1
|
Smail MA, Smith BL, Nawreen N, Herman JP. Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacol Biochem Behav 2020; 197:172993. [PMID: 32659243 PMCID: PMC7484282 DOI: 10.1016/j.pbb.2020.172993] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Stress exposure can produce profound changes in physiology and behavior that can impair health and well-being. Of note, stress exposure is linked to anxiety disorders and depression in humans. The widespread impact of these disorders warrants investigation into treatments to mitigate the harmful effects of stress. Pharmacological treatments fail to help many with these disorders, so recent work has focused on non-pharmacological alternatives. One of the most promising of these alternatives is environmental enrichment (EE). In rodents, EE includes social, physical, and cognitive stimulation for the animal, in the form of larger cages, running wheels, and toys. EE successfully reduces the maladaptive effects of various stressors, both as treatment and prophylaxis. While we know that EE can have beneficial effects under stress conditions, the morphological and molecular mechanisms underlying these behavioral effects are still not well understood. EE is known to alter neurogenesis, dendrite development, and expression of neurotrophic growth factors, effects that vary by type of enrichment, age, and sex. To add to this complexity, EE has differential effects in different brain regions. Understanding how EE exerts its protective effects on morphological and molecular levels could hold the key to developing more targeted pharmacological treatments. In this review, we summarize the literature on the morphological and molecular consequences of EE and stress in key emotional regulatory pathways in the brain, the hippocampus, prefrontal cortex, and amygdala. The similarities and differences among these regions provide some insight into stress-EE interaction that may be exploited in future efforts toward prevention of, and intervention in, stress-related diseases.
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.
| | - Brittany L Smith
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Veterans Affairs Medical Center, Cincinnati, OH, United States; Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
2
|
Kim JY, Barua S, Huang MY, Park J, Yenari MA, Lee JE. Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection after Brain Injury. Cells 2020; 9:2020. [PMID: 32887360 PMCID: PMC7563654 DOI: 10.3390/cells9092020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
The 70 kDa heat shock protein (HSP70) is a stress-inducible protein that has been shown to protect the brain from various nervous system injuries. It allows cells to withstand potentially lethal insults through its chaperone functions. Its chaperone properties can assist in protein folding and prevent protein aggregation following several of these insults. Although its neuroprotective properties have been largely attributed to its chaperone functions, HSP70 may interact directly with proteins involved in cell death and inflammatory pathways following injury. Through the use of mutant animal models, gene transfer, or heat stress, a number of studies have now reported positive outcomes of HSP70 induction. However, these approaches are not practical for clinical translation. Thus, pharmaceutical compounds that can induce HSP70, mostly by inhibiting HSP90, have been investigated as potential therapies to mitigate neurological disease and lead to neuroprotection. This review summarizes the neuroprotective mechanisms of HSP70 and discusses potential ways in which this endogenous therapeutic molecule could be practically induced by pharmacological means to ultimately improve neurological outcomes in acute neurological disease.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
| | - Mei Ying Huang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, Neurology (127) VAMC 4150 Clement St., San Francisco, CA 94121, USA
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; (J.Y.K.); (S.B.); (M.Y.H.); (J.P.)
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
3
|
Yurinskaya MM, Garbuz DG, Evgen’ev MB, Vinokurov MG. Exogenous HSP70 and Signaling Pathways Involved in the Inhibition of LPS-Induced Neurotoxicity of Neuroblastoma Cells. Mol Biol 2020. [DOI: 10.1134/s0026893320010161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry 2020; 25:1175-1190. [PMID: 30413800 PMCID: PMC7244405 DOI: 10.1038/s41380-018-0285-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 11/23/2022]
Abstract
Circular RNAs (circRNAs), highly expressed in the central nervous system, are involved in various regulatory processes and implicated in some pathophysiology. However, the potential role of circRNAs in psychiatric diseases, particularly major depressive disorder (MDD), remains largely unknown. Here, we demonstrated that circular RNA DYM (circDYM) levels were significantly decreased both in the peripheral blood of patients with MDD and in the two depressive-like mouse models: the chronic unpredictable stress (CUS) and lipopolysaccharide (LPS) models. Restoration of circDYM expression significantly attenuated depressive-like behavior and inhibited microglial activation induced by CUS or LPS treatment. Further examination indicated that circDYM functions as an endogenous microRNA-9 (miR-9) sponge to inhibit miR-9 activity, which results in a downstream increase of target-HECT domain E3 ubiquitin protein ligase 1 (HECTD1) expression, an increase of HSP90 ubiquitination, and a consequent decrease of microglial activation. Taken together, the results of our study demonstrate the involvement of circDYM and its coupling mechanism in depression, providing translational evidence that circDYM may be a novel therapeutic target for depression.
Collapse
|
5
|
Effects of Pseudomonas aeruginosa on Microglial-Derived Extracellular Vesicle Biogenesis and Composition. Pathogens 2019; 8:pathogens8040297. [PMID: 31847332 PMCID: PMC6963293 DOI: 10.3390/pathogens8040297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
The packaging of molecular constituents inside extracellular vesicles (EVs) allows them to participate in intercellular communication and the transfer of biological molecules, however the role of EVs during bacterial infection is poorly understood. The goal of this study was to examine the effects of Pseudomonas aeruginosa (P. aeruginosa) infection on the biogenesis and composition of EVs derived from the mouse microglia cell line, BV-2. BV-2 cells were cultured in exosome-free media and infected with 0, 1.3 × 104, or 2.6 × 104 colony forming units per milliliter P. aeruginosa for 72 h. The results indicated that compared with the control group, BV-2 cell viability significantly decreased after P. aeruginosa infection and BV-2-derived EVs concentration decreased significantly in the P. aeruginosa-infected group. P. aeruginosa infection significantly decreased chemokine ligand 4 messenger RNA in BV-2-derived infected EVs, compared with the control group (p ≤ 0.05). This study also revealed that heat shock protein 70 (p ≤ 0.05) and heat shock protein 90β (p ≤ 0.001) levels of expression within EVs increased after P. aeruginosa infection. EV treatment with EVs derived from P. aeruginosa infection reduced cell viability of BV-2 cells. P. aeruginosa infection alters the expression of specific proteins and mRNA in EVs. Our study suggests that P. aeruginosa infection modulates EV biogenesis and composition, which may influence bacterial pathogenesis and infection.
Collapse
|
6
|
Heat Shock Proteins and Inflammasomes. Int J Mol Sci 2019; 20:ijms20184508. [PMID: 31547225 PMCID: PMC6771073 DOI: 10.3390/ijms20184508] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/23/2023] Open
Abstract
Heat shock proteins (HSP) regulate inflammation in many physiological contexts. However, inflammation is a broad process, involving numerous cytokines produced by different molecular pathways with multiple functions. In this review, we focused on the particular role of HSP on the inflammasomes intracellular platforms activated by danger signals and that enable activation of inflammatory caspases, mainly caspase-1, leading to the production of the pro-inflammatory cytokine IL-1β. Interestingly, some members of the HSP family favor inflammasomes activation whereas others inhibit it, suggesting that HSP modulators for therapeutic purposes, must be carefully chosen.
Collapse
|
7
|
Gessi S, Merighi S, Bencivenni S, Battistello E, Vincenzi F, Setti S, Cadossi M, Borea PA, Cadossi R, Varani K. Pulsed electromagnetic field and relief of hypoxia-induced neuronal cell death: The signaling pathway. J Cell Physiol 2019; 234:15089-15097. [PMID: 30656694 DOI: 10.1002/jcp.28149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Low-energy low-frequency pulsed electromagnetic fields (PEMFs) exert several protective effects, such as the regulation of kinases, transcription factors as well as cell viability in both central and peripheral biological systems. However, it is not clear on which bases they affect neuroprotection and the mechanism responsible is yet unknown. In this study, we have characterized in nerve growth factor-differentiated pheochromocytoma PC12 cells injured with hypoxia: (i) the effects of PEMF exposure on cell vitality; (ii) the protective pathways activated by PEMFs to relief neuronal cell death, including adenylyl cyclase, phospholipase C, protein kinase C epsilon and delta, p38, ERK1/2, JNK1/2 mitogen-activated protein kinases, Akt and caspase-3; (iii) the regulation by PEMFs of prosurvival heat-shock proteins of 70 (HSP70), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), and Bcl-2 family proteins. The results obtained in this study show a protective effect of PEMFs that are able to reduce neuronal cell death induced by hypoxia by modulating p38, HSP70, CREB, BDNF, and Bcl-2 family proteins. Specifically, we found a rapid activation (30 min) of p38 kinase cascade, which in turns enrolles HSP70 survival chaperone molecule, resulting in a significant CREB phosphorylation increase (24 hr). In this cascade, later (48 hr), BDNF and the antiapoptotic pathway regulated by the Bcl-2 family of proteins are recruited by PEMFs to enhance neuronal survival. This study paves the way to elucidate the mechanisms triggered by PEMFs to act as a new neuroprotective approach to treat cerebral ischemia by reducing neuronal cell death.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Serena Bencivenni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,University Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Clarke BE, Gil RS, Yip J, Kalmar B, Greensmith L. Regional differences in the inflammatory and heat shock response in glia: implications for ALS. Cell Stress Chaperones 2019; 24:857-870. [PMID: 31168740 PMCID: PMC6717175 DOI: 10.1007/s12192-019-01005-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022] Open
Abstract
Preferential neuronal vulnerability is characteristic of several neurodegenerative diseases including the motor neuron disease amyotrophic lateral sclerosis (ALS). It is well established that glia play a critical role in ALS, but it is unknown whether regional differences in the ability of glia to support motor neurons contribute to the specific pattern of neuronal degeneration. In this study, using primary mixed glial cultures from different mouse CNS regions (spinal cord and cortex), we examined whether regional differences exist in key glial pathways that contribute to, or protect against, motor neuron degeneration. Specifically, we examined the NF-κB-mediated inflammatory pathway and the cytoprotective heat shock response (HSR). Glial cultures were treated with pro-inflammatory stimuli, tumour necrosis factor-ɑ/lipopolysaccharide or heat stressed to stimulate the inflammatory and HSR respectively. We found that spinal cord glia expressed more iNOS and produced more NO compared to cortical glia in response to inflammatory stimuli. Intriguingly, we found that expression of ALS-causing SOD1G93A did not elevate the levels of NO in spinal cord glia. However, activation of the stress-responsive HSR was attenuated in SOD1G93A cultures, with a reduced Hsp70 induction in response to stressful stimuli. Exposure of spinal cord glia to heat shock in combination with inflammatory stimuli reduced the activation of the inflammatory response. The results of this study suggest that impaired heat shock response in SOD1G93A glia may contribute to the exacerbated inflammatory reactions observed in ALS mice. Graphical abstract Mixed primary glial cultures were established from cortical and spinal cord regions of wild-type mice and mice expressing ALS-causing mutant human SOD1 and the inflammatory and heat shock responses were investigated in these cultures. In the absence of stress, all cultures appeared to have similar cellular composition, levels of inflammatory mediators and similar expression level of heat shock proteins. When stimulated, spinal cord glia were more reactive and activated the inflammatory pathway more readily than cortical glia; this response was similar in wild-type and SOD1G93A glial cultures. Although the heat shock response was similar in spinal cord and cortical glial, in SOD1G93A expressing glia from both the spinal cord and cortex, the induction of heat shock response was diminished. This impaired heat shock response in SOD1G93A glia may therefore contribute to the exacerbated inflammatory reactions observed in ALS mice.
Collapse
Affiliation(s)
- Benjamin E Clarke
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Disease, London, WC1N 3BG, UK
| | - Rebecca San Gil
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
| | - Jing Yip
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Bernadett Kalmar
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Linda Greensmith
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Disease, London, WC1N 3BG, UK
| |
Collapse
|
9
|
Talwar P, Gupta R, Kushwaha S, Agarwal R, Saso L, Kukreti S, Kukreti R. Viral Induced Oxidative and Inflammatory Response in Alzheimer's Disease Pathogenesis with Identification of Potential Drug Candidates: A Systematic Review using Systems Biology Approach. Curr Neuropharmacol 2019; 17:352-365. [PMID: 29676229 PMCID: PMC6482477 DOI: 10.2174/1570159x16666180419124508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is genetically complex with multifactorial etiology. Here, we aim to identify the potential viral pathogens leading to aberrant inflammatory and oxidative stress response in AD along with potential drug candidates using systems biology approach. We retrieved protein interactions of amyloid precursor protein (APP) and tau protein (MAPT) from NCBI and genes for oxidative stress from NetAge, for inflammation from NetAge and InnateDB databases. Genes implicated in aging were retrieved from GenAge database and two GEO expression datasets. These genes were individually used to create protein-protein interaction network using STRING database (score≥0.7). The interactions of candidate genes with known viruses were mapped using virhostnet v2.0 database. Drug molecules targeting candidate genes were retrieved using the Drug- Gene Interaction Database (DGIdb). Data mining resulted in 2095 APP, 116 MAPT, 214 oxidative stress, 1269 inflammatory genes. After STRING PPIN analysis, 404 APP, 109 MAPT, 204 oxidative stress and 1014 inflammation related high confidence proteins were identified. The overlap among all datasets yielded eight common markers (AKT1, GSK3B, APP, APOE, EGFR, PIN1, CASP8 and SNCA). These genes showed association with hepatitis C virus (HCV), Epstein- Barr virus (EBV), human herpes virus 8 and Human papillomavirus (HPV). Further, screening of drugs targeting candidate genes, and possessing anti-inflammatory property, antiviral activity along with a suggested role in AD pathophysiology yielded 12 potential drug candidates. Our study demonstrated the role of viral etiology in AD pathogenesis by elucidating interaction of oxidative stress and inflammation causing candidate genes with common viruses along with the identification of potential AD drug candidates.
Collapse
Affiliation(s)
- Puneet Talwar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Renu Gupta
- Institute of Human Behaviour & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110 095, India
| | - Suman Kushwaha
- Institute of Human Behaviour & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110 095, India
| | - Rachna Agarwal
- Institute of Human Behaviour & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110 095, India
| | - Luciano Saso
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | | | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| |
Collapse
|
10
|
Crenshaw BJ, Kumar S, Bell CR, Jones LB, Williams SD, Saldanha SN, Joshi S, Sahu R, Sims B, Matthews QL. Alcohol Modulates the Biogenesis and Composition of Microglia-Derived Exosomes. BIOLOGY 2019; 8:biology8020025. [PMID: 31035566 PMCID: PMC6627924 DOI: 10.3390/biology8020025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Exosomes are small extracellular vesicles that have emerged as an important tool for intercellular communication. In the central nervous system, exosomes can mediate glia and neuronal communication. Once released from the donor cell, exosomes can act as discrete vesicles and travel to distant and proximal recipient cells to alter cellular function. Microglia cells secrete exosomes due to stress stimuli of alcohol abuse. The goal of this study was to investigate the effects of alcohol exposure on the biogenesis and composition of exosomes derived from microglia cell line BV-2. The BV-2 cells were cultured in exosome-free media and were either mock treated (control) or treated with 50 mM or 100 mM of alcohol for 48 and 72 h. Our results demonstrated that alcohol significantly impacted BV-2 cell morphology, viability, and protein content. Most importantly, our studies revealed that exosome biogenesis and composition was affected by alcohol treatment.
Collapse
Affiliation(s)
- Brennetta J Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sanjay Kumar
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Courtnee' R Bell
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Leandra B Jones
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sparkle D Williams
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Sabita N Saldanha
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sameer Joshi
- Center for Nanobiotechnology Research (CNBR), Alabama State University, Montgomery, AL 36104, USA.
| | - Rajnish Sahu
- Center for Nanobiotechnology Research (CNBR), Alabama State University, Montgomery, AL 36104, USA.
| | - Brian Sims
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Qiana L Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| |
Collapse
|
11
|
Mizuma A, Kim JY, Kacimi R, Stauderman K, Dunn M, Hebbar S, Yenari MA. Microglial Calcium Release-Activated Calcium Channel Inhibition Improves Outcome from Experimental Traumatic Brain Injury and Microglia-Induced Neuronal Death. J Neurotrauma 2018; 36:996-1007. [PMID: 30351197 DOI: 10.1089/neu.2018.5856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) mediated by calcium release-activated calcium (CRAC) channels contributes to calcium signaling. The resulting intracellular calcium increases activate calcineurin, which in turn activates immune transcription factor nuclear factor of activated T cells (NFAT). Microglia contain CRAC channels, but little is known whether these channels play a role in acute brain insults. We studied a novel CRAC channel inhibitor to explore the therapeutic potential of this compound in microglia-mediated injury. Cultured microglial BV2 cells were activated by Toll-like receptor agonists or IFNγ. Some cultures were treated with a novel CRAC channel inhibitor (CM-EX-137). Western blots revealed the presence of CRAC channel proteins STIM1 and Orai1 in BV2 cells. CM-EX-137 decreased nitric oxide (NO) release and inducible nitric oxide synthase (iNOS) expression in activated microglia and reduced agonist-induced intracellular calcium accumulation in microglia, while suppressing inflammatory transcription factors nuclear factor kappa B (NF-κB) and nuclear factor of activated T cells (NFAT). Male C57/BL6 mice exposed to experimental brain trauma and treated with CM-EX-137 had decreased lesion size, brain hemorrhage, and improved neurological deficits with decreased microglial activation, iNOS and Orai1 and STIM1 levels. We suggest a novel anti-inflammatory approach for managing acute brain injury. Our observations also shed light on new calcium signaling pathways not described previously in brain injury models.
Collapse
Affiliation(s)
- Atsushi Mizuma
- 1 Department of Neurology, University of California, San Francisco; the San Francisco VA Medical Center, San Francisco, California.,2 Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Jong Youl Kim
- 1 Department of Neurology, University of California, San Francisco; the San Francisco VA Medical Center, San Francisco, California.,3 Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Rachid Kacimi
- 1 Department of Neurology, University of California, San Francisco; the San Francisco VA Medical Center, San Francisco, California
| | | | | | | | - Midori A Yenari
- 1 Department of Neurology, University of California, San Francisco; the San Francisco VA Medical Center, San Francisco, California
| |
Collapse
|
12
|
Gülke E, Gelderblom M, Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord 2018; 11:1756286418774254. [PMID: 29854002 PMCID: PMC5968660 DOI: 10.1177/1756286418774254] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Ischemic stroke is a major cause of death. Besides the direct damage resulting from oxygen and glucose deprivation, sterile inflammation plays a pivotal role in increasing cellular death. Damaged-associated molecular patterns (DAMPs) are passively released from dying cells and activate the innate immune system. Thus, they take part in the direct and rapid activation of the inflammatory response after stroke onset. In this review the role of the most important DAMPs, high mobility group box 1, heat and cold shock proteins, purines, and peroxiredoxins, are addressed. Moreover, intracellular pathways activated by DAMPs in microglia are illuminated.
Collapse
Affiliation(s)
- Eileen Gülke
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | |
Collapse
|
13
|
Ondruschka B, Rosinsky F, Trauer H, Schneider E, Dreßler J, Franke H. Drug- and/or trauma-induced hyperthermia? Characterization of HSP70 and myoglobin expression. PLoS One 2018; 13:e0194442. [PMID: 29566034 PMCID: PMC5864017 DOI: 10.1371/journal.pone.0194442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/02/2018] [Indexed: 01/04/2023] Open
Abstract
Introduction Heat shock protein 70 (HSP70) expression could be discussed as an adaption that promotes repair and counteracts cell damage. Myoglobin is released upon muscle damage of several pathways. The purpose of the present study was to determine whether the expression of HSP70 in kidney, heart and brain and of myoglobin in the kidney were associated with the cause of death and the survival times after lethal intoxications with three of the drugs most widely used in our local area (Saxony, Germany) as well as after fatal traumatic brain injury (TBI). Methods We retrospectively collected kidney, heart and brain samples of 50 autopsy cases with toxicological proved lethal intoxication (main drugs methamphetamine, morphine, alcohol), 14 TBI cases and 15 fatalities with acute myocardial injury in age- and gender-matched compilations. Results Our main findings suggest that HSP70 is associated with hyperthermal and other stress factors of most cell populations. HSP70 expressions in kidney and heart muscle are useful for a differentiation between fatal intoxications and cases without toxicological influence (p < 0.05). There were significant differences in the cerebral expression patterns between methamphetamine- and morphine-associated deaths compared to alcohol fatalities (p < 0.05). An intensive staining of HSP70 in the pericontusional zone and the hippocampus after TBI (especially neuronal and vascular) was shown even after short survival times and may be useful as an additional marker in questions of vitality or wound age. A relevant myoglobin decoration of renal tubules was only shown for methamphetamine abuse in the study presented. Conclusion In sum, the immunohistochemical characteristics presented can be supportive for determining final death circumstances and minimal trauma survival times but are not isolated usefully for the detection of drug- or trauma-induced hyperthermia.
Collapse
Affiliation(s)
- Benjamin Ondruschka
- Institute of Legal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Franziska Rosinsky
- Institute of Legal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Heiner Trauer
- Institute of Legal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | | - Jan Dreßler
- Institute of Legal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Kim JY, Han Y, Lee JE, Yenari MA. The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert Opin Ther Targets 2018; 22:191-199. [PMID: 29421932 PMCID: PMC6059371 DOI: 10.1080/14728222.2018.1439477] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 70-kDa heat shock protein (Hsp70) is a cytosolic chaperone which facilitates protein folding, degradation, complex assembly, and translocation. Following stroke, these functions have the potential to lead to cytoprotection, and this has been demonstrated using genetic mutant models, direct gene transfer or the induction of Hsp70 via heat stress, approaches which limit its translational utility. Recently, the investigation of Hsp70-inducing pharmacological compounds, which, through their ability to inhibit Hsp90, has obvious clinical implications in terms of potential therapies to mitigate cell death and inflammation, and lead to neuroprotection from brain injury. Areas covered: In this review, we will focus on the role of Hsp70 in cell death and inflammation, and the current literature surrounding the pharmacological induction in acute ischemic stroke models with comments on potential applications at the clinical level. Expert opinion: Such neuroprotectants could be used to synergistically improve neurological outcome or to extend the time window of existing interventions, thus increasing the numbers of stroke victims eligible for treatment.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeonseung Han
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
15
|
Mo ZT, Li WN, Zhai YR, Gao SY. The effects of icariin on the expression of HIF-1α, HSP-60 and HSP-70 in PC12 cells suffered from oxygen-glucose deprivation-induced injury. PHARMACEUTICAL BIOLOGY 2017; 55:848-852. [PMID: 28140748 PMCID: PMC6130580 DOI: 10.1080/13880209.2017.1281968] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 10/22/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT The effects of icariin, a chief constituent of flavonoids from Epimedium brevicornum Maxim (Berberidaceae), on the levels of HIF-1α, HSP-60 and HSP-70 remain unknown. OBJECTIVE To explore the effects of icariin on the levels of HSP-60, HIF-1α and HSP-70 neuron-specific enolase (NSE) and cell viability. MATERIALS AND METHODS PC12 cells were treated with icariin (10-7, 10-6 or 10-5 mol/L) for 3 h (1 h before oxygen-glucose deprivation (OGD) plus 2 h OGD). HSP-60, HIF-1α, HSP-70 and NSE were measured using enzyme-linked immunosorbent assay (ELISA). Cell viability was determined by metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS After 2 h OGD, levels of HIF-1α, HSP-60, HSP-70 and NSE were increased significantly (HIF-1α: 33.3 ± 1.9 ng/L, HSP-60: 199 ± 16 ng/L, HSP-70: 195 ± 17 ng/L, NSE: 1487 ± 125 ng/L), and cell viability was significantly decreased (0.26 ± 0.03), while icariin (10-7, 10-6, or 10-5 mol/L) significantly reduced the contents of HIF-1α, HSP-60, HSP-70 and NSE (HIF-1α: 14.1 ± 1.4, 22.6 ± 1.8, 15.7 ± 2.1, HSP-60: 100 ± 12, 89 ± 6, 113 ± 11, HSP-70: 139 ± 9, 118 ± 7, 95 ± 9 and NSE: 1121 ± 80, 1019 ± 52, 731 ± 88), and improved cell viability (0.36 ± 0.03, 0.38 ± 0.04, 0.37 ± 0.03) in OGD-treated PC12 cells. DISCUSSION AND CONCLUSION These results indicate that the protective mechanisms of icariin against OGD-induced injury may be related to down-regulating the expression of HIF-1α, HSP-60 and HSP-70.
Collapse
Affiliation(s)
- Zhen-Tao Mo
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Wen-Na Li
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yu-Rong Zhai
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Shu-Ying Gao
- Department of Pharmacology of Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| |
Collapse
|
16
|
Schaefer AK, Wastyk HC, Mohanan V, Hou CW, Lauro ML, Melnyk JE, Burch JM, Grimes CL. Crohn's Disease Variants of Nod2 Are Stabilized by the Critical Contact Region of Hsp70. Biochemistry 2017; 56:4445-4448. [PMID: 28792733 DOI: 10.1021/acs.biochem.7b00470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nod2 is a cytosolic, innate immune receptor responsible for binding to bacterial cell wall fragments such as muramyl dipeptide (MDP). Upon binding, subsequent downstream activation of the NF-κB pathway leads to an immune response. Nod2 mutations are correlated with an increased susceptibility to Crohn's disease (CD) and ultimately result in a misregulated immune response. Previous work had demonstrated that Nod2 interacts with and is stabilized by the molecular chaperone Hsp70. In this work, it is shown using purified protein and in vitro biochemical assays that the critical Nod2 CD mutations (G908R, R702W, and 1007fs) preserve the ability to bind bacterial ligands. A limited proteolysis assay and luciferase reporter assay reveal regions of Hsp70 that are capable of stabilizing Nod2 and rescuing CD mutant activity. A minimal 71-amino acid subset of Hsp70 that stabilizes the CD-associated variants of Nod2 and restores a proper immune response upon activation with MDP was identified. This work suggests that CD-associated Nod2 variants could be stabilized in vivo with a molecular chaperone.
Collapse
Affiliation(s)
- Amy K Schaefer
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Hannah C Wastyk
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Vishnu Mohanan
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Ching-Wen Hou
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Mackenzie L Lauro
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - James E Melnyk
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Jason M Burch
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
17
|
Tsai MC, Huang TL. Decreased S100B serum levels after treatment in bipolar patients in a manic phase. Compr Psychiatry 2017; 74:27-34. [PMID: 28088747 DOI: 10.1016/j.comppsych.2016.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Previous studies have suggested that patients with bipolar disorder might have brain damage. The aim of this study was to investigate the serum levels of brain injury biomarkers and S100A10 in bipolar patients in a manic phase, and evaluate the changes in S100B, neuron specific enolase (NSE), heat shock protein 70 (HSP70) and S100A10 after treatment. METHOD We consecutively enrolled 17 bipolar inpatients in a manic phase and 30 healthy subjects. Serum brain injury biomarkers and S100A10 were measured with assay kits. All patients were evaluated by examining the correlation between brain injury biomarkers and Young Mania Rating Scale (YMRS) scores. RESULT We found significantly decreased S100B levels only in bipolar manic patients after treatment (p=0.002), but S100B levels were not significantly different from those in healthy controls (p>0.05). CONCLUSION Our results indicate there were decreased S100B serum levels in bipolar patients in a manic phase after treatment and that increased serum S100B levels might be a possible indicator of transient disruption of the blood-brain barrier in bipolar patients in a manic phase.
Collapse
Affiliation(s)
- Meng-Chang Tsai
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1. PLoS One 2016; 11:e0161282. [PMID: 27536885 PMCID: PMC4990220 DOI: 10.1371/journal.pone.0161282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023] Open
Abstract
Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs) in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1) plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.
Collapse
|
19
|
Kim JY, Kim N, Zheng Z, Lee JE, Yenari MA. 70-kDa Heat Shock Protein Downregulates Dynamin in Experimental Stroke: A New Therapeutic Target? Stroke 2016; 47:2103-11. [PMID: 27387989 DOI: 10.1161/strokeaha.116.012763] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE The 70-kDa heat shock protein (Hsp70) protects brain cells in models of cerebral ischemia. Proteomic screening of mice subjected to middle cerebral artery occlusion identified dynamin as a major downregulated protein in Hsp70-overexpressing mice (Hsp70 transgenic mice). Dynamin-1 is expressed in neurons and participates in neurotransmission, but also transports the death receptor Fas to the cell surface, where it can be bound by its ligand and lead to apoptosis. METHODS Mice were subjected to distal middle cerebral artery occlusion. Neuro-2a cells were subjected to oxygen glucose deprivation. Hsp70 transgenic and Hsp70-deficient (Hsp70 knockout) mice were compared with wild-type mice for histological and behavioral outcomes. Some mice and neuro-2a cell cultures were given dynasore, a dynamin inhibitor. RESULTS Hsp70 transgenic mice had better outcomes, whereas Hsp70 knockout mice had worse outcomes compared with wild-type mice. This correlated with decreased and increased dynamin expression, respectively. Dynamin colocalized to neurons and Fas, with higher Fas levels and increased caspase-8 expression. Hsp70 induction in neuro-2a cells was protected from oxygen glucose deprivation, while downregulating dynamin and Fas expression. Further, dynamin inhibition was found to be neuroprotective. CONCLUSIONS Dynamin may facilitate Fas-mediated apoptotic death in the brain, and Hsp70 may protect by preventing this trafficking. Dynamin should be explored as a new therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Jong Youl Kim
- From the Department of Neurology, UCSF and the SF Veterans Affairs Medical Center, CA (J.Y.K., N.K., Z.Z., M.A.Y.); and Department of Anatomy, BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, ROK (J.E.L.)
| | - Nuri Kim
- From the Department of Neurology, UCSF and the SF Veterans Affairs Medical Center, CA (J.Y.K., N.K., Z.Z., M.A.Y.); and Department of Anatomy, BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, ROK (J.E.L.)
| | - Zhen Zheng
- From the Department of Neurology, UCSF and the SF Veterans Affairs Medical Center, CA (J.Y.K., N.K., Z.Z., M.A.Y.); and Department of Anatomy, BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, ROK (J.E.L.)
| | - Jong Eun Lee
- From the Department of Neurology, UCSF and the SF Veterans Affairs Medical Center, CA (J.Y.K., N.K., Z.Z., M.A.Y.); and Department of Anatomy, BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, ROK (J.E.L.)
| | - Midori A Yenari
- From the Department of Neurology, UCSF and the SF Veterans Affairs Medical Center, CA (J.Y.K., N.K., Z.Z., M.A.Y.); and Department of Anatomy, BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, ROK (J.E.L.).
| |
Collapse
|
20
|
Mohammadi A, Yaghoobi M, Gholamhoseinian Najar A, Kalantari-Khandani B, Sharifi H, Saravani M. HSP90 Inhibition Suppresses PGE2 Production via Modulating COX-2 and 15-PGDH Expression in HT-29 Colorectal Cancer Cells. Inflammation 2016; 39:1116-23. [PMID: 27075590 DOI: 10.1007/s10753-016-0343-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Lauro ML, Burch JM, Grimes CL. The effect of NOD2 on the microbiota in Crohn's disease. Curr Opin Biotechnol 2016; 40:97-102. [PMID: 27035071 DOI: 10.1016/j.copbio.2016.02.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
Recent advancements toward the treatment of Crohn's disease (CD) indicate great promise for long-term remission. CD patients suffer from a complex host of dysregulated interactions between their innate immune system and microbiome. The most predominant link to the onset of CD is a genetic mutation in the innate immune receptor nucleotide-binding oligomerization domain-containing 2 (NOD2). NOD2 responds to the presence of bacteria and stimulates the immune response. Mutations to NOD2 promote low diversity and dysbiosis in the microbiome, leading to impaired mucosal barrier function. Current treatments suppress the immune response rather than enhancing the function of this critical protein. New progress toward stabilizing NOD2 signaling through its interactions with chaperone proteins holds potential in the development of novel CD therapeutics.
Collapse
Affiliation(s)
- Mackenzie L Lauro
- University of Delaware, Department of Chemistry & Biochemistry, Newark, DE 19716, United States
| | - Jason M Burch
- University of Delaware, Department of Chemistry & Biochemistry, Newark, DE 19716, United States
| | | |
Collapse
|