysregulation of this pathway has been reported in several diseases including neurological and degenerative conditions. In this article, we revise the scarce literature on SUMOylation in Schwann cells and the PNS, we propose putative substrate proteins, and we speculate on potential mechanisms underlying the possible involvement of this PTM in peripheral myelination and neuropathies.
Collapse
|
14
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
15
|
Wang H, Davison M, Wang K, Xia TH, Call KM, Luo J, Wu X, Zuccarino R, Bacha A, Bai Y, Gutmann L, Feely SME, Grider T, Rossor AM, Reilly MM, Shy ME, Svaren J. MicroRNAs as Biomarkers of Charcot-Marie-Tooth Disease Type 1A. Neurology 2021; 97:e489-e500. [PMID: 34031204 DOI: 10.1212/wnl.0000000000012266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine whether microRNAs (miRs) are elevated in the plasma of individuals with the inherited peripheral neuropathy Charcot-Marie-Tooth disease type 1A (CMT1A), miR profiling was employed to compare control and CMT1A plasma. METHODS We performed a screen of CMT1A and control plasma samples to identify miRs that are elevated in CMT1A using next-generation sequencing, followed by validation of selected miRs by quantitative PCR, and correlation with protein biomarkers and clinical data: Rasch-modified CMT Examination and Neuropathy Scores, ulnar compound muscle action potentials, and motor nerve conduction velocities. RESULTS After an initial pilot screen, a broader screen confirmed elevated levels of several muscle-associated miRNAs (miR1, -133a, -133b, and -206, known as myomiRs) along with a set of miRs that are highly expressed in Schwann cells of peripheral nerve. Comparison to other candidate biomarkers for CMT1A (e.g., neurofilament light) measured on the same sample set shows a comparable elevation of several miRs (e.g., miR133a, -206, -223) and ability to discriminate cases from controls. Neurofilament light levels were most highly correlated with miR133a. In addition, the putative Schwann cell miRs (e.g., miR223, -199a, -328, -409, -431) correlate with the recently described transmembrane protease serine 5 (TMPRSS5) protein biomarker that is most highly expressed in Schwann cells and also elevated in CMT1A plasma. CONCLUSIONS These studies identify a set of miRs that are candidate biomarkers for clinical trials in CMT1A. Some of the miRs may reflect Schwann cell processes that underlie the pathogenesis of the disease. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that a set of plasma miRs are elevated in patients with CMT1A.
Collapse
Affiliation(s)
- Hongge Wang
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Matthew Davison
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Kathryn Wang
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Tai-He Xia
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Katherine M Call
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Jun Luo
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Xingyao Wu
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Riccardo Zuccarino
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Alexa Bacha
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Yunhong Bai
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Laurie Gutmann
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Shawna M E Feely
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Tiffany Grider
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Alexander M Rossor
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Mary M Reilly
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - Michael E Shy
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison
| | - John Svaren
- From Translational Sciences (H.W., M.D., K.W., T.X., K.M.C.), Sanofi Research; Biostatistics and Programming (J.L.), Sanofi Development, Framingham, MA; Department of Neurology (X.W., R.Z., A.B., Y.B., L.G., S.M.E.F., T.G., M.E.S.), Carver College of Medicine, University of Iowa, Iowa City; Department of Neuromuscular Diseases (A.M.R., M.M.R.), UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College London, UK; and Waisman Center and Department of Comparative Biosciences (J.S.), University of Wisconsin, Madison.
| |
Collapse
|
16
|
Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci 2021; 420:117202. [PMID: 33183778 DOI: 10.1016/j.jns.2020.117202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairment (CI) is a frequent complication affecting people with multiple sclerosis (MS). The causes of CI in MS are not fully understood. Besides MRI measures, few other biomarkers exist to help us predict the development of CI and understand its biology. MicroRNAs (miRs) are relatively stable, non-coding RNA molecules about 22 nucleotides in length that can serve as biomarkers and possible therapeutic targets in several autoimmune and neurodegenerative diseases, including the dementias. In this review, we identify dysregulated miRs in MS that overlap with dysregulated miRs in cognitive disorders and dementia and explore how these overlapping miRs play a role in CI in MS. MiR-15, miR-21, miR-128, miR-132, miR-138, miR-142, miR-146a, miR-155, miR-181, miR-572, and let-7 are known to contribute to various forms of dementia and show abnormal expression in MS. These overlapping miRs are involved in pathways related to apoptosis, neuroinflammation, glutamate toxicity, astrocyte activation, microglial burst activity, synaptic dysfunction, and remyelination. The mechanisms of action suggest that these miRs may be related to CI in MS. From our review, we also delineated miRs that could be neuroprotective in MS, namely miR-23a, miR-219, miR-214, and miR-22. Further studies can help clarify if these miRs are responsible for CI in MS, leading to potential therapeutic targets.
Collapse
Affiliation(s)
- Aditi Vian Varma-Doyle
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America
| | - Walter J Lukiw
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Ophthalmology, United States of America
| | - Yuhai Zhao
- Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America
| | - Jesus Lovera
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America.
| | - Deidre Devier
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America.
| |
Collapse
|
17
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
18
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
19
|
Li J, Durose WW, Ito J, Kakita A, Iguchi Y, Katsuno M, Kunisawa K, Shimizu T, Ikenaka K. Exploring the factors underlying remyelination arrest by studying the post-transcriptional regulatory mechanisms of cystatin F gene. J Neurochem 2020; 157:2070-2090. [PMID: 32947653 DOI: 10.1111/jnc.15190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/11/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
Remyelination plays an important role in determining the fate of demyelinating disorders. However, it is arrested during chronic disease states. Cystatin F, a papain-like lysosomal cysteine proteinase inhibitor, is a crucial regulator of demyelination and remyelination. Using hemizygous proteolipid protein transgenic 4e (PLP4e/- ) mice, an animal model of chronic demyelination, we found that cystatin F mRNA expression was induced at 2.5 months of age and up-regulated in the early phase of demyelination, but significantly decreased in the chronic phase. We next investigated cystatin F regulatory factors as potential mechanisms of remyelination arrest in chronic demyelinating disorders. We used the CysF-STOP-tetO::Iba-mtTA mouse model, in which cystatin F gene expression is driven by the tetracycline operator. Interestingly, we found that forced cystatin F mRNA over-expression was eventually decreased. Our findings show that cystatin F expression is modulated post-transcriptionally. We next identified embryonic lethal, abnormal vision, drosophila like RNA-binding protein 1 (ELAVL-1), and miR29a as cystatin F mRNA stabilizing and destabilizing factors, respectively. These roles were confirmed in vitro in NIH3T3 cells. Using postmortem plaque samples from human multiple sclerosis patients, we also confirmed that ELAVL-1 expression was highly correlated with the previously reported expression pattern of cystatin F. These data indicate the important roles of ELAVL-1 and miR29a in regulating cystatin F expression. Furthermore, they provide new insights into potential therapeutic targets for demyelinating disorders.
Collapse
Affiliation(s)
- Jiayi Li
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wilaiwan Wisessmith Durose
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.,Department of Pediatrics, Hematology University of Minnesota, Minneapolis, MN, USA
| | - Junko Ito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuo Kunisawa
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Research Division of Advanced Diagnostic System, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Takeshi Shimizu
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
20
|
Thenmozhi R, Lee JS, Park NY, Choi BO, Hong YB. Gene Therapy Options as New Treatment for Inherited Peripheral Neuropathy. Exp Neurobiol 2020; 29:177-188. [PMID: 32624504 PMCID: PMC7344374 DOI: 10.5607/en20004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited peripheral neuropathy (IPN) is caused by heterogeneous genetic mutations in more than 100 genes. So far, several treatment options for IPN have been developed and clinically evaluated using small molecules. However, gene therapy-based therapeutic strategies have not been aggressively investigated, likely due to the complexities of inheritance in IPN. Indeed, because the majority of the causative mutations of IPN lead to gain-of-function rather than loss-of-function, developing a therapeutic strategy is more difficult, especially considering gene therapy for genetic diseases began with the simple idea of replacing a defective gene with a functional copy. Recent advances in gene manipulation technology have brought novel approaches to gene therapy and its clinical application for IPN treatment. For example, in addition to the classically used gene replacement for mutant genes in recessively inherited IPN, other techniques including gene addition to modify the disease phenotype, modulations of target gene expression, and techniques to edit mutant genes have been developed and evaluated as potent therapeutic strategies for dominantly inherited IPN. In this review, the current status of gene therapy for IPN and future perspectives will be discussed.
Collapse
Affiliation(s)
| | - Ji-Su Lee
- Stem Cell & Regenerative Medicne Institute, Samsung Medical Center, Seoul 06351, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Na Young Park
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Byung-Ok Choi
- Stem Cell & Regenerative Medicne Institute, Samsung Medical Center, Seoul 06351, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| |
Collapse
|
21
|
Zhang L, Geng Z, Wan Y, Meng F, Meng X, Wang L. Functional analysis of miR-767-5p during the progression of hepatocellular carcinoma and the clinical relevance of its dysregulation. Histochem Cell Biol 2020; 154:231-243. [PMID: 32333091 DOI: 10.1007/s00418-020-01878-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 02/08/2023]
Abstract
Aberrant microRNA (miRNA) expression is a central hallmark of hepatocellular carcinoma (HCC) and identification of the mechanisms underlying the miRNA actions should provide invaluable resource for revealing the molecular basis of different malignant behaviors in HCC. Previous high-throughput analysis has identified miR-767-5p as a unique miRNA signature of HCC, but the biological relevance and corresponding molecular basis of miR-767-5p in HCC is still in its infancy. The current study was, therefore, designed to elucidate whether changes in miR-767-5p expression levels affect HCC pathogenesis, and to further identify the putative targets. miR-767-5p expression was observed to be upregulated by ~ 3.7-fold in surgical HCC specimens as compared to that in adjacent normal hepatic tissues, and this up-regulation trend correlated well to disease progression and predicted a poor prognosis in HCC patients. Functionally, miR-767-5p-overexpressing cells had a significantly higher proliferative, migratory, and invasive potential, and exhibited an enhanced anchorage-dependent clonogenesis and a tumor formation potential in vivo. Mechanistically, PMP22, a core component of integral membrane glycoprotein of peripheral nervous system myelin, was further identified as a direct down-stream target of miR-767-5p in HCC cells. Conversely, stable ectopic expression of PMP22 abrogated the promoting effects of miR-767-5p on HCC aggressive phenotype. Collectively, the available data suggest that as a potent oncomiR, miR-767-5p actions along HCC progression are in part mediated by its function as a posttranscriptional repressor of PMP22 signaling.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 177 Yanta West Road, Xi'an, 710061, China
| | - Zhimin Geng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 177 Yanta West Road, Xi'an, 710061, China
| | - Yong Wan
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 177 Yanta West Road, Xi'an, 710061, China
| | - Fandi Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 177 Yanta West Road, Xi'an, 710061, China
| | - Xiankui Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 177 Yanta West Road, Xi'an, 710061, China
| | - Lin Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 177 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
22
|
Hou J, Zhuo H, Chen X, Cheng J, Zheng W, Zhong M, Cai J. MiR-139-5p negatively regulates PMP22 to repress cell proliferation by targeting the NF-κB signaling pathway in gastric cancer. Int J Biol Sci 2020; 16:1218-1229. [PMID: 32174796 PMCID: PMC7053325 DOI: 10.7150/ijbs.40338] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/18/2020] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors worldwide. Peripheral myelin protein 22 (PMP22) is a 22-kDa tetraspan glycoprotein that is predominantly expressed by myelinating Schwann cells. However, recent studies have shown that PMP22 is closely related to cell proliferation and tumorigenesis in different cancers. In this study, we discovered a new miRNA that regulates PMP22 and gastric cancer cell prolifration. Our bioinformatics analysis suggested that there is a conserved miRNA recognition site for miR-139-5p on the 3' UTR of PMP22. Interestingly, our results showed overexpression of miR-139-5p significantly suppressed growth and prolifration in GC cells and inhibited tumor growth in nude mice xenografted with GC cells. MiR-139-5p suppressed the activity of a luciferase reporter containing the PMP22-3' UTR, and the ectopic expression of PMP22 rescued the miR-139-5p-mediated inhibition of cell proliferation in GC cells. Mechanistically, miR-139-5p may negatively regulate PMP22 to repress cell proliferation by targeting the NF-κB signaling pathway in gastric cancer. Finally, overexpression of miR-139-5p significantly inhibited tumor growth in nude mice xenografted with GC cells.and the miR-139-5p levels were inversely correlated with PMP22 expression in nude mice tumor. Taken together, our data suggest an important regulatory role of miR-139-5p in gastric cancer, suggesting that miR-139-5p and PMP22 might be important diagnostic or therapeutic targets for gastric cancer and other human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianchun Cai
- ✉ Corresponding author: Prof. Jian-chun Cai, PhD, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China 361004, Tel/Fax: (86-592) 229-2799,
| |
Collapse
|
23
|
Serfecz J, Bazick H, Al Salihi MO, Turner P, Fields C, Cruz P, Renne R, Notterpek L. Downregulation of the human peripheral myelin protein 22 gene by miR-29a in cellular models of Charcot-Marie-Tooth disease. Gene Ther 2019; 26:455-464. [PMID: 31455873 PMCID: PMC6920087 DOI: 10.1038/s41434-019-0098-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
The majority of hereditary neuropathies are caused by duplication of the peripheral myelin protein 22 (PMP22) gene. Therefore, mechanisms to suppress the expression of the PMP22 gene have high therapeutic significance. Here we asked whether the human PMP22 gene is a target for regulation by microRNA 29a (miR-29a). Using bioinformatics, we determined that the human PMP22 gene contains the conserved seed sequence of the miR-29a binding site and this regulatory motif is included in the duplicated region in neuropathic patients. Using luciferase reporter assays in HEK293 cells, we demonstrated that transient transfection of a miR-29a mimic is associated with reduction in PMP22 3'UTR reporter activity. Transfecting normal and humanized transgenic neuropathic mouse Schwann cells with a miR-29a expression plasmid effectively lowered both the endogenous mouse and the transgenic human PMP22 transcripts compared with control vector. In dermal fibroblasts derived from neuropathic patients, ectopic expression of miR-29a led to ~50% reduction in PMP22 mRNA, which corresponded to ~20% decrease in PMP22 protein levels. Significantly, miR-29a-mediated reduction in PMP22 mitigated the reduced mitotic capacity of the neuropathic cells. Together, these results support further testing of miR-29a and/or PMP22-targeting siRNAs as therapeutic agents for correcting the aberrant expression of PMP22 in neuropathic patients.
Collapse
Affiliation(s)
- Jacquelyn Serfecz
- Department of Molecular Genetics & Microbiology, College of Medicine University of Florida, Gainesville, FL, 32610, USA
| | - Hannah Bazick
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, FL, 32610, USA
| | - Mohammed Omar Al Salihi
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, FL, 32610, USA
| | - Peter Turner
- Department of Molecular Genetics & Microbiology, College of Medicine University of Florida, Gainesville, FL, 32610, USA
| | - Christopher Fields
- Department of Molecular Genetics & Microbiology, College of Medicine University of Florida, Gainesville, FL, 32610, USA
| | - Pedro Cruz
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine University of Florida, Gainesville, FL, 32610, USA
| | - Rolf Renne
- Department of Molecular Genetics & Microbiology, College of Medicine University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, College of Medicine University of Florida, Gainesville, FL, 32610, USA
| | - Lucia Notterpek
- Department of Neuroscience, College of Medicine University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
24
|
Pantera H, Shy ME, Svaren J. Regulating PMP22 expression as a dosage sensitive neuropathy gene. Brain Res 2019; 1726:146491. [PMID: 31586623 DOI: 10.1016/j.brainres.2019.146491] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Structural variation in the human genome has emerged as a major cause of disease as genomic data have accumulated. One of the most common structural variants associated with human disease causes the heritable neuropathy known as Charcot-Marie-Tooth (CMT) disease type 1A. This 1.4 Mb duplication causes nearly half of the CMT cases that are genetically diagnosed. The PMP22 gene is highly induced in Schwann cells during development, although its precise role in myelin formation and homeostasis is still under active investigation. The PMP22 gene can be considered as a nucleoprotein complex with enzymatic activity to produce the PMP22 transcript, and the complex is allosterically regulated by transcription factors that respond to intracellular signals and epigenomic modifications. The control of PMP22 transcript levels has been one of the major therapeutic targets of therapy development, and this review summarizes those approaches as well as efforts to characterize the regulation of the PMP22 gene.
Collapse
Affiliation(s)
- Harrison Pantera
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
25
|
Rabie M, Yanay N, Fellig Y, Konikov-Rozenman J, Nevo Y. Improvement of motor conduction velocity in hereditary neuropathy of LAMA2-CMD dy 2J/dy 2J mouse model by glatiramer acetate. Clin Neurophysiol 2019; 130:1988-1994. [PMID: 31476705 DOI: 10.1016/j.clinph.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/19/2019] [Accepted: 07/20/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Glatiramer acetate (GA), an agent modulating the immune system, has been shown to cause significantly improved mobility and hind limb muscle strength in the dy2J/dy2J mouse model for LAMA2-congenital muscular dystrophy (LAMA2-CMD). In view of these findings and the prominent peripheral nervous system involvement in this laminin-α2 disorder we evaluated GA's effect on dy2J/dy2J motor nerve conduction electrophysiologically. METHODS Left sciatic-tibial motor nerve conduction studies were performed on wild type (WT) mice (n = 10), control dy2J/dy2J mice (n = 11), and GA treated dy2J/dy2J mice (n = 10) at 18 weeks of age. RESULTS Control dy2J/dy2J mice average velocities (34.49 ± 2.15 m/s) were significantly slower than WT (62.57 ± 2.23 m/s; p < 0.0005), confirming the clinical observation of hindlimb paresis in dy2J/dy2J mice attributed to peripheral neuropathy. GA treated dy2J/dy2J mice showed significantly improved average sciatic-tibial motor nerve conduction velocity versus control dy2J/dy2J (50.35 ± 2.9 m/s; p < 0.0005). CONCLUSION In this study we show for the first time improvement in motor nerve conduction velocity of LAMA2-CMD dy2J/dy2J mouse model's hereditary peripheral neuropathy following GA treatment. SIGNIFICANCE This study suggests a possible therapeutic effect of glatiramer acetate on hereditary peripheral neuropathy in this laminin-α2 disorder.
Collapse
Affiliation(s)
- Malcolm Rabie
- Institute of Neurology, Schneider Children's Medical Center of Israel, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel; Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Nurit Yanay
- Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah-Hebrew-University-Medical-Center, Kiryat Hadassah P.O.B. 12000, Jerusalem 91120, Israel
| | - Jenya Konikov-Rozenman
- Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Yoram Nevo
- Institute of Neurology, Schneider Children's Medical Center of Israel, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel; Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, 14 Kaplan Street, Petach Tikva 49202, Israel.
| |
Collapse
|
26
|
Kobayashi M, Benakis C, Anderson C, Moore MJ, Poon C, Uekawa K, Dyke JP, Fak JJ, Mele A, Park CY, Zhou P, Anrather J, Iadecola C, Darnell RB. AGO CLIP Reveals an Activated Network for Acute Regulation of Brain Glutamate Homeostasis in Ischemic Stroke. Cell Rep 2019; 28:979-991.e6. [PMID: 31340158 PMCID: PMC6784548 DOI: 10.1016/j.celrep.2019.06.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/11/2018] [Accepted: 06/21/2019] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional regulation by microRNAs (miRNAs) is essential for complex molecular responses to physiological insult and disease. Although many disease-associated miRNAs are known, their global targets and culminating network effects on pathophysiology remain poorly understood. We applied Argonaute (AGO) crosslinking immunoprecipitation (CLIP) to systematically elucidate altered miRNA-target interactions in brain following ischemia and reperfusion (I/R) injury. Among 1,190 interactions identified, the most prominent was the cumulative loss of target regulation by miR-29 family members. Integration of translational and time-course RNA profiles revealed a dynamic mode of miR-29 target de-regulation, led by acute translational activation and a later increase in RNA levels, allowing rapid proteomic changes to take effect. These functional regulatory events rely on canonical and non-canonical miR-29 binding and engage glutamate reuptake signals, such as glial glutamate transporter (GLT-1), to control local glutamate levels. These results uncover a miRNA target network that acts acutely to maintain brain homeostasis after ischemic stroke.
Collapse
Affiliation(s)
- Mariko Kobayashi
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Corinne Benakis
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61(st) Street, New York, NY 10065, USA
| | - Corey Anderson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61(st) Street, New York, NY 10065, USA
| | - Michael J Moore
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Carrie Poon
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61(st) Street, New York, NY 10065, USA
| | - Ken Uekawa
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61(st) Street, New York, NY 10065, USA
| | - Jonathan P Dyke
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medicine, 516 East 72(nd) Street, New York, NY 10021, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Aldo Mele
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Christopher Y Park
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61(st) Street, New York, NY 10065, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61(st) Street, New York, NY 10065, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61(st) Street, New York, NY 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
27
|
Lee JS, Kwak G, Kim HJ, Park HT, Choi BO, Hong YB. miR-381 Attenuates Peripheral Neuropathic Phenotype Caused by Overexpression of PMP22. Exp Neurobiol 2019; 28:279-288. [PMID: 31138995 PMCID: PMC6526106 DOI: 10.5607/en.2019.28.2.279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Charcot-Marie Tooth disease type 1A (CMT1A), the major type of CMT, is caused by duplication of peripheral myelin protein 22 (PMP22) gene whose overexpression causes structural and functional abnormalities in myelination. We investigated whether miRNA-mediated regulation of PMP22 expression could reduce the expression level of PMP22, thereby alleviating the demyelinating neuropathic phenotype of CMT1A. We found that several miRNAs were down-regulated in C22 mouse, a CMT1A mouse model. Among them, miR-381 could target 3′ untranslated region (3′UTR) of PMP22 in vitro based on Western botting and quantitative Real Time-PCR (qRT-PCR) results. In vivo efficacy of miR-381 was assessed by administration of LV-miR-381, an miR-381 expressing lentiviral vector, into the sciatic nerve of C22 mice by a single injection at postnatal day 6 (p6). Administration of LV-miR-381 reduced expression level of PMP22 along with elevated level of miR-381 in the sciatic nerve. Rotarod performance analysis revealed that locomotor coordination of LV-miR-381 administered C22 mice was significantly enhanced from 8 weeks post administration. Electrophysiologically, increased motor nerve conduction velocity was observed in treated mice. Histologically, toluidine blue staining and electron microscopy revealed that structural abnormalities of myelination were improved in sciatic nerves of LV-miR-381 treated mice. Therefore, delivery of miR-381 ameliorated the phenotype of peripheral neuropathy in CMT1A mouse model by down-regulating PMP22 expression. These data suggest that miRNA can be used as a potent therapeutic strategy to control diseases with copy number variations such as CMT1A.
Collapse
Affiliation(s)
- Ji-Su Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Geon Kwak
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Hye Jin Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Hwan-Tae Park
- Department of Physiology, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| |
Collapse
|
28
|
Lu G, Zhang M, Wang J, Zhang K, Wu S, Zhao X. Epigenetic regulation of myelination in health and disease. Eur J Neurosci 2019; 49:1371-1387. [DOI: 10.1111/ejn.14337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Guozhen Lu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Jian Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Kaixiang Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Xianghui Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| |
Collapse
|
29
|
Yin H, Shen L, Xu C, Liu J. Lentivirus-Mediated Overexpression of miR-29a Promotes Axonal Regeneration and Functional Recovery in Experimental Spinal Cord Injury via PI3K/Akt/mTOR Pathway. Neurochem Res 2018; 43:2038-2046. [PMID: 30173324 DOI: 10.1007/s11064-018-2625-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/24/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs as a novel class of endogenous small non-coding RNAs, modulate negative gene expression at the post-transcriptional level. Our previous work has demonstrated that miR-29a reduces PTEN expression by directly targeting the 3'-UTRs (untranslated regions) of its mRNA, thus promoting neurite outgrowth. To further confirm the role of miR-29a in the recovery of SCI and its potential mechanisms, a recombinant lentiviral vector was used to promote miR-29a expression in the injured spinal cord. As compared with the LV-eGFP group and normal saline group, a significantly increased level of miR-29a expression and a markedly decreased level of PTEN expression were observed in the LV-miR-29a group. Overexpression of miR-29a increased the phosphorylation of two proteins (Akt and S6) of PI3K-AKT-mTOR signaling pathway and the expression of axonal regeneration associated key marker protein (neurofiament-200). Moreover, quantitative imaging analysis was performed to confirm that LV-miR-29a group expressed axonal regeneration at 4.0 ± 0.2-fold as much as the other two groups. Besides, miR-29a overexpression promoted hindlimb motor functional recovery. Collectively, these results suggested that miR-29a may be an important regulator for axon regeneration, and a potential therapeutic target for SCI recovery.
Collapse
Affiliation(s)
- Hua Yin
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.,Department of Orthopedics, The Jintan Affiliated Hospital of Jiangsu University, Jintan, 213200, Jiangsu, China
| | - Liming Shen
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Chao Xu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jinbo Liu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
30
|
Lv H, Li J, Che YQ. MicroRNA-150 contributes to ischemic stroke through its effect on cerebral cortical neuron survival and function by inhibiting ERK1/2 axis via Mal. J Cell Physiol 2018; 234:1477-1490. [PMID: 30144062 DOI: 10.1002/jcp.26960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Ischemic stroke, caused by the blockage of blood supply, is a major cause of death worldwide. For identifying potential candidates, we explored the effects microRNA-150 (miR-150) has on ischemic stroke and its underlying mechanism by developing a stable middle cerebral artery occlusion (MCAO) rat model. Gene expression microarray analysis was performed to screen differentially expressed genes associated with MCAO. We evaluated the expression of miR-150 and Mal and the status of ERK1/2 axis in the brain tissues of MCAO rats. Then the cerebral cortical neurons (CCNs) were obtained and introduced with elevated or suppressed miR-150 or silenced Mal to validate regulatory mechanisms for miR-150 governing Mal in vitro. The relationship between miR-150 and Mal was verified by dual luciferase reporter gene assay. Besides, cell growth and apoptosis of CCNs were detected by means of MTT assay and flow cytometry analyses. We identified Mal as a downregulated gene in MCAO, based on the microarray data of GSE16561. MiR-150 was over-expressed and negatively targeted Mal in the brain tissues obtained from MCAO rats and their CCNs. Increasing miR-150 blocked the ERK1/2 axis, resulting in an inhibited cell growth of CNNs but an enhanced apoptosis. Furthermore, MiR-150 inhibition was observed to have effects on CNNs as opposed to those inhibited by miR-150 promotion. The key findings of this study support the notion that miR-150 under-expression-mediated direct promotion of Mal protects CNN functions through the activation of the ERK1/2 axis, and underscore the concept that miR-150 may represent a novel pharmacological target for ischemic stroke intervention.
Collapse
Affiliation(s)
- Hui Lv
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jie Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu-Qin Che
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Zhang J, Liu Y, Lu L. Emerging role of MicroRNAs in peripheral nerve system. Life Sci 2018; 207:227-233. [PMID: 29894714 DOI: 10.1016/j.lfs.2018.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/21/2018] [Accepted: 06/08/2018] [Indexed: 01/17/2023]
Abstract
Peripheral nerve injury is one of the most common clinical diseases. Although the regeneration of the peripheral nerve is better than that of the nerves of the central nervous system, because of its growth rate restrictions after damage. Hence, the outcome of repair after injury is not favorable. Small RNA, a type of non-coding RNA, has recently been gaining attention in neural injury. It is widely distributed in the nervous system in vivo and a significant change in the expression of small RNAs has been observed in a neural injury model. This suggests that MicroRNAs (miRNAs) may serve as a potential target for resolving the challenges of peripheral nerve repair. This review summarizes the current challenges in peripheral nerve injury repair, systematically expounds the mechanism of miRNAs in the process of nerve injury and repair and attempts to determine the possible treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Laijin Lu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
32
|
Yuan H, Yuan M, Tang Y, Wang B, Zhan X. MicroRNA expression profiling in human acute organophosphorus poisoning and functional analysis of dysregulated miRNAs. Afr Health Sci 2018; 18:333-342. [PMID: 30602960 PMCID: PMC6306958 DOI: 10.4314/ahs.v18i2.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Acute organophosphorus(OP) pesticide poisoning is associated with dysfunctions in multiple organs, especially skeletal muscles, the nervous system and the heart. However, little is known about the specific microRNA (miRNA) changes that control the pathophysiological processes of acute OP poisoning damage. We aimed to explore miRNA expression profiles and gain insight into molecular mechanisms of OP toxic effects. METHODS MicroRNA expression was analyzed by TaqMan Human MicroRNA Array analysis and subsequent validated with quantitive PCR. The targets of the significantly different miRNAs were predicted with miRNA prediction databases, and pathway analysis of the predicted target genes was performed using bioinformatics resources. RESULTS 37 miRNAs were significantly different in the sera of poisoned patients compared to the healthy controls, including 29 miRNAs that were up-regulated and 8 miRNAs that were down-regulated. Functional analysis indicated that many pathways potentially regulated by these miRNAs are involved in skeletal muscle, nervous system and heart disorders. CONCLUSION This study mapped changes in the serum miRNA expression profiles of poisoning patients and predicted functional links between miRNAs and their target genes in the regulation of acute OP poisoning. Our findings are an important resource for further understanding the role of these miRNAs in the regulation of OP-induced injury.
Collapse
Affiliation(s)
- Haijun Yuan
- The Second Affiliated Hospital, University Of South China, Department of Emergency
| | - Mei Yuan
- The second affiliated Hospital, University Of South China, Department of Neurology
| | - Yonghong Tang
- The second affiliated Hospital, University Of South China, Department of Neurology
| | - Biao Wang
- The Second Affiliated Hospital, University Of South China, Department of Emergency
| | - Xiangyang Zhan
- The Second Affiliated Hospital, University Of South China, Department of Emergency
| |
Collapse
|
33
|
Santos AK, Vieira MS, Vasconcellos R, Goulart VAM, Kihara AH, Resende RR. Decoding cell signalling and regulation of oligodendrocyte differentiation. Semin Cell Dev Biol 2018; 95:54-73. [PMID: 29782926 DOI: 10.1016/j.semcdb.2018.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation.
Collapse
Affiliation(s)
- A K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - M S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - R Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - V A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - R R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
34
|
Li T, Wang J, Wang H, Yang Y, Wang S, Huang N, Wang F, Gao X, Niu J, Li Z, Mei F, Xiao L. The deletion of dicer in mature myelinating glial cells causes progressive axonal degeneration but not overt demyelination in adult mice. Glia 2018; 66:1960-1971. [PMID: 29726608 DOI: 10.1002/glia.23450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 01/17/2023]
Abstract
Myelinating glial cells (MGCs), oligodendrocytes (OLs) in the central nervous system (CNS) and Schwann cells (SCs) in the peripheral nervous system (PNS), generate myelin sheaths that insulate axons. After myelination is completed in adulthood, MGC functions independent from myelin are required to support axon survival, but the underlying mechanisms are still unclear. Dicer is a key enzyme that is responsible for generating functional micro-RNAs (miRNAs). Despite the importance of Dicer in initiating myelination, the role of Dicer in mature MGCs is still unclear. Here, Dicer was specifically deleted in mature MGCs in 2-month old mice (PLP-CreERT; Dicer fl/fl) by tamoxifen administration. Progressive motor dysfunction was observed in the Dicer conditional knockout mice, which displayed hind limb ataxia at 3 months post recombination that deteriorated into paralysis within 5 months. Massive axonal degeneration/atrophy in peripheral nerves was responsible for this phenomenon, but overt demyelination was not observed in either the CNS or PNS. In contrast to the PNS, signs of axonal degeneration were not observed in the CNS of these animals. We induced a Dicer deletion in oligodendroglia at postnatal day 5 in NG2-CreERT; Dicer fl/fl mice to evaluate whether Dicer expression in OLs is essential for axonal survival. Dicer deletion in oligodendroglia did not cause motor dysfunction at the age of 7 months. Neither axonal atrophy nor demyelination was observed in the CNS. Based on our results, Dicer expression in SCs is required to maintain axon integrity in adult PNS, and Dicer is dispensable for maintaining myelin sheaths in MGCs.
Collapse
Affiliation(s)
- Tao Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jingjing Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hongkai Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, 400038, China.,Department of Orthopedics, The Secondary Affiliated Hospital, Guilin Medical University, Guangxi, 541100, China
| | - Yujian Yang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shouyu Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xing Gao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhifang Li
- Department of Neurology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China
| | - Feng Mei
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
35
|
Musumeci G, Leggio GM, Marzagalli R, Al-Badri G, Drago F, Castorina A. Identification of Dysregulated microRNA Networks in Schwann Cell-Like Cultures Exposed to Immune Challenge: Potential Crosstalk with the Protective VIP/PACAP Neuropeptide System. Int J Mol Sci 2018; 19:ijms19040981. [PMID: 29587404 PMCID: PMC5979605 DOI: 10.3390/ijms19040981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
Following peripheral nerve injury, dysregulations of certain non-coding microRNAs (miRNAs) occur in Schwann cells. Whether these alterations are the result of local inflammation and/or correlate with perturbations in the expression profile of the protective vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) system is currently unknown. To address these issues, we aimed at profiling the expression of selected miRNAs in the rat RT4 Schwann cell line. Cells exposed to lipopolysaccharide (LPS), to mimic the local inflammatory milieu, were appraised by real-time qPCR, Western blot and ELISAs. We found that upon LPS treatment, levels of pro-inflammatory cytokines (IL-1β, -6, -18, -17A, MCP-1 and TNFα) increased in a time-dependent manner. Unexpectedly, the expression levels of VIP and PACAP were also increased. Conversely, levels of VPAC1 and VPAC2 receptors were reduced. Downregulated miRNAs included miR-181b, -145, -27a, -340 and -132 whereas upregulated ones were miR-21, -206, -146a, -34a, -155, -204 and -29a, respectively. Regression analyses revealed that a subset of the identified miRNAs inversely correlated with the expression of VPAC1 and VPAC2 receptors. In conclusion, these findings identified a novel subset of miRNAs that are dysregulated by immune challenge whose activities might elicit a regulatory function on the VIP/PACAP system.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| | - Gian Marco Leggio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, "Torre Biologica", University of Catania, via S. Sofia, 97, 95123 Catania, Italy.
| | - Rubina Marzagalli
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| | - Ghaith Al-Badri
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney NSW 2007, Australia.
| | - Filippo Drago
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, "Torre Biologica", University of Catania, via S. Sofia, 97, 95123 Catania, Italy.
| | - Alessandro Castorina
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney NSW 2007, Australia.
- Discipline of Anatomy and Histology, School of Medical Sciences, the University of Sydney, Sydney NSW 2006, Australia.
| |
Collapse
|
36
|
Lin HP, Oksuz I, Svaren J, Awatramani R. Egr2-dependent microRNA-138 is dispensable for peripheral nerve myelination. Sci Rep 2018; 8:3817. [PMID: 29491350 PMCID: PMC5830491 DOI: 10.1038/s41598-018-22010-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/14/2018] [Indexed: 12/27/2022] Open
Abstract
Recent studies have elucidated the crucial role for microRNAs in peripheral nerve myelination by ablating components of the microRNA synthesis machinery. Few studies have focused on the role of individual microRNAs. To fill this gap, we focused this study on miR-138, which was shown to be drastically reduced in Dicer1 and Dgcr8 knockout mice with hypomyelinating phenotypes and to potentially target the negative regulators of Schwann cell differentiation. Here, we show that of two miR-138 encoding loci, mir-138-1 is the predominant locus transcribed in Schwann cells. mir-138-1 is transcriptionally upregulated during myelination and downregulated upon nerve injury. EGR2 is required for mir-138-1 transcription during development, and both SOX10 and EGR2 bind to an active enhancer near the mir-138-1 locus. Based on expression analyses, we hypothesized that miR-138 facilitates the transition between undifferentiated Schwann cells and myelinating Schwann cells. However, in conditional knockouts, we could not detect significant changes in Schwann cell proliferation, cell cycle exit, or myelination. Overall, our results demonstrate that miR-138 is an Egr2-dependent microRNA but is dispensable for Schwann cell myelination.
Collapse
Affiliation(s)
- Hsin-Pin Lin
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Idil Oksuz
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rajeshwar Awatramani
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
37
|
Chatterjee D, Bandyopadhyay A, Sarma N, Basu S, Roychowdhury T, Roy SS, Giri AK. Role of microRNAs in senescence and its contribution to peripheral neuropathy in the arsenic exposed population of West Bengal, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:596-603. [PMID: 29107899 DOI: 10.1016/j.envpol.2017.09.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/24/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
Arsenic induced senescence (AIS) has been identified in the population of West Bengal, India very recently. Also there is a high incidence of arsenic induced peripheral neuropathy (PN) throughout India. However, the epigenetic regulation of AIS and its contribution in arsenic induced PN remains unexplored. We recruited seventy two arsenic exposed and forty unexposed individuals from West Bengal to evaluate the role of senescence associated miRNAs (SA-miRs) in AIS and their involvement if any, in PN. The downstream molecules of the miRNA associated with the disease outcome, was also checked by immuoblotting. In vitro studies were conducted with HEK 293 cells and sodium arsenite exposure. Our results show that all the SA-miRs were upregulated in comparison to unexposed controls. miR-29a was the most significantly altered, highest expression being in the arsenic exposed group with PN, suggesting its association with the occurrence of PN. We looked for the expression of peripheral myelin protein 22 (PMP22), a specific target of miR-29a associated with myelination and found that both in vitro and in vivo results showed over-expression of the protein. Since this was quite contrary to miRNA regulation, we checked for intermediate players β-catenin and GSK-3β upon arsenic exposure which affects PMP22 expression. We found that β-catenin was upregulated in vitro and was also highest in the arsenic exposed group with PN while GSK-3β followed the reverse pattern. Our findings suggest that arsenic exposure alters the expression of SA-miRs and the mir-29a/beta catenin/PMP22 axis might be responsible for arsenic induced PN.
Collapse
Affiliation(s)
- Debmita Chatterjee
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Apurba Bandyopadhyay
- Health Point Multispeciality Hospital, Kolkata 700025, India; Ramakrishna Sarada Mission Matri Bhavan, Kolkata 700 026, India
| | - Nilendu Sarma
- Dr. B.C. Roy Post Graduate Institute of Paediatric Science, Kolkata 700054, India
| | - Santanu Basu
- Department of General Medicine, Sri Aurobindo Seva Kendra, Kolkata 700068, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Sib Sankar Roy
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India.
| |
Collapse
|
38
|
Wu X. Genome expression profiling predicts the molecular mechanism of peripheral myelination. Int J Mol Med 2017; 41:1500-1508. [PMID: 29286075 PMCID: PMC5819935 DOI: 10.3892/ijmm.2017.3348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 11/22/2017] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to explore the molecular mechanism of myelination in the peripheral nervous system (PNS) based on genome expression profiles. Microarray data (GSE60345) was acquired from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were integrated and subsequently subjected to pathway and term enrichment analysis. A protein-protein interaction network was constructed and the top 200 DEGs according to their degree value were further subjected to pathway enrichment analysis. A microRNA (miR)-target gene regulatory network was constructed to explore the role of miRs associated with PNS myelination. A total of 783 upregulated genes and 307 downregulated genes were identified. The upregulated DEGs were significantly enriched in the biological function of complement and coagulation cascades, cytokine-cytokine receptor interactions and cell adhesion molecules. Pathways significantly enriched by the downregulated DEGs included the cell cycle, oocyte meiosis and the p53 signaling pathway. In addition, the upregulated DEGs among the top 200 DEGs were significantly enriched in natural killer (NK) cell mediated cytotoxicity and the B cell receptor (BCR) signaling pathway, in which Fc γ receptor (FCGR), ras-related C3 botulinum toxin substrate 2 (RAC2) and 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase γ-2 (PLCG2) were involved. miR-339-5p, miR-10a-5p and miR-10b-5p were identified as having a high degree value and may regulate the target genes TOX high mobility group box family member 4 (Tox4), DNA repair protein XRCC2 (Xrcc2) and C5a anaphylatoxin chemotactic receptor C5a2 (C5ar2). NK cell mediated cytotoxicity and the BCR pathway may be involved in peripheral myelination by targeting FCGR, RAC2 and PLCG2. The downregulation of oocyte meiosis, the cell cycle and the cellular tumor antigen p53 signaling pathway suggests decreasing schwann cell proliferation following the initiation of myelination. miR-339-5p, miR-10a-5p and miR-10b-5p may play important roles in PNS myelination by regulating Tox4, Xrcc2 and C5ar2.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Radiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
39
|
Ma J, Li T, Yuan H, Han X, Shui S, Guo D, Yan L. MicroRNA-29a inhibits proliferation and motility of schwannoma cells by targeting CDK6. J Cell Biochem 2017; 119:2617-2626. [PMID: 29023945 DOI: 10.1002/jcb.26426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
MicroRNA-29 (miR-29) family is involved in various types of cancer regulation. Although miR-29 family was shown to play an inhibitory role in tumorigenesis, the effect of miR-29a expression on schwannoma cells still remains unclear. In this study, we aimed to explore the role of miR-29 family in schwannoma. The expressions of miR-29a, miR-29b, and miR-29c were detected in the Schwann tissues and cell lines using qRT-PCR. The effect of miR-29a, miR-29b, and miR-29c on cell viability, migration, invasion, and apoptosis was tested. Then, the regulatory relationship between miR-29a and CKD6 was detected using qRT-PCR, Western blot, and luciferase assay. Finally, the phosphorylation levels of mainly factors in JNK and p38MAPK/ERK pathways were analyzed by Western blot. The expression of miR-29a, miR-29b, and miR-29c was downregulated in Schwann tissues and cell lines. Cell viability, migration, invasion were decreased, while apoptosis was increased when miR-29a, miR-29b, and miR-29c overexpression. We further found that miR-29a negatively regulated expression of CDK6. Then, knockdown of miR-29a promoted cell viability, migration, invasion, and inhibited apoptosis in schwannoma cells by upregulating CDK6 expression. In addition, the overexpression of miR-29a downregulated CDK6 expression by deactivation of JNK and p38MAPK/ERK pathways. Our data suggested that miR-29a could play an important role in inhibiting proliferation and motility of cancerous Schwann cells, and may suppress tumor growth through upregulation of CDK6.
Collapse
Affiliation(s)
- Ji Ma
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tengfei Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huifeng Yuan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaofeng Shui
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Pieczora L, Stracke L, Vorgerd M, Hahn S, Theiss C, Theis V. Unveiling of miRNA Expression Patterns in Purkinje Cells During Development. THE CEREBELLUM 2017; 16:376-387. [PMID: 27387430 DOI: 10.1007/s12311-016-0814-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs of 19-25 nucleotides in length that regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs is associated with many disorders and neurodegenerative diseases affecting numerous different pathways and processes, of which many have not yet been completely explored. Recent studies even indicate a crucial role of miRNAs during brain development, with differential expression patterns of several miRNAs seen in both developing and mature cells. A miRNA profiling in brain tissue and the fundamental understanding of their effects might optimize the therapeutical treatment of various neurological disorders. In this study, we performed miRNA array analysis of enriched cerebellar Purkinje cell (PC) samples from both young and mature rat cerebella. We used laser microdissection (LMD) to enrich PC for a highly specific miRNA profiling. Altogether, we present the expression profile of at least 27 miRNAs expressed in rat cerebellar PC and disclose a different expression pattern of at least three of these miRNAs during development. These miRNAs are potential candidates for the regulation and control of cerebellar PC development, including neuritic and dendritic outgrowth as well as spine formation.
Collapse
Affiliation(s)
- Lukas Pieczora
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Lara Stracke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Stephan Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
41
|
Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017; 158:69-93. [PMID: 28779869 DOI: 10.1016/j.pneurobio.2017.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network.
Collapse
Affiliation(s)
- M Ghibaudi
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy.
| | - M Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| | - A Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| |
Collapse
|
42
|
Zhou Y, Notterpek L. Promoting peripheral myelin repair. Exp Neurol 2016; 283:573-80. [PMID: 27079997 DOI: 10.1016/j.expneurol.2016.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 01/08/2023]
Abstract
Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves.
Collapse
Affiliation(s)
- Ye Zhou
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States
| | - Lucia Notterpek
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
43
|
Zhou S, Ding F, Gu X. Non-coding RNAs as Emerging Regulators of Neural Injury Responses and Regeneration. Neurosci Bull 2016; 32:253-64. [PMID: 27037691 DOI: 10.1007/s12264-016-0028-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a large cluster of RNAs that do not encode proteins, but have multiple functions in diverse cellular processes. Mounting evidence indicates the involvement of ncRNAs in the physiology and pathophysiology of the central and peripheral nervous systems. It has been shown that numerous ncRNAs, especially microRNAs and long non-coding RNAs, are differentially expressed after insults such as acquired brain injury, spinal cord injury, and peripheral nerve injury. These ncRNAs affect neuronal survival, neurite regrowth, and glial phenotype primarily by targeting specific mRNAs, resulting in translation repression or degradation of the mRNAs. An increasing number of studies have investigated the regulatory roles of microRNAs and long non-coding RNAs in neural injury and regeneration, and thus a new research field is emerging. In this review, we highlight current progress in the field in an attempt to provide further insight into post-transcriptional changes occurring after neural injury, and to facilitate the potential use of ncRNAs for improving neural regeneration. We also suggest potential directions for future studies.
Collapse
Affiliation(s)
- Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
44
|
Dobrowolny G, Bernardini C, Martini M, Baranzini M, Barba M, Musarò A. Muscle Expression of SOD1(G93A) Modulates microRNA and mRNA Transcription Pattern Associated with the Myelination Process in the Spinal Cord of Transgenic Mice. Front Cell Neurosci 2015; 9:463. [PMID: 26648847 PMCID: PMC4664730 DOI: 10.3389/fncel.2015.00463] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
A crucial system severely affected in several neuromuscular diseases is the loss of effective connection between muscle and nerve, leading to a pathological non-communication between the two tissues. One of the best examples of impaired interplay between muscle and nerve is Amyotrophic Lateral Sclerosis, a neurodegenerative disease characterized by degeneration of motor neurons and muscle atrophy. Increasing evidences suggest that damage to motor neurons is enhanced by alterations in the neighboring non-neuronal cells and indicate that altered skeletal muscle might be the source of signals that impinge motor neuron activity and survival. Here we investigated whether muscle selective expression of SOD1G93A mutant gene modulates mRNAs and miRNAs expression at the level of spinal cord of MLC/SOD1G93A mice. Using a Taqman array, the Affymetrix Mouse Gene 2.0 ST approach and the MiRwalk 2.0 database, which provides information on miRNA and their predicted target genes, we revealed that muscle specific expression of SOD1G93A modulates relevant molecules of the genetic and epigenetic circuitry of myelin homeostasis in spinal cord of transgenic mice. Our study provides insights into the pathophysiological interplay between muscle and nerve and supports the hypothesis that muscle is a source of signals that can either positively or negatively affect the nervous system.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- DAHFMO-Unit of Histology and Medical Embryology, Institute Pasteur-Cenci Bolognetti, IIM, Sapienza University of Rome Rome, Italy ; Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia Rome, Italy
| | - Camilla Bernardini
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Martina Martini
- DAHFMO-Unit of Histology and Medical Embryology, Institute Pasteur-Cenci Bolognetti, IIM, Sapienza University of Rome Rome, Italy ; Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia Rome, Italy
| | - Mirko Baranzini
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Institute Pasteur-Cenci Bolognetti, IIM, Sapienza University of Rome Rome, Italy ; Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia Rome, Italy
| |
Collapse
|
45
|
Zhang GY, Wu LC, Liao T, Chen GC, Chen YH, Zhao YX, Chen SY, Wang AY, Lin K, Lin DM, Yang JQ, Gao WY, Li QF. A novel regulatory function for miR-29a in keloid fibrogenesis. Clin Exp Dermatol 2015; 41:341-5. [PMID: 26566758 DOI: 10.1111/ced.12734] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND A growing body of evidence has shown that microRNA-29 (miR-29) plays a central role in the progression of fibrosis. However, the mechanisms underlying the role of miR-29 in keloid fibrogenesis remain unknown. AIM To investigate the roles of miR-29 in dermal fibroblasts in the pathogenesis of keloids. METHODS Primary fibroblasts from 9 patients with keloid and 6 healthy controls (HCs) were cultured and pretreated with transforming growth factor (TGF)-β1. Next, fibroblasts were transfected with precursor miRNA and anti-miR-29a miRNA. TGF-β1-associated miR-29 alterations were investigated by quantitative real-time PCR. Collagen I and collagen III protein levels were analysed by western blotting. RESULTS miR-29a, miR-29b and miR-29c levels were significantly lower in keloid compared with healthy fibroblasts (P < 0.05), and in particular, miR-29a was especially markedly reduced (P < 0.001). Type I and type III collagen mRNA and protein levels were decreased in keloid fibroblasts transfected with pre-miR-29a (P < 0.05), whereas knockdown with anti-miR-29a increased type I and type III collagen mRNA and protein expression (P < 0.05) in the fibroblasts. Interestingly, pretreatment of fibroblasts with TGF-β1 significantly decreased miR-29a (P < 0.05), whereas miR-29b and miR-29c were reduced to a lesser extent, which was not significant. CONCLUSIONS These findings show that miR-29a exerts as a novel regulator in the fibrogenesis of keloid, suggesting that miR-29a might be a novel marker for keloid.
Collapse
Affiliation(s)
- G-Y Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Hand and Plastic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - L-C Wu
- Department of Dermatology, Huang-Pu Hospital of First Affiliated Hospital Sun Yat-Sen, Guangzhou, China
| | - T Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - G-C Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Y-H Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Y-X Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - S-Y Chen
- Department of Hand and Plastic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - A-Y Wang
- Department of Hand and Plastic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - K Lin
- Department of Hand and Plastic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - D-M Lin
- Department of Hand and Plastic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - J-Q Yang
- Department of Hand and Plastic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - W-Y Gao
- Department of Hand and Plastic Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Q-F Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Visigalli D, Castagnola P, Capodivento G, Geroldi A, Bellone E, Mancardi G, Pareyson D, Schenone A, Nobbio L. Alternative Splicing in the HumanPMP22Gene: Implications in CMT1A Neuropathy. Hum Mutat 2015; 37:98-109. [DOI: 10.1002/humu.22921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/11/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Davide Visigalli
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | | | - Giovanna Capodivento
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Alessandro Geroldi
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) - Section of Medical Genetics; University of Genoa IRCCS AOU San Martino-IST; UOC Medical Genetics; Genoa Italy
| | - Emilia Bellone
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) - Section of Medical Genetics; University of Genoa IRCCS AOU San Martino-IST; UOC Medical Genetics; Genoa Italy
| | - Gianluigi Mancardi
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit; IRCCS Foundation; C. Besta Neurological Institute; Milan Italy
| | - Angelo Schenone
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Lucilla Nobbio
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| |
Collapse
|
47
|
Yu B, Zhou S, Yi S, Gu X. The regulatory roles of non-coding RNAs in nerve injury and regeneration. Prog Neurobiol 2015; 134:122-39. [PMID: 26432164 DOI: 10.1016/j.pneurobio.2015.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/20/2015] [Accepted: 09/05/2015] [Indexed: 12/16/2022]
Abstract
Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have attracted much attention since their regulatory roles in diverse cell processes were recognized. Emerging studies demonstrate that many ncRNAs are differentially expressed after injury to the nervous system, significantly affecting nerve regeneration. In this review, we compile the miRNAs and lncRNAs that have been reported to be dysregulated following a variety of central and peripheral nerve injuries, including acquired brain injury, spinal cord injury, and peripheral nerve injury. We also list investigations on how these miRNAs and lncRNAs exert the regulatory actions in neurodegenerative and neuroregenerative processes through different mechanisms involving their interaction with target coding genes. We believe that comprehension of the expression profiles and the possible functions of ncRNAs during the processes of nerve injury and regeneration will help understand the molecular mechanisms responsible for post-nerve-injury changes, and may contribute to the potential use of ncRNAs as a diagnostic marker and therapeutic target for nerve injury.
Collapse
Affiliation(s)
- Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| |
Collapse
|
48
|
SncRNA715 Inhibits Schwann Cell Myelin Basic Protein Synthesis. PLoS One 2015; 10:e0136900. [PMID: 26317513 PMCID: PMC4552632 DOI: 10.1371/journal.pone.0136900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023] Open
Abstract
Myelin basic proteins (MBP) are major constituents of the myelin sheath in the central nervous system (CNS) and the peripheral nervous system (PNS). In the CNS Mbp translation occurs locally at the axon-glial contact site in a neuronal activity-dependent manner. Recently we identified the small non-coding RNA 715 (sncRNA715) as a key inhibitor of Mbp translation during transport in oligodendrocytes. Mbp mRNA localization in Schwann cells has been observed, but has not been investigated in much detail. Here we could confirm translational repression of Mbp mRNA in Schwann cells. We show that sncRNA715 is expressed and its levels correlate inversely with MBP in cultured Schwann cells and in the sciatic nerve in vivo. Furthermore we could reduce MBP protein levels in cultured Schwann cells by increasing the levels of the inhibitory sncRNA715. Our findings suggest similarities in sncRNA715-mediated translational repression of Mbp mRNA in oligodendrocytes and Schwann cells.
Collapse
|
49
|
Verrier JD, Kochanek PM, Jackson EK. Schwann Cells Metabolize Extracellular 2',3'-cAMP to 2'-AMP. J Pharmacol Exp Ther 2015; 354:175-83. [PMID: 25998049 PMCID: PMC4518068 DOI: 10.1124/jpet.115.225219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/20/2015] [Indexed: 12/22/2022] Open
Abstract
The 3',5'-cAMP-adenosine pathway (3',5'-cAMP→5'-AMP→adenosine) and the 2',3'-cAMP-adenosine pathway (2',3'-cAMP→2'-AMP/3'-AMP→adenosine) are active in the brain. Oligodendrocytes participate in the brain 2',3'-cAMP-adenosine pathway via their robust expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase; converts 2',3'-cAMP to 2'-AMP). Because Schwann cells also express CNPase, it is conceivable that the 2',3'-cAMP-adenosine pathway exists in the peripheral nervous system. To test this and to compare the 2',3'-cAMP-adenosine pathway to the 3',5'-cAMP-adenosine pathway in Schwann cells, we examined the metabolism of 2',3'-cAMP, 2'-AMP, 3'-AMP, 3',5'-cAMP, and 5'-AMP in primary rat Schwann cells in culture. Addition of 2',3'-cAMP (3, 10, and 30 µM) to Schwann cells increased levels of 2'-AMP in the medium from 0.006 ± 0.002 to 21 ± 2, 70 ± 3, and 187 ± 10 nM/µg protein, respectively; in contrast, Schwann cells had little ability to convert 2',3'-cAMP to 3'-AMP or 3',5'-cAMP to either 3'-AMP or 5'-AMP. Although Schwann cells slightly converted 2',3'-cAMP and 2'-AMP to adenosine, they did so at very modest rates (e.g., 5- and 3-fold, respectively, more slowly compared with our previously reported studies in oligodendrocytes). Using transected myelinated rat sciatic nerves in culture medium, we observed a time-related increase in endogenous intracellular 2',3'-cAMP and extracellular 2'-AMP. These findings indicate that Schwann cells do not have a robust 3',5'-cAMP-adenosine pathway but do have a 2',3'-cAMP-adenosine pathway; however, because the pathway mostly involves 2'-AMP formation rather than 3'-AMP, and because the conversion of 2'-AMP to adenosine is slow, metabolism of 2',3'-cAMP mostly results in the accumulation of 2'-AMP. Accumulation of 2'-AMP in peripheral nerves postinjury could have pathophysiological consequences.
Collapse
Affiliation(s)
- Jonathan D Verrier
- Department of Pharmacology and Chemical Biology (J.D.V., E.K.J.), Department of Critical Care Medicine (P.M.K.), and Safar Center for Resuscitation Research (P.M.K.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- Department of Pharmacology and Chemical Biology (J.D.V., E.K.J.), Department of Critical Care Medicine (P.M.K.), and Safar Center for Resuscitation Research (P.M.K.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology (J.D.V., E.K.J.), Department of Critical Care Medicine (P.M.K.), and Safar Center for Resuscitation Research (P.M.K.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Fitzpatrick JMK, Anderson RC, McDermott KW. MicroRNA: Key regulators of oligodendrocyte development and pathobiology. Int J Biochem Cell Biol 2015; 65:134-8. [PMID: 26026282 DOI: 10.1016/j.biocel.2015.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs or miRs) are a group of small non-coding RNAs that function through binding to messenger RNA (mRNA) targets and downregulating gene expression. miRNAs have been shown to regulate many cellular functions including proliferation, differentiation, development and apoptosis. Recently, evidence has grown which shows the involvement of miRs in oligodendrocyte (OL) specification and development. In particular, miRs-138, -219, -338, and -9 have been classified as key regulators of OL development, acting at various points in the OL lineage and influencing precursor cell transit into mature myelinating OLs. Many studies have emerged which link miRNAs with OL and myelin pathology in various central nervous system (CNS) diseases including multiple sclerosis (MS), ischemic stroke, spinal cord injury, and adult-onset autosomal dominant leukodystrophy (ADLD).
Collapse
|