1
|
Nikitina MA, Bragina EY, Nazarenko MS, Ivanova SA, Boyko AS, Levchuk LA, Alifirova VM. [Neuroinflammatory and neurodegenerative aspects of Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2025; 125:102-111. [PMID: 40195108 DOI: 10.17116/jnevro2025125031102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
OBJECTIVE To evaluate the clinical features and the level of the inflammatory markers CCL5, slCAM-1, sVCAM-1, NCAM, PAI-1, and MPO in the groups of patients with Parkinson's disease (PD) at various stages according to Hoehn and Yahr. MATERIAL AND METHODS The study included 533 patients with PD. All patients underwent a clinical neurological examination to determine the stage of PD, the severity of motor disorders according to the MDS-UPDRS scale (Unified Parkinson's Disease Rating Scale of the Movement Disorder Society), and testing using validated questionnaires: Montreal Cognitive Assessment, Hospital Anxiety and Depression Rating Scale, Beck Depression Inventory-II, Fatigue Severity Scale, Scale for assessing autonomic disorders in PD patients. Behavioral disorders were evaluated using QUIP-RS. 144 PD patients had their serum concentration of several inflammatory markers measured (CCL5, slCAM-1, sVCAM-1, NCAM, PAI-1, and MPO) on the MAGPIX multiplex analyzer (Luminex, USA) using xMAP Technology. Genotyping of polymorphic variants of CCL5 (rs2107538) and PAI-1 (rs2227631) genes was performed using real-time PCR. RESULTS The serum levels of slCAM-1, sVCAM-1, CCL5, and NCAM varied in PD patients depending on the Hoehn and Yahr stage and disease duration. Correlations of serum marker levels were found both among themselves and with motor and non-motor disorders, which indicate a systemic inflammatory profile when increased peripheral production of CCL5, slCAM-1, sVCAM-1, NCAM, PAI-1, and MPO may play a role in the neurodegenerative process. CONCLUSION The serum level of inflammatory markers, such as CCL5, slCAM-1, sVCAM-1, NCAM, PAI-1, and MPO, in PD patients varies depending on the stage of the progressive neurodegenerative process, indicating the importance of systemic inflammation during PD.
Collapse
Affiliation(s)
- M A Nikitina
- Siberian State Medical University, Tomsk, Russia
| | - E Yu Bragina
- Research Institute of Medical Genetics - Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - M S Nazarenko
- Siberian State Medical University, Tomsk, Russia
- Research Institute of Medical Genetics - Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S A Ivanova
- Siberian State Medical University, Tomsk, Russia
- Mental Health Research Institute - Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - A S Boyko
- Mental Health Research Institute - Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - L A Levchuk
- Mental Health Research Institute - Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | | |
Collapse
|
2
|
Yepes M. Reprint of: Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 550:21-29. [PMID: 38964373 DOI: 10.1016/j.neuroscience.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/06/2023] [Indexed: 07/06/2024]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
3
|
Astillero‐Lopez V, Villar‐Conde S, Gonzalez‐Rodriguez M, Flores‐Cuadrado A, Ubeda‐Banon I, Saiz‐Sanchez D, Martinez‐Marcos A. Proteomic analysis identifies HSP90AA1, PTK2B, and ANXA2 in the human entorhinal cortex in Alzheimer's disease: Potential role in synaptic homeostasis and Aβ pathology through microglial and astroglial cells. Brain Pathol 2024; 34:e13235. [PMID: 38247340 PMCID: PMC11189773 DOI: 10.1111/bpa.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder worldwide, is clinically characterized by cognitive deficits. Neuropathologically, AD brains accumulate deposits of amyloid-β (Aβ) and tau proteins. Furthermore, these misfolded proteins can propagate from cell to cell in a prion-like manner and induce native proteins to become pathological. The entorhinal cortex (EC) is among the earliest areas affected by tau accumulation along with volume reduction and neurodegeneration. Neuron-glia interactions have recently come into focus; however, the role of microglia and astroglia in the pathogenesis of AD remains unclear. Proteomic approaches allow the determination of changes in the proteome to better understand the pathology underlying AD. Bioinformatic analysis of proteomic data was performed to compare ECs from AD and non-AD human brain tissue. To validate the proteomic results, western blot, immunofluorescence, and confocal studies were carried out. The findings revealed that the most disturbed signaling pathway was synaptogenesis. Because of their involvement in synapse function, relationship with Aβ and tau proteins and interactions in the pathway analysis, three proteins were selected for in-depth study: HSP90AA1, PTK2B, and ANXA2. All these proteins showed colocalization with neurons and/or astroglia and microglia and with pathological Aβ and tau proteins. In particular, ANXA2, which is overexpressed in AD, colocalized with amoeboid microglial cells and Aβ plaques surrounded by astrocytes. Taken together, the evidence suggests that unbalanced expression of HSP90AA1, PTK2B, and ANXA2 may play a significant role in synaptic homeostasis and Aβ pathology through microglial and astroglial cells in the human EC in AD.
Collapse
Affiliation(s)
- Veronica Astillero‐Lopez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| | - Sandra Villar‐Conde
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| | - Melania Gonzalez‐Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| | - Alicia Flores‐Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| | - Isabel Ubeda‐Banon
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| | - Daniel Saiz‐Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| | - Alino Martinez‐Marcos
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La Mancha (UCLM)Ciudad RealSpain
- Grupo de Neuroplasticidad y Neurodegeneración, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)Castilla‐La ManchaSpain
| |
Collapse
|
4
|
Yepes M. Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 542:69-80. [PMID: 37574107 DOI: 10.1016/j.neuroscience.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
5
|
Kuo PC, Weng WT, Scofield BA, Paraiso HC, Bojrab P, Kimes B, Yu ICI, Yen JHJ. Interferon-β modulates microglial polarization to ameliorate delayed tPA-exacerbated brain injury in ischemic stroke. Front Immunol 2023; 14:1148069. [PMID: 37063896 PMCID: PMC10104603 DOI: 10.3389/fimmu.2023.1148069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
Tissue plasminogen activator (tPA) is the only FDA-approved drug for the treatment of ischemic stroke. Delayed tPA administration is associated with increased risks of blood-brain barrier (BBB) disruption and hemorrhagic transformation. Studies have shown that interferon beta (IFNβ) or type I IFN receptor (IFNAR1) signaling confers protection against ischemic stroke in preclinical models. In addition, we have previously demonstrated that IFNβ can be co-administered with tPA to alleviate delayed tPA-induced adverse effects in ischemic stroke. In this study, we investigated the time limit of IFNβ treatment on the extension of tPA therapeutic window and assessed the effect of IFNβ on modulating microglia (MG) phenotypes in ischemic stroke with delayed tPA treatment. Mice were subjected to 40 minutes transient middle cerebral artery occlusion (MCAO) followed by delayed tPA treatment in the presence or absence of IFNβ at 3h, 4.5h or 6h post-reperfusion. In addition, mice with MG-specific IFNAR1 knockdown were generated to validate the effects of IFNβ on modulating MG phenotypes, ameliorating brain injury, and lessening BBB disruption in delayed tPA-treated MCAO mice. Our results showed that IFNβ extended tPA therapeutic window to 4.5h post-reperfusion in MCAO mice, and that was accompanied with attenuated brain injury and lessened BBB disruption. Mechanistically, our findings revealed that IFNβ modulated MG polarization, leading to the suppression of inflammatory MG and the promotion of anti-inflammatory MG, in delayed tPA-treated MCAO mice. Notably, these effects were abolished in MG-specific IFNAR1 knockdown MCAO mice. Furthermore, the protective effect of IFNβ on the amelioration of delayed tPA-exacerbated ischemic brain injury was also abolished in these mice. Finally, we identified that IFNβ-mediated modulation of MG phenotypes played a role in maintaining BBB integrity, because the knockdown of IFNAR1 in MG partly reversed the protective effect of IFNβ on lessening BBB disruption in delayed tPA-treated MCAO mice. In summary, our study reveals a novel function of IFNβ in modulating MG phenotypes, and that may subsequently confer protection against delayed tPA-exacerbated brain injury in ischemic stroke.
Collapse
Affiliation(s)
- Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Wen-Tsan Weng
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Barbara A. Scofield
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Hallel C. Paraiso
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Paul Bojrab
- Doctor of Medicine Program, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Brandon Kimes
- Doctor of Medicine Program, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - I-Chen Ivorine Yu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Jui-Hung Jimmy Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
- *Correspondence: Jui-Hung Jimmy Yen,
| |
Collapse
|
6
|
Jayaswamy PK, Vijaykrishnaraj M, Patil P, Alexander LM, Kellarai A, Shetty P. Implicative role of epidermal growth factor receptor and its associated signaling partners in the pathogenesis of Alzheimer's disease. Ageing Res Rev 2023; 83:101791. [PMID: 36403890 DOI: 10.1016/j.arr.2022.101791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) plays a pivotal role in early brain development, although its expression pattern declines in accordance with the maturation of the active nervous system. However, recurrence of EGFR expression in brain cells takes place during neural functioning decline and brain atrophy in order to maintain the homeostatic neuronal pool. As a consequence, neurotoxic lesions such as amyloid beta fragment (Aβ1-42) formed during the alternative splicing of amyloid precursor protein in Alzheimer's disease (AD) elevate the expression of EGFR. This inappropriate peptide deposition on EGFR results in the sustained phosphorylation of the downstream signaling axis, leading to extensive Aβ1-42 production and tau phosphorylation as subsequent pathogenesis. Recent reports convey that the pathophysiology of AD is correlated with EGFR and its associated membrane receptor complex molecules. One such family of molecules is the annexin superfamily, which has synergistic relationships with EGFR and is known for membrane-bound signaling that contributes to a variety of inflammatory responses. Besides, Galectin-3, tissue-type activated plasminogen activator, and many more, which lineate the secretion of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-18) result in severe neuronal loss. Altogether, we emphasized the perspectives of cellular senescence up-regulated by EGFR and its associated membrane receptor molecules in the pathogenesis of AD as a target for a therapeutical alternative to intervene in AD.
Collapse
Affiliation(s)
- Pavan K Jayaswamy
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - M Vijaykrishnaraj
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Prakash Patil
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Lobo Manuel Alexander
- Department of Neurology, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Adithi Kellarai
- Department of General Medicine, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Praveenkumar Shetty
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India; Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
7
|
Tang MY, Gorin FA, Lein PJ. Review of evidence implicating the plasminogen activator system in blood-brain barrier dysfunction associated with Alzheimer's disease. AGEING AND NEURODEGENERATIVE DISEASES 2022; 2. [PMID: 35156107 PMCID: PMC8830591 DOI: 10.20517/and.2022.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elucidating the pathogenic mechanisms of Alzheimer’s disease (AD) to identify therapeutic targets has been the focus of many decades of research. While deposition of extracellular amyloid-beta plaques and intraneuronal neurofibrillary tangles of hyperphosphorylated tau have historically been the two characteristic hallmarks of AD pathology, therapeutic strategies targeting these proteinopathies have not been successful in the clinics. Neuroinflammation has been gaining more attention as a therapeutic target because increasing evidence implicates neuroinflammation as a key factor in the early onset of AD disease progression. The peripheral immune response has emerged as an important contributor to the chronic neuroinflammation associated with AD pathophysiology. In this context, the plasminogen activator system (PAS), also referred to as the vasculature’s fibrinolytic system, is emerging as a potential factor in AD pathogenesis. Evolving evidence suggests that the PAS plays a role in linking chronic peripheral inflammatory conditions to neuroinflammation in the brain. While the PAS is better known for its peripheral functions, components of the PAS are expressed in the brain and have been demonstrated to alter neuroinflammation and blood-brain barrier (BBB) permeation. Here, we review plasmin-dependent and -independent mechanisms by which the PAS modulates the BBB in AD pathogenesis and discuss therapeutic implications of these observations.
Collapse
Affiliation(s)
- Mei-Yun Tang
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Fredric A Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.,Department of Neurology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Interferon-β alleviates delayed tPA-induced adverse effects via modulation of MMP3/9 production in ischemic stroke. Blood Adv 2021; 4:4366-4381. [PMID: 32926126 DOI: 10.1182/bloodadvances.2020001443] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Tissue plasminogen activator (tPA) is the only US Food and Drug Administration (FDA)-approved drug for ischemic stroke. However, delayed tPA administration is associated with increased risk of blood-brain barrier (BBB) disruption and hemorrhagic transformation (HT). Interferon-β (IFNβ), an FDA-approved drug for the treatment of multiple sclerosis, is a cytokine with immunomodulatory properties. Previous studies, including ours, demonstrated that IFNβ or type I IFN receptor signaling conferred protection against ischemic stroke in preclinical models, suggesting IFNβ might have translational therapeutic potential for the treatment of ischemic stroke. Currently, whether IFNβ could be coadministered with tPA to alleviate delayed tPA-induced adverse effects remains unknown. To elucidate that, IFNβ was coadministered with delayed tPA to ischemic stroke animals, and the severity and pathology of ischemic brain injury were assessed. We found delayed tPA treatment exacerbated ischemic brain injury, manifested by aggravated BBB disruption and HT. Notably, IFNβ ameliorated delayed tPA-exacerbated brain injury and alleviated adverse effects. Mechanistic studies revealed IFNβ suppressed tPA-enhanced neuroinflammation and MMP3/9 production in the ischemic brain. Furthermore, we identified IFNβ suppressed MMP9 production in microglia and attenuated tight junction protein degradation in brain endothelial cells. Moreover, we observed that peripheral immune cells may participate to a lesser extent in delayed tPA-exacerbated brain injury during the early phase of ischemic stroke. In conclusion, we provide the first evidence that IFNβ can be coadministered with tPA to mitigate delayed tPA-induced adverse effects of BBB disruption and HT that could potentially extend the tPA therapeutic window for the treatment of ischemic stroke.
Collapse
|
9
|
Zhou CM, Luo LM, Lin P, Pu Q, Wang B, Qin S, Wu Q, Yu XJ, Wu M. Annexin A2 regulates unfolded protein response via IRE1-XBP1 axis in macrophages during P. aeruginosa infection. J Leukoc Biol 2020; 110:375-384. [PMID: 33225536 DOI: 10.1002/jlb.3a1219-686rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a severe Gram-negative opportunistic bacterium that causes a spectrum of organ system diseases, particularly in immunocompromised patients. This bacterium has been shown to induce unfolded protein response (UPR) during mammalian infection. Annexin A2 (AnxA2) is a multicompartmental protein relating to a number of cellular processes; however, it remains unknown whether AnxA2 coordinates a UPR pathway under bacterial infection conditions. Here, we report that the endoplasmic reticulum stress inositol-requiring enzyme 1 (IRE1)-X-box binding protein 1 (XBP1) pathway was up-regulated by AnxA2 through p38 MAPK signaling following P. aeruginosa infection in macrophages, whereas ATF4 and ATF6 not. In addition, XBP1 was found as a positive regulator of innate immunity to tame P. aeruginosa challenges by enhancing autophagy and bacterial clearance. XBP1 also facilitated NF-κB activation to elicit the release of proinflammatory cytokines predominantly in macrophages. Together, our findings identify AnxA2 as a regulator for XBP1-mediated UPR pathway.
Collapse
Affiliation(s)
- Chuan-Min Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA.,Wuhan University School of Health Sciences, Wuhan, Hubei Province, China
| | - Li-Mei Luo
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA
| | - Biao Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA
| | - Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA
| | - Qun Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA
| | - Xue-Jie Yu
- Wuhan University School of Health Sciences, Wuhan, Hubei Province, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
10
|
Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G. Neurodegeneration and Inflammation-An Interesting Interplay in Parkinson's Disease. Int J Mol Sci 2020; 21:E8421. [PMID: 33182554 PMCID: PMC7697354 DOI: 10.3390/ijms21228421] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut-brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.
Collapse
Affiliation(s)
- Chrysoula Marogianni
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | - Maria Sokratous
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | | | - Dimitrios Bogdanos
- Department of Internal Medicine, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| |
Collapse
|
11
|
Liberale L, Bertolotto M, Minetti S, Contini P, Verzola D, Ameri P, Ghigliotti G, Pende A, Camici GG, Carbone F, Montecucco F. Recombinant Tissue Plasminogen Activator (r-tPA) Induces In-Vitro Human Neutrophil Migration via Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1). Int J Mol Sci 2020; 21:7014. [PMID: 32977685 PMCID: PMC7582901 DOI: 10.3390/ijms21197014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
Thrombolysis is the gold standard treatment for acute ischemic stroke. Besides its fibrinolytic role, recombinant tissue plasminogen activator (r-tPA) holds several non-fibrinolytic functions. Here, we investigated the potential role of r-tPA on human primary neutrophil migration in vitro. By means of modified Boyden chamber migration assay and checkerboard analysis we showed a dose-dependent chemotactic effect of r-TPA with a maximum effect reached by 0.03 mg/mL (0.003-1 mg/mL). Pre-incubation with MAP kinases inhibitors allowed the identification of PI3K/Akt, but not ERK1/2 as the intracellular pathway mediating the observed effects. Furthermore, by means of real-time PCR, immunocytochemistry and cytofluorimetry we demonstrated that the r-tPA receptor low density lipoprotein receptor-related protein 1 (LRP-1) is synthetized and expressed by neutrophils in response to r-tPA and TNF-α. Inhibition of LRP-1 by receptor-associated protein (RAP), prevented r-tPA-mediated F-actin polymerization, migration and signal through Akt but not ERK1/2. Lastly, also neutrophil degranulation in response to r-tPA seems to be mediated by LRP-1 under adhesion conditions. In conclusion, we show that r-tPA induces neutrophil chemotaxis through LRP-1/Akt pathway. Blunting r-tPA-mediated neutrophil activation might be beneficial as an adjuvant therapy to thrombolysis in this setting.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland; (L.L.); (G.G.C.)
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
| | - Maria Bertolotto
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
| | - Silvia Minetti
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
| | - Paola Contini
- Clinical Immunology, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy;
| | - Daniela Verzola
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy;
| | - Pietro Ameri
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
- Laboratory of Cardiovascular Biology, IRCCS Ospedale Policlinico San Martino & Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy
| | - Giorgio Ghigliotti
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
- Laboratory of Cardiovascular Biology, IRCCS Ospedale Policlinico San Martino & Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy
| | - Aldo Pende
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
- Clinic of Emergency Medicine, Department of Emergency Medicine, University of Genoa, 16126 Genoa, Italy
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland; (L.L.); (G.G.C.)
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
| |
Collapse
|
12
|
Robust Dopaminergic Differentiation and Enhanced LPS-Induced Neuroinflammatory Response in Serum-Deprived Human SH-SY5Y Cells: Implication for Parkinson's Disease. J Mol Neurosci 2020; 71:565-582. [PMID: 32789724 DOI: 10.1007/s12031-020-01678-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/03/2020] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative condition characterized by motor symptoms such as bradykinesia, resting tremor, and rigidity. PD diagnosis is based on medical history, review of signs, symptoms, neurological and physical examinations. Unfortunately, by the time the disease is diagnosed, dopamine (DA) neuronal loss is often extended, thereby resulting in ineffective therapies. Recent evidence suggests that neuroinflammation may be pivotal during PD onset and progression. However, suitable cellular models and biomarkers to detect early signs of neuroinflammation are still missing. In this study, we developed a well-differentiated DAergic neuronal cell line where we triggered a neuroinflammatory response to assess the temporal expression of the tissue- and urokinase plasminogen activators (tPA and uPA) and their endogenous inhibitor (PAI-1) along with that of pro-inflammatory mediators and the neuronal marker nNOS. Human neuroblastoma cells SH-SY5Y were differentiated into DAergic neuronal-like cells using a combination of 12-O-tetradecanoylphorbol-13-acetate (TPA) and serum depletion. Terminally-differentiated neurons were then exposed to lipopolysaccharide (LPS) for short (up to 24 h) or long term (up to 10 days) to mimic acute or chronic inflammation. Results demonstrated that uPA protein expression was stably upregulated during chronic inflammation, whereas the expression of nNOS protein better reflected the cellular response to acute inflammation. Additional studies revealed that the temporal induction of uPA was associated with increased AKT phosphorylation, but did not seem to involve cAMP-responsive element-binding protein (CREB) activation, nor the mitogen-activated protein kinase (MAPK) pathway. In conclusion, our in vitro data suggests that nNOS and uPA may serve as viable candidate biomarkers of acute and chronic neuroinflammation.
Collapse
|
13
|
Inulin with a low degree of polymerization protects human umbilical vein endothelial cells from hypoxia/reoxygenation-induced injury. Carbohydr Polym 2019; 216:97-106. [DOI: 10.1016/j.carbpol.2019.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 11/18/2022]
|
14
|
Park H, Choi SH, Kong MJ, Kang TC. Dysfunction of 67-kDa Laminin Receptor Disrupts BBB Integrity via Impaired Dystrophin/AQP4 Complex and p38 MAPK/VEGF Activation Following Status Epilepticus. Front Cell Neurosci 2019; 13:236. [PMID: 31178701 PMCID: PMC6542995 DOI: 10.3389/fncel.2019.00236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Status epilepticus (SE, a prolonged seizure activity) impairs brain-blood barrier (BBB) integrity, which results in secondary complications following SE. The non-integrin 67-kDa laminin receptor (67-kDa LR) plays a role in cell adherence to laminin (a major glycoprotein component in basement membrane), and participates laminin-mediated signaling pathways including p38 mitogen-activated protein kinase (p38 MAPK). Thus, we investigated the role of 67-kDa LR in SE-induced vasogenic edema formation in the rat piriform cortex (PC). SE diminished 67-kDa LR expression, but increased laminin expression, in endothelial cells accompanied by the reduced SMI-71 (a rat BBB barrier marker) expression. Astroglial 67-kDa LR expression was also reduced in the PC due to massive astroglial loss. 67-kDa LR neutralization led to serum extravasation in the PC concomitant with the reduced SMI-71 expression. 67-kDa LR neutralization also decreased expressions of dystrophin and aquaporin-4 (AQP4). In addition, it increased p38 MAPK phosphorylation and expressions of vascular endothelial growth factor (VEGF), laminin and endothelial nitric oxide synthase (eNOS), which were abrogated by SB202190, a p38 MAPK inhibitor. Therefore, our findings indicate that 67-kDa LR dysfunction may disrupt dystrophin-AQP4 complex, which would evoke vasogenic edema formation and subsequent laminin over-expression via activating p38 MAPK/VEGF axis.
Collapse
Affiliation(s)
- Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Seo-Hyeon Choi
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Min-Jeong Kong
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
15
|
Zhu J, Wan Y, Xu H, Wu Y, Hu B, Jin H. The role of endogenous tissue-type plasminogen activator in neuronal survival after ischemic stroke: friend or foe? Cell Mol Life Sci 2019; 76:1489-1506. [PMID: 30656378 PMCID: PMC11105644 DOI: 10.1007/s00018-019-03005-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022]
Abstract
Endogenous protease tissue-type plasminogen activator (tPA) has highly efficient fibrinolytic activity and its recombinant variants alteplase and tenecteplase are established as highly effective thrombolytic drugs for ischemic stroke. Endogenous tPA is constituted of five functional domains through which it interacts with a variety of substrates, binding proteins and receptors, thus having enzymatic and cytokine-like effects to act on all cell types of the brain. In the past 2 decades, numerous studies have explored the clinical relevance of endogenous tPA in neurological diseases, especially in ischemic stroke. tPA is released from many cells within the brain parenchyma exposed to ischemia conditions in vitro and in vivo, which is believed to control neuronal fate. Some studies proved that tPA could induce blood-brain barrier disruption, neural excitotoxicity and inflammation, while others indicated that tPA also has anti-excitotoxic, neurotrophic and anti-apoptotic effects on neurons. Therefore, more work is needed to elucidate how tPA mediates such opposing functions that may amplify tPA from a therapeutic means into a key therapeutic target in endogenous neuroprotection after stroke. In this review, we summarize the biological characteristics and pleiotropic functions of tPA in the brain. Then we focus on possible hypotheses about why and how endogenous tPA mediates ischemic neuronal death and survival. Finally, we analyze how endogenous tPA affects neuron fate in ischemic stroke in a comprehensive view.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hexiang Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yulang Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
16
|
Draxler DF, Lee F, Ho H, Keragala CB, Medcalf RL, Niego B. t-PA Suppresses the Immune Response and Aggravates Neurological Deficit in a Murine Model of Ischemic Stroke. Front Immunol 2019; 10:591. [PMID: 30972077 PMCID: PMC6445967 DOI: 10.3389/fimmu.2019.00591] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction: Acute ischemic stroke (AIS) is a potent trigger of immunosuppression, resulting in increased infection risk. While thrombolytic therapy with tissue-type plasminogen activator (t-PA) is still the only pharmacological treatment for AIS, plasmin, the effector protease, has been reported to suppress dendritic cells (DCs), known for their potent antigen-presenting capacity. Accordingly, in the major group of thrombolyzed AIS patients who fail to reanalyze (>60%), t-PA might trigger unintended and potentially harmful immunosuppressive consequences instead of beneficial reperfusion. To test this hypothesis, we performed an exploratory study to investigate the immunomodulatory properties of t-PA treatment in a mouse model of ischemic stroke. Methods: C57Bl/6J wild-type mice and plasminogen-deficient (plg−/−) mice were subjected to middle cerebral artery occlusion (MCAo) for 60 min followed by mouse t-PA treatment (0.9 mg/kg) at reperfusion. Behavioral testing was performed 23 h after occlusion, pursued by determination of blood counts and plasma cytokines at 24 h. Spleens and cervical lymph nodes (cLN) were also harvested and characterized by flow cytometry. Results: MCAo resulted in profound attenuation of immune activation, as anticipated. t-PA treatment not only worsened neurological deficit, but further reduced lymphocyte and monocyte counts in blood, enhanced plasma levels of both IL-10 and TNFα and decreased various conventional DC subsets in the spleen and cLN, consistent with enhanced immunosuppression and systemic inflammation after stroke. Many of these effects were abolished in plg−/− mice, suggesting plasmin as a key mediator of t-PA-induced immunosuppression. Conclusion: t-PA, via plasmin generation, may weaken the immune response post-stroke, potentially enhancing infection risk and impairing neurological recovery. Due to the large number of comparisons performed in this study, additional pre-clinical work is required to confirm these significant possibilities. Future studies will also need to ascertain the functional implications of t-PA-mediated immunosuppression for thrombolyzed AIS patients, particularly for those with failed recanalization.
Collapse
Affiliation(s)
- Dominik F Draxler
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Felix Lee
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Heidi Ho
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Charithani B Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Be'eri Niego
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Caraci F, Iulita MF, Pentz R, Flores Aguilar L, Orciani C, Barone C, Romano C, Drago F, Cuello AC. Searching for new pharmacological targets for the treatment of Alzheimer's disease in Down syndrome. Eur J Pharmacol 2017; 817:7-19. [DOI: 10.1016/j.ejphar.2017.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022]
|
18
|
Can the benefits of rtPA treatment for stroke be improved? Rev Neurol (Paris) 2017; 173:566-571. [PMID: 28797689 DOI: 10.1016/j.neurol.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/02/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
Abstract
Tissue-type plasminogen activator (tPA) is a serine protease well known to promote fibrinolysis. This is why: its recombinant form (rtPA) can be used, either alone or combined with thrombectomy, to promote recanalization/reperfusion following ischemic stroke. However, its overall benefits are counteracted by some of its side-effects, including incomplete lysis of clots, an increased risk of hemorrhagic transformation and the possibility of neurotoxicity. Nevertheless, better understanding of the mechanisms by which tPA influences brain function and promotes its alteration may help in the design of new strategies to improve stroke therapy.
Collapse
|
19
|
Yang L, Zhang Y, Yan Z, Tian F. The role of mTOR signaling pathway on cognitive functions in cerebral ischemia-reperfusion. Exp Ther Med 2017; 14:2839-2844. [PMID: 28912846 PMCID: PMC5585882 DOI: 10.3892/etm.2017.4881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/18/2017] [Indexed: 12/24/2022] Open
Abstract
The role and mechanism of the mTOR signaling pathway in the impaired cognitive function in cerebral ischemia-reperfusion were examined in the present study. Sprague-Dawley (SD) rats were divided into the sham operation, cerebral ischemia, cerebral ischemia-reperfusion and cerebral ischemia-reperfusion adaptive groups. A Morris water maze test was carried out in the different treatment groups at 2 weeks after surgery to detect cognitive function. After the experimental animals were sacrificed, fluorescent quantitative PCR test was used to detect the key signaling molecules in the mTOR signaling pathway in the different treatment groups, such as mTOR, p-mTOR, AKT and p-AKT gene mRNA expression. The protein expression was determined by enzyme-linked immunosorbent assay and western blotting. mTOR expression and localization in the different treatment groups was detected by immunohistochemistry, and the positive cell rate was determined. Compared with the sham operation group, the levels of mTOR, p-mTOR, AKT and p-AKT mRNAs and hippocampal proteins were significantly lower in the cerebral ischemia group and cerebral ischemia-reperfusion group (P<0.05). Levels of mTOR, p-mTOR, AKT and p-AKT mRNAs and proteins in the cerebral ischemia-reperfusion adaptive group decreased but did not show significant differences (P>0.05). The Morris water maze results showed that, the adaptive ability and the cognitive functions were improved significantly in the cerebral ischemia-reperfusion adaptive group when compared with the cerebral ischemia and cerebral ischemia-reperfusion groups (P<0.05). The number of mTOR-positive cells in hippocampus was significantly higher in the sham operation and cerebral ischemia-reperfusion adaptive groups, but there was no difference between these groups. In conclusion, mTOR signaling pathway improves the cognitive function in cerebral ischemia-reperfusion in rats.
Collapse
Affiliation(s)
- Liying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yingying Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhongrui Yan
- Department of Neurology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Feng Tian
- Department of Neurology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| |
Collapse
|
20
|
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82:1245-1266. [PMID: 26469771 PMCID: PMC5061806 DOI: 10.1111/bcp.12804] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders are significantly increasing in incidence as the age of the global population continues to climb with improved life expectancy. At present, more than 30 million individuals throughout the world are impacted by acute and chronic neurodegenerative disorders with limited treatment strategies. The mechanistic target of rapamycin (mTOR), also known as the mammalian target of rapamycin, is a 289 kDa serine/threonine protein kinase that offers exciting possibilities for novel treatment strategies for a host of neurodegenerative diseases that include Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, stroke and trauma. mTOR governs the programmed cell death pathways of apoptosis and autophagy that can determine neuronal stem cell development, precursor cell differentiation, cell senescence, cell survival and ultimate cell fate. Coupled to the cellular biology of mTOR are a number of considerations for the development of novel treatments involving the fine control of mTOR signalling, tumourigenesis, complexity of the apoptosis and autophagy relationship, functional outcome in the nervous system, and the intimately linked pathways of growth factors, phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), AMP activated protein kinase (AMPK), silent mating type information regulation two homologue one (Saccharomyces cerevisiae) (SIRT1) and others. Effective clinical translation of the cellular signalling mechanisms of mTOR offers provocative avenues for new drug development in the nervous system tempered only by the need to elucidate further the intricacies of the mTOR pathway.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey, 07101, USA.
| |
Collapse
|
21
|
Garraud M, Khacef K, Vion AC, Leconte C, Yin M, Renard JM, Marchand-Leroux C, Boulanger CM, Margaill I, Beray-Berthat V. Recombinant tissue plasminogen activator enhances microparticle release from mouse brain-derived endothelial cells through plasmin. J Neurol Sci 2016; 370:187-195. [PMID: 27772757 DOI: 10.1016/j.jns.2016.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
Thrombolysis with recombinant tissue plasminogen activator (rt-PA) is currently the only approved pharmacological strategy for acute ischemic stroke. However, rt-PA exhibits vascular toxicity mainly due to endothelial damage. To investigate the mechanisms underlying rt-PA-induced endothelial alterations, we assessed the role of rt-PA in the generation of endothelial microparticles (EMPs), emerging biological markers and effectors of endothelial dysfunction. The mouse brain-derived endothelial cell line bEnd.3 was used. Cells were treated with rt-PA at 20, 40 or 80μg/ml for 15 or 24h, and EMPs were quantified in the culture media using Annexin-V staining coupled with flow cytometry. Rt-PA enhanced EMP release from bEnd.3 cells with a maximal increase at the 40μg/ml dose for 24h (+78% compared to controls). Using tranexamic acid and aprotinin we demonstrated that plasmin is responsible for rt-PA-induced EMP release. The p38 MAPK inhibitor SB203580 and the poly(ADP-ribose)polymerase (PARP) inhibitor PJ34 also reduced rt-PA-induced EMP production, suggesting that p38 MAPK and PARP are downstream intracellular effectors of rt-PA/plasmin. Rt-PA also altered through plasmin the morphology and the confluence of bEnd.3 cells. By contrast, these changes did not implicate p38 MAPK and PARP. This study demonstrates that rt-PA induces the production of microparticles by cerebral endothelial cells, through plasmin, p38 MAPK and PARP pathways. Determining the phenotype of these EMPs to clarify their role on the endothelium in ischemic conditions could thus be of particular interest.
Collapse
Affiliation(s)
- Marie Garraud
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kahina Khacef
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne-Clémence Vion
- INSERM, U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claire Leconte
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Min Yin
- INSERM, U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Marie Renard
- INSERM, U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Catherine Marchand-Leroux
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal M Boulanger
- INSERM, U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Margaill
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Virginie Beray-Berthat
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
22
|
Protective Effect of Galectin-1 during Histoplasma capsulatum Infection Is Associated with Prostaglandin E 2 and Nitric Oxide Modulation. Mediators Inflamm 2016; 2016:5813794. [PMID: 27698545 PMCID: PMC5028869 DOI: 10.1155/2016/5813794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 12/03/2022] Open
Abstract
Histoplasma capsulatum is a dimorphic fungus that develops a yeast-like morphology in host's tissue, responsible for the pulmonary disease histoplasmosis. The recent increase in the incidence of histoplasmosis in immunocompromised patients highlights the need of understanding immunological controls of fungal infections. Here, we describe our discovery of the role of endogenous galectin-1 (Gal-1) in the immune pathophysiology of experimental histoplasmosis. All infected wild-type (WT) mice survived while only 1/3 of Lgals1−/− mice genetically deficient in Gal-1 survived 30 days after infection. Although infected Lgals1−/− mice had increased proinflammatory cytokines, nitric oxide (NO), and elevations in neutrophil pulmonary infiltration, they presented higher fungal load in lungs and spleen. Infected lung and infected macrophages from Lgals1−/− mice exhibited elevated levels of prostaglandin E2 (PGE2, a prostanoid regulator of macrophage activation) and prostaglandin E synthase 2 (Ptgs2) mRNA. Gal-1 did not bind to cell surface of yeast phase of H. capsulatum, in vitro, suggesting that Gal-1 contributed to phagocytes response to infection rather than directly killing the yeast. The data provides the first demonstration of endogenous Gal-1 in the protective immune response against H. capsulatum associated with NO and PGE2 as an important lipid mediator in the pathogenesis of histoplasmosis.
Collapse
|
23
|
Yamanaka H, Kobayashi K, Okubo M, Noguchi K. Annexin A2 in primary afferents contributes to neuropathic pain associated with tissue type plasminogen activator. Neuroscience 2016; 314:189-99. [DOI: 10.1016/j.neuroscience.2015.11.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/21/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
|
24
|
The plasminogen activation system in neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2015; 1862:395-402. [PMID: 26493446 DOI: 10.1016/j.bbadis.2015.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/30/2023]
Abstract
The plasminogen activation (PA) system consists in a group of proteases and protease inhibitors regulating the activation of the zymogen plasminogen into its proteolytically active form, plasmin. Here, we give an update of the current knowledge about the role of the PA system on different aspects of neuroinflammation. These include modification in blood-brain barrier integrity, leukocyte diapedesis, removal of fibrin deposits in nervous tissues, microglial activation and neutrophil functions. Furthermore, we focus on the molecular mechanisms (some of them independent of plasmin generation and even of proteolysis) and target receptors responsible for these effects. The description of these mechanisms of action may help designing new therapeutic strategies targeting the expression, activity and molecular mediators of the PA system in neurological disorders involving neuroinflammatory processes. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
|
25
|
Chevilley A, Lesept F, Lenoir S, Ali C, Parcq J, Vivien D. Impacts of tissue-type plasminogen activator (tPA) on neuronal survival. Front Cell Neurosci 2015; 9:415. [PMID: 26528141 PMCID: PMC4607783 DOI: 10.3389/fncel.2015.00415] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022] Open
Abstract
Tissue-type plasminogen activator (tPA) a serine protease is constituted of five functional domains through which it interacts with different substrates, binding proteins, and receptors. In the last years, great interest has been given to the clinical relevance of targeting tPA in different diseases of the central nervous system, in particular stroke. Among its reported functions in the central nervous system, tPA displays both neurotrophic and neurotoxic effects. How can the protease mediate such opposite functions remain unclear but several hypotheses have been proposed. These include an influence of the degree of maturity and/or the type of neurons, of the level of tPA, of its origin (endogenous or exogenous) or of its form (single chain tPA versus two chain tPA). In this review, we will provide a synthetic snapshot of our current knowledge regarding the natural history of tPA and discuss how it sustains its pleiotropic functions with focus on excitotoxic/ischemic neuronal death and neuronal survival.
Collapse
Affiliation(s)
- Arnaud Chevilley
- INSERM, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen-Normandie Caen, France
| | - Flavie Lesept
- INSERM, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen-Normandie Caen, France
| | - Sophie Lenoir
- INSERM, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen-Normandie Caen, France
| | - Carine Ali
- INSERM, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen-Normandie Caen, France
| | - Jérôme Parcq
- INSERM, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen-Normandie Caen, France
| | - Denis Vivien
- INSERM, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen-Normandie Caen, France
| |
Collapse
|
26
|
Won S, Lee JK, Stein DG. Recombinant tissue plasminogen activator promotes, and progesterone attenuates, microglia/macrophage M1 polarization and recruitment of microglia after MCAO stroke in rats. Brain Behav Immun 2015; 49:267-79. [PMID: 26093305 DOI: 10.1016/j.bbi.2015.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/20/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Tissue plasminogen activator (tPA) is one of the few approved treatments for stroke, but its effects on the phenotype of microglia/macrophages are poorly understood. One of its side effects is an increase in the inflammatory response leading to neuronal cell damage and death in the ischemic cascade after stroke. Injury-induced activated microglia/macrophages can have dual functions as pro-inflammatory (M1) and anti-inflammatory (M2) factors in brain injury and repair. Recent studies show that progesterone (PROG) is a potent anti-inflammatory agent which affects microglia/macrophage expression after brain injury. PURPOSE We examined the interaction of tPA-induced expression of microglia/macrophage phenotypes and PROG's anti-inflammatory effects. RESULTS tPA treatment increased the recruitment of microglia/macrophages, the polarity of M1 reactions, the expression of MIP-1α in neurons and capillaries, and the expression of MMP-3 compared to vehicle, and PROG modulated these effects. CONCLUSIONS PROG treatment attenuates tPA-induced inflammatory alterations in brain capillaries and microglia/macrophages both in vivo and in vitro and thus may be a useful adjunct therapy when tPA is given for stroke.
Collapse
Affiliation(s)
- Soonmi Won
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jae-Kyung Lee
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
27
|
NF-κB Upregulates Type 5 Phosphodiesterase in N9 Microglial Cells: Inhibition by Sildenafil and Yonkenafil. Mol Neurobiol 2015; 53:2647-58. [PMID: 26108184 DOI: 10.1007/s12035-015-9293-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/08/2015] [Indexed: 01/02/2023]
Abstract
Our previous studies showed that the phosphodiesterase-5 (PDE5) inhibitor sildenafil inhibited the microglial activation induced by lipopolysaccharide (LPS). However, whether yonkenafil, a novel PDE5 inhibitor, also inhibits microglial activation and the underlying mechanism of inhibition remain elusive. Here we found that yonkenafil significantly suppressed the production of NO, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and the protein expression of inducible NO synthase (iNOS) induced by LPS in microglial cells in a concentration-dependent manner. Knockdown of PDE5 inhibits NO and iNOS protein expression in LPS-stimulated N9 microglia. Moreover, we observed that the nuclear factor-κB (NF-κB) transcriptionally upregulated PDE5 expression, which was inhibited by sildenafil and yonkenafil in LPS-stimulated N9 microglia. Therefore, sildenafil and yonkenafil may exert their inhibitory effects on microglial activation by reducing the expression of PDE5. Furthermore, sildenafil and yonkenafil increased the cyclic guanosine monophosphate (cGMP) level in N9 microglia, and 8-Br-cGMP, an analogue of cGMP, downregulates extracellular signal-regulated kinases 1 and 2 (ERK1/2)/the NF-κB pathway, suggesting that sildenafil and yonkenafil inhibit microglial activation by decreasing PDE5 expression and increasing the cGMP level. Importantly, sildenafil and yonkenafil significantly alleviated the death of SH-SY5Y neuroblastoma cells and primary cortical neurons induced by the conditioned medium from activated microglia. Together, these findings position PDE5 as a potential therapy target for the treatment of neuroinflammation accompanied by microglial activation.
Collapse
|
28
|
Maiese K. FoxO proteins in the nervous system. Anal Cell Pathol (Amst) 2015; 2015:569392. [PMID: 26171319 PMCID: PMC4478359 DOI: 10.1155/2015/569392] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/31/2015] [Indexed: 02/07/2023] Open
Abstract
Acute as well as chronic disorders of the nervous system lead to significant morbidity and mortality for millions of individuals globally. Given the ability to govern stem cell proliferation and differentiated cell survival, mammalian forkhead transcription factors of the forkhead box class O (FoxO) are increasingly being identified as potential targets for disorders of the nervous system, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and auditory neuronal disease. FoxO proteins are present throughout the body, but they are selectively expressed in the nervous system and have diverse biological functions. The forkhead O class transcription factors interface with an array of signal transduction pathways that include protein kinase B (Akt), serum- and glucocorticoid-inducible protein kinase (SgK), IκB kinase (IKK), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), growth factors, and Wnt signaling that can determine the activity and integrity of FoxO proteins. Ultimately, there exists a complex interplay between FoxO proteins and their signal transduction pathways that can significantly impact programmed cell death pathways of apoptosis and autophagy as well as the development of clinical strategies for the treatment of neurodegenerative disorders.
Collapse
|
29
|
Docagne F, Parcq J, Lijnen R, Ali C, Vivien D. Understanding the Functions of Endogenous and Exogenous Tissue-Type Plasminogen Activator During Stroke. Stroke 2015; 46:314-20. [DOI: 10.1161/strokeaha.114.006698] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Fabian Docagne
- From the INSERM UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, GIP Cyceron, Caen, France (F.D., J.P., C.A., D.V.); and Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium (R.L.)
| | - Jérôme Parcq
- From the INSERM UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, GIP Cyceron, Caen, France (F.D., J.P., C.A., D.V.); and Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium (R.L.)
| | - Roger Lijnen
- From the INSERM UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, GIP Cyceron, Caen, France (F.D., J.P., C.A., D.V.); and Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium (R.L.)
| | - Carine Ali
- From the INSERM UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, GIP Cyceron, Caen, France (F.D., J.P., C.A., D.V.); and Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium (R.L.)
| | - Denis Vivien
- From the INSERM UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen Basse Normandie, GIP Cyceron, Caen, France (F.D., J.P., C.A., D.V.); and Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium (R.L.)
| |
Collapse
|
30
|
Maiese K. Cutting through the complexities of mTOR for the treatment of stroke. Curr Neurovasc Res 2014; 11:177-86. [PMID: 24712647 DOI: 10.2174/1567202611666140408104831] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 01/06/2023]
Abstract
On a global basis, at least 15 million individuals suffer some form of a stroke every year. Of these individuals, approximately 800,000 of these cerebrovascular events occur in the United States (US) alone. The incidence of stroke in the US has declined from the third leading cause of death to the fourth, a result that can be attributed to multiple factors that include improved vascular disease management, reduced tobacco use, and more rapid time to treatment in patients that are clinically appropriate to receive recombinant tissue plasminogen activator. However, treatment strategies for the majority of stroke patients are extremely limited and represent a critical void for care. A number of new therapeutic considerations for stroke are under consideration, but it is the mammalian target of rapamycin (mTOR) that is receiving intense focus as a potential new target for cerebrovascular disease. As part of the phosphoinositide 3-kinase (PI 3-K) and protein kinase B (Akt) cascade, mTOR is an essential component of mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) to govern cell death involving apoptosis, autophagy, and necroptosis, cellular metabolism, and gene transcription. Vital for the consideration of new therapeutic strategies for stroke is the ability to understand how the intricate and complex pathways of mTOR signaling sometimes lead to disparate clinical outcomes.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|
31
|
Cho KS, Lee EJ, Kwon KJ, Gonzales ELT, Kim YB, Cheong JH, Bahn GH, Lee J, Han SH, Kim YT, Shin CY. Resveratrol down-regulates a glutamate-induced tissue plasminogen activator via Erk and AMPK/mTOR pathways in rat primary cortical neurons. Food Funct 2014; 5:951-60. [PMID: 24599349 DOI: 10.1039/c3fo60397k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene, RSV) is a polyphenolic compound present in a variety of plant species (including grapes) that produces a myriad of biological activities including anti-inflammatory, antioxidant and neuroprotective effects. In this study, we investigate the effects of resveratrol on the basal and glutamate-stimulated expression and activity of a tissue plasminogen activator (tPA) that plays neuromodulatory or neurotoxic roles in many different neurological situations. Under basal conditions, resveratrol decreased the tPA expression and activity without affecting the tPA mRNA level in rat primary cortical neurons. RSV induced AMPK phosphorylation and inhibited mTOR phosphorylation. Inhibition of AMPK phosphorylation using compound C prevented resveratrol-induced down-regulation of tPA activity. This suggested that AMPK/mTOR-dependent translational inhibition contributes to the down-regulation of the tPA. Under glutamate-stimulated conditions of rat primary cortical neurons, tPA activity and expression were increased along with increased tPA mRNA expression but afterward treatment of RSV inhibited the glutamate-induced increase in tPA activity and expression and tPA mRNA expression. Glutamate stimulation induced activation of Akt and MAPK pathways as well as mTOR which were inhibited by RSV. Interestingly, the Erk pathway inhibitor U0126, but neither PI3K-Akt inhibitor LY294002 nor p38 inhibitor SB203580, mimicked the inhibitory action of RSV on glutamate-induced tPA up-regulation. This suggested the essential role of Erk in the transcriptional up-regulation of tPA expression, which is targeted by RSV. Glutamate stimulation induced neuronal cell death as determined by PI staining and MTT assay. However, RSV protected the cultured rat primary cortical neurons from glutamate-induced cell death as paralleled with the changes in tPA expression. These results suggested that RSV can modulate tPA activity under basal and stimulated conditions by both translational and transcriptional mechanisms. The regulation of the tPA by RSV provides additional therapeutic targets on top of the growing number of molecular substrates of RSV's action in the brain.
Collapse
Affiliation(s)
- Kyu Suk Cho
- Department of Neuroscience and Institute of Functional Genomics, Department of Pharmacology, School of Medicine, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hu X, Liou AKF, Leak RK, Xu M, An C, Suenaga J, Shi Y, Gao Y, Zheng P, Chen J. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 2014; 119-120:60-84. [PMID: 24923657 PMCID: PMC4121732 DOI: 10.1016/j.pneurobio.2014.06.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/28/2022]
Abstract
Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial 'On' or 'Off' responses to signals from other host cells as well as invading microorganisms. The integrated actions of these receptors result in tightly regulated biological functions, including cell mobility, phagocytosis, the induction of acquired immunity, and trophic factor/inflammatory mediator release. Over the last few years, significant advances have been made toward deciphering the signaling mechanisms related to these receptors and their specific cellular functions. In this review, we describe the current state of knowledge of the surface receptors involved in microglial activation, with an emphasis on their engagement of distinct functional programs and their roles in CNS injuries. It will become evident from this review that microglial homeostasis is carefully maintained by multiple counterbalanced strategies, including, but not limited to, 'On' and 'Off' receptor signaling. Specific regulation of theses microglial receptors may be a promising therapeutic strategy against CNS injuries.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| | - Anthony K F Liou
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Mingyue Xu
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Chengrui An
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Suenaga
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
33
|
Kawao N, Tamura Y, Okumoto K, Yano M, Okada K, Matsuo O, Kaji H. Tissue-type plasminogen activator deficiency delays bone repair: roles of osteoblastic proliferation and vascular endothelial growth factor. Am J Physiol Endocrinol Metab 2014; 307:E278-88. [PMID: 24918201 DOI: 10.1152/ajpendo.00129.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Further development in research of bone regeneration is necessary to meet the clinical demand for bone reconstruction. Recently, we reported that plasminogen is crucial for bone repair through enhancement of vessel formation. However, the details of the role of tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) in the bone repair process still remain unknown. Herein, we examined the effects of plasminogen activators on bone repair after a femoral bone defect using tPA-deficient (tPA(-/-)) and uPA-deficient (uPA(-/-)) mice. Bone repair of the femur was delayed in tPA(-/-) mice, unlike that in wild-type (tPA(+/+)) mice. Conversely, the bone repair was comparable between wild-type (uPA(+/+)) and uPA(-/-) mice. The number of proliferative osteoblasts was decreased at the site of bone damage in tPA(-/-) mice. Moreover, the proliferation of primary calvarial osteoblasts was reduced in tPA(-/-) mice. Recombinant tPA facilitated the proliferation of mouse osteoblastic MC3T3-E1 cells. The proliferation enhanced by tPA was antagonized by the inhibition of endogenous annexin 2 by siRNA and by the inhibition of extracellular signal-regulated kinase (ERK)1/2 phosphorylation in MC3T3-E1 cells. Vessel formation as well as the levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were decreased at the damaged site in tPA(-/-) mice. Our results provide novel evidence that tPA is crucial for bone repair through the facilitation of osteoblast proliferation related to annexin 2 and ERK1/2 as well as enhancement of vessel formation related to VEGF and HIF-1α at the site of bone damage.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan; and
| | - Yukinori Tamura
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan; and
| | - Katsumi Okumoto
- Life Science Research Institute, Kinki University, Osakasayama, Osaka, Japan
| | - Masato Yano
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan; and
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan; and
| | - Osamu Matsuo
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan; and
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan; and
| |
Collapse
|
34
|
Recombinant tissue plasminogen activator enhances microglial cell recruitment after stroke in mice. J Cereb Blood Flow Metab 2014; 34:802-12. [PMID: 24473480 PMCID: PMC4013777 DOI: 10.1038/jcbfm.2014.9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 12/18/2022]
Abstract
The effect of recombinant human tissue plasminogen activator (rtPA) on neuroinflammation after stroke remains largely unknown. Here, we tested the effect of rtPA on expression of cellular adhesion molecules, chemokines, and cytokines, and compared those with levels of inflammatory cell recruitment, brain injury, and mortality over 3 days after transient middle cerebral artery occlusion (MCAO) in mice. Mortality was dramatically increased after rtPA treatment compared with saline treatment during the first day of reperfusion. Among the animals that survived, rtPA significantly increased CCL3 expression, microglia recruitment, and cerebral infarction 6 hours after MCAO. In contrast, the extent of neutrophils and macrophages infiltration in the brain was similar in both saline- and rtPA-treated animals. Recombinant human tissue plasminogen activator induced Il1b and Tnf expression, 6 and 72 hours after MCAO, respectively, and dramatically reduced interleukin 6 (IL-6) level 24 hours after reperfusion. A dose response study confirmed the effect of rtPA on CCL3 and Il1b expressions. The effect was similar at the doses of 1 and 10 mg/kg. In conclusion, we report for the first time that rtPA amplified microglia recruitment early after stroke in association with a rapid CCL3 production. This early response may take part in the higher susceptibility of rtPA-treated animals to reperfusion injury.
Collapse
|
35
|
Wang J, Zhang X, Mu L, Zhang M, Gao Z, Zhang J, Yao X, Liu C, Wang G, Wang D, Kong Q, Liu Y, Li N, Sun B, Li H. t-PA acts as a cytokine to regulate lymphocyte-endothelium adhesion in experimental autoimmune encephalomyelitis. Clin Immunol 2014; 152:90-100. [PMID: 24650778 DOI: 10.1016/j.clim.2014.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/17/2023]
Abstract
In this study, the capacity for t-PA to affect T cell-brain microvascular endothelial cell adhesion by acting as a cytokine was investigated. Following the treatment of a brain-derived endothelial cell line, bEnd.3, with various concentrations of t-PA, adhesion and transwell migration assays were performed. In the presence of t-PA, enhanced adhesion of T cells to bEnd.3 cells was observed. Using western blot analysis, an increase in ICAM-1 expression was detected for both t-PA-treated bEnd.3 cells and bEnd.3 cells treated with a non-enzymatic form of t-PA. In contrast, when LRP1 was blocked using a specific antibody, upregulation of ICAM-1 was inhibited and cAMP-PKA signaling was affected. Furthermore, using an EAE mouse model, administration of t-PA was associated with an increase in ICAM-1 expression by brain endothelial cells. Taken together, these findings suggest that t-PA can induce ICAM-1 expression in brain microvascular endothelial cells, and this may promote the development of EAE.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China
| | - Xin Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Lili Mu
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China
| | - Mingqing Zhang
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China
| | - Zhongming Gao
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China
| | - Jia Zhang
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China
| | - Xiuhua Yao
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China
| | - Chuanliang Liu
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China
| | - Guangyou Wang
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China
| | - Dandan Wang
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China
| | - Qingfei Kong
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China
| | - Yumei Liu
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China
| | - Na Li
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China
| | - Bo Sun
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China.
| | - Hulun Li
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Education Department of Heilongjiang Province, Harbin, Heilongjiang 150086, China; Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
36
|
Utreras E, Hamada R, Prochazkova M, Terse A, Takahashi S, Ohshima T, Kulkarni AB. Suppression of neuroinflammation in forebrain-specific Cdk5 conditional knockout mice by PPARγ agonist improves neuronal loss and early lethality. J Neuroinflammation 2014; 11:28. [PMID: 24495352 PMCID: PMC3931315 DOI: 10.1186/1742-2094-11-28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/21/2014] [Indexed: 01/04/2023] Open
Abstract
Background Cyclin-dependent kinase 5 (Cdk5) is essential for brain development and function, and its deregulated expression is implicated in some of neurodegenerative diseases. We reported earlier that the forebrain-specific Cdk5 conditional knockout (cKO) mice displayed an early lethality associated with neuroinflammation, increased expression of the neuronal tissue-type plasminogen activator (tPA), and neuronal migration defects. Methods In order to suppress neuroinflammation in the cKO mice, we first treated these mice with pioglitazone, a PPARγ agonist, and analyzed its effects on neuronal loss and longevity. In a second approach, to delineate the precise role of tPA in neuroinflammation in these mice, we generated Cdk5 cKO; tPA double knockout (dKO) mice. Results We found that pioglitazone treatment significantly reduced astrogliosis, microgliosis, neuronal loss and behavioral deficit in Cdk5 cKO mice. Interestingly, the dKO mice displayed a partial reversal in astrogliosis, but they still died at early age, suggesting that the increased expression of tPA in the cKO mice does not contribute significantly to the pathological process leading to neuroinflammation, neuronal loss and early lethality. Conclusion The suppression of neuroinflammation in Cdk5 cKO mice ameliorates gliosis and neuronal loss, thus suggesting the potential beneficial effects of the PPARγ agonist pioglitazone for the treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Toshio Ohshima
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
37
|
Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways. Neuropharmacology 2014; 79:642-56. [PMID: 24467851 DOI: 10.1016/j.neuropharm.2014.01.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 02/07/2023]
Abstract
Pseudoginsenoside-F11 (PF11), an ocotillol-type ginsenoside, has been shown to possess significant neuroprotective activity. Since microglia-mediated inflammation is critical for induction of neurodegeneration, this study was designed to investigate the effect of PF11 on activated microglia. PF11 significantly suppressed the release of ROS and proinflammatory mediators induced by LPS in a microglial cell line N9 including NO, PGE2, IL-1β, IL-6 and TNF-α. Moreover, PF11 inhibited interaction and expression of TLR4 and MyD88 in LPS-activated N9 cells, resulting in an inhibition of the TAK1/IKK/NF-κB signaling pathway. PF11 also inhibited the phosphorylation of Akt and MAPKs induced by LPS in N9 cells. Importantly, PF11 significantly alleviated the death of SH-SY5Y neuroblastoma cells and primary cortical neurons induced by the conditioned-medium from activated microglia. At last, the effect of PF11 on neuroinflammation was confirmed in vivo: PF11 mitigated the microglial activation and proinflammatory factors expression obviously in both cortex and hippocampus in mice injected intrahippocampally with LPS. These findings indicate that PF11 exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways, suggesting its therapeutic implication for neurodegenerative disease associated with neuroinflammation.
Collapse
|
38
|
Shang YC, Chong ZZ, Wang S, Maiese K. Wnt1 inducible signaling pathway protein 1 (WISP1) targets PRAS40 to govern β-amyloid apoptotic injury of microglia. Curr Neurovasc Res 2013; 9:239-49. [PMID: 22873724 DOI: 10.2174/156720212803530618] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022]
Abstract
Given the present challenges to attain effective treatment for β-amyloid (Aβ) toxicity in neurodegenerative disorders such as Alzheimer's disease, development of novel cytoprotective pathways that can assist immune mediated therapies through the preservation of central nervous system microglia could offer significant promise. We show that the CCN4 protein, Wnt1 inducible signaling pathway protein 1 (WISP1), is initially up-regulated by Aβ and can modulate its endogenous expression for the protection of microglia during Aβ mediated apoptosis. WISP1 activates mTOR and phosphorylates p70S6K and 4EBP1 through the control of the regulatory mTOR component PRAS40. Loss of PRAS40 through gene reduction or inhibition by WISP1 is cytoprotective. WISP1 ultimately governs PRAS40 by sequestering PRAS40 intracellularly through post-translational phosphorylation and binding to protein 14-3-3. Our work identifies WISP1, mTOR signaling, and PRAS40 as targets for new strategies directed against Alzheimer's disease and related disorders.
Collapse
Affiliation(s)
- Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | | | | | | |
Collapse
|
39
|
Wang Z, Chen D, Zhang Z, Zhang R, An S, Yu L. Protease-activated receptor 4 activation increases the expression of calcitonin gene-related peptide mRNA and protein in dorsal root ganglion neurons. J Neurosci Res 2013; 91:1551-62. [PMID: 24105611 DOI: 10.1002/jnr.23280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022]
Abstract
Accumulating evidence demonstrates that nociceptor activation evokes a rapid change in mRNA and protein levels of calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons. Although the colocalization of CGRP and protease-activated receptor-4 (PAR4), a potent modulator of pain processing and inflammation, was detected in DRG neurons, the role of PAR4 activation in the expression of CGRP has not been investigated. In the present study, the expression of CGRP and activation (phosphorylation) of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in rat DRG neurons were measured by immunofluorescence, real-time PCR, and Western blotting after AYPGKF-NH2 (selective PAR4-activating peptide; PAR4-AP) intraplantar injection or treatment of cultured DRG neurons. The expression of CGRP in cultured DRG neurons was also assessed after treatment with AYPGKF-NH2 with preaddition of PD98059 (an inhibitor for ERK1/2 pathway). Results showed that PAR4-AP intraplantar injection or treatment of cultured DRG neurons evoked significant increases in DRG cells displaying CGRP immunoreactivity and cytoplasmic and nuclear staining for phospho-ERK1/2 (p-ERK1/2). Percentages of total DRG neurons expressing both CGRP and PAR4 or p-ERK1/2 also increased significantly at 2 hr after PAR4-AP treatment. Real-time PCR and Western blotting showed that PAR4-AP treatment significantly increased expression of CGRP mRNA and protein levels in DRG neurons. The PAR4 activation-evoked CGRP expression both at mRNA and at protein levels was significantly inhibited after p-ERK1/2 was inhibited by PD98059. These results provide evidence that activation of PAR4 upregulates the expression of CGRP mRNA and protein levels in DRG neurons via the p-ERK1/2 signal pathway.
Collapse
Affiliation(s)
- Zhaojin Wang
- Department of Anatomy, Taishan Medical University, Shandong Province, Taian, China
| | | | | | | | | | | |
Collapse
|
40
|
Wang S, Chong ZZ, Shang YC, Maiese K. WISP1 neuroprotection requires FoxO3a post-translational modulation with autoregulatory control of SIRT1. Curr Neurovasc Res 2013; 10:54-69. [PMID: 23151077 DOI: 10.2174/156720213804805945] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/25/2012] [Accepted: 11/05/2012] [Indexed: 12/13/2022]
Abstract
As a member of the secreted extracellular matrix associated proteins of the CCN family, Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4) is garnering increased attention not only as a potent proliferative entity, but also as a robust cytoprotective agent during toxic insults. Here we demonstrate that WISP1 prevents forkhead transcription factor FoxO3a mediated caspase 1 and caspase 3 apoptotic cell death in primary neurons during oxidant stress. Phosphoinositide 3-kinase (PI 3-K) and protein kinase B (Akt1) are necessary for WISP1 to foster posttranslational phosphorylation of FoxO3a and sequester FoxO3a in the cytoplasm of neurons with protein 14-3-3. Through an autoregulatory loop, WISP1 also minimizes deacytelation of FoxO3a, prevents caspase 1 and 3 activation, and promotes an effective neuroprotective level of SIRT1 activity through SIRT1 nuclear trafficking and prevention of SIRT1 caspase degradation. Elucidation of the critical pathways of WISP1 that determine neuronal cell survival during oxidative stress may offer novel therapeutic avenues for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, New Jersey Health Sciences University, Newark, NJ 07101
| | | | | | | |
Collapse
|
41
|
Jeong HK, Ji K, Min K, Joe EH. Brain inflammation and microglia: facts and misconceptions. Exp Neurobiol 2013; 22:59-67. [PMID: 23833554 PMCID: PMC3699675 DOI: 10.5607/en.2013.22.2.59] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 06/17/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
THE INFLAMMATION THAT ACCOMPANIES ACUTE INJURY HAS DUAL FUNCTIONS: bactericidal action and repair. Bactericidal functions protect damaged tissue from infection, and repair functions are initiated to aid in the recovery of damaged tissue. Brain injury is somewhat different from injuries in other tissues in two respects. First, many cases of brain injury are not accompanied by infection: there is no chance of pathogens to enter in ischemia or even in traumatic injury if the skull is intact. Second, neurons are rarely regenerated once damaged. This raises the question of whether bactericidal inflammation really occurs in the injured brain; if so, how is this type of inflammation controlled? Many brain inflammation studies have been conducted using cultured microglia (brain macrophages). Even where animal models have been used, the behavior of microglia and neurons has typically been analyzed at or after the time of neuronal death, a time window that excludes the inflammatory response, which begins immediately after the injury. Therefore, to understand the patterns and roles of brain inflammation in the injured brain, it is necessary to analyze the behavior of all cell types in the injured brain immediately after the onset of injury. Based on our experience with both in vitro and in vivo experimental models of brain inflammation, we concluded that not only microglia, but also astrocytes, blood inflammatory cells, and even neurons participate and/or regulate brain inflammation in the injured brain. Furthermore, brain inflammation played by these cells protects neurons and repairs damaged microenvironment but not induces neuronal damage.
Collapse
Affiliation(s)
- Hey-Kyeong Jeong
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 442-721, Korea. ; Department of Pharmacology, Ajou University School of Medicine, Suwon 442-721, Korea. ; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 442-721, Korea. ; National Research Lab of Brain Inflammation, Ajou University School of Medicine, Suwon 442-721, Korea
| | | | | | | |
Collapse
|
42
|
Costales P, Castellano J, Revuelta-López E, Cal R, Aledo R, Llampayas O, Nasarre L, Juarez C, Badimon L, Llorente-Cortés V. Lipopolysaccharide downregulates CD91/low-density lipoprotein receptor-related protein 1 expression through SREBP-1 overexpression in human macrophages. Atherosclerosis 2012; 227:79-88. [PMID: 23312784 DOI: 10.1016/j.atherosclerosis.2012.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 12/18/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) negatively modulate the expression of the CD91/low-density lipoprotein receptor-related protein (LRP1), a carrier and signaling receptor that mediates the endocytosis of more than 40 structurally and functionally distinct ligands. The aim of this work was to analyze whether lipopolysaccharide (LPS) can regulate LRP1 expression through SREBPs in human monocyte-derived macrophages (HMDM). LPS led to LRP1 mRNA and protein inhibition in a dose- and time-dependent manner. Concomitantly, a strong upregulation of SREBP-1 mRNA and SREBP-1 nuclear protein levels was observed in LPS-treated HMDM. The specific silencing of SREBP-1 efficiently prevented LRP1 reduction caused by LPS. SREBP-1 mRNA and nuclear protein levels remained high in HMDM treated with LPS unexposed or exposed to LDL. Native (nLDL) or aggregated LDL (agLDL) per se downregulated SREBP-2 expression levels and increased LRP1 expression. However, lipoproteins did not significantly alter the effect of LPS on SREBP-1 and LRP1 expression. Collectively, these data support that lipoproteins and LPS exert their modulatory effect on LRP1 expression through different SREBP isoforms, SREBP-2 and SREBP-1, respectively. These results highlight a crucial role of SREBP-1 as a mediator of the downregulatory effects of LPS on LRP1 expression in human macrophages, independently of the absence or presence of modified lipoproteins.
Collapse
Affiliation(s)
- P Costales
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Maiese K, Chong ZZ, Wang S, Shang YC. Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci 2012. [PMID: 23203037 PMCID: PMC3509553 DOI: 10.3390/ijms131113830] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress impacts multiple systems of the body and can lead to some of the most devastating consequences in the nervous system especially during aging. Both acute and chronic neurodegenerative disorders such as diabetes mellitus, cerebral ischemia, trauma, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and tuberous sclerosis through programmed cell death pathways of apoptosis and autophagy can be the result of oxidant stress. Novel therapeutic avenues that focus upon the phosphoinositide 3-kinase (PI 3-K), Akt (protein kinase B), and the mammalian target of rapamycin (mTOR) cascade and related pathways offer exciting prospects to address the onset and potential reversal of neurodegenerative disorders. Effective clinical translation of these pathways into robust therapeutic strategies requires intimate knowledge of the complexity of these pathways and the ability of this cascade to influence biological outcome that can vary among disorders of the nervous system.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
- Author to whom correspondence should be addressed: E-Mail:
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| |
Collapse
|
44
|
Wang S, Chong ZZ, Shang YC, Maiese K. WISP1 (CCN4) autoregulates its expression and nuclear trafficking of β-catenin during oxidant stress with limited effects upon neuronal autophagy. Curr Neurovasc Res 2012; 9:91-101. [PMID: 22475393 DOI: 10.2174/156720212800410858] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 01/12/2023]
Abstract
Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4) is a CCN family member more broadly identified with development and tumorigenesis. However, recent studies have shed new light and enthusiasm on WISP1 as a novel target directed against toxic cell degeneration. Here we show WISP1 prevents apoptotic degeneration in primary neurons during oxidant stress through the activation of protein kinase B (Akt1), the post-translational maintenance of β-catenin integrity that is consistent with inhibition of glycogen synthase kinase-3β (GSK-3β), and the subcellular trafficking of β- catenin to foster its translocation to the nucleus. Interestingly, WISP1 autoregulates its expression through the promotion of β-catenin activity and may employ β-catenin to have a limited control over autophagy, but neuronal injury during oxidant stress as a result of autophagy appears portioned to a small population of neurons without significant impact upon overall cell survival. New strategies that target WISP1, its autoregulation, and the pathways responsible for neuronal cell injury may bring forth new insight for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | | | | | | |
Collapse
|
45
|
Maiese K, Chong ZZ, Shang YC, Wang S. Erythropoietin: new directions for the nervous system. Int J Mol Sci 2012; 13:11102-11129. [PMID: 23109841 PMCID: PMC3472733 DOI: 10.3390/ijms130911102] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022] Open
Abstract
New treatment strategies with erythropoietin (EPO) offer exciting opportunities to prevent the onset and progression of neurodegenerative disorders that currently lack effective therapy and can progress to devastating disability in patients. EPO and its receptor are present in multiple systems of the body and can impact disease progression in the nervous, vascular, and immune systems that ultimately affect disorders such as Alzheimer's disease, Parkinson's disease, retinal injury, stroke, and demyelinating disease. EPO relies upon wingless signaling with Wnt1 and an intimate relationship with the pathways of phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Modulation of these pathways by EPO can govern the apoptotic cascade to control β-catenin, glycogen synthase kinase-3β, mitochondrial permeability, cytochrome c release, and caspase activation. Yet, EPO and each of these downstream pathways require precise biological modulation to avert complications associated with the vascular system, tumorigenesis, and progression of nervous system disorders. Further understanding of the intimate and complex relationship of EPO and the signaling pathways of Wnt, PI 3-K, Akt, and mTOR are critical for the effective clinical translation of these cell pathways into robust treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| |
Collapse
|