1
|
Herrero F, Heeb C, Meier M, Lin HY, Mueller FS, Schalbetter SM, Gruchot J, Weber-Stadlbauer U, Notter T, Perron H, Küry P, Meyer U. Recapitulation and reversal of neuropsychiatric phenotypes in a mouse model of human endogenous retrovirus type W expression. Mol Psychiatry 2025:10.1038/s41380-025-02955-9. [PMID: 40102613 DOI: 10.1038/s41380-025-02955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Human endogenous retroviruses (HERVs) are inherited genetic elements derived from exogenous retroviral infections occurring throughout evolution. Accumulating evidence implicates increased expression of HERV type W envelope (HERV-W ENV) in psychiatric and neurodevelopmental disorders. To gain more mechanistic insights into the neurobiological disease pathways affected by HERV-W ENV expression, we took advantage of a mouse model that recapitulates the expression of the human-specific HERV-W ENV protein. Behavioral and cognitive phenotyping of transgenic (TG) mice expressing HERV-W ENV and wild-type (WT) controls showed that expression of this retroviral envelope caused deficits in numerous functional domains, including repetitive behavior, social and object recognition memory, and sensorimotor gating. Genome-wide RNA sequencing of hippocampal tissue demonstrated that transgenic expression of HERV-W ENV led to transcriptomic alterations that are highly relevant for psychiatric and neurodevelopmental disorders, cognitive functions, and synaptic development. Differential gene expression in TG mice encompassed a downregulation of several genes associated with schizophrenia and autism spectrum disorder, including Setd1a, Cacna1g, Ank3, and Shank3, as well as a downregulation of histone methyltransferase genes that belong to the Set1-like histone H3 lysine 4 (H3K4) methyltransferase family (Kmt2a, Kmt2b and Kmt2d). Concomitant to the latter, HERV-W ENV mice displayed increased enzymatic activity of lysine-specific demethylase-1 (LSD1), increased H3K4 mono-methylation, and decreased H3K4 di- and tri-methylation in the hippocampus. Importantly, pharmacological inhibition of LSD1 through oral ORY-1001 treatment normalized abnormal H3K4 methylation and rescued the behavioral and cognitive deficits in HERV-W ENV mice. In conclusion, our study suggests that the expression of HERV-W ENV has the capacity to disrupt various behavioral and cognitive functions and to alter the brain transcriptome in a manner that is highly relevant to neurodevelopmental and psychiatric disorders. Moreover, our study identified epigenetic pathways that may offer avenues for pharmacological interventions against behavioral and cognitive deficits induced by increased HERW-W expression.
Collapse
Affiliation(s)
- Felisa Herrero
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Celine Heeb
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michelle Meier
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Han-Yu Lin
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sina M Schalbetter
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Hervé Perron
- GeNeuro, 18, chemin des Aulx, Plan-les-Ouates, 1228, Geneva, Switzerland
- Université de Lyon-UCBL, Lyon, France
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Meyer U, Penner IK. Endogenous retroviruses in neurodevelopmental, psychotic and cognitive disorders. Microbes Infect 2025:105479. [PMID: 39914656 DOI: 10.1016/j.micinf.2025.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/12/2025]
Abstract
Endogenous retroviruses (ERVs) are inherited retroviral genomic elements that integrated into the mammalian genome through germline infections and insertions during evolution. Human ERVs (HERVs) comprise approximately 8 % of the human genome and are increasingly recognized to be involved in the etiology and pathophysiology of numerous brain disorders. In this narrative review, we summarize the existing evidence linking abnormal HERV expression to neurodevelopmental and psychosis-related disorders and discuss how these retroviral elements may contribute to the heterogeneity in clinical outcomes. We also review the findings suggesting that aberrant HERV expression contribute to late-onset cognitive disorders with neurodegenerative components, such as Alzheimer's disease (AD) and other forms of dementia. The evidence implicating abnormal HERV expression in neurodevelopmental, psychotic, and cognitive disorders is manifold and stems from diverse research fields, including human post-mortem brain studies, serological investigations, gene expression analyses, and clinical trials with HERV-specific pharmacological compounds. The recent establishment and use of animal models offer a complementary experimental platform that will help establish causal relationships and identify specific disease pathways affected by abnormal HERV expression. Yet, significant gaps persist in understanding the role of HERVs in neurodevelopmental, psychotic, and cognitive disorders, particularly concerning the specificity and stability of abnormal HERV expression in these conditions. Addressing these questions appears crucial for optimizing the potential benefits of therapeutic interventions aimed at targeting abnormal HERV expression across the broad spectrum of HERV-associated disorders of the central nervous system.
Collapse
Affiliation(s)
- Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Iris Katharina Penner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
3
|
Censi ST, Mariani-Costantini R, Granzotto A, Tomassini V, Sensi SL. Endogenous retroviruses in multiple sclerosis: A network-based etiopathogenic model. Ageing Res Rev 2024; 99:102392. [PMID: 38925481 DOI: 10.1016/j.arr.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The present perspective article proposes an etiopathological model for multiple sclerosis pathogenesis and progression associated with the activation of human endogenous retroviruses. We reviewed preclinical, clinical, epidemiological, and evolutionary evidence indicating how the complex, multi-level interplay of genetic traits and environmental factors contributes to multiple sclerosis. We propose that endogenous retroviruses transactivation acts as a critical node in disease development. We also discuss the rationale for combined anti-retroviral therapy in multiple sclerosis as a disease-modifying therapeutic strategy. Finally, we propose that the immuno-pathogenic process triggered by endogenous retrovirus activation can be extended to aging and aging-related neurodegeneration. In this regard, endogenous retroviruses can be envisioned to act as epigenetic noise, favoring the proliferation of disorganized cellular subpopulations and accelerating system-specific "aging". Since inflammation and aging are two sides of the same coin (plastic dis-adaptation to external stimuli with system-specific degree of freedom), the two conditions may be epiphenomenal products of increased epigenomic entropy. Inflammation accelerates organ-specific aging, disrupting communication throughout critical systems of the body and producing symptoms. Overlapping neurological symptoms and syndromes may emerge from the activity of shared molecular networks that respond to endogenous retroviruses' reactivation.
Collapse
Affiliation(s)
- Stefano T Censi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy.
| | - Renato Mariani-Costantini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Alberto Granzotto
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
4
|
Eckert S, Jakimovski D, Zivadinov R, Hicar M, Weinstock-Guttman B. How to and should we target EBV in MS? Expert Rev Clin Immunol 2024; 20:703-714. [PMID: 38477887 DOI: 10.1080/1744666x.2024.2328739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION The etiology of multiple sclerosis (MS) remains unknown. Pathogenesis likely relies on a complex interaction between multiple environmental, genetic, and behavioral risk factors. However, a growing body of literature supports the role of a preceding Epstein-Barr virus (EBV) infection in the majority of cases. AREAS COVERED In this narrative review, we summarize the latest findings regarding the potential role of EBV as a predisposing event inducing new onset of MS. EBV interactions with the genetic background and other infectious agents such as human endogenous retrovirus are explored. Additional data regarding the role of EBV regarding the rate of mid- and long-term disease progression is also discussed. Lastly, the effect of currently approved disease-modifying therapies (DMT) for MS treatment on the EBV-based molecular mechanisms and the development of new EBV-specific therapies are further reviewed. EXPERT OPINION Recent strong epidemiological findings support that EBV may be the primary inducing event in certain individuals that shortly thereafter develop MS. More studies are needed in order to better understand the significant variability in susceptibility based on environmental factors such as EBV exposure. Future investigations should focus on determining the specific EBV-related risk antigen(s) and phenotyping people with likely EBV-induced MS. Targeting EBV via several different avenues, including development of an EBV vaccine, may become the mainstay of MS treatment in the future.
Collapse
Affiliation(s)
- Svetlana Eckert
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Hicar
- Department of Pediatrics Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
5
|
Tarlinton R, Tanasescu R, Shannon-Lowe C, Gran B. Ocrelizumab B cell depletion has no effect on HERV RNA expression in PBMC in MS patients. Mult Scler Relat Disord 2024; 86:105597. [PMID: 38598954 DOI: 10.1016/j.msard.2024.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Epstein barr virus (EBV) infection of B cells is now understood to be one of the triggering events for the development of Multiple Sclerosis (MS), a progressive immune-mediated disease of the central nervous system. EBV infection is also linked to expression of human endogenous retroviruses (HERVs) of the HERV-W group, a further risk factor for the development of MS. Ocrelizumab is a high-potency disease-modifying treatment (DMT) for MS, which depletes B cells by targeting CD20. OBJECTIVES We studied the effects of ocrelizumab on gene expression in peripheral blood mononuclear cells (PBMC) from paired samples from 20 patients taken prior to and 6 months after beginning ocrelizumab therapy. We hypothesised that EBV and HERV-W loads would be lower in post-treatment samples. METHODS Samples were collected in Paxgene tubes, subject to RNA extraction and Illumina paired end short read mRNA sequencing with mapping of sequence reads to the human genome using Salmon and differential gene expression compared with DeSeq2. Mapping was also performed separately to the HERV-D database of HERV sequences and the EBV reference sequence. RESULTS Patient samples were more strongly clustered by individual rather than disease type (relapsing/remitting or primary progressive), treatment (pre and post), age, or sex. Fourteen genes, all clearly linked to B cell function were significantly down regulated in the post treatment samples. Interestingly only one pre-treatment sample had detectable EBV RNA and there were no significant differences in HERV expression (of any group) between pre- and post-treatment samples. CONCLUSIONS While EBV and HERV expression are clearly linked to triggering MS pathogenesis, it does not appear that high level expression of these viruses is a part of the ongoing disease process or that changes in virus load are associated with ocrelizumab treatment.
Collapse
Affiliation(s)
- Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom.
| | - Radu Tanasescu
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, United Kingdom; School of Medicine, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, United Kingdom; School of Medicine, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| |
Collapse
|
6
|
Zhang H, Yang Y, Zhang J, Huang L, Niu Y, Chen H, Liu Q, Wang R. Oligodendrocytes Play a Critical Role in White Matter Damage of Vascular Dementia. Neuroscience 2024; 538:1-10. [PMID: 37913862 DOI: 10.1016/j.neuroscience.2023.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
With the deepening of population aging, the treatment of cognitive impairment and dementia is facing increasing challenges. Vascular dementia (VaD) is a cognitive dysfunction caused by brain blood flow damage and one of the most common causes of dementia after Alzheimer's disease. White matter damage in patients with chronic ischemic dementia often occurs before cognitive impairment, and its pathological changes include leukoaraiosis, myelin destruction and oligodendrocyte death. The pathophysiology of vascular dementia is complex, involving a variety of neuronal and vascular lesions. The current proposed mechanisms include calcium overload, oxidative stress, nitrative stress and inflammatory damage, which can lead to hypoxia-ischemia and demyelination. Oligodendrocytes are the only myelinating cells in the central nervous system and closely associated with VaD. In this review article, we intend to further discuss the role of oligodendrocytes in white matter and myelin injury in VaD and the development of anti-myelin injury target drugs.
Collapse
Affiliation(s)
- Hexin Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yanrong Yang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jingjing Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Li Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yang Niu
- Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia medical University, Yinchuan 750004, Ningxia, China
| | - Hua Chen
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Rui Wang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
7
|
Gruchot J, Lewen I, Dietrich M, Reiche L, Sindi M, Hecker C, Herrero F, Charvet B, Weber-Stadlbauer U, Hartung HP, Albrecht P, Perron H, Meyer U, Küry P. Transgenic expression of the HERV-W envelope protein leads to polarized glial cell populations and a neurodegenerative environment. Proc Natl Acad Sci U S A 2023; 120:e2308187120. [PMID: 37695891 PMCID: PMC10515160 DOI: 10.1073/pnas.2308187120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
The human endogenous retrovirus type W (HERV-W) has been identified and repeatedly confirmed as human-specific pathogenic entity affecting many cell types in multiple sclerosis (MS). Our recent contributions revealed the encoded envelope (ENV) protein to disturb myelin repair by interfering with oligodendroglial precursor differentiation and by polarizing microglial cells toward an axon-damage phenotype. Indirect proof of ENV's antiregenerative and degenerative activities has been gathered recently in clinical trials using a neutralizing anti-ENV therapeutic antibody. Yet direct proof of its mode of action can only be presented here based on transgenic ENV expression in mice. Upon demyelination, we observed myelin repair deficits, neurotoxic microglia and astroglia, and increased axon degeneration. Experimental autoimmune encephalomyelitis activity progressed faster in mutant mice equally accompanied by activated glial cells. This study therefore provides direct evidence on HERV-W ENV's contribution to the overall negative impact of this activated viral entity in MS.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Isabel Lewen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Michael Dietrich
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Mustafa Sindi
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Christina Hecker
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | - Felisa Herrero
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich-Vetsuisse, CH-8057Zürich, Switzerland
| | | | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich-Vetsuisse, CH-8057Zürich, Switzerland
- Neuroscience Center Zurich, University of Zürich and ETH Zürich, CH-8057Zürich, Switzerland
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, NSW 2050Sydney, Australia
- Department of Neurology, Palacky University Olomouc, 77146Olomouc, Czech Republic
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
| | | | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zürich-Vetsuisse, CH-8057Zürich, Switzerland
- Neuroscience Center Zurich, University of Zürich and ETH Zürich, CH-8057Zürich, Switzerland
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225Düsseldorf, Germany
- Department of Neurology, University of Bern, CH-3010Bern, Switzerland
| |
Collapse
|
8
|
Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders. Brain Behav Immun 2023; 107:242-252. [PMID: 36270439 DOI: 10.1016/j.bbi.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.
Collapse
|
9
|
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends Pharmacol Sci 2022; 43:726-739. [PMID: 35753845 PMCID: PMC9378500 DOI: 10.1016/j.tips.2022.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) with a well-documented role in the innate and adaptive immune responses. Interestingly, TLR activation has also been linked to several brain functions including neurogenesis and synaptogenesis. Increasing evidence supports TLR involvement in peripheral and central inflammation underlying normal aging and the pathogenesis of clinical conditions characterized by cognitive decline. These include not only major neurodegenerative diseases but also traumatic brain injuries, surgeries, and alcohol consumption- and chemotherapy-induced cognitive impairment. We first summarize the physiological roles of TLRs in the nervous system, and then illustrate the emerging involvement of TLRs in cognitive functions, pointing to these receptors as novel enticing pharmacological targets to develop more efficient drugs for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| |
Collapse
|
10
|
Duan K, Ma Y, Tan J, Miao Y, Zhang Q. Identification of genetic molecular markers and immune infiltration characteristics of Alzheimer's disease through weighted gene co-expression network analysis. Front Neurol 2022; 13:947781. [PMID: 36071897 PMCID: PMC9441600 DOI: 10.3389/fneur.2022.947781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disease that leads to cognitive impairment and memory loss. Currently, the pathogenesis and underlying causative genes of AD remain unclear, and there exists no effective treatment for this disease. This study explored AD-related diagnostic and therapeutic biomarkers from the perspective of immune infiltration by analyzing public data from the NCBI Gene Expression Omnibus database. Method In this study, weighted gene co-expression network analysis (WGCNA) was conducted to identify modules and hub genes contributing to AD development. A protein–protein interaction network was constructed when the genes in the modules were enriched and examined by Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Furthermore, a gene network was established using topological WGCNA, from which five hub genes were selected. Logistic regression analysis and receiver operating characteristic curve analysis were performed to explore the clinical value of genes in AD diagnosis. The genes in the core module intersected with the hub genes, and four intersection genes (ATP2A2, ATP6V1D, CAP2, and SYNJ1) were selected. These four genes were enriched by gene set enrichment analysis (GSEA). Finally, an immune infiltration analysis was performed. Results The GO/KEGG analysis suggested that genes in the core module played a role in the differentiation and growth of neural cells and in the transmission of neurotransmitters. The GSEA of core genes showed that these four genes were mainly enriched in immune/infection pathways (e.g., cholera infection and Helicobacter pylori infection pathways) and other metabolic pathways. An investigation of immune infiltration characteristics revealed that activated mast cells, regulatory T cells, plasma cells, neutrophils, T follicular helper cells, CD8 T cells, resting memory CD4 T cells, and M1 macrophages were the core immune cells contributing to AD progression. qRT-PCR analysis showed that the ATP6V1D is upregulated in AD. Conclusion The results of enrichment and immuno-osmotic analyses indicated that immune pathways and immune cells played an important role in the occurrence and development of AD. The selected key genes were used as biomarkers related to the pathogenesis of AD to further explore the pathways and cells, which provided new perspectives on therapeutic targets in AD.
Collapse
Affiliation(s)
- KeFei Duan
- Department of Geriatrics, Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Ma
- Department of Geriatrics, Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuyang Miao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Qiang Zhang
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The introduction some 30 years ago of β-interferon, followed by a panel of immunomodulators and immunosuppressants has led to a remarkable improvement in the management of multiple sclerosis (MS) patients. Despite these noticeable progresses, which lower the number of relapses and thereby ameliorate patients' quality of life, preventing long-term progression of disability is still an unmet need, highlighting the necessity to develop therapeutic strategies aimed at repairing demyelinated lesions and protecting axons from degeneration. The capacity of human brain to self-regenerate demyelinated lesion has opened a field of research aimed at fostering this endogenous potential. RECENT FINDINGS The pioneer electron microscopic evidence by Périer and Grégoire [Périer O, Grégoire A. Electron microscopic features of multiple sclerosis lesions. Brain 1965; 88:937-952] suggesting the capacity of human brain to self-regenerate demyelinated lesion has opened a field of research aimed at fostering this endogenous potential. Here we review some recently identified mechanisms involved in the remyelination process, focusing on the role of electrical activity and the involvement of innate immune cells. We then provide an update on current strategies promoting endogenous myelin repair. SUMMARY Identification of therapeutic targets for remyelination has opened an active therapeutic field in MS. Although still in early phase trials, with heterogenous efficacy, the door for myelin regeneration in MS is now opened.
Collapse
|
12
|
Kular L, Ewing E, Needhamsen M, Pahlevan Kakhki M, Covacu R, Gomez-Cabrero D, Brundin L, Jagodic M. DNA methylation changes in glial cells of the normal-appearing white matter in Multiple Sclerosis patients. Epigenetics 2022; 17:1311-1330. [PMID: 35094644 PMCID: PMC9586622 DOI: 10.1080/15592294.2021.2020436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multiple Sclerosis (MS), the leading cause of non-traumatic neurological disability in young adults, is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). Due to the poor accessibility to the target organ, CNS-confined processes underpinning the later progressive form of MS remain elusive thereby limiting treatment options. We aimed to examine DNA methylation, a stable epigenetic mark of genome activity, in glial cells to capture relevant molecular changes underlying MS neuropathology. We profiled DNA methylation in nuclei of non-neuronal cells, isolated from 38 post-mortem normal-appearing white matter (NAWM) specimens of MS patients (n = 8) in comparison to white matter of control individuals (n = 14), using Infinium MethylationEPIC BeadChip. We identified 1,226 significant (genome-wide adjusted P-value < 0.05) differentially methylated positions (DMPs) between MS patients and controls. Functional annotation of the altered DMP-genes uncovered alterations of processes related to cellular motility, cytoskeleton dynamics, metabolic processes, synaptic support, neuroinflammation and signaling, such as Wnt and TGF-β pathways. A fraction of the affected genes displayed transcriptional differences in the brain of MS patients, as reported by publically available transcriptomic data. Cell type-restricted annotation of DMP-genes attributed alterations of cytoskeleton rearrangement and extracellular matrix remodelling to all glial cell types, while some processes, including ion transport, Wnt/TGF-β signaling and immune processes were more specifically linked to oligodendrocytes, astrocytes and microglial cells, respectively. Our findings strongly suggest that NAWM glial cells are highly altered, even in the absence of lesional insult, collectively exhibiting a multicellular reaction in response to diffuse inflammation.
Collapse
Affiliation(s)
- Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Majid Pahlevan Kakhki
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ruxandra Covacu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Gomez-Cabrero
- Department of Medicine, Unit of Computational Medicine, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, London, UK
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (Chn), Universidad Pública de Navarra (Upna), IdiSNA, Pamplona, Spain
- Biological & Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | - Lou Brundin
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Yan Q, Wu X, Zhou P, Zhou Y, Li X, Liu Z, Tan H, Yao W, Xia Y, Zhu F. HERV-W Envelope Triggers Abnormal Dopaminergic Neuron Process through DRD2/PP2A/AKT1/GSK3 for Schizophrenia Risk. Viruses 2022; 14:145. [PMID: 35062349 PMCID: PMC8777930 DOI: 10.3390/v14010145] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
An increasing number of studies have begun considering human endogenous retroviruses (HERVs) as potential pathogenic phenomena. Our previous research suggests that HERV-W Envelope (HERV-W ENV), a HERV-W family envelope protein, is elevated in schizophrenia patients and contributes to the pathophysiology of schizophrenia. The dopamine (DA) hypothesis is the cornerstone in research and clinical practice related to schizophrenia. Here, we found that the concentration of DA and the expression of DA receptor D2 (DRD2) were significantly higher in schizophrenia patients than in healthy individuals. Intriguingly, there was a positive correlation between HERV-W ENV and DA concentration. Depth analyses showed that there was a marked consistency between HERV-W ENV and DRD2 in schizophrenia. Studies in vitro indicated that HERV-W ENV could increase the DA concentration by regulating DA metabolism and induce the expression of DRD2. Co-IP assays and laser confocal scanning microscopy indicated cellular colocalization and a direct interaction between DRD2 and HERV-W ENV. Additionally, HERV-W ENV caused structural and functional abnormalities of DA neurons. Further studies showed that HERV-W ENV could trigger the PP2A/AKT1/GSK3 pathway via DRD2. A whole-cell patch-clamp analysis suggested that HERV-W ENV enhanced sodium influx through DRD2. In conclusion, we uncovered a relationship between HERV-W ENV and the dopaminergic system in the DA neurons. Considering that GNbAC1, a selective monoclonal antibody to the MSRV-specific epitope, has been promised as a therapy for treating type 1 diabetes and multiple sclerosis (MS) in clinical trials, understanding the precise function of HERV-W ENV in the dopaminergic system may provide new insights into the treatment of schizophrenia.
Collapse
Affiliation(s)
- Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Yan Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.L.); (H.T.)
| | - Huawei Tan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.L.); (H.T.)
| | - Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
14
|
Göttle P, Schichel K, Reiche L, Werner L, Zink A, Prigione A, Küry P. TLR4 Associated Signaling Disrupters as a New Means to Overcome HERV-W Envelope-Mediated Myelination Deficits. Front Cell Neurosci 2021; 15:777542. [PMID: 34887730 PMCID: PMC8650005 DOI: 10.3389/fncel.2021.777542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
Myelin repair in the adult central nervous system (CNS) is driven by successful differentiation of resident oligodendroglial precursor cells (OPCs) and thus constitutes a neurodegenerative process capable to compensate for functional deficits upon loss of oligodendrocytes and myelin sheaths as it is observed in multiple sclerosis (MS). The human endogenous retrovirus type W (HERV-W) represents an MS-specific pathogenic entity, and its envelope (ENV) protein was previously identified as a negative regulator of OPC maturation—hence, it is of relevance in the context of diminished myelin repair. We here focused on the activity of the ENV protein and investigated how it can be neutralized for improved remyelination. ENV-mediated activation of toll like receptor 4 (TLR4) increases inducible nitric oxide synthase (iNOS) expression, prompts nitrosative stress, and results in myelin-associated deficits, such as decreased levels of oligodendroglial maturation marker expression and morphological alterations. The intervention of TLR4 surface expression represents a potential means to rescue such ENV-dependent deficits. To this end, the rescue capacity of specific substances, either modulating V-ATPase activity or myeloid differentiation 2 (MD2)-mediated TLR4 glycosylation status, such as compound 20 (C20), L48H437, or folimycin, was analyzed, as these processes were demonstrated to be relevant for TLR4 surface expression. We found that pharmacological treatment can rescue the maturation arrest of oligodendroglial cells and their myelination capacity and can prevent iNOS induction in the presence of the ENV protein. In addition, downregulation of TLR4 surface expression was observed. Furthermore, mitochondrial integrity crucial for oligodendroglial cell differentiation was affected in the presence of ENV and ameliorated upon pharmacological treatment. Our study, therefore, provides novel insights into possible means to overcome myelination deficits associated with HERV-W ENV-mediated myelin deficits.
Collapse
Affiliation(s)
- Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kira Schichel
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Luisa Werner
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Annika Zink
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
15
|
Hartung HP, Derfuss T, Cree BA, Sormani MP, Selmaj K, Stutters J, Prados F, MacManus D, Schneble HM, Lambert E, Porchet H, Glanzman R, Warne D, Curtin F, Kornmann G, Buffet B, Kremer D, Küry P, Leppert D, Rückle T, Barkhof F. Efficacy and safety of temelimab in multiple sclerosis: Results of a randomized phase 2b and extension study. Mult Scler 2021; 28:429-440. [PMID: 34240656 DOI: 10.1177/13524585211024997] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The envelope protein of human endogenous retrovirus W (HERV-W-Env) is expressed by macrophages and microglia, mediating axonal damage in chronic active MS lesions. OBJECTIVE AND METHODS This phase 2, double-blind, 48-week trial in relapsing-remitting MS with 48-week extension phase assessed the efficacy and safety of temelimab; a monoclonal antibody neutralizing HERV-W-Env. The primary endpoint was the reduction of cumulative gadolinium-enhancing T1-lesions in brain magnetic resonance imaging (MRI) scans at week 24. Additional endpoints included numbers of T2 and T1-hypointense lesions, magnetization transfer ratio, and brain atrophy. In total, 270 participants were randomized to receive monthly intravenous temelimab (6, 12, or 18 mg/kg) or placebo for 24 weeks; at week 24 placebo-treated participants were re-randomized to treatment groups. RESULTS The primary endpoint was not met. At week 48, participants treated with 18 mg/kg temelimab had fewer new T1-hypointense lesions (p = 0.014) and showed consistent, however statistically non-significant, reductions in brain atrophy and magnetization transfer ratio decrease, as compared with the placebo/comparator group. These latter two trends were sustained over 96 weeks. No safety issues emerged. CONCLUSION Temelimab failed to show an effect on features of acute inflammation but demonstrated preliminary radiological signs of possible anti-neurodegenerative effects. Current data support the development of temelimab for progressive MS. TRIAL REGISTRATION CHANGE-MS: ClinicalTrials.gov: NCT02782858, EudraCT: 2015-004059-29; ANGEL-MS: ClinicalTrials.gov: NCT03239860, EudraCT: 2016-004935-18.
Collapse
Affiliation(s)
- Hans-Peter Hartung
- Department of Neurology, Universitätsklinikum Düsseldorf (UKD) and Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany/Center for Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany/Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia/Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tobias Derfuss
- Department of Neurology, Universitätsspital Basel, Basel, Switzerland
| | - Bruce Ac Cree
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Maria Pia Sormani
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy/Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Policlinico San Martino, Genova, Italy
| | - Krzysztof Selmaj
- Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland/Department of Neurology, Medical Academy of Łódź, Łódź, Poland
| | - Jonathan Stutters
- Nuclear Magnetic Resonance (NMR) Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ferran Prados
- Nuclear Magnetic Resonance (NMR) Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Universitat Oberta de Catalunya, Barcelona, Spain
| | - David MacManus
- Nuclear Magnetic Resonance (NMR) Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Hans-Martin Schneble
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Estelle Lambert
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Hervé Porchet
- GeNeuro SA, Geneva, Switzerland/Department of Pharmacology, University of Pretoria, Pretoria, South Africa
| | | | | | - Francois Curtin
- GeNeuro SA, Geneva, Switzerland; Clinical Pharmacology and Toxicology Division, Geneva University Hospitals, Geneva, Switzerland
| | | | | | - David Kremer
- Department of Neurology, Universitätsklinikum Düsseldorf (UKD) and Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany/Center for Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Universitätsklinikum Düsseldorf (UKD) and Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany/Center for Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - David Leppert
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia/GeNeuro SA, Geneva, Switzerland
| | | | - Frederik Barkhof
- Nuclear Magnetic Resonance (NMR) Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK/Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK/Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Giménez-Orenga K, Oltra E. Human Endogenous Retrovirus as Therapeutic Targets in Neurologic Disease. Pharmaceuticals (Basel) 2021; 14:495. [PMID: 34073730 PMCID: PMC8225122 DOI: 10.3390/ph14060495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral DNA sequences established into germline. They contain regulatory elements and encoded proteins few of which may provide benefits to hosts when co-opted as cellular genes. Their tight regulation is mainly achieved by epigenetic mechanisms, which can be altered by environmental factors, e.g., viral infections, leading to HERV activation. The aberrant expression of HERVs associates with neurological diseases, such as multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS), inflammatory processes and neurodegeneration. This review summarizes the recent advances on the epigenetic mechanisms controlling HERV expression and the pathogenic effects triggered by HERV de-repression. This article ends by describing new, promising therapies, targeting HERV elements, one of which, temelimab, has completed phase II trials with encouraging results in treating MS. The information gathered here may turn helpful in the design of new strategies to unveil epigenetic failures behind HERV-triggered diseases, opening new possibilities for druggable targets and/or for extending the use of temelimab to treat other associated diseases.
Collapse
Affiliation(s)
- Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Elisa Oltra
- School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
17
|
Charvet B, Pierquin J, Brunel J, Gorter R, Quétard C, Horvat B, Amor S, Portoukalian J, Perron H. Human Endogenous Retrovirus Type W Envelope from Multiple Sclerosis Demyelinating Lesions Shows Unique Solubility and Antigenic Characteristics. Virol Sin 2021; 36:1006-1026. [PMID: 33770381 PMCID: PMC8558138 DOI: 10.1007/s12250-021-00372-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
In multiple sclerosis (MS), human endogenous retrovirus W family (HERV-W) envelope protein, pHERV-W ENV, limits remyelination and induces microglia-mediated neurodegeneration. To better understand its role, we examined the soluble pHERV-W antigen from MS brain lesions detected by specific antibodies. Physico-chemical and antigenic characteristics confirmed differences between pHERV-W ENV and syncytin-1. pHERV-W ENV monomers and trimers remained associated with membranes, while hexamers self-assembled from monomers into a soluble macrostructure involving sulfatides in MS brain. Extracellular hexamers are stabilized by internal hydrophobic bonds and external hydrophilic moieties. HERV-W studies in MS also suggest that this diffusible antigen may correspond to a previously described high-molecular-weight neurotoxic factor secreted by MS B-cells and thus represents a major agonist in MS pathogenesis. Adapted methods are now needed to identify encoding HERV provirus(es) in affected cells DNA. The properties and origin of MS brain pHERV-W ENV soluble antigen will allow a better understanding of the role of HERVs in MS pathogenesis. The present results anyhow pave the way to an accurate detection of the different forms of pHERV-W ENV antigen with appropriate conditions that remained unseen until now.
Collapse
Affiliation(s)
- Benjamin Charvet
- GeNeuro Innovation, Lyon, 69008, France. .,CIRI, International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, University of Lyon, ENS Lyon, France. .,Université Claude Bernard Lyon 1, Lyon, 69000, France.
| | | | - Joanna Brunel
- GeNeuro Innovation, Lyon, 69008, France.,CIRI, International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, University of Lyon, ENS Lyon, France.,Université Claude Bernard Lyon 1, Lyon, 69000, France
| | - Rianne Gorter
- Department of Pathology, Amsterdam UMC, Location VUMC, 1007 MB, Amsterdam, The Netherlands
| | | | - Branka Horvat
- CIRI, International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, University of Lyon, ENS Lyon, France.,Université Claude Bernard Lyon 1, Lyon, 69000, France
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUMC, 1007 MB, Amsterdam, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | | | - Hervé Perron
- GeNeuro Innovation, Lyon, 69008, France. .,Université Claude Bernard Lyon 1, Lyon, 69000, France.
| |
Collapse
|
18
|
Reiche L, Göttle P, Lane L, Duek P, Park M, Azim K, Schütte J, Manousi A, Schira-Heinen J, Küry P. C21orf91 Regulates Oligodendroglial Precursor Cell Fate-A Switch in the Glial Lineage? Front Cell Neurosci 2021; 15:653075. [PMID: 33796011 PMCID: PMC8008080 DOI: 10.3389/fncel.2021.653075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropathological diseases of the central nervous system (CNS) are frequently associated with impaired differentiation of the oligodendroglial cell lineage and subsequent alterations in white matter structure and dynamics. Down syndrome (DS), or trisomy 21, is the most common genetic cause for cognitive impairments and intellectual disability (ID) and is associated with a reduction in the number of neurons and oligodendrocytes, as well as with hypomyelination and astrogliosis. Recent studies mainly focused on neuronal development in DS and underestimated the role of glial cells as pathogenic players. This also relates to C21ORF91, a protein considered a key modulator of aberrant CNS development in DS. We investigated the role of C21orf91 ortholog in terms of oligodendrogenesis and myelination using database information as well as through cultured primary oligodendroglial precursor cells (OPCs). Upon modulation of C21orf91 gene expression, we found this factor to be important for accurate oligodendroglial differentiation, influencing their capacity to mature and to myelinate axons. Interestingly, C21orf91 overexpression initiates a cell population coexpressing astroglial- and oligodendroglial markers indicating that elevated C21orf91 expression levels induce a gliogenic shift towards the astrocytic lineage reflecting non-equilibrated glial cell populations in DS brains.
Collapse
Affiliation(s)
- Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paula Duek
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mina Park
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kasum Azim
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jana Schütte
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anastasia Manousi
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jessica Schira-Heinen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Manousi A, Göttle P, Reiche L, Cui QL, Healy LM, Akkermann R, Gruchot J, Schira-Heinen J, Antel JP, Hartung HP, Küry P. Identification of novel myelin repair drugs by modulation of oligodendroglial differentiation competence. EBioMedicine 2021; 65:103276. [PMID: 33714029 PMCID: PMC7970057 DOI: 10.1016/j.ebiom.2021.103276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In multiple sclerosis loss of myelin and oligodendrocytes impairs saltatory signal transduction and leads to neuronal loss and functional deficits. Limited capacity of oligodendroglial precursor cells to differentiate into mature cells is the main reason for inefficient myelin repair in the central nervous system. Drug repurposing constitutes a powerful approach for identification of pharmacological compounds promoting this process. METHODS A phenotypic compound screening using the subcellular distribution of a potent inhibitor of oligodendroglial cell differentiation, namely p57kip2, as differentiation competence marker was conducted. Hit compounds were validated in terms of their impact on developmental cell differentiation and myelination using both rat and human primary cell cultures and organotypic cerebellar slice cultures, respectively. Their effect on spontaneous remyelination was then investigated following cuprizone-mediated demyelination of the corpus callosum. FINDINGS A number of novel small molecules able to promote oligodendroglial cell differentiation were identified and a subset was found to foster human oligodendrogenesis as well as myelination ex vivo. Among them the steroid danazol and the anthelminthic parbendazole were found to increase myelin repair. INTERPRETATION We provide evidence that early cellular processes involved in differentiation decisions are applicable for the identification of regeneration promoting drugs and we suggest danazol and parbendazole as potent therapeutic candidates for demyelinating diseases. FUNDING This work was supported by the Jürgen Manchot Foundation, Düsseldorf; Research Commission of the Medical Faculty of Heinrich-Heine-University Düsseldorf; Christiane and Claudia Hempel Foundation; Stifterverband/Novartisstiftung; James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung and International Progressive MS Alliance (BRAVEinMS).
Collapse
Affiliation(s)
- Anastasia Manousi
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H4A 3K9, Canada
| | - Luke M Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H4A 3K9, Canada
| | - Rainer Akkermann
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany
| | - Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany
| | - Jessica Schira-Heinen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H4A 3K9, Canada
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany; Brain and Mind Centre, University of Sydney, Camperdown NSW 2050, Australia
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Germany.
| |
Collapse
|
20
|
Gröger V, Emmer A, Staege MS, Cynis H. Endogenous Retroviruses in Nervous System Disorders. Pharmaceuticals (Basel) 2021; 14:ph14010070. [PMID: 33467098 PMCID: PMC7829834 DOI: 10.3390/ph14010070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERV) have been implicated in the pathogenesis of several nervous system disorders including multiple sclerosis and amyotrophic lateral sclerosis. The toxicity of HERV-derived RNAs and proteins for neuronal cells has been demonstrated. The involvement of HERV in the pathogenesis of currently incurable diseases might offer new treatment strategies based on the inhibition of HERV activities by small molecules or therapeutic antibodies.
Collapse
Affiliation(s)
- Victoria Gröger
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany;
| | - Alexander Emmer
- Department of Neurology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-557-7280 (M.S.S.); +49-345-13142835 (H.C.)
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany;
- Correspondence: (M.S.S.); (H.C.); Tel.: +49-345-557-7280 (M.S.S.); +49-345-13142835 (H.C.)
| |
Collapse
|
21
|
Smith CJ, Castanon O, Said K, Volf V, Khoshakhlagh P, Hornick A, Ferreira R, Wu CT, Güell M, Garg S, Ng AHM, Myllykallio H, Church GM. Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. Nucleic Acids Res 2020; 48:5183-5195. [PMID: 32315033 PMCID: PMC7229841 DOI: 10.1093/nar/gkaa239] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/04/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
To extend the frontier of genome editing and enable editing of repetitive elements of mammalian genomes, we made use of a set of dead-Cas9 base editor (dBE) variants that allow editing at tens of thousands of loci per cell by overcoming the cell death associated with DNA double-strand breaks and single-strand breaks. We used a set of gRNAs targeting repetitive elements-ranging in target copy number from about 32 to 161 000 per cell. dBEs enabled survival after large-scale base editing, allowing targeted mutations at up to ∼13 200 and ∼12 200 loci in 293T and human induced pluripotent stem cells (hiPSCs), respectively, three orders of magnitude greater than previously recorded. These dBEs can overcome current on-target mutation and toxicity barriers that prevent cell survival after large-scale genome engineering.
Collapse
Affiliation(s)
- Cory J Smith
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| | - Oscar Castanon
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA.,LOB, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Khaled Said
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| | - Verena Volf
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
| | - Parastoo Khoshakhlagh
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| | - Amanda Hornick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| | - Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Chun-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| | - Marc Güell
- Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Shilpa Garg
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA
| | - Alex H M Ng
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| | - Hannu Myllykallio
- LOB, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, 02115 USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115 USA
| |
Collapse
|
22
|
Abstract
Multiple sclerosis (MS), a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system, is today a leading cause of unpredictable lifelong disability in young adults. The treatment of patients in progressive stages remains highly challenging, alluding to our limited understanding of the underlying pathological processes. In this review, we provide insights into the mechanisms underpinning MS progression from a perspective of epigenetics, that refers to stable and mitotically heritable, yet reversible, changes in the genome activity and gene expression. We first recapitulate findings from epigenetic studies examining the brain tissue of progressive MS patients, which support a contribution of DNA and histone modifications in impaired oligodendrocyte differentiation, defective myelination/remyelination and sustained neuro-axonal vulnerability. We next explore possibilities for identifying factors affecting progression using easily accessible tissues such as blood by comparing epigenetic signatures in peripheral immune cells and brain tissue. Despite minor overlap at individual methylation sites, nearly 30% of altered genes reported in peripheral immune cells of progressive MS patients were found in brain tissue, jointly converging on alterations of neuronal functions. We further speculate about the mechanisms underlying shared epigenetic patterns between blood and brain, which likely imply the influence of internal (genetic control) and/or external (e.g. smoking and ageing) factors imprinting a common signature in both compartments. Overall, we propose that epigenetics might shed light on clinically relevant mechanisms involved in disease progression and open new avenues for the treatment of progressive MS patients in the future.
Collapse
Affiliation(s)
- L Kular
- From the, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Jagodic
- From the, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Meeting report: "Human endogenous retroviruses: HERVs or transposable elements in autoimmune, chronic inflammatory and degenerative diseases or cancer", Lyon, France, november 5th and 6th 2019 - an MS scientist's digest. Mult Scler Relat Disord 2020; 42:102068. [PMID: 32302965 DOI: 10.1016/j.msard.2020.102068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 12/17/2022]
Abstract
The Third International Workshop on Human Endogenous Retroviruses and disease (www.hervanddisease.com), addressing HERVs or transposable elements in autoimmune, chronic inflammatory and degenerative diseases or cancer, in Lyon, France on November 5-6th 2019, once again gathered an international group of basic and clinical scientists investigating the involvement of human endogenous retroviruses (HERVs) in human diseases.
Collapse
|
24
|
The roles played by TLR4 in the pathogenesis of multiple sclerosis; A systematic review article. Immunol Lett 2020; 220:63-70. [PMID: 32032617 DOI: 10.1016/j.imlet.2020.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is a world-wide pro-inflammatory based disease, which is prevalent among young individuals. The etiology of the disease and its related complications are yet to be clarified. It has been hypothesized that environmental factors, including pathogen-associated molecular patterns (PAMPs) and the internal factors such as damage-associated molecular patterns (DAMPs), may be the most important inducers/stimulators of the disorder and its related complications. Previous investigations proved that pathogen recognition receptors (PRRs) are the main sensors for the PAMPs and DAMPs. Therefore, it seems that the PRRs have been considered to be the plausible molecules participating in the etiology of MS. Toll-like receptors (TLRs) have been the widely studied PRRs and their roles have been documented in human-related diseases. TLR4 is the main PRR expressed on the cell surface of several immune cells including macrophages and dendritic cells. Several investigations reported that TLR4 to be the main molecule involved in the pathogenesis of pro-inflammatory based diseases. Thus, it has been hypothesized that TLR4 may be a part of the MS puzzle. This review article discusses the role of TLR4 in the MS pathogenesis using recent in vitro and in vivo investigations.
Collapse
|
25
|
Abstract
PURPOSE OF THE REVIEW The aim of this review is to discuss recent data pointing at an involvement of human endogenous retroviruses (HERVs) in type 1 diabetes (T1D) onset and progression. RECENT FINDINGS The envelope protein of HERV-W family, named HERV-W-Env, was detected in pancreata from T1D patients and was shown to display pro-inflammatory properties and direct toxicity toward pancreatic beta cells. The etiopathogenesis of T1D remains elusive, even if conventional environmental viral infections have been recurrently involved. Nonetheless, a new category of pathogens may provide the missing link between genetic susceptibility and environmental factors long thought to contribute to T1D onset. A number of studies have now shown that HERV sequences, which are normally inactivated or repressed in the human genome, could be activated by environmental viruses. Thus, if similarly activated by viruses associated with T1D, disregarded HERV genes may underlie T1D genetic susceptibility. Moreover, once expressed, HERV elements may display broad pathogenic properties, which identify them as potential new therapeutic targets.
Collapse
Affiliation(s)
- Sandrine Levet
- GeNeuro Innovation, 60 avenue Rockefeller, 69008 Lyon, France
| | - B. Charvet
- GeNeuro Innovation, 60 avenue Rockefeller, 69008 Lyon, France
| | - A. Bertin
- Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Université Lille, F-59000 Lille, France
| | - A. Deschaumes
- Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Université Lille, F-59000 Lille, France
| | - H. Perron
- GeNeuro Innovation, 60 avenue Rockefeller, 69008 Lyon, France
- Laboratoire des déficits immunitaires, University of Lyon, Lyon, France
- Plan-les-Ouates, GeNeuro SA, Geneva, Switzerland
| | - D. Hober
- Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Université Lille, F-59000 Lille, France
| |
Collapse
|
26
|
Saleh A, Macia A, Muotri AR. Transposable Elements, Inflammation, and Neurological Disease. Front Neurol 2019; 10:894. [PMID: 31481926 PMCID: PMC6710400 DOI: 10.3389/fneur.2019.00894] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Transposable Elements (TE) are mobile DNA elements that can replicate and insert themselves into different locations within the host genome. Their propensity to self-propagate has a myriad of consequences and yet their biological significance is not well-understood. Indeed, retrotransposons have evaded evolutionary attempts at repression and may contribute to somatic mosaicism. Retrotransposons are emerging as potent regulatory elements within the human genome. In the diseased state, there is mounting evidence that endogenous retroelements play a role in etiopathogenesis of inflammatory diseases, with a disposition for both autoimmune and neurological disorders. We postulate that active mobile genetic elements contribute more to human disease pathogenesis than previously thought.
Collapse
Affiliation(s)
- Aurian Saleh
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| | - Angela Macia
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| | - Alysson R Muotri
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
27
|
Expression of HERV Genes as Possible Biomarker and Target in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20153706. [PMID: 31362360 PMCID: PMC6696274 DOI: 10.3390/ijms20153706] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are genetic parasites, in-between genetics and environment. Few HERVs retain some coding capability. Sometimes, the host has the advantage of some HERV genes; conversely, HERVs may contribute to pathogenesis. The expression of HERVs depends on several factors, and is regulated epigenetically by stimuli such as inflammation, viral and microbial infections, etc. Increased expression of HERVs occurs in physiological and pathological conditions, in one or more body sites. Several diseases have been attributed to one or more HERVs, particularly neurological diseases. The key problem is to differentiate the expression of a HERV as cause or effect of a disease. To be used as a biomarker, a correlation between the expression of a certain HERV and the disease onset and/or behavior must be found. The greater challenge is to establish a pathogenic role. The criteria defining causal connections between HERVs and diseases include the development of animal models, and disease modulation in humans, by anti-HERV therapeutic antibody. So far, statistically significant correlations between HERVs and diseases have been achieved for HERV-W and multiple sclerosis; disease reproduction in transgenic animals was achieved for HERV-W and multiple sclerosis, and for HERV-K and amyotrophic lateral sclerosis. Clinical trials for both diseases are in progress.
Collapse
|
28
|
A High-dose Pharmacokinetic Study of a New IgG4 Monoclonal Antibody Temelimab/GNbAC1 Antagonist of an Endogenous Retroviral Protein pHERV-W Env. Clin Ther 2019; 41:1737-1746. [PMID: 31311668 DOI: 10.1016/j.clinthera.2019.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Temelimab/GNbAC1 is a humanized immunoglobulin G4 monoclonal antibody antagonist of the human endogenous retrovirus W envelope protein, which is associated with multiple sclerosis (MS) pathophysiology and possibly with other autoimmune disorders. Human endogenous retrovirus W envelope protein is expressed in the central nervous system of patients with MS, and sufficient amount of temelimab must reach the target. The safety of very high dosages of temelimab should be tested to support further clinical trials in MS. METHODS This randomized, placebo-controlled, dose-escalation study evaluated the safety and pharmacokinetic profile of temelimab in 24 healthy volunteers after a single intravenous infusion at doses of 36, 60, 85, and 110 mg/kg administered sequentially. FINDINGS Temelimab was well tolerated, with no particular adverse drug reactions at any dose. The maximal dose of 110 mg/kg could be administered, and no antidrug antibodies were induced. After administration of 36-110 mg/kg, mean temelimab Cmax increased from 859 to 2450 μg/mL, and AUC values increased from 319,900 to 1,030,000 μg·h/mL. There was an approximate dose-proportional increase in exposure, similar to observations at lower doses. IMPLICATIONS The favorable data in terms of safety and pharmacokinetic variables support temelimab use at high doses in future MS trials to optimally neutralize the temelimab target in the central nervous system. ClinicalTrials.gov identifier: NCT03574428.
Collapse
|
29
|
Gruchot J, Kremer D, Küry P. Neural Cell Responses Upon Exposure to Human Endogenous Retroviruses. Front Genet 2019; 10:655. [PMID: 31354794 PMCID: PMC6637040 DOI: 10.3389/fgene.2019.00655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral elements, which invaded the human germ line several million years ago. Subsequent retrotransposition events amplified these sequences, resulting in approximately 8% of the human genome being composed of HERV sequences today. These genetic elements, normally dormant within human genomes, can be (re)-activated by environmental factors such as infections with other viruses, leading to the expression of viral proteins and, in some instances, even to viral particle production. Several studies have shown that the expression of these retroviral elements correlates with the onset and progression of neurological diseases such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Further studies provided evidence on additional roles for HERVs in schizophrenia (SCZ). Since these diseases are still not well understood, HERVs might constitute a new category of pathogenic components that could significantly change our understanding of these pathologies. Moreover, knowledge about their mode of action might also help to develop novel and more powerful approaches for the treatment of these complex diseases. Therefore, the main scope of this review is a description of the current knowledge on the involvement of HERV-W and HERV-K in neurological disease specifically focusing on the effects they exert on neural cells of the central nervous system.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
30
|
pHERV-W envelope protein fuels microglial cell-dependent damage of myelinated axons in multiple sclerosis. Proc Natl Acad Sci U S A 2019; 116:15216-15225. [PMID: 31213545 DOI: 10.1073/pnas.1901283116] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Axonal degeneration is central to clinical disability and disease progression in multiple sclerosis (MS). Myeloid cells such as brain-resident microglia and blood-borne monocytes are thought to be critically involved in this degenerative process. However, the exact underlying mechanisms have still not been clarified. We have previously demonstrated that human endogenous retrovirus type W (HERV-W) negatively affects oligodendroglial precursor cell (OPC) differentiation and remyelination via its envelope protein pathogenic HERV-W (pHERV-W) ENV (formerly MS-associated retrovirus [MSRV]-ENV). In this current study, we investigated whether pHERV-W ENV also plays a role in axonal injury in MS. We found that in MS lesions, pHERV-W ENV is present in myeloid cells associated with axons. Focusing on progressive disease stages, we could then demonstrate that pHERV-W ENV induces a degenerative phenotype in microglial cells, driving them toward a close spatial association with myelinated axons. Moreover, in pHERV-W ENV-stimulated myelinated cocultures, microglia were found to structurally damage myelinated axons. Taken together, our data suggest that pHERV-W ENV-mediated microglial polarization contributes to neurodegeneration in MS. Thus, this analysis provides a neurobiological rationale for a recently completed clinical study in MS patients showing that antibody-mediated neutralization of pHERV-W ENV exerts neuroprotective effects.
Collapse
|
31
|
|
32
|
Muñoz-Esquivel J, Göttle P, Aguirre-Cruz L, Flores-Rivera J, Corona T, Reyes-Terán G, Küry P, Torres KJ. Sildenafil Inhibits Myelin Expression and Myelination of Oligodendroglial Precursor Cells. ASN Neuro 2019; 11:1759091419832444. [PMID: 30849920 PMCID: PMC6410393 DOI: 10.1177/1759091419832444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Phosphodiesterases (PDEs) have previously been implicated in oligodendrocyte maturation and myelination of central nervous system axons. Sildenafil citrate is a phosphodiesterase inhibitor known to block PDE5, which also reduces inflammation in the experimental autoimmune encephalomyelitis demyelinating model. To find out whether this inhibitor might exert beneficial effects on central nervous system myelin repair activities, we investigated to what degree sildenafil modulates differentiation and maturation of cultured primary rat oligodendroglial precursor cells (OPCs). To this end, gene and protein expression of 2',3'-cyclic-nucleotide 3'-phosphodiesterase, myelin basic protein, and myelin oligodendrocyte glycoprotein, as well as of negative regulators of myelin expression (Hes1, Hes5, Id2, Id4, Rock2, and p57Kip2) were measured in OPCs treated with sildenafil. Moreover, the subcellular distribution of the p57kip2 protein was determined after sildenafil treatment, as this revealed to be an early predictor of the oligodendroglial differentiation capacity. In vitro myelination assays were done to measure the myelination capacity of oligodendrocytes treated with sildenafil. We found that sildenafil significantly diminished myelin gene expression and protein expression. Moreover, sildenafil also increased the expression of Id2 and Id4 negative transcriptional regulators, and the degree of OPCs with cytoplasmic p57kip2 protein localization was reduced, providing evidence that the PDE blocker impaired the differentiation capacity. Finally, sildenafil also interfered with the establishment of internodes as revealed by in vitro myelination assays. We therefore conclude that blocking PDE5 activities exerts a negative impact on intrinsic oligodendroglial differentiation processes.
Collapse
Affiliation(s)
- Jonathan Muñoz-Esquivel
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Mexico
- *These authors contributed equally to this work
| | - Peter Göttle
- Neuroregeneration, Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
- *These authors contributed equally to this work
| | - Lucinda Aguirre-Cruz
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Mexico
| | - José Flores-Rivera
- Clinical Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Mexico
| | - Teresa Corona
- Clinical Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Mexico
| | - Gustavo Reyes-Terán
- Infectious Diseases Research Department, National Institute of Respiratory Diseases Ismael Cossio Villegas, Mexico
| | - Patrick Küry
- Neuroregeneration, Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
- These authors are joint senior authors
| | - Klintsy J. Torres
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Mexico
- Infectious Diseases Research Department, National Institute of Respiratory Diseases Ismael Cossio Villegas, Mexico
- These authors are joint senior authors
| |
Collapse
|