1
|
Morroniside Regulates Endothelial Cell Function via the EphrinB Signaling Pathway after Oxygen-Glucose Deprivation In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6875053. [PMID: 36573084 PMCID: PMC9789905 DOI: 10.1155/2022/6875053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Proangiogenic treatment is a potential treatment for acute myocardial infarction (AMI). Morroniside was previously discovered to increase post-AMI angiogenesis in rats as well as the proliferation of rat coronary artery endothelial cells (RCAECs). However, the effects of morroniside on other endothelial cell (EC) functions and underlying mechanisms are unknown. To further clarify the vascular biological activity of morroniside, this work focused on investigating how morroniside influenced endothelial cell functions, such as cell viability, tube formation capacity, migration, and adhesion, and to explore the signaling pathway. Oxygen-glucose deprivation causes ischemic damage in RCAECs (OGD). In vitro investigations were carried out to explore the involvement of morroniside in EC function and pathways mediated by ephrinB. The results revealed that the number of BrdU+ cells and cell viability in the high-dose group were considerably greater than in the OGD group (P < 0.05). The ability of tube formation evaluated by total tube length, tube-like structural junction, and tube area was significantly higher in the morroniside group than in the OGD group (P < 0.001). Morroniside considerably improved migration and adhesion abilities compared to OGD group (P < 0.05, P < 0.01, P < 0.001). The protein expression levels of the ephrinB reverse signaling pathway were substantially greater in the morroniside group than in the OGD group (P < 0.05, P < 0.01). In conclusion, the current study demonstrated that morroniside modulates endothelial cell function via ephrinB reverse signaling pathways and provided a novel insight and therapeutic strategy into vascular biology.
Collapse
|
2
|
Portugal CC, Almeida TO, Socodato R, Relvas JB. Src family kinases (SFKs): critical regulators of microglial homeostatic functions and neurodegeneration in Parkinson's and Alzheimer's diseases. FEBS J 2022; 289:7760-7775. [PMID: 34510775 DOI: 10.1111/febs.16197] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/03/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023]
Abstract
c-Src was the first protein kinase to be described as capable of phosphorylating tyrosine residues. Subsequent identification of other tyrosine-phosphorylating protein kinases with a similar structure to c-Src gave rise to the concept of Src family kinases (SFKs). Microglia are the resident innate immune cell population of the CNS. Under physiological conditions, microglia actively participate in brain tissue homeostasis, continuously patrolling the neuronal parenchyma and exerting neuroprotective actions. Activation of pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) receptors induces microglial proliferation, migration toward pathological foci, phagocytosis, and changes in gene expression, concurrent with the secretion of cytokines, chemokines, and growth factors. A significant body of literature shows that SFK stimulation positively associates with microglial activation and neuropathological conditions, including Alzheimer's and Parkinson's diseases. Here, we review essential microglial homeostatic functions regulated by SFKs, including phagocytosis, environmental sensing, and secretion of inflammatory mediators. In addition, we discuss the potential of SFK modulation for microglial homeostasis in Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Tiago O Almeida
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Doutoramento em Ciências Biomédicas, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
3
|
Rocha DN, Carvalho ED, Relvas JB, Oliveira MJ, Pêgo AP. Mechanotransduction: Exploring New Therapeutic Avenues in Central Nervous System Pathology. Front Neurosci 2022; 16:861613. [PMID: 35573316 PMCID: PMC9096357 DOI: 10.3389/fnins.2022.861613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cells are continuously exposed to physical forces and the central nervous system (CNS) is no exception. Cells dynamically adapt their behavior and remodel the surrounding environment in response to forces. The importance of mechanotransduction in the CNS is illustrated by exploring its role in CNS pathology development and progression. The crosstalk between the biochemical and biophysical components of the extracellular matrix (ECM) are here described, considering the recent explosion of literature demonstrating the powerful influence of biophysical stimuli like density, rigidity and geometry of the ECM on cell behavior. This review aims at integrating mechanical properties into our understanding of the molecular basis of CNS disease. The mechanisms that mediate mechanotransduction events, like integrin, Rho/ROCK and matrix metalloproteinases signaling pathways are revised. Analysis of CNS pathologies in this context has revealed that a wide range of neurological diseases share as hallmarks alterations of the tissue mechanical properties. Therefore, it is our belief that the understanding of CNS mechanotransduction pathways may lead to the development of improved medical devices and diagnostic methods as well as new therapeutic targets and strategies for CNS repair.
Collapse
Affiliation(s)
- Daniela Nogueira Rocha
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Eva Daniela Carvalho
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia (FEUP), Universidade do Porto, Porto, Portugal
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Maria José Oliveira
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Ibach M, Mathews M, Linnartz-Gerlach B, Theil S, Kumar S, Feederle R, Brüstle O, Neumann H, Walter J. A reporter cell system for the triggering receptor expressed on myeloid cells 2 reveals differential effects of disease-associated variants on receptor signaling and activation by antibodies against the stalk region. Glia 2020; 69:1126-1139. [PMID: 33314333 DOI: 10.1002/glia.23953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022]
Abstract
The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor expressed on myeloid-derived cell types. The extracellular immunoglobulin-like domain of TREM2 binds anionic ligands including Apolipoprotein E and Amyloid-β. The transmembrane domain interacts with its adaptor protein DAP12/TYROBP that is responsible for propagation of downstream signaling upon ligand interaction. Several sequence variants of TREM2 have been linked to different neurodegenerative diseases including Alzheimer's disease. Here, we generated HEK 293 Flp-In cell lines stably expressing human TREM2 and DAP12 using a bicistronic construct with a T2A linker sequence allowing initial expression of both proteins in stoichiometric amounts. Cell biological and biochemical analyses revealed transport of TREM2 to the cell surface, and canonical sequential proteolytic processing and shedding of TREM2 (sTREM2). The functionality of this cell system was demonstrated by detection of phosphorylated spleen tyrosine kinase (SYK) upon stimulation of TREM2 with the anionic membrane lipid phosphatidylserine or anti-TREM2 antibodies. Using this cell model, we demonstrated impaired signaling of disease associated TREM2 variants. We also identified a monoclonal antibody against the stalk region of TREM2 with agonistic activity. Activation of TREM2-DAP12 signaling with the monoclonal antibody and the partial loss of function of disease associated variants were recapitulated in induced pluripotent stem cell derived microglia. Thus, this reporter cell model represents a suitable experimental system to investigate signaling of TREM2 variants, and for the identification of ligands and compounds that modulate TREM2-DAP12 signaling. MAIN POINTS: Disease associated variants impair the signaling activity of TREM2 by distinct mechanisms. Targeting the stalk region of TREM2 with bivalent antibodies activates TREM2 signaling.
Collapse
Affiliation(s)
- Melanie Ibach
- Department of Neurology, University of Bonn, Bonn, Germany
| | | | - Bettina Linnartz-Gerlach
- Neural Regeneration, Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Sandra Theil
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Sathish Kumar
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Core Facility Monoclonal Antibodies, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Oliver Brüstle
- Life and Brain GmbH, Bonn, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Harald Neumann
- Neural Regeneration, Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Coucha M, Barrett AC, Bailey J, Abdelghani M, Abdelsaid M. Increased Ephrin-B2 expression in pericytes contributes to retinal vascular death in rodents. Vascul Pharmacol 2020; 131:106761. [PMID: 32585189 PMCID: PMC11973836 DOI: 10.1016/j.vph.2020.106761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
AIMS Diabetes-induced retinal vascular cell death aggravates diabetic retinopathy (DR) to the proliferative stage and blindness. Pericytes play a crucial role in retinal capillaries survival, stability, and angiogenesis. Ephrin-B2 is a tyrosine kinase that regulates pericytes/endothelial cells communication during angiogenesis; yet, its role in DR is still unclear. We hypothesize that diabetes increases Ephrin-B2 signaling in pericytes, which contributes to inflammation and retinal vascular cell death. METHODS Selective inhibition of the Ephrin-B2 expression in the retinal pericytes was achieved using an intraocular injection of adeno-associated virus (AAV) with a specific pericyte promotor. Vascular death was determined by retinal trypsin digest. Pathological angiogenesis was assessed using the oxygen-induced retinopathy model in pericyte-Ephrin-B2 knockout mice, wild type, and wild type injected with AAV. Angiogenic properties, inflammatory, and apoptotic markers were measured in human retinal pericytes (HRP) grown under diabetic conditions. KEY FINDING Diabetes significantly increased the expression of Ephrin-B2, inflammatory, and apoptotic markers in the diabetic retinas and HRP. These effects were prevented by silencing Ephrin-B2 in HRP. Moreover, Ephrin-B2 silencing in retinal pericytes decreased pathological angiogenesis and acellular capillaries formation in diabetic retinas. SIGNIFICANCE Increased Ephrin-B2 expression in the pericytes contributed to diabetes-induced retinal inflammation and vascular death. These results identify pericytes-Ephrin-B2 as a therapeutic target for DR.
Collapse
Affiliation(s)
- Maha Coucha
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, GA, USA
| | - Amy C Barrett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Joseph Bailey
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Maryam Abdelghani
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Mohammed Abdelsaid
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA.
| |
Collapse
|
6
|
Gutierrez E, Lütjohann D, Kerksiek A, Fabiano M, Oikawa N, Kuerschner L, Thiele C, Walter J. Importance of γ-secretase in the regulation of liver X receptor and cellular lipid metabolism. Life Sci Alliance 2020; 3:3/6/e201900521. [PMID: 32354700 PMCID: PMC7195048 DOI: 10.26508/lsa.201900521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Inhibition of the Alzheimer associated γ-secretase impairs the regulation of cellular lipid droplet homeostasis. Presenilins (PS) are the catalytic components of γ-secretase complexes that mediate intramembrane proteolysis. Mutations in the PS genes are a major cause of familial early-onset Alzheimer disease and affect the cleavage of the amyloid precursor protein, thereby altering the production of the amyloid β-peptide. However, multiple additional protein substrates have been identified, suggesting pleiotropic functions of γ-secretase. Here, we demonstrate that inhibition of γ-secretase causes dysregulation of cellular lipid homeostasis, including up-regulation of liver X receptors, and complex changes in the cellular lipid composition. Genetic and pharmacological inhibition of γsecretase leads to strong accumulation of cytoplasmic lipid droplets, associated with increased levels of acylglycerols, but lowered cholesteryl esters. Furthermore, accumulation of lipid droplets was augmented by increasing levels of amyloid precursor protein C-terminal fragments, indicating a critical involvement of this γ-secretase substrate. Together, these data provide a mechanism that functionally connects γ-secretase activity to cellular lipid metabolism. These effects were also observed in human astrocytic cells, indicating an important function of γ-secretase in cells critical for lipid homeostasis in the brain.
Collapse
Affiliation(s)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Marietta Fabiano
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Naoto Oikawa
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Lars Kuerschner
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Zhu M, Hua Y, Tang J, Zhao X, Zhang L, Zhang Y. Lentiviral-mediated ephrin B2 gene modification of rat bone marrow mesenchymal stem cells. J Int Med Res 2019; 47:3282-3298. [PMID: 31122164 PMCID: PMC6683898 DOI: 10.1177/0300060519843023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective To determine the effect of the upregulation or knockdown of the ephrinB2 (Efnb2) gene and the effect of EphB4/EphrinB2 signalling in rat bone marrow mesenchymal stem cells (BMSCs). Methods Rat BMSCs were infected with lentivirus vectors carrying EphrinB2 and shRNA-EphrinB2. EphrinB2 mRNA and protein levels were quantified. At 28 days of culture with neuronal cell-conditioned differentiation medium, levels of microtubule-associated protein 2 (MAP2), CD133 and nestin were detected in EphrinB2/BMSCs and shEphrinB2/BMSCs using quantitative polymerase chain reaction and immunofluorescence. The ability of these cells to migrate was evaluated using a transwell assay. Results BMSCs were successfully isolated as indicated by their CD90+ CD29+ CD34– CD45– phenotype. Three days after ephrinB2 transduction, BMSC cell bodies began to shrink and differentiate into neuron-like cells. At 28 days, levels of MAP2, CD133 and nestin, as well as the number of migratory cells, were higher in lenti-EphrinB2-BMSCs than in the two control groups. The shEphrinB2/BMSCs had reduced levels of MAP2, CD133 and nestin; and a lower rate of cell migration. Similarly, increased levels of Grb4 andp21-activated kinase in the EphB4/EphrinB2 reverse signalling pathway were observed by Western blot. Conclusions LV-EphrinB2 can be efficiently transduced into BMSCs, which then differentiate into neuron-like cells.
Collapse
Affiliation(s)
- Min Zhu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yu Hua
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jian Tang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoke Zhao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ling Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yue Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
8
|
Su SA, Xie Y, Zhang Y, Xi Y, Cheng J, Xiang M. Essential roles of EphrinB2 in mammalian heart: from development to diseases. Cell Commun Signal 2019; 17:29. [PMID: 30909943 PMCID: PMC6434800 DOI: 10.1186/s12964-019-0337-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
EphrinB2, a membrane-tethered ligand preferentially binding to its receptor EphB4, is ubiquitously expressed in all mammals. Through the particular bidirectional signaling, EphrinB2 plays a critical role during the development of cardiovascular system, postnatal angiogenesis physiologically and pathologically, and cardiac remodeling after injuries as an emerging role. This review highlights the pivotal involvement of EphrinB2 in heart, from developmental cardiogenesis to pathological cardiac remodeling process. Further potential translational therapies will be discussed in targeting EphrinB2 signaling, to better understand the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Sheng-An Su
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuhao Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yutao Xi
- Texas Heart Institute, Houston, 77030, USA.
| | - Jie Cheng
- Texas Heart Institute, Houston, 77030, USA
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
9
|
Oikawa N, Walter J. Presenilins and γ-Secretase in Membrane Proteostasis. Cells 2019; 8:cells8030209. [PMID: 30823664 PMCID: PMC6468700 DOI: 10.3390/cells8030209] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
The presenilin (PS) proteins exert a crucial role in the pathogenesis of Alzheimer disease (AD) by mediating the intramembranous cleavage of amyloid precursor protein (APP) and the generation of amyloid β-protein (Aβ). The two homologous proteins PS1 and PS2 represent the catalytic subunits of distinct γ-secretase complexes that mediate a variety of cellular processes, including membrane protein metabolism, signal transduction, and cell differentiation. While the intramembrane cleavage of select proteins by γ-secretase is critical in the regulation of intracellular signaling pathways, the plethora of identified protein substrates could also indicate an important role of these enzyme complexes in membrane protein homeostasis. In line with this notion, PS proteins and/or γ-secretase has also been implicated in autophagy, a fundamental process for the maintenance of cellular functions and homeostasis. Dysfunction in the clearance of proteins in the lysosome and during autophagy has been shown to contribute to neurodegeneration. This review summarizes the recent knowledge about the role of PS proteins and γ-secretase in membrane protein metabolism and trafficking, and the functional relation to lysosomal activity and autophagy.
Collapse
Affiliation(s)
- Naoto Oikawa
- Department of Neurology, University of Bonn, 53127 Bonn, Germany.
| | - Jochen Walter
- Department of Neurology, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
10
|
Wei HX, Yao PS, Chen PP, Guan JH, Zhuang JH, Zhu JB, Wu G, Yang JS. Neuronal EphA4 Regulates OGD/R-Induced Apoptosis by Promoting Alternative Activation of Microglia. Inflammation 2018; 42:572-585. [DOI: 10.1007/s10753-018-0914-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Warren NA, Voloudakis G, Yoon Y, Robakis NK, Georgakopoulos A. The product of the γ-secretase processing of ephrinB2 regulates VE-cadherin complexes and angiogenesis. Cell Mol Life Sci 2018; 75:2813-2826. [PMID: 29428965 PMCID: PMC6023733 DOI: 10.1007/s00018-018-2762-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/25/2017] [Accepted: 01/25/2018] [Indexed: 01/01/2023]
Abstract
Presenilin-1 (PS1) gene encodes the catalytic component of γ-secretase, which proteolytically processes several type I transmembrane proteins. We here present evidence that the cytosolic peptide efnB2/CTF2 produced by the PS1/γ-secretase cleavage of efnB2 ligand promotes EphB4 receptor-dependent angiogenesis in vitro. EfnB2/CTF2 increases endothelial cell sprouting and tube formation, stimulates the formation of angiogenic complexes that include VE-cadherin, Raf-1 and Rok-α, and increases MLC2 phosphorylation. These functions are mediated by the PDZ-binding domain of efnB2. Acute downregulation of PS1 or inhibition of γ-secretase inhibits the angiogenic functions of EphB4 while absence of PS1 decreases the VE-cadherin angiogenic complexes of mouse brain. Our data reveal a mechanism by which PS1/γ-secretase regulates efnB2/EphB4 mediated angiogenesis.
Collapse
Affiliation(s)
- Noel A Warren
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgios Voloudakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonejung Yoon
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 2017; 8:114393-114413. [PMID: 29371994 PMCID: PMC5768411 DOI: 10.18632/oncotarget.23106] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Microglia cells are the unique residential macrophages of the central nervous system (CNS). They have a special origin, as they derive from the embryonic yolk sac and enter the developing CNS at a very early stage. They play an important role during CNS development and adult homeostasis. They have a major contribution to adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis of neurodegenerative diseases and contribute to aging. They play an important role in sustaining and breaking the blood-brain barrier. As innate immune cells, they contribute substantially to the immune response against infectious agents affecting the CNS. They play also a major role in the growth of tumours of the CNS. Microglia are consequently the key cell population linking the nervous and the immune system. This review covers all different aspects of microglia biology and pathology in a comprehensive way.
Collapse
Affiliation(s)
- Nils Lannes
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Elisabeth Eppler
- Pestalozzistrasse Zo, Department of BioMedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Samar Etemad
- Building 71/218 RBWH Herston, Centre for Clinical Research, The University of Queensland, QLD 4029 Brisbane, Australia
| | - Peter Yotovski
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Luis Filgueira
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Walter J, Kemmerling N, Wunderlich P, Glebov K. γ-Secretase in microglia - implications for neurodegeneration and neuroinflammation. J Neurochem 2017; 143:445-454. [PMID: 28940294 DOI: 10.1111/jnc.14224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022]
Abstract
γ-Secretase is an intramembrane cleaving protease involved in the generation of the Alzheimer's disease (AD)-associated amyloid β peptide (Aβ). γ-Secretase is ubiquitously expressed in different organs, and also in different cell types of the human brain. Besides the involvement in the proteolytic generation of Aβ from the amyloid precursor protein, γ-secretase cleaves many additional protein substrates, suggesting pleiotropic functions under physiological and pathophysiological conditions. Microglia exert important functions during brain development and homeostasis in adulthood, and accumulating evidence indicates that microglia and neuroinflammatory processes contribute to the pathogenesis of neurodegenerative diseases. Recent studies demonstrate functional implications of γ-secretase in microglia, suggesting that alterations in γ-secretase activity could contribute to AD pathogenesis by modulation of microglia and related neuroinflammatory processes during neurodegeneration. In this review, we discuss the involvement of γ-secretase in the regulation of microglial functions, and the potential relevance of these processes under physiological and pathophysiological conditions. This article is part of the series "Beyond Amyloid".
Collapse
Affiliation(s)
- Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|