1
|
Dali R, Langlet F. Tanycytes in the nexus of hypothalamic inflammation, appetite control, and obesity. Physiol Behav 2025; 296:114917. [PMID: 40222438 DOI: 10.1016/j.physbeh.2025.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Hypothalamic inflammation has been identified as a critical factor driving the development of obesity and associated metabolic disorders. This inflammation-related disruption of energy balance relies on alterations in metabolic cues sensing and hypothalamic cellular functions, together leading to overeating and weight gain. Within the hypothalamic cellular networks controlling energy balance, recent studies have highlighted the significance of glial dysfunction in these processes, suggesting that these cells could provide new avenues for weight loss therapies. Glia rapidly activates following the consumption of a high-fat diet, even after a very short exposure, and contributes to the disruption of the entire system through inflammatory crosstalk. This review explores recent progress in understanding the molecular interactions between glial cells and neurons in hypothalamic inflammation related to obesity, diabetes, and associated complications. Notably, it highlights specialized ependymal cells called tanycytes, whose role is still underestimated in hypothalamic inflammation, and examines the potential for targeting this cell type as a treatment strategy for metabolic disorders.
Collapse
Affiliation(s)
- Rafik Dali
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fanny Langlet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Eleftheriades A, Koulouraki S, Belegrinos A, Eleftheriades M, Pervanidou P. Maternal Obesity and Neurodevelopment of the Offspring. Nutrients 2025; 17:891. [PMID: 40077761 PMCID: PMC11901708 DOI: 10.3390/nu17050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND An increasing amount of evidence, derived from both human epidemiological studies and animal research, suggests that exposure to maternal obesity in utero is linked to adverse neurodevelopmental outcomes in the offspring. These can include attention deficit hyperactivity disorder, autism spectrum disorders, intellectual disability, and cerebral palsy. METHODS A thorough search in Medline/PubMed and Google Scholar databases was performed by two independent reviewers in order to investigate the link between the exposure to maternal obesity and neurodevelopmental outcomes in the offspring. A list of keywords, including maternal obesity, maternal overweight, maternal diet, neurodevelopment, and neuropsychiatric disorders, was used in the search algorithm. RESULTS The existing evidence regarding the potential mechanisms through which maternal obesity may impact offspring neurodevelopment and programming, such as inflammation, hormone dysregulation, alterations to the microbiome, and epigenetics, as well as evidence from animal studies, was summarized in this narrative review. CONCLUSIONS Maternal obesity seems to be overall associated with various neuropsychiatric and neurodevelopmental disorders. However, more robust data from future studies are needed to establish this association, which will take into account the role of potential confounders such as genetic factors and gene-environment interactions.
Collapse
Affiliation(s)
- Anna Eleftheriades
- Second Department of Obstetrics and Gynaecology, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.E.); (S.K.); (M.E.)
| | - Sevasti Koulouraki
- Second Department of Obstetrics and Gynaecology, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.E.); (S.K.); (M.E.)
| | - Antonios Belegrinos
- Unit of Developmental and Behavioral Paediatrics, First Department of Paediatrics, Agia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynaecology, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.E.); (S.K.); (M.E.)
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Paediatrics, First Department of Paediatrics, Agia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
3
|
Jiang Y, Zhu H, Gong F. Why does GLP-1 agonist combined with GIP and/or GCG agonist have greater weight loss effect than GLP-1 agonist alone in obese adults without type 2 diabetes? Diabetes Obes Metab 2025; 27:1079-1095. [PMID: 39592891 DOI: 10.1111/dom.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Obesity is a chronic condition demanding effective treatment strategies, among which pharmacotherapy plays a critical role. As glucagon-like peptide-1 (GLP-1) agonist approved by the Food and Drug Administration (FDA) for long-term weight management in adults with obesity, liraglutide and semaglutide have great weight loss effect through reducing food intake and delaying gastric emptying. The emergence of unimolecular polypharmacology, which utilizes single molecules to simultaneously target multiple receptors or pathways, marked a revolutionary improvement in GLP-1-based obesity pharmacotherapy. The dual agonist tirzepatide activates both GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptors and has shown enhanced potency for weight loss compared to conventional GLP-1 mono agonist. Furthermore, emerging data suggests that unimolecular GLP-1/glucagon (GCG) dual agonist, as well as GLP-1/GIP/GCG triple agonist, may offer superior weight loss efficacy over GLP-1 agonist. This review summarizes the comprehensive mechanisms underlying the pronounced advantages of GLP-1/GIP dual agonist, GLP-1/GCG dual agonist and GLP-1/GIP/GCG triple agonist over GLP-1 mono agonist in weight reduction in obese adults without type 2 diabetes. A deeper understanding of these unimolecular multitargeting GLP-1-based agonists will provide insights for their clinical application and guide the development of new drugs for obesity treatment.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Campanile AA, Eckel LA. Intermittent Overconsumption of High Fat Diet Promotes Microglial Reactivity in the Hypothalamus and Hindbrain of Female Rats. Cells 2025; 14:233. [PMID: 39937024 PMCID: PMC11817838 DOI: 10.3390/cells14030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Elevated proinflammatory cytokines were reported in binge eating spectrum disorders characterized by intermittent overconsumption during periods of otherwise normal or restricted food intake. It is unknown whether binge eating promotes neuroinflammation, similar to that observed following chronic overconsumption of a high fat diet (HFD) in rodents. Here, we used a rodent model of binge-like eating to test the hypothesis that intermittent overconsumption of HFD promotes microglial reactivity in brain areas that control food intake. To promote overconsumption, one group of rats received chow plus intermittent access to HFD (INT). Control groups received either chow only (CHOW) or chow plus continuous access to HFD (CONT). Following behavioral testing, brains were processed to visualize ionized calcium-binding adaptor molecule 1 (Iba1), a microglial marker. INT rats consumed more calories than the control rats on days when the HFD was available, and fewer calories than the control rats on days when they only had access to chow. Despite consuming fewer total calories and 50% fewer fat calories, lean INT rats developed a pattern of microglial reactivity in feeding-relevant brain areas similar to obese CONT rats. We conclude that intermittent overconsumption of HFD, without diet-induced weight gain, promotes microglial reactivity in brain regions that control feeding.
Collapse
Affiliation(s)
- Alexis A. Campanile
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL 32304, USA;
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Lisa A. Eckel
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL 32304, USA;
| |
Collapse
|
5
|
Estato V, Obadia N, Chateaubriand PH, Figueiredo V, Curty M, Costa Silva M, Ferreira RGL, Santa-Ritta J, Campos Baroni M, Aragão A, Neno JOG, Vasconcellos CAM, Costa D'Avila J, Gomes Granja M, Caire de Castro Faria-Neto H. Semaglutide restores astrocyte-vascular interactions and blood-brain barrier integrity in a model of diet-induced metabolic syndrome. Diabetol Metab Syndr 2025; 17:2. [PMID: 39754250 PMCID: PMC11699651 DOI: 10.1186/s13098-024-01528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/13/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases. OBJECTIVE This study aimed to evaluate the effects of chronic treatment with a GLP-1 receptor agonist (semaglutide) on cerebral microcirculation and neurovascular unit (NVU) integrity. METHODS C57BL/6 mice were fed a standard normolipidic diet or a high-fat diet (HFD) for 24 weeks and then treated for 4 weeks with semaglutide (HFD SEMA) or saline solution (HFD SAL). At the end of pharmacological treatment, biochemical analyses, immunohistochemistry analysis, and intravital microscopy of the brain microcirculation were carried out to quantify leukocyte-endothelium interactions and to assess structural capillary density, astrocyte coverage on cerebral vessels and microglial activation. RESULTS We observed that SEMA attenuates high-fat diet-induced metabolic alterations in mice fed with HFD for 24 weeks. SEMA also reversed cerebral microcirculation effects of HFD by reducing capillary rarefaction and the interaction of leukocytes in postcapillary brain venules. The HFD-SEMA group exhibited improved astrocyte coverage on vessels. However, SEMA did not reverse microglial activation. CONCLUSIONS Semaglutide can reverse microvascular rarefaction in metabolic syndrome by restoring the integrity of the neurovascular unit. Adverse dietary stimuli can compromise microglial homeostasis that is not reversed by semaglutide.
Collapse
Affiliation(s)
- Vanessa Estato
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.
- Medical School, Estácio-IDOMED, Rio de Janeiro, Brazil.
| | - Nathalie Obadia
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil
- Pharmacy School, Universidade Estácio de Sá, Rio de Janeiro, Brazil
| | | | | | - Marcela Curty
- Medical School, Estácio-IDOMED, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | - Joana Costa D'Avila
- Laboratory of Pre-clinical Research, Iguaçu University, Rio de Janeiro, Brazil
| | - Marcelo Gomes Granja
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil
- Medical School, Estácio-IDOMED, Rio de Janeiro, Brazil
| | - Hugo Caire de Castro Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil
| |
Collapse
|
6
|
Correa-da-Silva F, Yi CX. Neuroglia in eating disorders (obesity, Prader-Willi syndrome and anorexia nervosa). HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:313-324. [PMID: 40148052 DOI: 10.1016/b978-0-443-19102-2.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The hypothalamus is widely recognized as one of the most extensively studied brain regions involved in the central regulation of energy homeostasis. Within the hypothalamus, peptidergic neurons play a crucial role in monitoring peripheral concentrations of metabolites and hormones, and they finely adjust the sensing of these factors, leading to the activation of either anorexigenic (appetite-suppressing) or orexigenic (appetite-stimulating) pathways. While cortical innervation of the hypothalamus does influence these processes, it is generally considered of secondary importance. Eating-related disorders, such as obesity and anorexia nervosa, are strongly associated with imbalances in energy intake and expenditure. The phenotypes of these disorders can be attributed to dysfunctions in the hypothalamus. Traditionally, it has been believed that hypothalamic dysfunction in these disorders primarily stems from defects in neural pathways. However, recent evidence challenges this perception, highlighting the active participation of neuroglial cells in shaping both physiologic and behavioral characteristics. This review aims to provide an overview of the latest insights into glial biology in three specific eating disorders: obesity, Prader-Willi syndrome, and anorexia. In these disorders, neural dysfunction coincides with glial malfunction, suggesting that neuroglia actively contribute to the development and progression of various neurologic disorders. These findings underscore the importance of glial cells and open up potential new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Felipe Correa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands; Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands; Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Garcia-Gomara M, Juan-Palencia A, Alfaro M, Cuadrado-Tejedor M, Garcia-Osta A. Neuroprotective Effects of Dexamethasone in a Neuromelanin-Driven Parkinson's Disease Model. J Neuroimmune Pharmacol 2024; 20:2. [PMID: 39672994 PMCID: PMC11645310 DOI: 10.1007/s11481-024-10164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra that primarily affects movement control. Neuroinflammation plays a pivotal role in driving the disease's progression. The persistent inflammatory state in the brain exacerbates neuronal damage, creating a cycle that perpetuates the neurodegenerative process. Glucocorticoids, such as dexamethasone, have potent anti-inflammatory properties and have been studied for their neuroprotective potential in different neurodegenerative diseases. However, their specific impact on PD remains unclear. This study aimed to evaluate the impact of dexamethasone on a neuromelanin (NM)-driven model of PD. We demonstrated that dexamethasone administration significantly improved motor function and preserved dopaminergic neuron compared to untreated controls in our study. These neuroprotective effects were mediated, at least in part, by suppressing reactive microglia and reducing the infiltration of peripheral immune cells into the brain. Our findings underscore the potential therapeutic benefits of dexamethasone in mitigating neuroinflammation and maintaining neuronal integrity in a NM-driven model of PD. These results advocate for further investigation into glucocorticoid-based therapies as adjunctive treatments for PD, particularly in scenarios where neuroinflammation contributes prominently to disease progression.
Collapse
Affiliation(s)
- M Garcia-Gomara
- Gene Therapy for CNS Disorders Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - A Juan-Palencia
- Gene Therapy for CNS Disorders Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - M Alfaro
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - M Cuadrado-Tejedor
- Gene Therapy for CNS Disorders Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
- IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.
| | - A Garcia-Osta
- Gene Therapy for CNS Disorders Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
- IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| |
Collapse
|
8
|
Drougard A, Ma EH, Wegert V, Sheldon R, Panzeri I, Vatsa N, Apostle S, Fagnocchi L, Schaf J, Gossens K, Völker J, Pang S, Bremser A, Dror E, Giacona F, Sagar S, Henderson MX, Prinz M, Jones RG, Pospisilik JA. An acute microglial metabolic response controls metabolism and improves memory. eLife 2024; 12:RP87120. [PMID: 39625057 PMCID: PMC11614388 DOI: 10.7554/elife.87120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
Chronic high-fat feeding triggers metabolic dysfunction including obesity, insulin resistance, and diabetes. How high-fat intake first triggers these pathophysiological states remains unknown. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on metabolism and spatial/learning memory. High-fat intake rapidly increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation and fission as well as metabolic skewing toward aerobic glycolysis. These effects are detectable throughout the brain and can be detected within as little as 12 hr of HFD exposure. In vivo, microglial ablation and conditional DRP1 deletion show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via β-oxidation, microglia shunt a substantial fraction of palmitate toward anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuroprotective metabolite itaconate. Together, these data identify microglia as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and liberating the same carbons as alternate bioenergetic and protective substrates for surrounding cells. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.
Collapse
Affiliation(s)
- Anne Drougard
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Eric H Ma
- Department of Metabolism and Nutritional Programming, Van Andel Research InstituteGrand RapidsUnited States
| | - Vanessa Wegert
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Ryan Sheldon
- Metabolomics and Bioenergetics Core, Van Andel InstituteGrand RapidsUnited States
| | - Ilaria Panzeri
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Naman Vatsa
- Department of Neurodegenerative Sciences, Van Andel Research InstituteGrand RapidsUnited States
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Judith Schaf
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Klaus Gossens
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Josephine Völker
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Shengru Pang
- Institute of Neuropathology, Medical Faculty, University of FreiburgFreiburgGermany
| | - Anna Bremser
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Erez Dror
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Francesca Giacona
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Sagar Sagar
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- Department of Medicine II, University Hospital FreiburgFreiburgGermany
| | - Michael X Henderson
- Department of Neurodegenerative Sciences, Van Andel Research InstituteGrand RapidsUnited States
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of FreiburgFreiburgGermany
- Centre for NeuroModulation (NeuroModBasics), University of FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Research InstituteGrand RapidsUnited States
| | - John Andrew Pospisilik
- Department of Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| |
Collapse
|
9
|
Mendes N, Zanesco A, Aguiar C, Rodrigues-Luiz GF, Silva D, Campos J, Camara NOS, Moraes-Vieira P, Araujo E, Velloso LA. CXCR3-expressing myeloid cells recruited to the hypothalamus protect against diet-induced body mass gain and metabolic dysfunction. eLife 2024; 13:RP95044. [PMID: 39535032 PMCID: PMC11560133 DOI: 10.7554/elife.95044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Microgliosis plays a critical role in diet-induced hypothalamic inflammation. A few hours after a high-fat diet (HFD), hypothalamic microglia shift to an inflammatory phenotype, and prolonged fat consumption leads to the recruitment of bone marrow-derived cells to the hypothalamus. However, the transcriptional signatures and functions of these cells remain unclear. Using dual-reporter mice, this study reveals that CX3CR1-positive microglia exhibit minimal changes in response to a HFD, while significant transcriptional differences emerge between microglia and CCR2-positive recruited myeloid cells, particularly affecting chemotaxis. These recruited cells also show sex-specific transcriptional differences impacting neurodegeneration and thermogenesis. The chemokine receptor CXCR3 is emphasized for its role in chemotaxis, displaying notable differences between recruited cells and resident microglia, requiring further investigation. Central immunoneutralization of CXCL10, a ligand for CXCR3, resulted in increased body mass and decreased energy expenditure, especially in females. Systemic chemical inhibition of CXCR3 led to significant metabolic changes, including increased body mass, reduced energy expenditure, elevated blood leptin, glucose intolerance, and decreased insulin levels. This study elucidates the transcriptional differences between hypothalamic microglia and CCR2-positive recruited myeloid cells in diet-induced inflammation and identifies CXCR3-expressing recruited immune cells as protective in metabolic outcomes linked to HFD consumption, establishing a new concept in obesity-related hypothalamic inflammation.
Collapse
Affiliation(s)
- Natalia Mendes
- School of Medical Sciences, Department of Translational Medicine (Section of Pharmacology), University of CampinasCampinasBrazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of CampinasCampinasBrazil
| | - Ariane Zanesco
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of CampinasCampinasBrazil
| | - Cristhiane Aguiar
- Laboratory of Immunometabolism, Institute of Biology - University of Campinas, BrazilCampinasBrazil
| | - Gabriela F Rodrigues-Luiz
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa CatarinaFlorianópolisBrazil
| | - Dayana Silva
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of CampinasCampinasBrazil
| | - Jonathan Campos
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of CampinasCampinasBrazil
| | - Niels Olsen Saraiva Camara
- Laboratory for Transplantation Immunobiology, Institute of Biomedical Sciences, University of Sao PauloSao PauloBrazil
| | - Pedro Moraes-Vieira
- Laboratory of Immunometabolism, Institute of Biology - University of Campinas, BrazilCampinasBrazil
| | - Eliana Araujo
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of CampinasCampinasBrazil
- Faculty of Nursing, University of CampinasCampinasBrazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of CampinasCampinasBrazil
- National Institute of Science and Technology on NeuroimmunomodulationRio de JaneiroBrazil
| |
Collapse
|
10
|
Zhang N, Song B, Bai P, Du L, Chen L, Xu Y, Zeng T. Perineuronal nets' role in metabolism. Am J Physiol Endocrinol Metab 2024; 327:E411-E421. [PMID: 39140971 DOI: 10.1152/ajpendo.00154.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Perineuronal nets (PNNs), specialized extracellular matrix (ECM) structures that envelop neurons, have recently been recognized as key players in the regulation of metabolism. This review explores the growing body of knowledge concerning PNNs and their role in metabolic control, drawing insights from recent research and relevant studies. The pivotal role of PNNs in the context of energy balance and whole body blood glucose is examined. This review also highlights novel findings, including the effects of astroglia, microglia, sex and gonadal hormones, nutritional regulation, circadian rhythms, and age on PNNs dynamics. These findings illuminate the complex and multifaceted role of PNNs in metabolic health.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Beite Song
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Peng Bai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Du
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yong Xu
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
11
|
Guzmán-Ruíz MA, Guerrero Vargas NN, Ramírez-Carreto RJ, González-Orozco JC, Torres-Hernández BA, Valle-Rodríguez M, Guevara-Guzmán R, Chavarría A. Microglia in physiological conditions and the importance of understanding their homeostatic functions in the arcuate nucleus. Front Immunol 2024; 15:1392077. [PMID: 39295865 PMCID: PMC11408222 DOI: 10.3389/fimmu.2024.1392077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Microglia are highly dynamic cells that have been mainly studied under pathological conditions. The present review discusses the possible implication of microglia as modulators of neuronal electrical responses in physiological conditions and hypothesizes how these cells might modulate hypothalamic circuits in health and during obesity. Microglial cells studied under physiological conditions are highly diverse, depending on the developmental stage and brain region. The evidence also suggests that neuronal electrical activity modulates microglial motility to control neuronal excitability. Additionally, we show that the expression of genes associated with neuron-microglia interaction is down-regulated in obese mice compared to control-fed mice, suggesting an alteration in the contact-dependent mechanisms that sustain hypothalamic arcuate-median eminence neuronal function. We also discuss the possible implication of microglial-derived signals for the excitability of hypothalamic neurons during homeostasis and obesity. This review emphasizes the importance of studying the physiological interplay between microglia and neurons to maintain proper neuronal circuit function. It aims to elucidate how disruptions in the normal activities of microglia can adversely affect neuronal health.
Collapse
Affiliation(s)
- Mara A Guzmán-Ruíz
- Programa de Becas Post-doctorales, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natalí N Guerrero Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Michelle Valle-Rodríguez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Chéry SL, O'Buckley TK, Boero G, Balan I, Morrow AL. Neurosteroid [3α,5α]3-hydroxypregnan-20-one inhibition of chemokine monocyte chemoattractant protein-1 in alcohol-preferring rat brain neurons, microglia, and astroglia. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1693-1703. [PMID: 38991981 DOI: 10.1111/acer.15404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Neuroimmune dysfunction in alcohol use disorder (AUD) is associated with activation of myeloid differentiation primary response 88 (MyD88)-dependent Toll-like receptors (TLR) resulting in overexpression of the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). MCP-1 overexpression in the brain is linked to anxiety, higher alcohol intake, neuronal death, and activation of microglia observed in AUD. The neurosteroid [3α,5α][3-hydroxypregnan-20-one (3α,5α-THP) has been reported as an inhibitor of MyD88-dependent TLR activation and MCP-1 overexpression in mouse and human macrophages and the brain of alcohol-preferring (P) rats. METHODS We investigated how 3α,5α-THP regulates MCP-1 expression at the cellular level in P rat nucleus accumbens (NAc) and central amygdala (CeA). We focused on neurons, microglia, and astrocytes, examining the individual voxel density of MCP-1, neuronal marker NeuN, microglial marker IBA1, astrocytic marker GFAP, and their shared voxel density, defined as intersection. Ethanol-naïve male and female P rats were perfused 1 h after IP injections of 15 mg/kg of 3α,5α-THP, or vehicle. The NAc and CeA were imaged using confocal microscopy following double-immunofluorescence staining for MCP-1 with NeuN, IBA1, and GFAP, respectively. RESULTS MCP-1 intersected with NeuN predominantly and IBA1/GFAP negligibly. 3α,5α-THP reduced MCP-1 expression in NeuN-labeled cells by 38.27 ± 28.09% in male and 56.11 ± 21.46% in female NAc, also 37.99 ± 19.53% in male and 54.96 ± 30.58% in female CeA. In females, 3α,5α-THP reduced the MCP-1 within IBA1 and GFAP-labeled voxels in the NAc and CeA. Conversely, in males, 3α,5α-THP did not significantly alter the MCP-1 within IBA1 in NAc or with GFAP in the CeA. Furthermore, 3α,5α-THP decreased levels of IBA1 in both regions and sexes with no impact on GFAP or NeuN levels. Secondary analysis performed on data normalized to % control values indicated that no significant sex differences were present. CONCLUSIONS These data suggest that 3α,5α-THP inhibits neuronal MCP-1 expression and decreases the proliferation of microglia in P rats. These results increase our understanding of potential mechanisms for 3α,5α-THP modulation of ethanol consumption.
Collapse
Affiliation(s)
- Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Giorgia Boero
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - A Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Cutugno G, Kyriakidou E, Nadjar A. Rethinking the role of microglia in obesity. Neuropharmacology 2024; 253:109951. [PMID: 38615749 DOI: 10.1016/j.neuropharm.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Microglia are the macrophages of the central nervous system (CNS), implying their role in maintaining brain homeostasis. To achieve this, these cells are sensitive to a plethora of endogenous and exogenous signals, such as neuronal activity, cellular debris, hormones, and pathological patterns, among many others. More recent research suggests that microglia are highly responsive to nutrients and dietary variations. In this context, numerous studies have demonstrated their significant role in the development of obesity under calorie surfeit. Because many reviews already exist on this topic, we have chosen to present the state of our reflections on various concepts put forth in the literature, bringing a new perspective whenever possible. Our literature review focuses on studies conducted in the arcuate nucleus of the hypothalamus, a key structure in the control of food intake. Specifically, we present the recent data available on the modifications of microglial energy metabolism following the consumption of an obesogenic diet and their consequences on hypothalamic neuron activity. We also highlight the studies unraveling the mechanisms underlying obesity-related sexual dimorphism. The review concludes with a list of questions that remain to be addressed in the field to achieve a comprehensive understanding of the role of microglia in the regulation of body energy metabolism. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- G Cutugno
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - E Kyriakidou
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - A Nadjar
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
14
|
Le Thuc O, García-Cáceres C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 2024; 6:1237-1252. [PMID: 38997442 DOI: 10.1038/s42255-024-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
15
|
Frago LM, Gómez-Romero A, Collado-Pérez R, Argente J, Chowen JA. Synergism Between Hypothalamic Astrocytes and Neurons in Metabolic Control. Physiology (Bethesda) 2024; 39:0. [PMID: 38530221 DOI: 10.1152/physiol.00009.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
Astrocytes are no longer considered as passive support cells. In the hypothalamus, these glial cells actively participate in the control of appetite, energy expenditure, and the processes leading to obesity and its secondary complications. Here we briefly review studies supporting this conclusion and the advances made in understanding the underlying mechanisms.
Collapse
Affiliation(s)
- Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Gómez-Romero
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
16
|
Drougard A, Ma EH, Wegert V, Sheldon R, Panzeri I, Vatsa N, Apostle S, Fagnocchi L, Schaf J, Gossens K, Völker J, Pang S, Bremser A, Dror E, Giacona F, Sagar, Henderson MX, Prinz M, Jones RG, Pospisilik JA. An acute microglial metabolic response controls metabolism and improves memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.03.535373. [PMID: 37066282 PMCID: PMC10103996 DOI: 10.1101/2023.04.03.535373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Chronic high-fat feeding triggers chronic metabolic dysfunction including obesity, insulin resistance, and diabetes. How high-fat intake first triggers these pathophysiological states remains unknown. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on metabolism and spatial / learning memory. High-fat intake rapidly increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation and fission as well as metabolic skewing towards aerobic glycolysis. These effects are detectable throughout the brain and can be detected within as little as 12 hours of HFD exposure. In vivo, microglial ablation and conditional DRP1 deletion show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via β-oxidation, microglia shunt a substantial fraction of palmitate towards anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuro-protective metabolite itaconate. Together, these data identify microglia as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and releasing the same carbons as alternate bioenergetic and protective substrates for surrounding cells. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.
Collapse
Affiliation(s)
- Anne Drougard
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Eric H Ma
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Vanessa Wegert
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Ryan Sheldon
- Metabolomics and Bioenergetics Core, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Ilaria Panzeri
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Naman Vatsa
- Department of Neurodegenerative Sciences, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Judith Schaf
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Klaus Gossens
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Josephine Völker
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Shengru Pang
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Anna Bremser
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Erez Dror
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Francesca Giacona
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Sagar
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Michael X Henderson
- Department of Neurodegenerative Sciences, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Centre for NeuroModulation (NeuroModBasics), University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
| | - J. Andrew Pospisilik
- Department of Epigenetics, Van Andel Research Institute, 333 Bostwick Ave, 49503, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
17
|
Başer Ö, Yavuz Y, Özen DÖ, Özgün HB, Ağuş S, Civaş CC, Atasoy D, Yılmaz B. Effects of chronic high fat diet on mediobasal hypothalamic satiety neuron function in POMC-Cre mice. Mol Metab 2024; 82:101904. [PMID: 38395148 PMCID: PMC10910127 DOI: 10.1016/j.molmet.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE The prevalence of obesity has increased over the past three decades. Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) play a vital role in induction of satiety. Chronic consumption of high-fat diet is known to reduce hypothalamic neuronal sensitivity to hormones like leptin, thus contributing to the development and persistence of obesity. The functional and morphological effects of a high-calorie diet on POMC neurons and how these effects contribute to the development and maintenance of the obese phenotype are not fully understood. For this purpose, POMC-Cre transgenic mice model was exposed to high-fat diet (HFD) and at the end of a 3- and 6-month period, electrophysiological and morphological changes, and the role of POMC neurons in homeostatic nutrition and their response to leptin were thoroughly investigated. METHODS Effects of HFD on POMC-satiety neurons in transgenic mice models exposed to chronic high-fat diet were investigated using electrophysiological (patch-clamp), chemogenetic and Cre recombinase advanced technological methods. Leptin, glucose and lipid profiles were determined and analyzed. RESULTS In mice exposed to a high-fat diet for 6 months, no significant changes in POMC dendritic spine number or projection density from POMC neurons to the paraventricular hypothalamus (PVN), lateral hypothalamus (LH), and bed nucleus stria terminalis (BNST) were observed. It was revealed that leptin hormone did not change the electrophysiological activities of POMC neurons in mice fed with HFD for 6 months. In addition, chemogenetic stimulation of POMC neurons increased HFD consumption. In the 3-month HFD-fed group, POMC activation induced an orexigenic response in mice, whereas switching to a standard diet was found to abolish orexigenic behavior in POMC mice. CONCLUSIONS Chronic high fat consumption disrupts the regulation of POMC neuron activation by leptin. Altered POMC neuron activation abolished the neuron's characteristic behavioral anorexigenic response. Change in nutritional content contributes to the reorganization of developing maladaptations.
Collapse
Affiliation(s)
- Özge Başer
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Yavuz Yavuz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Deniz Öykü Özen
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Hüseyin Buğra Özgün
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Sami Ağuş
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Cihan Civan Civaş
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Deniz Atasoy
- University of Iowa, Carver College of Medicine, Department of Neuroscience and Pharmacology, Iowa City, USA
| | - Bayram Yılmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye; Izmir Biomedicine and Genome Center, Izmir, Türkiye.
| |
Collapse
|
18
|
Jalo A, Helin JS, Hentilä J, Nissinen TA, Honkala SM, Heiskanen MA, Löyttyniemi E, Malm T, Hannukainen JC. Mechanisms Leading to Increased Insulin-Stimulated Cerebral Glucose Uptake in Obesity and Insulin Resistance: A High-Fat Diet and Exercise Training Intervention PET Study with Rats (CROSRAT). J Funct Morphol Kinesiol 2024; 9:58. [PMID: 38651416 PMCID: PMC11036253 DOI: 10.3390/jfmk9020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Recent studies have shown that obesity and insulin resistance are associated with increased insulin-stimulated glucose uptake (GU) in the brain. Thus, insulin sensitivity seems to work differently in the brain compared to the peripheral tissues like skeletal muscles, but the underlying mechanisms remain unknown. Regular exercise training improves skeletal muscle and whole-body insulin sensitivity. However, the effect of exercise on glucose metabolism in the brain and internal organs is less well understood. The CROSRAT study aims to investigate the effects of exercise training on brain glucose metabolism and inflammation in a high-fat diet-induced rat model of obesity and insulin resistance. Male Sprague Dawley rats (n = 144) are divided into nine study groups that undergo different dietary and/or exercise training interventions lasting 12 to 24 weeks. Insulin-stimulated GU from various tissues and brain inflammation are investigated using [18F]FDG-PET/CT and [11C]PK11195-PET/CT, respectively. In addition, peripheral tissue, brain, and fecal samples are collected to study the underlying mechanisms. The strength of this study design is that it allows examining the effects of both diet and exercise training on obesity-induced insulin resistance and inflammation. As the pathophysiological changes are studied simultaneously in many tissues and organs at several time points, the study provides insight into when and where these pathophysiological changes occur.
Collapse
Affiliation(s)
- Anna Jalo
- MediCity Research Laboratory, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland
- Doctoral Programme in Clinical Research, University of Turku, FI-20520 Turku, Finland
| | - Jatta S. Helin
- MediCity Research Laboratory, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland
| | - Jaakko Hentilä
- Turku PET Centre, University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Tuuli A. Nissinen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland
| | - Sanna M. Honkala
- Turku PET Centre, University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Marja A. Heiskanen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 8, FI-70210 Kuopio, Finland
| | | |
Collapse
|
19
|
Chen S, Huang W, Wan Q, Tang Z, Li X, Zeng F, Zheng S, Li Z, Liu X. Investigation of the acute pathogenesis of spondyloarthritis/HLA-B27-associated anterior uveitis based on genome-wide association analysis and single-cell transcriptomics. J Transl Med 2024; 22:271. [PMID: 38475831 PMCID: PMC10936029 DOI: 10.1186/s12967-024-05077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Patients with spondyloarthritis (SpA)/HLA-B27-associated acute anterior uveitis (AAU) experience recurring acute flares, which pose significant visual and financial challenges. Despite established links between SpA and HLA-B27-associated AAU, the exact mechanism involved remains unclear, and further understanding is needed for effective prevention and treatment. METHODS To investigate the acute pathogenesis of SpA/HLA-B27-associated AAU, Mendelian randomization (MR) and single-cell transcriptomic analyses were employed. The MR incorporated publicly available protein quantitative trait locus data from previous studies, along with genome-wide association study data from public databases. Causal relationships between plasma proteins and anterior uveitis were assessed using two-sample MR. Additionally, colocalization analysis was performed using Bayesian colocalization. Single-cell transcriptome analysis utilized the anterior uveitis dataset from the Gene Expression Omnibus (GEO) database. Dimensionality reduction, clustering, transcription factor analysis, pseudotime analysis, and cell communication analysis were subsequently conducted to explore the underlying mechanisms involved. RESULTS Mendelian randomization analysis revealed that circulating levels of AIF1 and VARS were significantly associated with a reduced risk of developing SpA/HLA-B27-associated AAU, with AIF1 showing a robust correlation with anterior uveitis onset. Colocalization analysis supported these findings. Single-cell transcriptome analysis showed predominant AIF1 expression in myeloid cells, which was notably lower in the HLA-B27-positive group. Pseudotime analysis revealed dendritic cell terminal positions in differentiation branches, accompanied by gradual decreases in AIF1 expression. Based on cell communication analysis, CD141+CLEC9A+ classic dendritic cells (cDCs) and the APP pathway play crucial roles in cellular communication in the Spa/HLA-B27 group. CONCLUSIONS AIF1 is essential for the pathogenesis of SpA/HLA-B27-associated AAU. Myeloid cell differentiation into DCs and decreased AIF1 levels are also pivotal in this process.
Collapse
Affiliation(s)
- Shuming Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Weidi Huang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Qiaoqian Wan
- Department of Anaesthesiology, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zichun Tang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Xie Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Fang Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Shuyan Zheng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Zhuo Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China.
- Hunan Provincial Key Laboratory of Critical Quality Attribute of Cell Therapy Products, Changsha, 410011, Hunan, China.
| | - Xiao Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China.
| |
Collapse
|
20
|
Lei Y, Liang X, Sun Y, Yao T, Gong H, Chen Z, Gao Y, Wang H, Wang R, Huang Y, Yang T, Yu M, Liu L, Yi CX, Wu QF, Kong X, Xu X, Liu S, Zhang Z, Liu T. Region-specific transcriptomic responses to obesity and diabetes in macaque hypothalamus. Cell Metab 2024; 36:438-453.e6. [PMID: 38325338 DOI: 10.1016/j.cmet.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/27/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes. In the INF, obesity results in reduced synaptic plasticity and energy sensing capability, whereas diabetes involves molecular reprogramming associated with impaired tanycytic barriers, activated microglia, and neuronal inflammatory response. In the PVN, cellular metabolism and neural activity are suppressed in diabetic macaques. Spatial transcriptomic data reveal microglia's preference for the parenchyma over the third ventricle in diabetes. Our findings provide a comprehensive view of molecular changes associated with obesity and diabetes.
Collapse
Affiliation(s)
- Ying Lei
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Xian Liang
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, Institute of Metabolism and Integrative Biology, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yunong Sun
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Ting Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University School of Medicine, Xi'an, Shanxi 710063, China
| | - Hongyu Gong
- School of Life Sciences, Institues of Biomedical Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanqing Gao
- Jiangsu Provincial Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hui Wang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yunqi Huang
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Tao Yang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Miao Yu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Longqi Liu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingxing Kong
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Xun Xu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China.
| | - Shiping Liu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China.
| | - Zhi Zhang
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, Institute of Metabolism and Integrative Biology, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, Institute of Metabolism and Integrative Biology, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; School of Life Sciences, Fudan University, Shanghai 200438, China; School of Life Sciences, Institues of Biomedical Sciences, Inner Mongolia University, Hohhot 010000, China.
| |
Collapse
|
21
|
Salvi J, Andreoletti P, Audinat E, Balland E, Ben Fradj S, Cherkaoui-Malki M, Heurtaux T, Liénard F, Nédélec E, Rovère C, Savary S, Véjux A, Trompier D, Benani A. Microgliosis: a double-edged sword in the control of food intake. FEBS J 2024; 291:615-631. [PMID: 35880408 DOI: 10.1111/febs.16583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 02/16/2024]
Abstract
Maintaining energy balance is essential for survival and health. This physiological function is controlled by the brain, which adapts food intake to energy needs. Indeed, the brain constantly receives a multitude of biological signals that are derived from digested foods or that originate from the gastrointestinal tract, energy stores (liver and adipose tissues) and other metabolically active organs (muscles). These signals, which include circulating nutrients, hormones and neuronal inputs from the periphery, collectively provide information on the overall energy status of the body. In the brain, several neuronal populations can specifically detect these signals. Nutrient-sensing neurons are found in discrete brain areas and are highly enriched in the hypothalamus. In turn, specialized brain circuits coordinate homeostatic responses acting mainly on appetite, peripheral metabolism, activity and arousal. Accumulating evidence shows that hypothalamic microglial cells located at the vicinity of these circuits can influence the brain control of energy balance. However, microglial cells could have opposite effects on energy balance, that is homeostatic or detrimental, and the conditions for this shift are not totally understood yet. One hypothesis relies on the extent of microglial activation, and nutritional lipids can considerably change it.
Collapse
Affiliation(s)
- Juliette Salvi
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Pierre Andreoletti
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Etienne Audinat
- IGF, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Eglantine Balland
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill, Australia
| | - Selma Ben Fradj
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | | | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Fabienne Liénard
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Emmanuelle Nédélec
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Carole Rovère
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Stéphane Savary
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Anne Véjux
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL, Université Bourgogne Franche-Comté, Dijon, France
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
22
|
Sun J, Wang X, Sun R, Xiao X, Wang Y, Peng Y, Gao Y. Microglia shape AgRP neuron postnatal development via regulating perineuronal net plasticity. Mol Psychiatry 2024; 29:306-316. [PMID: 38001338 DOI: 10.1038/s41380-023-02326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
The hypothalamus plays a crucial role in controlling metabolism and energy balance, with Agouti-related protein (AgRP) neurons and proopiomelanocortin (POMC) neurons being essential components of this process. The proper development of these neurons is important for metabolic regulation in later life. Microglia, the resident immune cells in the brain, have been shown to significantly influence neurodevelopment. However, their role in shaping the postnatal development of hypothalamic neural circuits remains underexplored. In this study, we investigated the dynamic changes of microglia in the hypothalamic arcuate nucleus (ARC) during lactation and their impact on the maturation of AgRP and POMC neurons. We demonstrated that microglial depletion during a critical period of ARC neuron maturation increases the number of AgRP neurons and fiber density, with less effect on POMC neurons. This depletion also resulted in increased neonatal feeding behavior. Mechanistically, microglia can engulf perineuronal net (PNN) components surrounding AgRP neurons both in vivo and ex vivo. The absence of microglia leads to increased PNN formation and enhanced leptin sensitivity in ARC. Our findings suggest that microglia participate in the postnatal development of AgRP neurons by regulating the plasticity of PNN formation. This study contributes to a better understanding of microglia's role in shaping hypothalamic neural circuits during postnatal development and their impact on metabolism regulation.
Collapse
Affiliation(s)
- Jia Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P. R. China
| | - Xinyuan Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P. R. China
- Geriatric Hospital of Nanjing Medical University, Nanjing, 210009, P. R. China
| | - Rui Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P. R. China
| | - Xiaoao Xiao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P. R. China
| | - Yu Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P. R. China
| | - Yu Peng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P. R. China
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P. R. China.
| |
Collapse
|
23
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Kim JD, Copperi F, Diano S. Microglia in Central Control of Metabolism. Physiology (Bethesda) 2024; 39:0. [PMID: 37962895 PMCID: PMC11283896 DOI: 10.1152/physiol.00021.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond their role as brain immune cells, microglia act as metabolic sensors in response to changes in nutrient availability, thus playing a role in energy homeostasis. This review highlights the evidence and challenges of studying the role of microglia in metabolism regulation.
Collapse
Affiliation(s)
- Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
25
|
Liu Z, Xiao T, Liu H. Leptin signaling and its central role in energy homeostasis. Front Neurosci 2023; 17:1238528. [PMID: 38027481 PMCID: PMC10644276 DOI: 10.3389/fnins.2023.1238528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Leptin plays a critical role in regulating appetite, energy expenditure and body weight, making it a key factor in maintaining a healthy balance. Despite numerous efforts to develop therapeutic interventions targeting leptin signaling, their effectiveness has been limited, underscoring the importance of gaining a better understanding of the mechanisms through which leptin exerts its functions. While the hypothalamus is widely recognized as the primary site responsible for the appetite-suppressing and weight-reducing effects of leptin, other brain regions have also been increasingly investigated for their involvement in mediating leptin's action. In this review, we summarize leptin signaling pathways and the neural networks that mediate the effects of leptin, with a specific emphasis on energy homeostasis.
Collapse
Affiliation(s)
- Zhaoxun Liu
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xiao
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
26
|
Miao J, Chen L, Pan X, Li L, Zhao B, Lan J. Microglial Metabolic Reprogramming: Emerging Insights and Therapeutic Strategies in Neurodegenerative Diseases. Cell Mol Neurobiol 2023; 43:3191-3210. [PMID: 37341833 PMCID: PMC11410021 DOI: 10.1007/s10571-023-01376-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining brain homeostasis. However, in neurodegenerative conditions, microglial cells undergo metabolic reprogramming in response to pathological stimuli, including Aβ plaques, Tau tangles, and α-synuclein aggregates. This metabolic shift is characterized by a transition from oxidative phosphorylation (OXPHOS) to glycolysis, increased glucose uptake, enhanced production of lactate, lipids, and succinate, and upregulation of glycolytic enzymes. These metabolic adaptations result in altered microglial functions, such as amplified inflammatory responses and diminished phagocytic capacity, which exacerbate neurodegeneration. This review highlights recent advances in understanding the molecular mechanisms underlying microglial metabolic reprogramming in neurodegenerative diseases and discusses potential therapeutic strategies targeting microglial metabolism to mitigate neuroinflammation and promote brain health. Microglial Metabolic Reprogramming in Neurodegenerative Diseases This graphical abstract illustrates the metabolic shift in microglial cells in response to pathological stimuli and highlights potential therapeutic strategies targeting microglial metabolism for improved brain health.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lihua Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiaojin Pan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Liqing Li
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Beibei Zhao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| | - Jiao Lan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| |
Collapse
|
27
|
Douglass JD, Ness KM, Valdearcos M, Wyse-Jackson A, Dorfman MD, Frey JM, Fasnacht RD, Santiago OD, Niraula A, Banerjee J, Robblee M, Koliwad SK, Thaler JP. Obesity-associated microglial inflammatory activation paradoxically improves glucose tolerance. Cell Metab 2023; 35:1613-1629.e8. [PMID: 37572666 PMCID: PMC10528677 DOI: 10.1016/j.cmet.2023.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 08/14/2023]
Abstract
Hypothalamic gliosis associated with high-fat diet (HFD) feeding increases susceptibility to hyperphagia and weight gain. However, the body-weight-independent contribution of microglia to glucose regulation has not been determined. Here, we show that reducing microglial nuclear factor κB (NF-κB) signaling via cell-specific IKKβ deletion exacerbates HFD-induced glucose intolerance despite reducing body weight and adiposity. Conversely, two genetic approaches to increase microglial pro-inflammatory signaling (deletion of an NF-κB pathway inhibitor and chemogenetic activation through a modified Gq-coupled muscarinic receptor) improved glucose tolerance independently of diet in both lean and obese rodents. Microglial regulation of glucose homeostasis involves a tumor necrosis factor alpha (TNF-α)-dependent mechanism that increases activation of pro-opiomelanocortin (POMC) and other hypothalamic glucose-sensing neurons, ultimately leading to a marked amplification of first-phase insulin secretion via a parasympathetic pathway. Overall, these data indicate that microglia regulate glucose homeostasis in a body-weight-independent manner, an unexpected mechanism that limits the deterioration of glucose tolerance associated with obesity.
Collapse
Affiliation(s)
- John D Douglass
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kelly M Ness
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Martin Valdearcos
- The Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alice Wyse-Jackson
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Mauricio D Dorfman
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jeremy M Frey
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Rachael D Fasnacht
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Olivia D Santiago
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Anzela Niraula
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jineta Banerjee
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Megan Robblee
- The Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Suneil K Koliwad
- The Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Joshua P Thaler
- UW Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
28
|
Correa-da-Silva F, Kalsbeek MJ, Gadella FS, Oppersma J, Jiang W, Wolff SEC, Korpel NL, Swaab DF, Fliers E, Kalsbeek A, Yi CX. Reduction of oxytocin-containing neurons and enhanced glymphatic activity in the hypothalamic paraventricular nucleus of patients with type 2 diabetes mellitus. Acta Neuropathol Commun 2023; 11:107. [PMID: 37400893 DOI: 10.1186/s40478-023-01606-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Evidence from animal experiments has shown that the hypothalamic paraventricular nucleus (PVN) plays a key role in regulating body weight and blood glucose levels. However, it is unclear whether neuron populations in the human PVN are involved in the development of type 2 diabetes mellitus (T2DM). To address this, we investigated the neuronal and glial populations in the PVN of 26 T2DM patients and 20 matched controls. Our findings revealed a significant reduction in oxytocin (Oxt) neuron density in the PVN of T2DM patients compared to controls, while other neuronal populations remained unchanged. This suggests that Oxt neurons may play a specific role in the pathophysiology of T2DM. Interestingly, the reduction in Oxt neurons was accompanied by a decreased melanocortinergic input in to the PVN as reflected by a reduction in alpha-MSH immunoreactivity. We also analysed two glial cell populations, as they are important for maintaining a healthy neural microenvironment. We found that microglial density, phagocytic capacity, and their proximity to neurons were not altered in T2DM patients, indicating that the loss of Oxt neurons is independent of changes in microglial immunity. However, we did observe a reduction in the number of astrocytes, which are crucial for providing trophic support to local neurons. Moreover, a specific subpopulation of astrocytes characterized by aquaporin 4 expression was overrepresented in T2DM patients. Since this subset of astrocytes is linked to the glymphatic system, their overrepresentation might point to alterations in the hypothalamic waste clearance system in T2DM. Our study shows selective loss of Oxt neurons in the PVN of T2DM individuals in association with astrocytic reduction and gliovascular remodelling. Therefore, hypothalamic Oxt neurons may represent a potential target for T2DM treatment modalities.
Collapse
Affiliation(s)
- Felipe Correa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Martin J Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Femke S Gadella
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jorn Oppersma
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wei Jiang
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Samantha E C Wolff
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nikita L Korpel
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Dorfman MD, Monfeuga T, Melhorn SJ, Kanter JE, Frey JM, Fasnacht RD, Chandran A, Lala E, Velasco I, Rubinow KB, Meek TH, Schur EA, Bornfeldt KE, Thaler JP. Central androgen action reverses hypothalamic astrogliosis and atherogenic risk factors induced by orchiectomy and high-fat diet feeding in male mice. Am J Physiol Endocrinol Metab 2023; 324:E461-E475. [PMID: 37053049 PMCID: PMC10202485 DOI: 10.1152/ajpendo.00059.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Hypogonadism in males confers elevated cardiovascular disease (CVD) risk by unknown mechanisms. Recent radiological evidence suggests that low testosterone (T) is associated with mediobasal hypothalamic (MBH) gliosis, a central nervous system (CNS) cellular response linked to metabolic dysfunction. To address mechanisms linking CNS androgen action to CVD risk, we generated a hypogonadal, hyperlipidemic mouse model with orchiectomy (ORX) combined with hepatic PCSK9 overexpression. After 4 wk of high-fat, high-sucrose diet (HFHS) consumption, despite equal body weights and glucose tolerance, androgen-deficient ORX mice had a more atherogenic lipid profile and increased liver and leukocyte inflammatory signaling compared with sham-operated control mice. Along with these early CVD risk indicators, ORX markedly amplified HFHS-induced astrogliosis in the MBH. Transcriptomic analysis further revealed that ORX and high-fat diet feeding induced upregulation of inflammatory pathways and downregulation of metabolic pathways in hypothalamic astrocytes. To interrogate the role of sex steroid signaling in the CNS in cardiometabolic risk and MBH inflammation, central infusion of T and dihydrotestosterone (DHT) was performed on ORX mice. Central DHT prevented MBH astrogliosis and reduced the liver inflammatory signaling and monocytosis induced by HFHS and ORX; T had a partial protective effect. Finally, a cross-sectional study in 41 adult men demonstrated a positive correlation between radiological evidence of MBH gliosis and plasma lipids. These findings demonstrate that T deficiency in combination with a Western-style diet promotes hypothalamic gliosis concomitant with increased atherogenic risk factors and provide supportive evidence for regulation of lipid metabolism and cardiometabolic risk determinants by the CNS action of sex steroids.NEW & NOTEWORTHY This study provides evidence that hypothalamic gliosis is a key early event through which androgen deficiency in combination with a Western-style diet might lead to cardiometabolic dysregulation in males. Furthermore, this work provides the first evidence in humans of a positive association between hypothalamic gliosis and LDL-cholesterol, advancing our knowledge of CNS influences on CVD risk progression.
Collapse
Affiliation(s)
- Mauricio D Dorfman
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | | | - Susan J Melhorn
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Jenny E Kanter
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Jeremy M Frey
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Rachael D Fasnacht
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | | | - Emaad Lala
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Inmaculada Velasco
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Katya B Rubinow
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Thomas H Meek
- Novo Nordisk Research Centre Oxford, Oxford, United Kingdom
| | - Ellen A Schur
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Karin E Bornfeldt
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States
| | - Joshua P Thaler
- UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
30
|
Carvalhas-Almeida C, Serra J, Moita J, Cavadas C, Álvaro AR. Understanding neuron-glia crosstalk and biological clocks in insomnia. Neurosci Biobehav Rev 2023; 147:105100. [PMID: 36804265 DOI: 10.1016/j.neubiorev.2023.105100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
According to the World Health Organization, about one-third of the population experiences insomnia symptoms, and about 10-15% suffer from chronic insomnia, the most common sleep disorder. Sleeping difficulties associated with insomnia are often linked to chronic sleep deprivation, which has a negative health impact partly due to disruption in the internal synchronisation of biological clocks. These are regulated by clock genes and modulate most biological processes. Most studies addressing circadian rhythm regulation have focused on the role of neurons, yet glial cells also impact circadian rhythms and sleep regulation. Chronic insomnia and sleep loss have been associated with glial cell activation, exacerbated neuroinflammation, oxidative stress, altered neuronal metabolism and synaptic plasticity, accelerated age-related processes and decreased lifespan. It is, therefore, essential to highlight the importance of glia-neuron interplay on sleep/circadian regulation and overall healthy brain function. Hence, in this review, we aim to address the main neurobiological mechanisms involved in neuron-glia crosstalk, with an emphasis on microglia and astrocytes, in both healthy sleep, chronic sleep deprivation and chronic insomnia.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Joana Serra
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Joaquim Moita
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
31
|
Wang F, Zhang Z, Han J, Zheng J, Wang X, Wang Z. Discovery of microglia gonadotropin‑releasing hormone receptor and its potential role in polycystic ovarian syndrome. Mol Med Rep 2023; 27:77. [PMID: 36799164 PMCID: PMC10018280 DOI: 10.3892/mmr.2023.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
Hypothalamic inflammation is a pathophysiological basis of polycystic ovarian syndrome (PCOS), while overactivated and/or excess M1 polarized microglia are considered to be the main reason for the occurrence of hypothalamic inflammation. Therefore, in vitro and in vivo experiments were performed to assess the relationships between microglia‑mediated inflammatory reactions and endocrine functions in the PCOS hypothalamus. The expression of gonadotropin‑releasing hormone (GnRH) receptor (GnRHR) was demonstrated in hypothalamic microglia, and it was found that low concentration, GnRH agonist, leuprolide acetate accelerated the expression of M2 polarization marker CD206, while high concentration leuprolide acetate increased the expression of M1 polarization marker CD86 in vitro. Furthermore, aerobic exercise not only reduced the levels of serum testosterone, luteinizing hormone and GnRH and the amount of overactivated microglia, but also increased the number of M2 microglia in the hypothalamus of letrozole‑induced PCOS rats. In combination, these results not only demonstrated the expression of GnRHR in hypothalamic microglia, but also demonstrated that GnRH can induce microglial polarization, while aerobic exercise may improve the microglia‑mediated inflammatory reaction by reducing the expression of GnRHR in the hypothalamic microglia of PCOS rats.
Collapse
Affiliation(s)
- Fan Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Junyong Han
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, Fujian 350001, P.R. China
| | - Jianjun Zheng
- Department of Obstetrics and Gynecology, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xin Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Zhengchao Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|
32
|
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation 2023; 20:57. [PMID: 36869375 PMCID: PMC9983227 DOI: 10.1186/s12974-023-02740-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diabetes mellitus is a heterogeneous chronic metabolic disorder characterized by the presence of hyperglycemia, commonly preceded by a prediabetic state. The excess of blood glucose can damage multiple organs, including the brain. In fact, cognitive decline and dementia are increasingly being recognized as important comorbidities of diabetes. Despite the largely consistent link between diabetes and dementia, the underlying causes of neurodegeneration in diabetic patients remain to be elucidated. A common factor for almost all neurological disorders is neuroinflammation, a complex inflammatory process in the central nervous system for the most part orchestrated by microglial cells, the main representatives of the immune system in the brain. In this context, our research question aimed to understand how diabetes affects brain and/or retinal microglia physiology. We conducted a systematic search in PubMed and Web of Science to identify research items addressing the effects of diabetes on microglial phenotypic modulation, including critical neuroinflammatory mediators and their pathways. The literature search yielded 1327 records, including 18 patents. Based on the title and abstracts, 830 papers were screened from which 250 primary research papers met the eligibility criteria (original research articles with patients or with a strict diabetes model without comorbidities, that included direct data about microglia in the brain or retina), and 17 additional research papers were included through forward and backward citations, resulting in a total of 267 primary research articles included in the scoping systematic review. We reviewed all primary publications investigating the effects of diabetes and/or its main pathophysiological traits on microglia, including in vitro studies, preclinical models of diabetes and clinical studies on diabetic patients. Although a strict classification of microglia remains elusive given their capacity to adapt to the environment and their morphological, ultrastructural and molecular dynamism, diabetes modulates microglial phenotypic states, triggering specific responses that include upregulation of activity markers (such as Iba1, CD11b, CD68, MHC-II and F4/80), morphological shift to amoeboid shape, secretion of a wide variety of cytokines and chemokines, metabolic reprogramming and generalized increase of oxidative stress. Pathways commonly activated by diabetes-related conditions include NF-κB, NLRP3 inflammasome, fractalkine/CX3CR1, MAPKs, AGEs/RAGE and Akt/mTOR. Altogether, the detailed portrait of complex interactions between diabetes and microglia physiology presented here can be regarded as an important starting point for future research focused on the microglia-metabolism interface.
Collapse
Affiliation(s)
- María Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mónica García-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Miriam Corraliza-Gómez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain. .,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
33
|
Sonnefeld L, Rohmann N, Geisler C, Laudes M. Is human obesity an inflammatory disease of the hypothalamus? Eur J Endocrinol 2023; 188:R37-R45. [PMID: 36883605 DOI: 10.1093/ejendo/lvad030] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Obesity and its comorbidities are long-standing, challenging global health problems. Lack of exercise, overnutrition, and especially the consumption of fat-rich foods are some of the most important factors leading to an increase in prevalence in modern society. The pathophysiology of obesity as a metabolic inflammatory disease has moved into focus since new therapeutic approaches are required. The hypothalamus, a brain area responsible for energy homeostasis, has recently received special attention in this regard. Hypothalamic inflammation was identified to be associated with diet-induced obesity and new evidence suggests that it may be, beyond that, a pathological mechanism of the disease. This inflammation impairs the local signaling of insulin and leptin leading to dysfunction of the regulation of energy balance and thus, weight gain. After a high-fat diet consumption, activation of inflammatory mediators such as the nuclear factor κB or c-Jun N-terminal kinase pathway can be observed, accompanied by elevated secretion of pro-inflammatory interleukins and cytokines. Brain resident glia cells, especially microglia and astrocytes, initiate this release in response to the flux of fatty acids. The gliosis occurs rapidly before the actual weight gain. Dysregulated hypothalamic circuits change the interaction between neuronal and non-neuronal cells, contributing to the establishment of inflammatory processes. Several studies have reported reactive gliosis in obese humans. Although there is evidence for a causative role of hypothalamic inflammation in the obesity development, data on underlying molecular pathways in humans are limited. This review discusses the current state of knowledge on the relationship between hypothalamic inflammation and obesity in humans.
Collapse
Affiliation(s)
- Lena Sonnefeld
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Nathalie Rohmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Corinna Geisler
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
34
|
Calcaterra V, Magenes VC, Hruby C, Siccardo F, Mari A, Cordaro E, Fabiano V, Zuccotti G. Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020241. [PMID: 36832370 PMCID: PMC9954755 DOI: 10.3390/children10020241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
In recent years, the existing relationship between excess overweight and central precocious puberty (CPP) has been reported, especially in girls. Different nutritional choices have been associated with different patterns of puberty. In particular, the involvement of altered biochemical and neuroendocrine pathways and a proinflammatory status has been described in connection with a high-fat diet (HFD). In this narrative review, we present an overview on the relationship between obesity and precocious pubertal development, focusing on the role of HFDs as a contributor to activating the hypothalamus-pituitary-gonadal axis. Although evidence is scarce and studies limited, especially in the paediatric field, the harm of HFDs on PP is a relevant problem that cannot be ignored. Increased knowledge about HFD effects will be useful in developing strategies preventing precocious puberty in children with obesity. Promoting HFD-avoiding behavior may be useful in preserving children's physiological development and protecting reproductive health. Controlling HFDs may represent a target for policy action to improve global health.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Correspondence:
| | | | - Chiara Hruby
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | | | - Alessandra Mari
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | - Erika Cordaro
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
| | - Valentina Fabiano
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milano, 20157 Milano, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy
- Department of Biomedical and Clinical Science “L. Sacco”, University of Milano, 20157 Milano, Italy
| |
Collapse
|
35
|
Ni W, Zhang J, Wang B, Liang F, Bao L, Li P, Fang Y. Actin related protein 2/3 complex subunit 1 up-regulation in the hypothalamus prevents high-fat diet induced obesity. Eur J Neurosci 2023; 57:64-77. [PMID: 36382618 DOI: 10.1111/ejn.15871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Obesity is a major health crisis in the modern society. Studies have shown that the consumption of a high-fat diet (HFD) induces hypothalamic inflammation and leptin resistance, which consequently favours body mass gain. Actin related protein 2/3 complex subunit 1 (ARPC1B), an actin-binding protein, is highly expressed in immune cells. Recent studies have shown that ARPC1B has a certain anti-inflammatory effect. While ARPC1B expression is decreased in the hypothalamus of mice fed a HFD, the role of ARPC1B in HFD-induced obesity remains unclear. Thus, we investigated whether ARPC1B up-regulation in the hypothalamic arcuate nucleus (ARC) could inhibit the development of obesity. Herein, ARPC1B overexpression lentiviral particles were stereotaxically injected into the ARC of male C57BL/6J mice (7 weeks old) fed with HFD. Overexpression of ARPC1B in the hypothalamic ARC attenuated HFD-induced ARC inflammation, reduced body-weight gain and feed efficiency. Furthermore, up-regulation of ARC ARPC1B improved the glucose tolerance and reduced subcutaneous/epididymal fat mass accumulation, which decreased the serum total cholesterol, serum triglyceride and leptin levels. In addition, upon ARPC1B overexpression in the hypothalamic ARC, intraperitoneal injection of leptin increased the phosphorylation level of signal transducer and activator of transcription 3 (STAT3), an important transcription factor for leptin's action, in the ARC of obese mice. Accordingly, we suggest that up-regulation of ARPC1B in the hypothalamic ARC may improve the HFD-induced hypothalamic inflammation and leptin resistance. Our findings demonstrate that ARPC1B is a promising target for the treatment of diet-induced obesity.
Collapse
Affiliation(s)
- Weimin Ni
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Jie Zhang
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, P.R. China
| | - Bing Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Feng Liang
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Long Bao
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Pengfei Li
- Graduate School of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Yan Fang
- Teaching and Research Section of Anatomy, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
36
|
Henn RE, Elzinga SE, Glass E, Parent R, Guo K, Allouch AM, Mendelson FE, Hayes J, Webber-Davis I, Murphy GG, Hur J, Feldman EL. Obesity-induced neuroinflammation and cognitive impairment in young adult versus middle-aged mice. Immun Ageing 2022; 19:67. [PMID: 36550567 PMCID: PMC9773607 DOI: 10.1186/s12979-022-00323-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obesity rates are increasing worldwide. Obesity leads to many complications, including predisposing individuals to the development of cognitive impairment as they age. Immune dysregulation, including inflammaging (e.g., increased circulating cytokines) and immunosenescence (declining immune system function), commonly occur in obesity and aging and may impact cognitive impairment. As such, immune system changes across the lifespan may impact the effects of obesity on neuroinflammation and associated cognitive impairment. However, the role of age in obesity-induced neuroinflammation and cognitive impairment is unclear. To further define this putative relationship, the current study examined metabolic and inflammatory profiles, along with cognitive changes using a high-fat diet (HFD) mouse model of obesity. RESULTS First, HFD promoted age-related changes in hippocampal gene expression. Given this early HFD-induced aging phenotype, we fed HFD to young adult and middle-aged mice to determine the effect of age on inflammatory responses, metabolic profile, and cognitive function. As anticipated, HFD caused a dysmetabolic phenotype in both age groups. However, older age exacerbated HFD cognitive and neuroinflammatory changes, with a bi-directional regulation of hippocampal inflammatory gene expression. CONCLUSIONS Collectively, these data indicate that HFD promotes an early aging phenotype in the brain, which is suggestive of inflammaging and immunosenescence. Furthermore, age significantly compounded the impact of HFD on cognitive outcomes and on the regulation of neuroinflammatory programs in the brain.
Collapse
Affiliation(s)
- Rosemary E Henn
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah E Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emily Glass
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rachel Parent
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Adam M Allouch
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ian Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Geoffery G Murphy
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
37
|
Dickson E, Dwijesha AS, Andersson N, Lundh S, Björkqvist M, Petersén Å, Soylu-Kucharz R. Microarray profiling of hypothalamic gene expression changes in Huntington's disease mouse models. Front Neurosci 2022; 16:1027269. [PMID: 36408416 PMCID: PMC9671106 DOI: 10.3389/fnins.2022.1027269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 09/11/2024] Open
Abstract
Structural changes and neuropathology in the hypothalamus have been suggested to contribute to the non-motor manifestations of Huntington's disease (HD), a neurodegenerative disorder caused by an expanded cytosine-adenine-guanine (CAG) repeat in the huntingtin (HTT) gene. In this study, we investigated whether hypothalamic HTT expression causes transcriptional changes. Hypothalamic RNA was isolated from two different HD mouse models and their littermate controls; BACHD mice with ubiquitous expression of full-length mutant HTT (mHTT) and wild-type mice with targeted hypothalamic overexpression of either wild-type HTT (wtHTT) or mHTT fragments. The mHTT and wtHTT groups showed the highest number of differentially expressed genes compared to the BACHD mouse model. Gene Set Enrichment Analysis (GSEA) with leading-edge analysis showed that suppressed sterol- and cholesterol metabolism were shared between hypothalamic wtHTT and mHTT overexpression. Most distinctive for mHTT overexpression was the suppression of neuroendocrine networks, in which qRT-PCR validation confirmed significant downregulation of neuropeptides with roles in feeding behavior; hypocretin neuropeptide precursor (Hcrt), tachykinin receptor 3 (Tacr3), cocaine and amphetamine-regulated transcript (Cart) and catecholamine-related biological processes; dopa decarboxylase (Ddc), histidine decarboxylase (Hdc), tyrosine hydroxylase (Th), and vasoactive intestinal peptide (Vip). In BACHD mice, few hypothalamic genes were differentially expressed compared to age-matched WT controls. However, GSEA indicated an enrichment of inflammatory- and gonadotropin-related processes at 10 months. In conclusion, we show that both wtHTT and mHTT overexpression change hypothalamic transcriptome profile, specifically mHTT, altering neuroendocrine circuits. In contrast, the ubiquitous expression of full-length mHTT in the BACHD hypothalamus moderately affects the transcriptomic profile.
Collapse
Affiliation(s)
- Elna Dickson
- Biomarkers in Brain Disease, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Amoolya Sai Dwijesha
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Natalie Andersson
- Pathways of Cancer Cell Evolution, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sofia Lundh
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Maria Björkqvist
- Biomarkers in Brain Disease, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rana Soylu-Kucharz
- Biomarkers in Brain Disease, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
38
|
Mikhailova EV, Derkach KV, Shpakov AO, Romanova IV. Melanocortin 1 Receptors in the Hypothalamus of Mice within the Norm and in Diet-Induced Obesity. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Banerjee J, Dorfman MD, Fasnacht R, Douglass JD, Wyse-Jackson AC, Barria A, Thaler JP. CX3CL1 Action on Microglia Protects from Diet-Induced Obesity by Restoring POMC Neuronal Excitability and Melanocortin System Activity Impaired by High-Fat Diet Feeding. Int J Mol Sci 2022; 23:6380. [PMID: 35742824 PMCID: PMC9224384 DOI: 10.3390/ijms23126380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Both hypothalamic microglial inflammation and melanocortin pathway dysfunction contribute to diet-induced obesity (DIO) pathogenesis. Previous studies involving models of altered microglial signaling demonstrate altered DIO susceptibility with corresponding POMC neuron cytological changes, suggesting a link between microglia and the melanocortin system. We addressed this hypothesis using the specific microglial silencing molecule, CX3CL1 (fractalkine), to determine whether reducing hypothalamic microglial activation can restore POMC/melanocortin signaling to protect against DIO. We performed metabolic analyses in high fat diet (HFD)-fed mice with targeted viral overexpression of CX3CL1 in the hypothalamus. Electrophysiologic recording in hypothalamic slices from POMC-MAPT-GFP mice was used to determine the effects of HFD feeding and microglial silencing via minocycline or CX3CL1 on GFP-labeled POMC neurons. Finally, mice with hypothalamic overexpression of CX3CL1 received central treatment with the melanocortin receptor antagonist SHU9119 to determine whether melanocortin signaling is required for the metabolic benefits of CX3CL1. Hypothalamic overexpression of CX3CL1 increased leptin sensitivity and POMC gene expression, while reducing weight gain in animals fed an HFD. In electrophysiological recordings from hypothalamic slice preparations, HFD feeding was associated with reduced POMC neuron excitability and increased amplitude of inhibitory postsynaptic currents. Microglial silencing using minocycline or CX3CL1 treatment reversed these HFD-induced changes in POMC neuron electrophysiologic properties. Correspondingly, blockade of melanocortin receptor signaling in vivo prevented both the acute and chronic reduction in food intake and body weight mediated by CX3CL1. Our results show that suppressing microglial activation during HFD feeding reduces DIO susceptibility via a mechanism involving increased POMC neuron excitability and melanocortin signaling.
Collapse
Affiliation(s)
- Jineta Banerjee
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; (J.B.); (M.D.D.); (R.F.); (J.D.D.); (A.C.W.-J.)
| | - Mauricio D. Dorfman
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; (J.B.); (M.D.D.); (R.F.); (J.D.D.); (A.C.W.-J.)
| | - Rachael Fasnacht
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; (J.B.); (M.D.D.); (R.F.); (J.D.D.); (A.C.W.-J.)
| | - John D. Douglass
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; (J.B.); (M.D.D.); (R.F.); (J.D.D.); (A.C.W.-J.)
| | - Alice C. Wyse-Jackson
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; (J.B.); (M.D.D.); (R.F.); (J.D.D.); (A.C.W.-J.)
| | - Andres Barria
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109, USA;
| | - Joshua P. Thaler
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA; (J.B.); (M.D.D.); (R.F.); (J.D.D.); (A.C.W.-J.)
| |
Collapse
|
40
|
Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell 2022; 13:394-421. [PMID: 33826123 PMCID: PMC9095790 DOI: 10.1007/s13238-021-00834-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.
Collapse
Affiliation(s)
- Tiemin Liu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yong Xu
- grid.39382.330000 0001 2160 926XChildren’s Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Chun-Xia Yi
- grid.7177.60000000084992262Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Qingchun Tong
- grid.453726.10000 0004 5906 7293Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Graduate Program in Neuroscience of MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Dongsheng Cai
- grid.251993.50000000121791997Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 USA
| |
Collapse
|
41
|
The central nervous system control of energy homeostasis: high fat diet induced hypothalamic microinflammation and obesity. Brain Res Bull 2022; 185:99-106. [PMID: 35525336 DOI: 10.1016/j.brainresbull.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Obesity is believed to arise through the imbalance of energy homeostasis controlled by the central nervous system, where the hypothalamus plays the fundamental role in energy metabolism. In this review, we will provide an overview regarding the functions of POMC neurons and AgRP neurons in acute nucleus of the hypothalamus which mediated the energy metabolism, highlighting their interactions with peripheral organs derived hormones in control of energy homeostasis. Furthermore, the role of high fat diet induced hypothalamic microinflammation in the pathogenesis of obesity will be discussed. We hope this review could help researchers to understand the mechanism of hypothalamus in control of energy metabolism, and design related drugs to block the pathways involving in the impaired metabolism in obese patients.
Collapse
|
42
|
Ngozi Z, Bolton JL. Microglia Don't Treat All Neurons the Same: The Importance of Neuronal Subtype in Microglia-Neuron Interactions in the Developing Hypothalamus. Front Cell Neurosci 2022; 16:867217. [PMID: 35496905 PMCID: PMC9051542 DOI: 10.3389/fncel.2022.867217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 01/03/2023] Open
Abstract
Microglia are now well-known as integral regulators of brain development, phagocytosing whole neurons, and pruning weak or excess synapses in order to sculpt and refine immature circuits. However, the importance of neuronal subtype in guiding microglial activity has not received much attention until recently. This perspective will delineate what is known about this topic so far, starting with the developing brain as a whole and then focusing on the developing hypothalamus in particular. There is emerging evidence that subpopulations of microglia treat excitatory and inhibitory neurons differently, and our recent work has shown that even the type of neuropeptide produced by the nearby neurons is important. For example, microglia abutting corticotropin-releasing hormone (CRH)-expressing neurons in the paraventricular nucleus of the hypothalamus (PVN) engulf fewer excitatory synapses than do microglia on the borders of the PVN that are not contacting CRH+ neurons. Potential future directions and technical considerations will be discussed in an effort to catalyze this emerging and exciting area of research. Applications of this research may hold promise in creating more specific therapies that target unique subtypes of microglia-neuron interactions in the atypically developing brain.
Collapse
Affiliation(s)
| | - Jessica L. Bolton
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
43
|
Folick A, Cheang RT, Valdearcos M, Koliwad SK. Metabolic factors in the regulation of hypothalamic innate immune responses in obesity. Exp Mol Med 2022; 54:393-402. [PMID: 35474339 PMCID: PMC9076660 DOI: 10.1038/s12276-021-00666-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
The hypothalamus is a central regulator of body weight and energy homeostasis. There is increasing evidence that innate immune activation in the mediobasal hypothalamus (MBH) is a key element in the pathogenesis of diet-induced obesity. Microglia, the resident immune cells in the brain parenchyma, have been shown to play roles in diverse aspects of brain function, including circuit refinement and synaptic pruning. As such, microglia have also been implicated in the development and progression of neurological diseases. Microglia express receptors for and are responsive to a wide variety of nutritional, hormonal, and immunological signals that modulate their distinct functions across different brain regions. We showed that microglia within the MBH sense and respond to a high-fat diet and regulate the function of hypothalamic neurons to promote food intake and obesity. Neurons, glia, and immune cells within the MBH are positioned to sense and respond to circulating signals that regulate their capacity to coordinate aspects of systemic energy metabolism. Here, we review the current knowledge of how these peripheral signals modulate the innate immune response in the MBH and enable microglia to regulate metabolic control.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rachel T Cheang
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA
| | - Martin Valdearcos
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.
| | - Suneil K Koliwad
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
44
|
Milanova IV, Korpel NL, Correa-da-Silva F, Berends E, Osman S, la Fleur SE, Fliers E, Kalsbeek A, Yi CX. Loss of Microglial Insulin Receptor Leads to Sex-Dependent Metabolic Disorders in Obese Mice. Int J Mol Sci 2022; 23:ijms23062933. [PMID: 35328354 PMCID: PMC8954452 DOI: 10.3390/ijms23062933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 02/08/2023] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are highly prevalent disorders, associated with insulin resistance and chronic inflammation. The brain is key for energy homeostasis and contains many insulin receptors. Microglia, the resident brain immune cells, are known to express insulin receptors (InsR) and to be activated by a hypercaloric environment. The aim of this study was to evaluate whether microglial insulin signaling is involved in the control of systemic energy homeostasis and whether this function is sex-dependent. We generated a microglia-specific knockout of the InsR gene in male and female mice and exposed them to control or obesogenic dietary conditions. Following 10 weeks of diet exposure, we evaluated insulin tolerance, energy metabolism, microglial morphology and phagocytic function, and neuronal populations. Lack of microglial InsR resulted in increased plasma insulin levels and insulin resistance in obese female mice. In the brain, loss of microglial InsR led to a decrease in microglial primary projections in both male and female mice, irrespective of the diet. In addition, in obese male mice lacking microglial InsR the number of proopiomelanocortin neurons was decreased, compared to control diet, while no differences were observed in female mice. Our results demonstrate a sex-dependent effect of microglial InsR-signaling in physiology and obesity, and stress the importance of a heterogeneous approach in the study of diseases such as obesity and T2DM.
Collapse
Affiliation(s)
- Irina V. Milanova
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
| | - Nikita L. Korpel
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
| | - Felipe Correa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
| | - Eline Berends
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
| | - Samar Osman
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.V.M.); (N.L.K.); (F.C.-d.-S.); (E.B.); (S.O.); (S.E.l.F.); (E.F.); (A.K.)
- Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
45
|
Szalanczy AM, Key CCC, Woods LCS. Genetic variation in satiety signaling and hypothalamic inflammation: merging fields for the study of obesity. J Nutr Biochem 2022; 101:108928. [PMID: 34936921 PMCID: PMC8959400 DOI: 10.1016/j.jnutbio.2021.108928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Although obesity has been a longstanding health crisis, the genetic architecture of the disease remains poorly understood. Genome-wide association studies have identified many genomic loci associated with obesity, with genes being enriched in the brain, particularly in the hypothalamus. This points to the role of the central nervous system (CNS) in predisposition to obesity, and we emphasize here several key genes along the satiety signaling pathway involved in genetic susceptibility. Interest has also risen regarding the chronic, low-grade obesity-associated inflammation, with a growing concern toward inflammation in the hypothalamus as a precursor to obesity. Recent studies have found that genetic variation in inflammatory genes play a role in obesity susceptibility, and we highlight here several key genes. Despite the interest in the genetic variants of these pathways individually, there is a lack of research that investigates the relationship between the two. Understanding the interplay between genetic variation in obesity genes enriched in the CNS and inflammation genes will advance our understanding of obesity etiology and heterogeneity, improve genetic risk prediction analyses, and highlight new drug targets for the treatment of obesity. Additionally, this increased knowledge will assist in physician's ability to develop personalized nutrition and medication strategies for combating the obesity epidemic. Though it often seems to present universally, obesity is a highly individual disease, and there remains a need in the field to develop methods to treat at the individual level.
Collapse
|
46
|
Guo S, Cázarez-Márquez F, Jiao H, Foppen E, Korpel NL, Grootemaat AE, Liv N, Gao Y, van der Wel N, Zhou B, Nie G, Yi CX. Specific Silencing of Microglial Gene Expression in the Rat Brain by Nanoparticle-Based Small Interfering RNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5066-5079. [PMID: 35041392 PMCID: PMC8815040 DOI: 10.1021/acsami.1c22434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 05/02/2023]
Abstract
Microglia are the major innate immune cells in the brain and are essential for maintaining homeostasis in a neuronal microenvironment. Currently, a genetic tool to modify microglial gene expression in specific brain regions is not available. In this report, we introduce a tailor-designed method that uses lipid and polymer hybridized nanoparticles (LPNPs) for the local delivery of small interfering RNAs (siRNAs), allowing the silencing of specific microglial genes in the hypothalamus. Our physical characterization proved that this LPNP-siRNA was uniform and stable. We demonstrated that, due to their natural phagocytic behavior, microglial cells are the dominant cell type taking up these LPNPs in the hypothalamus of rats. We then tested the silencing efficiency of LPNPs carrying a cluster of differentiation molecule 11b (CD11b) or Toll-like receptor 4 (TLR4) siRNA using different in vivo and in vitro approaches. In cultured microglial cells treated with LPNP-CD11b siRNA or LPNP-TLR4 siRNA, we found a silencing efficiency at protein expression levels of 65 or 77%, respectively. In line with this finding, immunohistochemistry and western blotting results from in vivo experiments showed that LPNP-CD11b siRNA significantly inhibited microglial CD11b protein expression in the hypothalamus. Furthermore, following lipopolysaccharide (LPS) stimulation of cultured microglial cells, gene expression of the TLR4 downstream signaling component myeloid differentiation factor 88 and its associated cytokines was significantly inhibited in LPNP-TLR4 siRNA-treated microglial cells compared with cells treated with LPNP-scrambled siRNA. Finally, after LPNP-TLR4 siRNA injection into the rat hypothalamus, we observed a significant reduction in microglial activation in response to LPS compared with the control rats injected with LPNP-scrambled siRNA. Our results indicate that LPNP-siRNA is a promising tool to manipulate microglial activity locally in the brain and may serve as a prophylactic approach to prevent microglial dysfunction-associated diseases.
Collapse
Affiliation(s)
- Shanshan Guo
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Fernando Cázarez-Márquez
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Netherlands
Institute for Neuroscience, Institute of
the Royal Netherlands Academy of Arts and Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Han Jiao
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Key
Laboratory of Cardiovascular and Cerebrovascular Medicine, School
of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ewout Foppen
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Netherlands
Institute for Neuroscience, Institute of
the Royal Netherlands Academy of Arts and Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Nikita L. Korpel
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Netherlands
Institute for Neuroscience, Institute of
the Royal Netherlands Academy of Arts and Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Anita E. Grootemaat
- Cellular
Imaging Core Facility, Amsterdam University Medical Centre (UMC),
location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nalan Liv
- Section
Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Yuanqing Gao
- Key
Laboratory of Cardiovascular and Cerebrovascular Medicine, School
of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Nicole van der Wel
- Cellular
Imaging Core Facility, Amsterdam University Medical Centre (UMC),
location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bing Zhou
- Institute
of Synthetic Biology, Shenzhen Institutes
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangjun Nie
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chun-Xia Yi
- Department
of Endocrinology and Metabolism, Laboratory of Endocrinology, Amsterdam
Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam
University Medical Centre (UMC), location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
47
|
Effect of Propionic Acid on Diabetes-Induced Impairment of Unfolded Protein Response Signaling and Astrocyte/Microglia Crosstalk in Rat Ventromedial Nucleus of the Hypothalamus. Neural Plast 2022; 2022:6404964. [PMID: 35103058 PMCID: PMC8800605 DOI: 10.1155/2022/6404964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background The aim was to investigate the influence of propionic acid (PA) on the endoplasmic reticulum (ER), unfolded protein response (UPR) state, and astrocyte/microglia markers in rat ventromedial hypothalamus (VMH) after type 2 diabetes mellitus (T2DM). Methods Male Wistar rats were divided: (1) control, (2) T2DM, and groups that received the following (14 days, orally): (3) metformin (60 mg/kg), (4) PA (60 mg/kg), and (5) PA+metformin. Western blotting, RT-PCR, transmission electron microscopy, and immunohistochemical staining were performed. Results We found T2DM-associated enlargement of ER cisterns, while drug administration slightly improved VMH ultrastructural signs of damage. GRP78 level was 2.1-fold lower in T2DM vs. control. Metformin restored GRP78 to control, while PA increased it by 2.56-fold and metformin+PA—by 3.28-fold vs. T2DM. PERK was elevated by 3.61-fold in T2DM, after metformin—by 4.98-fold, PA—5.64-fold, and metformin+PA—3.01-fold vs. control. A 2.45-fold increase in ATF6 was observed in T2DM. Metformin decreased ATF6 content vs. T2DM. Interestingly, PA exerted a more pronounced lowering effect on ATF6, while combined treatment restored ATF6 to control. IRE1 increased in T2DM (2.4-fold), metformin (1.99-fold), and PA (1.45-fold) groups vs. control, while metformin+PA fully normalized its content. The Iba1 level was upregulated in T2DM (5.44-fold) and metformin groups (6.88-fold). Despite PA treatment leading to a further 8.9-fold Iba1 elevation, PA+metformin caused the Iba1 decline vs. metformin and PA treatment. GFAP level did not change in T2DM but rose in metformin and PA groups vs. control. PA+metformin administration diminished GFAP vs. PA. T2DM-induced changes were associated with dramatically decreased ZO-1 levels, while PA treatment increased it almost to control values. Conclusions T2DM-induced UPR imbalance, activation of microglia, and impairments in cell integrity may trigger VMH dysfunction. Drug administration slightly improved ultrastructural changes in VMH, normalized UPR, and caused an astrocyte activation. PA and metformin exerted beneficial effects for counteracting diabetes-induced ER stress in VMH.
Collapse
|
48
|
Ekraminasab S, Dolatshahi M, Sabahi M, Mardani M, Rashedi S. The Interactions between Adipose Tissue Secretions and Parkinson's disease; The Role of Leptin. Eur J Neurosci 2022; 55:873-891. [PMID: 34989050 DOI: 10.1111/ejn.15594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/30/2022]
Abstract
Leptin is a hormone that regulates appetite by acting on receptors in the hypothalamus, where it modifies food intake to maintain equilibrium with the body energy resources. Leptin and its receptors are widely distributed in the central nervous system, suggesting that they may give neuronal survival signals. The potential of leptin to decrease/increase neuronal damage and neuronal plasticity in Parkinson's diseases (PD) is the subject of this review, which outlines our current knowledge of how leptin acts in the brain. Although leptin-mediated neuroprotective signaling results in neuronal death prevention, it can affect neuroinflammatory cascades and also neuronal plasticity which contribute to PD pathology. Other neuroprotective molecules, such as insulin and erythropoietin, share leptin-related signaling cascades, and therefore constitute a component of the neurotrophic effects mediated by endogenous hormones. With the evidence that leptin dysregulation causes increased neuronal vulnerability to damage in PD, using leptin as a target for therapeutic modification is an appealing and realistic option.
Collapse
Affiliation(s)
- Sara Ekraminasab
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Dolatshahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadmahdi Sabahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahta Mardani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Rashedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Frintrop L, Trinh S, Seitz J, Kipp M. The Role of Glial Cells in Regulating Feeding Behavior: Potential Relevance to Anorexia Nervosa. J Clin Med 2021; 11:jcm11010186. [PMID: 35011927 PMCID: PMC8745326 DOI: 10.3390/jcm11010186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 12/16/2022] Open
Abstract
Eating behavior is controlled by hypothalamic circuits in which agouti-related peptide-expressing neurons when activated in the arcuate nucleus, promote food intake while pro-opiomelanocortin-producing neurons promote satiety. The respective neurotransmitters signal to other parts of the hypothalamus such as the paraventricular nucleus as well as several extra-hypothalamic brain regions to orchestrate eating behavior. This complex process of food intake may be influenced by glia cells, in particular astrocytes and microglia. Recent studies showed that GFAP+ astrocyte cell density is reduced in the central nervous system of an experimental anorexia nervosa model. Anorexia nervosa is an eating disorder that causes, among the well-known somatic symptoms, brain volume loss which was associated with neuropsychological deficits while the underlying pathophysiology is unknown. In this review article, we summarize the findings of glia cells in anorexia nervosa animal models and try to deduce which role glia cells might play in the pathophysiology of eating disorders, including anorexia nervosa. A better understanding of glia cell function in the regulation of food intake and eating behavior might lead to the identification of new drug targets.
Collapse
Affiliation(s)
- Linda Frintrop
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany;
- Correspondence: ; Tel.: +49-(0)-381-494-8406
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany;
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, 52074 Aachen, Germany;
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
50
|
Bhusal A, Rahman MH, Suk K. Hypothalamic inflammation in metabolic disorders and aging. Cell Mol Life Sci 2021; 79:32. [PMID: 34910246 PMCID: PMC11071926 DOI: 10.1007/s00018-021-04019-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause-effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|