1
|
Yuan Z, Janmey PA, McCulloch CA. Structure and function of vimentin in the generation and secretion of extracellular vimentin in response to inflammation. Cell Commun Signal 2025; 23:187. [PMID: 40251523 PMCID: PMC12007377 DOI: 10.1186/s12964-025-02194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The canonical functions of vimentin in cell mechanics and migration have been recently expanded by the discovery of new roles for extracellular vimentin (ECV) in immune responses to infection, injury and cancer. In contrast with the predominantly filamentous form of intracellular vimentin, ECV exists largely as soluble oligomers. The release of ECV from intact cells is dependent on mechanisms that regulate the assembly and disassembly of intracellular vimentin, which are influenced by discrete post-translational modifications. In this review we highlight the processes that promote the conversion of intracellular and insoluble vimentin filaments to ECV and secretion mechanisms. Insights into the regulation of ECV release from stromal and immune cells could provide new diagnostic and therapeutic approaches for assessing and controlling inflammatory diseases.
Collapse
Affiliation(s)
- Zhiyao Yuan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Paul A Janmey
- Dept. of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher A McCulloch
- Faculty of Dentistry, University of Toronto, Room 461, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
2
|
Huang X, Zhao S, Xing Y, Gao X, Miao C, Huang Y, Jiu Y. The unconventional role of vimentin intermediate filaments. Curr Opin Cell Biol 2025; 93:102483. [PMID: 39978207 DOI: 10.1016/j.ceb.2025.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/22/2025]
Abstract
Vimentin, a type III intermediate filament (IF) protein, is well-recognized for its role at the intersection of structural biology and cellular dynamics, influencing various pathways that determine cell fate and function. While these functions have been extensively characterized, there is still limited understanding of vimentin's broader impact beyond its traditional cytoskeletal roles in regulating a spectrum of cellular processes. This review explores the novel and unconventional roles of vimentin, with a focus on its extracellular functions, membrane receptor properties, and regulatory influence on gene expression and cellular metabolism.
Collapse
Affiliation(s)
- Xinyi Huang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuangshuang Zhao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifan Xing
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuedi Gao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Chenglin Miao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Yuhan Huang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
3
|
Spinelli S, Tripodi D, Corti N, Zocchi E, Bruschi M, Leoni V, Dominici R. Roles, Functions, and Pathological Implications of Exosomes in the Central Nervous System. Int J Mol Sci 2025; 26:1345. [PMID: 39941112 PMCID: PMC11818369 DOI: 10.3390/ijms26031345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Exosomes are a subset of extracellular vesicles (EVs) secreted by nearly all cell types and have emerged as a novel mechanism for intercellular communication within the central nervous system (CNS). These vesicles facilitate the transport of proteins, nucleic acids, lipids, and metabolites between neurons and glial cells, playing a pivotal role in CNS development and the maintenance of homeostasis. Current evidence indicates that exosomes from CNS cells may function as either inhibitors or enhancers in the onset and progression of neurological disorders. Furthermore, exosomes have been found to transport disease-related molecules across the blood-brain barrier, enabling their detection in peripheral blood. This distinctive property positions exosomes as promising diagnostic biomarkers for neurological conditions. Additionally, a growing body of research suggests that exosomes derived from mesenchymal stem cells exhibit reparative effects in the context of neurological disorders. This review provides a concise overview of the functions of exosomes in both physiological and pathological states, with particular emphasis on their emerging roles as potential diagnostic biomarkers and therapeutic agents in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (M.B.)
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Domenico Tripodi
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Nicole Corti
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Elena Zocchi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (M.B.)
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Valerio Leoni
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Dominici
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| |
Collapse
|
4
|
Parvanian S, Coelho-Rato LS, Patteson AE, Eriksson JE. Vimentin takes a hike - Emerging roles of extracellular vimentin in cancer and wound healing. Curr Opin Cell Biol 2023; 85:102246. [PMID: 37783033 PMCID: PMC11214764 DOI: 10.1016/j.ceb.2023.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
Vimentin is a cytoskeletal protein important for many cellular processes, including proliferation, migration, invasion, stress resistance, signaling, and many more. The vimentin-deficient mouse has revealed many of these functions as it has numerous severe phenotypes, many of which are found only following a suitable challenge or stress. While these functions are usually related to vimentin as a major intracellular protein, vimentin is also emerging as an extracellular protein, exposed at the cell surface in an oligomeric form or secreted to the extracellular environment in soluble and vesicle-bound forms. Thus, this review explores the roles of the extracellular pool of vimentin (eVIM), identified in both normal and pathological states. It focuses specifically on the recent advances regarding the role of eVIM in wound healing and cancer. Finally, it discusses new technologies and future perspectives for the clinical application of eVIM.
Collapse
Affiliation(s)
- Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Euro-Bioimaging ERIC, 20520 Turku, Finland.
| |
Collapse
|
5
|
Parvanian S, Coelho-Rato LS, Eriksson JE, Patteson AE. The molecular biophysics of extracellular vimentin and its role in pathogen-host interactions. Curr Opin Cell Biol 2023; 85:102233. [PMID: 37677998 PMCID: PMC10841047 DOI: 10.1016/j.ceb.2023.102233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Vimentin, an intermediate filament protein typically located in the cytoplasm of mesenchymal cells, can also be secreted as an extracellular protein. The organization of extracellular vimentin strongly determines its functions in physiological and pathological conditions, making it a promising target for future therapeutic interventions. The extracellular form of vimentin has been found to play a role in the interaction between host cells and pathogens. In this review, we first discuss the molecular biophysics of extracellular vimentin, including its structure, secretion, and adhesion properties. We then provide a general overview of the role of extracellular vimentin in mediating pathogen-host interactions, with a focus on its interactions with viruses and bacteria. We also discuss the implications of these findings for the development of new therapeutic strategies for combating infectious diseases.
Collapse
Affiliation(s)
- Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland; Euro-Bioimaging ERIC, 20520, Turku, Finland
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
6
|
Zhu S, Chen L, Wang M, Zhang J, Chen G, Yao Y, Song S, Li T, Xu S, Yu Z, Shen B, Xu D, Chi ZL, Wu W. Schwann cell-derived extracellular vesicles as a potential therapy for retinal ganglion cell degeneration. J Control Release 2023; 363:641-656. [PMID: 37820984 DOI: 10.1016/j.jconrel.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Optic neuropathy is the leading cause of irreversible blindness and is characterized by progressive degeneration of retinal ganglion cells (RGCs). Several studies have demonstrated that transplantation of Schwann cells (SCs) is a promising candidate therapy for optic neuropathy and that intravitreally transplanted cells exert their effect via paracrine actions. Extracellular vesicle (EV)-based therapies are increasingly recognized as a potential strategy for cell replacement therapy. In this study, we aimed to investigate the neuroprotective and regenerative effects of SC-EVs following optic nerve injury. We found that SC-EVs were internalized by RGCs in vitro and in vivo without any transfection reagents. Intriguingly, SC-EVs significantly enhanced the survival and axonal growth of primary RGCs in a coculture system. In a rat optic nerve crush model, SC-EVs mitigated RGC degeneration, prevented RGC loss, and preserved the thickness of the ganglion cell complex, as demonstrated by the statistically significant improvement in RGC counts and thickness measurements. Mechanistically, SC-EVs activated the cAMP-response element binding protein (CREB) signaling pathway and regulated reactive gliosis in ONC rats, which is crucial for RGC protection and axonal regeneration. These findings provide novel insights into the neuroprotective and regenerative properties of SC-EVs, suggesting their potential as a cell-free therapeutic strategy and natural biomaterials for neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Senmiao Zhu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Lili Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Gang Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yinghao Yao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325027, China
| | - Shihan Song
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Tong Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shenglan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhonghao Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Duogang Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Zai-Long Chi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
7
|
Bucki R, Iwamoto DV, Shi X, Kerr KE, Byfield FJ, Suprewicz Ł, Skłodowski K, Sutaria J, Misiak P, Wilczewska AZ, Ramachandran S, Wolfe A, Thanh MTH, Whalen E, Patteson AE, Janmey PA. Extracellular vimentin is sufficient to promote cell attachment, spreading, and motility by a mechanism involving N-acetyl glucosamine-containing structures. J Biol Chem 2023; 299:104963. [PMID: 37356720 PMCID: PMC10392088 DOI: 10.1016/j.jbc.2023.104963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Vimentin intermediate filaments form part of the cytoskeleton of mesenchymal cells, but under pathological conditions often associated with inflammation, vimentin filaments depolymerize as the result of phosphorylation or citrullination, and vimentin oligomers are secreted or released into the extracellular environment. In the extracellular space, vimentin can bind surfaces of cells and the extracellular matrix, and the interaction between extracellular vimentin and cells can trigger changes in cellular functions, such as activation of fibroblasts to a fibrotic phenotype. The mechanism by which extracellular vimentin binds external cell membranes and whether vimentin alone can act as an adhesive anchor for cells is largely uncharacterized. Here, we show that various cell types (normal and vimentin null fibroblasts, mesenchymal stem cells, and A549 lung carcinoma cells) attach to and spread on polyacrylamide hydrogel substrates covalently linked to vimentin. Using traction force microscopy and spheroid expansion assays, we characterize how different cell types respond to extracellular vimentin. Cell attachment to and spreading on vimentin-coated surfaces is inhibited by hyaluronic acid degrading enzymes, hyaluronic acid synthase inhibitors, soluble heparin or N-acetyl glucosamine, all of which are treatments that have little or no effect on the same cell types binding to collagen-coated hydrogels. These studies highlight the effectiveness of substrate-bound vimentin as a ligand for cells and suggest that carbohydrate structures, including the glycocalyx and glycosylated cell surface proteins that contain N-acetyl glucosamine, form a novel class of adhesion receptors for extracellular vimentin that can either directly support cell adhesion to a substrate or fine-tune the glycocalyx adhesive properties.
Collapse
Affiliation(s)
- Robert Bucki
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland.
| | - Daniel V Iwamoto
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xuechen Shi
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine E Kerr
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fitzroy J Byfield
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Julian Sutaria
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paweł Misiak
- Faculty of Chemistry, University of Białystok, Białystok, Poland
| | | | | | - Aaron Wolfe
- Ichor Life Sciences, Inc, LaFayette, New York, USA; Lewis School of Health Sciences, Clarkson University, Potsdam, New York, USA
| | - Minh-Tri Ho Thanh
- Physics Department, BioInspired Institute, Syracuse University, Syracuse, New York, USA
| | - Eli Whalen
- Physics Department, BioInspired Institute, Syracuse University, Syracuse, New York, USA
| | - Alison E Patteson
- Physics Department, BioInspired Institute, Syracuse University, Syracuse, New York, USA.
| | - Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
8
|
Deng Y, Duan R, Ding W, Gu Q, Liu M, Zhou J, Sun J, Zhu J. Astrocyte-derived exosomal nicotinamide phosphoribosyltransferase (Nampt) ameliorates ischemic stroke injury by targeting AMPK/mTOR signaling to induce autophagy. Cell Death Dis 2022; 13:1057. [PMID: 36539418 PMCID: PMC9767935 DOI: 10.1038/s41419-022-05454-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Acute ischemic stroke (AIS) is a global cerebrovascular disease with high disability and mortality, which has no effective therapy. Studies have demonstrated that astrocyte-derived exosomes (ADEXs) provided neuroprotection in experimental stroke models. Nevertheless, the role of exosomes derived from oxygen-glucose-deprivation/reoxygenation-stimulated astrocytes (OGD/R-stimulated astrocytes; OGD/R-ADEXs) in AIS remains largely unknown. Here, we found that OGD/R-ADEXs significantly reduced OGD/R-induced neuronal death and promoted neuronal autophagy. These effects were reversed when astrocytes were pretreated with GW4869, an exosome secretion inhibitor, or when hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) was knocked down. Neuroprotection was also observed during treatment with OGD/R-ADEXs in vivo. Further studies showed that Nampt, played a vital effect in the regulation of autophagy, was significantly increased in OGD/R-ADEXs. Knockdown of Nampt in astrocytes abolished the above-mentioned effects of OGD/R-ADEXs. Mechanistically, Nampt increased autophagy and decreased cell death by modulating AMPK/mTOR signaling, which recognized as a key signaling pathway of autophagy after AIS. Collectively, these results showed that Nampt released by OGD/R-ADEXs ameliorated acute ischemic stroke during neuronal injury by targeting AMPK/mTOR signaling to induce autophagy. Our study revealed a new key factor in the secretion of exosomes by OGD/R astrocytes, which regulated autophagy and induced neuroprotection in a mouse stroke model.
Collapse
Affiliation(s)
- Yang Deng
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China ,grid.254147.10000 0000 9776 7793School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, China
| | - Rui Duan
- grid.89957.3a0000 0000 9255 8984Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Wangli Ding
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China ,grid.254147.10000 0000 9776 7793School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, China
| | - Qiuchen Gu
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China ,grid.254147.10000 0000 9776 7793School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, China
| | - Manman Liu
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China ,grid.254147.10000 0000 9776 7793School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, China
| | - Junshan Zhou
- grid.89957.3a0000 0000 9255 8984Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Jianguo Sun
- grid.254147.10000 0000 9776 7793Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, China
| | - Junrong Zhu
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China ,grid.254147.10000 0000 9776 7793School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, China
| |
Collapse
|
9
|
Nassar A, Kodi T, Satarker S, Chowdari Gurram P, Upadhya D, SM F, Mudgal J, Nampoothiri M. Astrocytic MicroRNAs and Transcription Factors in Alzheimer's Disease and Therapeutic Interventions. Cells 2022; 11:cells11244111. [PMID: 36552875 PMCID: PMC9776935 DOI: 10.3390/cells11244111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes are important for maintaining cholesterol metabolism, glutamate uptake, and neurotransmission. Indeed, inflammatory processes and neurodegeneration contribute to the altered morphology, gene expression, and function of astrocytes. Astrocytes, in collaboration with numerous microRNAs, regulate brain cholesterol levels as well as glutamatergic and inflammatory signaling, all of which contribute to general brain homeostasis. Neural electrical activity, synaptic plasticity processes, learning, and memory are dependent on the astrocyte-neuron crosstalk. Here, we review the involvement of astrocytic microRNAs that potentially regulate cholesterol metabolism, glutamate uptake, and inflammation in Alzheimer's disease (AD). The interaction between astrocytic microRNAs and long non-coding RNA and transcription factors specific to astrocytes also contributes to the pathogenesis of AD. Thus, astrocytic microRNAs arise as a promising target, as AD conditions are a worldwide public health problem. This review examines novel therapeutic strategies to target astrocyte dysfunction in AD, such as lipid nanodiscs, engineered G protein-coupled receptors, extracellular vesicles, and nanoparticles.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Fayaz SM
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Correspondence:
| |
Collapse
|
10
|
Gomes P, Tzouanou F, Skolariki K, Vamvaka-Iakovou A, Noguera-Ortiz C, Tsirtsaki K, Waites CL, Vlamos P, Sousa N, Costa-Silva B, Kapogiannis D, Sotiropoulos I. Extracellular vesicles and Alzheimer's disease in the novel era of Precision Medicine: implications for disease progression, diagnosis and treatment. Exp Neurol 2022; 358:114183. [PMID: 35952764 PMCID: PMC9985072 DOI: 10.1016/j.expneurol.2022.114183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), secreted membranous nano-sized particles, are critical intercellular messengers participating in nervous system homeostasis, while recent evidence implicates EVs in Alzheimer's disease (AD) pathogenesis. Specifically, small EVs have been shown to spread toxic proteins, induce neuronal loss, and contribute to neuroinflammation and AD progression. On the other hand, EVs can reduce amyloid-beta deposition and transfer neuroprotective substances between cells, mitigating disease mechanisms. In addition to their roles in AD pathogenesis, EVs also exhibit great potential for the diagnosis and treatment of other brain disorders, representing an advantageous tool for Precision Medicine. Herein, we summarize the contribution of small EVs to AD-related mechanisms and disease progression, as well as their potential as diagnostic and therapeutic agents for AD.
Collapse
Affiliation(s)
- Patrícia Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Foteini Tzouanou
- Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | | | - Anastasia Vamvaka-Iakovou
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | - Carlos Noguera-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Katerina Tsirtsaki
- Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | | | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece.
| |
Collapse
|
11
|
Extracellular Vesicles in Chronic Demyelinating Diseases: Prospects in Treatment and Diagnosis of Autoimmune Neurological Disorders. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111943. [PMID: 36431078 PMCID: PMC9693249 DOI: 10.3390/life12111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Extracellular vesicles (EVs) represent membrane-enclosed structures that are likely to be secreted by all living cell types in the animal organism, including cells of peripheral (PNS) and central nervous systems (CNS). The ability to cross the blood-brain barrier (BBB) provides the possibility not only for various EV-loaded molecules to be delivered to the brain tissues but also for the CNS-to-periphery transmission of these molecules. Since neural EVs transfer proteins and RNAs are both responsible for functional intercellular communication and involved in the pathogenesis of neurodegenerative diseases, they represent attractive diagnostic and therapeutic targets. Here, we discuss EVs' role in maintaining the living organisms' function and describe deviations in EVs' structure and malfunctioning during various neurodegenerative diseases.
Collapse
|
12
|
Serpe C, Michelucci A, Monaco L, Rinaldi A, De Luca M, Familiari P, Relucenti M, Di Pietro E, Di Castro MA, D’Agnano I, Catacuzzeno L, Limatola C, Catalano M. Astrocytes-Derived Small Extracellular Vesicles Hinder Glioma Growth. Biomedicines 2022; 10:biomedicines10112952. [PMID: 36428520 PMCID: PMC9688032 DOI: 10.3390/biomedicines10112952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
All cells are capable of secreting extracellular vesicles (EVs), which are not a means to eliminate unneeded cellular compounds but represent a process to exchange material (nucleic acids, lipids and proteins) between different cells. This also happens in the brain, where EVs permit the crosstalk between neuronal and non-neuronal cells, functional to homeostatic processes or cellular responses to pathological stimuli. In brain tumors, EVs are responsible for the bidirectional crosstalk between glioblastoma cells and healthy cells, and among them, astrocytes, that assume a pro-tumoral or antitumoral role depending on the stage of the tumor progression. In this work, we show that astrocyte-derived small EVs (sEVs) exert a defensive mechanism against tumor cell growth and invasion. The effect is mediated by astrocyte-derived EVs (ADEVs) through the transfer to tumor cells of factors that hinder glioma growth. We identified one of these factors, enriched in ADEVs, that is miR124. It reduced both the expression and function of the volume-regulated anion channel (VRAC), that, in turn, decreased the cell migration and invasion of murine glioma GL261 cells.
Collapse
Affiliation(s)
- Carmela Serpe
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Antonio Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Arianna Rinaldi
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Mariassunta De Luca
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Pietro Familiari
- Division of Neurosurgery, Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, 00185 Rome, Italy
| | - Erika Di Pietro
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | | | - Igea D’Agnano
- Institute of Biomedical Technologies, CNR, 20054 Segrate, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
- Correspondence: (C.L.); (M.C.); Tel.: +39-06-49690243 (C.L.); +39-06-49910467 (M.C.)
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
- Correspondence: (C.L.); (M.C.); Tel.: +39-06-49690243 (C.L.); +39-06-49910467 (M.C.)
| |
Collapse
|
13
|
Wang H, Liu Y, Sun Y, Zhao L, Dong J, Xu X, Wang H, Zhang J, Yao B, Zhao X, Liu S, Zhang K, Peng R. Changes in rat spatial learning and memory as well as serum exosome proteins after simultaneous exposure to 1.5 GHz and 4.3 GHz microwaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113983. [PMID: 35985199 DOI: 10.1016/j.ecoenv.2022.113983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/22/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to elucidate the effects and biological targets sensitive to simultaneous 1.5 and 4.3 GHz microwave exposure in rats. A total of 120 male Wistar rats were divided randomly into four groups: the sham (S group), 1.5 GHz microwave exposure (L group), 4.3 GHz microwave exposure (C group) and simultaneous 1.5 and 4.3 GHz microwave exposure (LC group) groups. Spatial learning and memory, cortical electrical activity, and hippocampal ultrastructure were assessed by the Morris Water Maze, electroencephalography, and transmission electron microscopy, respectively. Additionally, serum exosomes were isolated by ultracentrifugation and assessed by Western blotting, nanoparticle tracking and transmission electron microscopy. The serum exosome protein content was assessed by label-free quantitative proteomics. Impaired spatial learning and memory decreased cortical excitability, and damage to the hippocampal ultrastructure were observed in groups exposed to microwaves, especially the L and LC groups. A total of 54, 145 and 296 exosomal proteins were differentially expressed between the S group and the L, C and LC groups, respectively. These differentially expressed proteins were involved in the synaptic vesicle cycle and SNARE interactions during vesicular transport. Additionally, VAMP8, Syn7 and VMAT are potential serum markers of simultaneous microwave exposure. Thus, exposure to 1.5 and 4.3 GHz microwaves induced impairments in spatial learning and memory, and simultaneous microwave exposure had the most severe effects.
Collapse
Affiliation(s)
- Hui Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yu Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; College of Education, Hebei University, No. 180 of Wusi East Road, Baoding, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xuelong Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ke Zhang
- College of Education, Hebei University, No. 180 of Wusi East Road, Baoding, China.
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
14
|
Thalla DG, Rajwar AC, Laurent AM, Becher JE, Kainka L, Lautenschläger F. Extracellular vimentin is expressed at the rear of activated macrophage-like cells: Potential role in enhancement of migration and phagocytosis. Front Cell Dev Biol 2022; 10:891281. [PMID: 35923851 PMCID: PMC9340215 DOI: 10.3389/fcell.2022.891281] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Macrophages have a vital role in the immune system through elimination of cell debris and microorganisms by phagocytosis. The activation of macrophages by tumour necrosis factor-α induces expression of extracellular cell-surface vimentin and promotes release of this vimentin into the extracellular environment. Vimentin is a cytoskeletal protein that is primarily located in the cytoplasm of cells. However, under circumstances like injury, stress, senescence and activation, vimentin can be expressed on the extracellular cell surface, or it can be released into the extracellular space. The characteristics of this extracellular vimentin, and its implications for the functional role of macrophages and the mechanism of secretion remain unclear. Here, we demonstrate that vimentin is released mainly from the back of macrophage-like cells. This polarisation is strongly enhanced upon macrophage activation. One-dimensional patterned lines showed that extracellular cell-surface vimentin is localised primarily at the back of activated macrophage-like cells. Through two-dimensional migration and phagocytosis assays, we show that this extracellular vimentin enhances migration and phagocytosis of macrophage-like cells. We further show that this extracellular vimentin forms agglomerates on the cell surface, in contrast to its intracellular filamentous form, and that it is released into the extracellular space in the form of small fragments. Taken together, we provide new insights into the release of extracellular cell-surface vimentin and its implications for macrophage functionality.
Collapse
Affiliation(s)
| | | | | | | | - Lucina Kainka
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Franziska Lautenschläger
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Centre for Biophysics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
15
|
Piepgras J, Rohrbeck A, Just I, Bittner S, Ahnert-Hilger G, Höltje M. Enhancement of Phosphorylation and Transport Activity of the Neuronal Glutamate Transporter Excitatory Amino Acid Transporter 3 by C3bot and a 26mer C3bot Peptide. Front Cell Neurosci 2022; 16:860823. [PMID: 35783090 PMCID: PMC9240211 DOI: 10.3389/fncel.2022.860823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In primary murine hippocampal neurons we investigated the regulation of EAAT3-mediated glutamate transport by the Clostridium botulinum C3 transferase C3bot and a 26mer peptide derived from full length protein. Incubation with either enzyme-competent C3bot or enzyme-deficient C3bot156–181 peptide resulted in the upregulation of glutamate uptake by up to 22% compared to untreated cells. A similar enhancement of glutamate transport was also achieved by the classical phorbol-ester-mediated activation of protein kinase C subtypes. Yet comparable, effects elicited by C3 preparations seemed not to rely on PKCα, γ, ε, or ζ activation. Blocking of tyrosine phosphorylation by tyrosine kinase inhibitors prevented the observed effect mediated by C3bot and C3bot 26mer. By using biochemical and molecular biological assays we could rule out that the observed C3bot and C3bot 26mer-mediated effects solely resulted from enhanced transporter expression or translocation to the neuronal surface but was rather mediated by transporter phosphorylation at tyrosine residues that was found to be significantly enhanced following incubation with either full length protein or the 26mer C3 peptide.
Collapse
Affiliation(s)
- Johannes Piepgras
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gudrun Ahnert-Hilger
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, University of Göttingen, Göttingen, Germany
| | - Markus Höltje
- Institut für Integrative Neuroanatomie, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Markus Höltje,
| |
Collapse
|
16
|
Hashemi Karoii D, Azizi H. A review of protein-protein interaction and signaling pathway of Vimentin in cell regulation, morphology and cell differentiation in normal cells. J Recept Signal Transduct Res 2022; 42:512-520. [PMID: 35296221 DOI: 10.1080/10799893.2022.2047199] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Vimentin intermediate filament (VIF) is an essential cytoskeleton component. It shows dynamically changing expression patterns throughout various phases of the differentiation process, suggesting that the protein is physiologically important. Vimentin's essential functions have recently been clear, so Vimentin-deficient of animals was described as a change of morphology and signaling pathway. Recent research has discovered many vital roles for Vimentin that were previously unknown. VIF emerges as an organizer of many essential proteins involved in movement and cell signaling. The highly dynamic and complicated phosphorylation of VIF seems to be a regulator mechanism for various activities. Changes in IF expression patterns are often linked with cancer progression, especially those leading to enhanced invasion and cellular migration. This review will discuss the function of Vimentin intermediate filaments in normal cell physiology, cell adhesion structures, cell shape, and signaling pathways. The genes interaction and gene network linked with Vimentin will be discussed in more studies. However, research aimed at understanding the function of Vimentin in different signaling cascades and gene interactions might offer novel methods for creating therapeutic medicines. Enrichr GEO datasets used gene ontology (GO) and pathway enrichment analyses. STRING online was used to predict the functional connections of proteins-proteins, followed by Cytoscape analysis to find the master genes. Cytoscape and STRING research revealed that eight genes, Fas, Casp8, Casp6, Fadd, Ripk1, Des, Tnnc2, and Tnnt3, were required for protein-protein interactions with Vimentin genes involved in cell differentiation.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
17
|
Vimentin: Regulation and pathogenesis. Biochimie 2022; 197:96-112. [DOI: 10.1016/j.biochi.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
|
18
|
Wang W, Li Q, Zhao Z, Liu Y, Wang Y, Xiong H, Mei Z. Paeonol Ameliorates Chronic Itch and Spinal Astrocytic Activation via CXCR3 in an Experimental Dry Skin Model in Mice. Front Pharmacol 2022; 12:805222. [PMID: 35095512 PMCID: PMC8794748 DOI: 10.3389/fphar.2021.805222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Paeonol is a bioactive phenol presents mainly in Paeonia suffruticosa Andr. (Paeoniaceae), Paeonia lactiflora Pall., and Dioscorea japonica Thunb. (Dioscoreaceae), harboring various pharmacological activities including anti-inflammatory, antioxidant, immune regulatory activity and reverse chemoresistance. Recent reports revealed paeonol exhibited good effects on chronic dermatitis, such as atopic dermatitis (AD) and psoriasis. However, whether paeonol is effective for dry skin disease and its mechanism of action still remain unclear. In this study, we analysed the effects of paeonol on a mouse model of dry skin treated with acetone-ether-water (AEW), which showed impressive activities in reducing scratching behavior and skin inflammation. To elucidate the underlying molecular targets for the anti-pruritic ability of paeonol, we screened the expression of possible chemokine pathways in the spinal cord. The expression of CXCR3 was significantly alleviated by paeonol, which increased greatly in the spinal neurons of AEW mice. In addition, treatment of paeonol significantly inhibited AEW-induced expression of astrocyte activity-dependent genes including Tlr4, Lcn2 and Hspb1 et al. The inhibitory effects of paeonol on scratching behavior and astrocytic activation in the spinal cord induced by AEW were abolished when CXCR3 was antagonized or genetically ablated. Taken together, our results indicated that paeonol can ameliorate AEW-induced inflammatory response and itching behavior, and reduce the expression of spinal astrocyte activity-dependent genes induced by AEW, which are driven by CXCR3.
Collapse
Affiliation(s)
- Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Qiaoyun Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhongqiu Zhao
- Washington University School of Medicine, St. Louis, MO, United States.,Barnes-Jewish Hospital, St. Louis, MO, United States
| | - Yutong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yi Wang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
19
|
Ikeshima-Kataoka H, Sugimoto C, Tsubokawa T. Integrin Signaling in the Central Nervous System in Animals and Human Brain Diseases. Int J Mol Sci 2022; 23:ijms23031435. [PMID: 35163359 PMCID: PMC8836133 DOI: 10.3390/ijms23031435] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrin family is involved in various biological functions, including cell proliferation, differentiation and migration, and also in the pathogenesis of disease. Integrins are multifunctional receptors that exist as heterodimers composed of α and β subunits and bind to various ligands, including extracellular matrix (ECM) proteins; they are found in many animals, not only vertebrates (e.g., mouse, rat, and teleost fish), but also invertebrates (e.g., planarian flatworm, fruit fly, nematodes, and cephalopods), which are used for research on genetics and social behaviors or as models for human diseases. In the present paper, we describe the results of a phylogenetic tree analysis of the integrin family among these species. We summarize integrin signaling in teleost fish, which serves as an excellent model for the study of regenerative systems and possesses the ability for replacing missing tissues, especially in the central nervous system, which has not been demonstrated in mammals. In addition, functions of astrocytes and reactive astrocytes, which contain neuroprotective subpopulations that act in concert with the ECM proteins tenascin C and osteopontin via integrin are also reviewed. Drug development research using integrin as a therapeutic target could result in breakthroughs for the treatment of neurodegenerative diseases and brain injury in mammals.
Collapse
Affiliation(s)
- Hiroko Ikeshima-Kataoka
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence:
| | - Chikatoshi Sugimoto
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| | - Tatsuya Tsubokawa
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| |
Collapse
|
20
|
Wang Y, Xu H, Wang J, Yi H, Song Y. Extracellular Vesicles in the Pathogenesis, Treatment, and Diagnosis of Spinal Cord Injury: A Mini-Review. Curr Stem Cell Res Ther 2022; 17:317-327. [PMID: 35352667 DOI: 10.2174/1574888x17666220330005937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benefiting from in-depth research into stem cells, extracellular vesicles (EVs), which are byproducts of cells and membrane-wrapped microvesicles (30-120 nm) containing lipids, proteins, and nucleic acids, may cast light on the research and development of therapeutics capable of improving the neurological recovery of spinal cord injury (SCI) animals. However, the mechanistic modes of action for EVs in alleviating the lesion size of SCI remain to be solved, thus presenting a tremendous gap existing in translation from the laboratory to the clinic. OBJECTIVE The purpose of this minireview was to cover a wide range of basic views on EVs involved in SCI treatment, including the effects of EVs on the pathogenesis, treatment, and diagnosis of spinal cord injury. METHODS We searched databases (i.e., PubMed, Web of Science, Scopus, Medline, and EMBASE) and acquired all accessible articles published in the English language within five years. Studies reporting laboratory applications of EVs in the treatment of SCI were included and screened to include studies presenting relevant molecular mechanisms. RESULTS This review first summarized the basic role of EVs in cell communication, cell death, inflammatory cascades, scar formation, neuronal regrowth, and angiogenesis after SCI, thereby providing insights into neuroprotection and consolidated theories for future clinical application of EVs. CONCLUSION EVs participate in an extremely wide range of cell activities, play a critical role in cell communication centring neurons, and are considered potential therapies and biomarkers for SCI. miRNAs are the most abundant nucleic acids shipped by EVs and effluent cytokines, and they may represent important messengers of EVs and important factors in SCI treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Hualiang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Jian Wang
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Hanxiao Yi
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107, YanJiang Road, Haizhu District, Guangzhou, China
| | - Yancheng Song
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| |
Collapse
|
21
|
Li T, Tan X, Li S, Al-Nusaif M, Le W. Role of Glia-Derived Extracellular Vesicles in Neurodegenerative Diseases. Front Aging Neurosci 2021; 13:765395. [PMID: 34744700 PMCID: PMC8563578 DOI: 10.3389/fnagi.2021.765395] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs), as nano-sized vesicles secreted by almost all cells, have been recognized as the essential transmitter for cell-to-cell communication and participating in multiple biological processes. Neurodegenerative diseases (ND), such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, share common mechanisms of the aggregation and propagation of distinct pathologic proteins among cells in the nervous systems and neuroinflammatory reactions mediated by glia during the pathogenic process. This feature indicates the vital role of crosstalk between neurons and glia in the pathogenesis of ND. In recent years, glia-derived EVs have been investigated as potential mediators of signals between neurons and glia, which provides a new direction and strategy for understanding ND. By a comprehensive summary, it can be concluded that glia-derived EVs have both a beneficial and/or a detrimental effect in the process of ND. Therefore, this review article conveys the role of glia-derived EVs in the pathogenesis of ND and raises current limitations of their potential application in the diagnosis and treatment of ND.
Collapse
Affiliation(s)
- Tianbai Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiang Tan
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
22
|
Feng J, Zhang Y, Zhu Z, Gu C, Waqas A, Chen L. Emerging Exosomes and Exosomal MiRNAs in Spinal Cord Injury. Front Cell Dev Biol 2021; 9:703989. [PMID: 34307384 PMCID: PMC8299525 DOI: 10.3389/fcell.2021.703989] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Acute spinal cord injury (SCI) is a serious traumatic event to the spinal cord with considerable morbidity and mortality. This injury leads to short- and long-term variations in the spinal cord, and can have a serious effect on the patient's sensory, motor, or autonomic functions. Due to the complicated pathological process of SCI, there is currently no successful clinical treatment strategy. Exosomes, extracellular vesicles (EVs) with a double-layer membrane structure of 30-150 nm diameter, have recently been considered as critical mediators for communication between cells and tissues by transferring proteins, lipids, and nucleic acids. Further studies verified that exosomes participate in the pathophysiological process of several diseases, including cancer, neurodegenerative diseases, and cardiovascular diseases, and could have a significant impact in their treatment. As natural carriers of biologically active cargos, exosomes have emerged as pathological mediators of SCI. In this review article, we critically discuss the functions of exosomes as intracellular mediators and potential treatments in SCI and provide an outlook on future research.
Collapse
Affiliation(s)
- Jia Feng
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhihan Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Chenyang Gu
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ahmed Waqas
- School of Medicine, Southeast University, Nanjing, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Parvanian S, Zha H, Su D, Xi L, Jiu Y, Chen H, Eriksson JE, Cheng F. Exosomal Vimentin from Adipocyte Progenitors Protects Fibroblasts against Osmotic Stress and Inhibits Apoptosis to Enhance Wound Healing. Int J Mol Sci 2021; 22:ijms22094678. [PMID: 33925176 PMCID: PMC8125065 DOI: 10.3390/ijms22094678] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
Mechanical stress following injury regulates the quality and speed of wound healing. Improper mechanotransduction can lead to impaired wound healing and scar formation. Vimentin intermediate filaments control fibroblasts’ response to mechanical stress and lack of vimentin makes cells significantly vulnerable to environmental stress. We previously reported the involvement of exosomal vimentin in mediating wound healing. Here we performed in vitro and in vivo experiments to explore the effect of wide-type and vimentin knockout exosomes in accelerating wound healing under osmotic stress condition. Our results showed that osmotic stress increases the size and enhances the release of exosomes. Furthermore, our findings revealed that exosomal vimentin enhances wound healing by protecting fibroblasts against osmotic stress and inhibiting stress-induced apoptosis. These data suggest that exosomes could be considered either as a stress modifier to restore the osmotic balance or as a conveyer of stress to induce osmotic stress-driven conditions.
Collapse
Affiliation(s)
- Sepideh Parvanian
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.P.); (H.Z.); (D.S.); (L.X.); (H.C.)
- Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, 20520 Turku, Finland;
| | - Hualian Zha
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.P.); (H.Z.); (D.S.); (L.X.); (H.C.)
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.P.); (H.Z.); (D.S.); (L.X.); (H.C.)
| | - Lifang Xi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.P.); (H.Z.); (D.S.); (L.X.); (H.C.)
| | - Yaming Jiu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China;
- Institute Pasteur of Shanghai and Institute of Pathogen Biology, University of Chinese Academy of Sciences, 52 Sanlihe Rd., Xicheng District, Beijing 100019, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.P.); (H.Z.); (D.S.); (L.X.); (H.C.)
| | - John E. Eriksson
- Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, 20520 Turku, Finland;
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.P.); (H.Z.); (D.S.); (L.X.); (H.C.)
- Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, 20520 Turku, Finland;
- Correspondence:
| |
Collapse
|
24
|
Saglam A, Calof AL, Wray S. Novel factor in olfactory ensheathing cell-astrocyte crosstalk: Anti-inflammatory protein α-crystallin B. Glia 2021; 69:1022-1036. [PMID: 33314354 PMCID: PMC9469687 DOI: 10.1002/glia.23946] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are key players in CNS neuroinflammation and neuroregeneration that may help or hinder recovery, depending on the context of the injury. Although pro-inflammatory factors that promote astrocyte-mediated neurotoxicity have been shown to be secreted by reactive microglia, anti-inflammatory factors that suppress astrocyte activation are not well-characterized. Olfactory ensheathing cells (OECs), glial cells that wrap axons of olfactory sensory neurons, have been shown to moderate astrocyte reactivity, creating an environment conducive to regeneration. Similarly, astrocytes cultured in medium conditioned by cultured OECs (OEC-CM) show reduced nuclear translocation of nuclear factor kappa-B (NFκB), a pro-inflammatory protein that induces neurotoxic reactivity in astrocytes. In this study, we screened primary and immortalized OEC lines to identify these factors and discovered that Alpha B-crystallin (CryAB), an anti-inflammatory protein, is secreted by OECs via exosomes, coordinating an intercellular immune response. Our results showed that: (a) OEC exosomes block nuclear NFκB translocation in astrocytes while exosomes from CryAB-null OECs could not; (b) OEC exosomes could be taken up by astrocytes, and (c) CryAB treatment suppressed neurotoxicity-associated astrocyte transcripts. Our results indicate CryAB, as well as other factors secreted by OECs, are potential agents that can ameliorate, or even reverse, the growth-inhibitory environment created by neurotoxic reactive astrocytes following CNS injuries.
Collapse
Affiliation(s)
- Aybike Saglam
- Cellular & Developmental Neurobiology Section, NINDS, NIH, Bethesda, Maryland
- Program in Neuroscience & Cognitive Science, University of Maryland, College Park, Maryland
| | - Anne L. Calof
- Department of Anatomy & Neurobiology and the Center for Complex Biological Systems, University of California, Irvine, California
| | - Susan Wray
- Cellular & Developmental Neurobiology Section, NINDS, NIH, Bethesda, Maryland
| |
Collapse
|
25
|
Harre J, Heinkele L, Steffens M, Warnecke A, Lenarz T, Just I, Rohrbeck A. Potentiation of Brain-Derived Neurotrophic Factor-Induced Protection of Spiral Ganglion Neurons by C3 Exoenzyme/Rho Inhibitor. Front Cell Neurosci 2021; 15:602897. [PMID: 33776650 PMCID: PMC7991574 DOI: 10.3389/fncel.2021.602897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Preservation of the excitability of spiral ganglion neurons (SGN) may contribute to an improved speech perception after cochlear implantation. Thus, the application of exogenous neurotrophic factors such as the neurotrophin brain-derived neurotrophic factor (BDNF) to increase SGN survival in vitro and in vivo is a promising pharmacological approach in cochlear implant (CI) research. Due to the difficult pharmacokinetic profile of proteins such as BDNF, there is a quest for small molecules to mediate the survival of SGN or to increase the efficacy of BDNF. The C3 exoenzyme from Clostridium botulinum could be a potential new candidate for the protection and regeneration of SGN. Inhibition of the RhoA GTPase pathway which can be mediated by C3 is described as a promising strategy to enhance axonal regeneration and to exert pro-survival signals in neurons. Nanomolar concentrations of C3, its enzymatically inactive form C3E174Q, and a 26mer C-terminal peptide fragment covering amino acid 156–181 (C3156-181) potentiated the neuroprotective effect on SGN mediated by BDNF in vitro. The neuroprotective effect of C3/BDNF was reduced to the neuroprotective effect of BDNF alone after the treatment with wortmannin, an inhibitor of the phosphatidylinositol-3-kinase (PI3K).The exoenzyme C3 (wild-type and enzyme-deficient) and the C3 peptide fragment C3154–181 present novel biologically active compounds for the protection of the SGN. The exact underlying intracellular mechanisms that mediate the neuroprotective effect are not clarified yet, but the combination of BDNF (TrkB stimulation) and C3 exoenzyme (RhoA inhibition) can be used to protect SGN in vitro.
Collapse
Affiliation(s)
- Jennifer Harre
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1), Hannover, Germany
| | - Laura Heinkele
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Melanie Steffens
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1), Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1), Hannover, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Patel MR, Weaver AM. Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling. Cell Rep 2021; 34:108829. [PMID: 33691102 PMCID: PMC8002899 DOI: 10.1016/j.celrep.2021.108829] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
Neuronal synapse formation is critical for brain development and depends on secreted factors from astrocytes. Here, we report that small extracellular vesicles (EVs) secreted from primary astrocytes, but not from neurons or C6 glioma cells, greatly enhance spine and synapse formation by primary cortical neurons. A comparative proteomics analysis of small EVs from astrocytes, neurons, and C6 glioma cells identified fibulin-2 as a promising EV cargo to regulate synaptogenesis. Treatment of cortical neurons with recombinant fibulin-2 increased the formation of spines and synapses, similar to the effect of small EVs. In addition, treatment of neurons with fibulin-2 or astrocyte-derived small EVs led to increased phosphorylation of Smad2, an indicator of TGF-β signaling. Finally, the effects of fibulin-2 and astrocyte-derived small EVs on synapse formation were reversed by inhibiting transforming growth factor β (TGF-β) signaling. These data suggest a model in which astrocyte EVs promote synapse formation via fibulin-2-mediated activation of TGF-β signaling.
Collapse
Affiliation(s)
- Mikin R Patel
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
27
|
Extracellular Vesicles: Novel Roles in Neurological Disorders. Stem Cells Int 2021; 2021:6640836. [PMID: 33679989 PMCID: PMC7904361 DOI: 10.1155/2021/6640836] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Exosomes are small extracellular vesicles (EVs) secreted by almost all cells, which have been recognized as a novel platform for intercellular communication in the central nervous system (CNS). Exosomes are capable of transferring proteins, nucleic acids, lipids, and metabolites between neurons and glial cells, contributing to CNS development and maintenance of homeostasis. Evidence shows that exosomes originating from CNS cells act as suppressors or promoters in the initiation and progression of neurological disorders. Moreover, these exosomes have been shown to transfer molecules associated with diseases through the blood-brain barrier (BBB) and thus can be detected in blood. This unique feature enables exosomes to act as potential diagnostic biomarkers for neurological disorders. In addition, a substantial number of researches have indicated that exosomes derived from mesenchymal stem cells (MSCs) have repair effects on neurological disorders. Herein, we briefly introduce the roles of exosomes under physiological and pathological conditions. In particular, novel roles of exosomes as potential diagnostic biomarkers and therapeutic tools for neurological disorders are highlighted.
Collapse
|
28
|
Adolf A, Turko P, Rohrbeck A, Just I, Vida I, Ahnert-Hilger G, Höltje M. The Higher Sensitivity of GABAergic Compared to Glutamatergic Neurons to Growth-Promoting C3bot Treatment Is Mediated by Vimentin. Front Cell Neurosci 2020; 14:596072. [PMID: 33240046 PMCID: PMC7669547 DOI: 10.3389/fncel.2020.596072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
The current study investigates the neurotrophic effects of Clostridium botulinum C3 transferase (C3bot) on highly purified, glia-free, GABAergic, and glutamatergic neurons. Incubation with nanomolar concentrations of C3bot promotes dendrite formation as well as dendritic and axonal outgrowth in rat GABAergic neurons. A comparison of C3bot effects on sorted mouse GABAergic and glutamatergic neurons obtained from newly established NexCre;Ai9xVGAT Venus mice revealed a higher sensitivity of GABAergic cells to axonotrophic and dendritic effects of C3bot in terms of process length and branch formation. Protein biochemical analysis of known C3bot binding partners revealed comparable amounts of β1 integrin in both cell types but a higher expression of vimentin in GABAergic neurons. Accordingly, binding of C3bot to GABAergic neurons was stronger than binding to glutamatergic neurons. A combinatory treatment of glutamatergic neurons with C3bot and vimentin raised the amount of bound C3bot to levels comparable to the ones in GABAergic neurons, thereby confirming the specificity of effects. Overall, different surface vimentin levels between GABAergic and glutamatergic neurons exist that mediate neurotrophic C3bot effects.
Collapse
Affiliation(s)
- Andrej Adolf
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Paul Turko
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School (MHH), Hannover, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School (MHH), Hannover, Germany
| | - Imre Vida
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus Höltje
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
29
|
Patteson AE, Vahabikashi A, Goldman RD, Janmey PA. Mechanical and Non-Mechanical Functions of Filamentous and Non-Filamentous Vimentin. Bioessays 2020; 42:e2000078. [PMID: 32893352 PMCID: PMC8349470 DOI: 10.1002/bies.202000078] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal partners, microtubules and F-actin, but the unique physical properties of IFs, especially their resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help regulate cell mechanics and contractility, and in crowded 3D environments they protect the nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic screenings show that vimentin has many non-mechanical functions within and outside of cells. These include signaling roles in wound healing, lipogenesis, sterol processing, and various functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells by viruses, including SARS-CoV, or bacteria such as Listeria and Streptococcus. These findings underscore the fundamental role of vimentin in not only cell mechanics but also a range of physiological functions. Also see the video abstract here https://youtu.be/YPfoddqvz-g.
Collapse
Affiliation(s)
- Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Amir Vahabikashi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Paul A. Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
30
|
O'Leary LA, Davoli MA, Belliveau C, Tanti A, Ma JC, Farmer WT, Turecki G, Murai KK, Mechawar N. Characterization of Vimentin-Immunoreactive Astrocytes in the Human Brain. Front Neuroanat 2020; 14:31. [PMID: 32848635 PMCID: PMC7406576 DOI: 10.3389/fnana.2020.00031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocytes are commonly identified by their expression of the intermediate filament protein glial fibrillary acidic protein (GFAP). GFAP-immunoreactive (GFAP-IR) astrocytes exhibit regional heterogeneity in density and morphology in the mouse brain as well as morphological diversity in the human cortex. However, regional variations in astrocyte distribution and morphology remain to be assessed comprehensively. This was the overarching objective of this postmortem study, which mainly exploited the immunolabeling of vimentin (VIM), an intermediate filament protein expressed by astrocytes and endothelial cells which presents the advantage of more extensively labeling cell structures. We compared the densities of vimentin-immunoreactive (VIM-IR) and GFAP-IR astrocytes in various brain regions (prefrontal and primary visual cortex, caudate nucleus, mediodorsal thalamus) from male individuals having died suddenly in the absence of neurological or psychiatric conditions. The morphometric properties of VIM-IR in these brain regions were also assessed. We found that VIM-IR astrocytes generally express the canonical astrocytic markers Aldh1L1 and GFAP but that VIM-IR astrocytes are less abundant than GFAP-IR astrocytes in all human brain regions, particularly in the thalamus, where VIM-IR cells were nearly absent. About 20% of all VIM-IR astrocytes presented a twin cell morphology, a phenomenon rarely observed for GFAP-IR astrocytes. Furthermore VIM-IR astrocytes in the striatum were often seen to extend numerous parallel processes which seemed to give rise to large VIM-IR fiber bundles projecting over long distances. Moreover, morphometric analyses revealed that VIM-IR astrocytes were more complex than their mouse counterparts in functionally homologous brain regions, as has been previously reported for GFAP-IR astrocytes. Lastly, the density of GFAP-IR astrocytes in gray and white matter were inversely correlated with vascular density, but for VIM-IR astrocytes this was only the case in gray matter, suggesting that gliovascular interactions may especially influence the regional heterogeneity of GFAP-IR astrocytes. Taken together, these findings reveal special features displayed uniquely by human VIM-IR astrocytes and illustrate that astrocytes display important region- and marker-specific differences in the healthy human brain.
Collapse
Affiliation(s)
- Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Arnaud Tanti
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Jie Christopher Ma
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - William Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Keith Kazuo Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Huang P, Zhou Q, Lin Q, Lin L, Wang H, Chen X, Jiang S, Fu H, Deng Y. Complement C3a induces axonal hypomyelination in the periventricular white matter through activation of WNT/β-catenin signal pathway in septic neonatal rats experimentally induced by lipopolysaccharide. Brain Pathol 2020; 30:495-514. [PMID: 31622511 PMCID: PMC8018074 DOI: 10.1111/bpa.12798] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation is thought to play a pivotal role in the pathogenesis of periventricular white matter (PWM) damage (PWMD) induced by neonatal sepsis. Because the complement cascade is implicated in inflammatory response, this study was carried out to determine whether C3a is involved in PWMD, and, if so, whether it would induce axonal hypomyelination. Furthermore, we explored if C3a would act through its C3a receptor (C3aR) and thence inhibit maturation of oligodendrocyte precursor cells (OPCs) via the WNT/β-catenin signal pathway. Sprague Dawley (SD) rats aged 1 day were intraperitoneally injected with lipopolysaccharide (LPS) (1 mg/kg). C3a was upregulated in activated microglia and astrocytes in the PWM up to 7 days after LPS injection. Concomitantly, enhanced C3aR expression was observed in NG2+ oligodendrocytes (OLs). Myelin proteins including CNPase, PLP, MBP and MAG were significantly reduced in the PWM of 28-day septic rats. The number of PLP+ and MBP+ cells was markedly decreased. By electron microscopy, myelin sheath thickness was thinner and the average g-ratios were higher. This was coupled with an increase in number of NG2+ cells and decreased number of CC1+ cells. Olig1, Olig2 and SOX10 protein expression was significantly reduced in the PWM after LPS injection. Very strikingly, C3aRa administration for the first 7 days could reverse the above-mentioned pathological alterations in the PWM of septic rats. When incubated with C3a, expression of MBP, CNPase, PLP, MAG, Olig1, Olig2, SOX10 and CC1 in primary cultured OPCs was significantly downregulated as opposed to increased NG2. Moreover, WNT/β-catenin signaling pathway was found to be implicated in inhibition of OPCs maturation and differentiation induced by C3a in vitro. As a corollary, it is speculated that C3a in the PWM of septic rats is closely associated with the disorder of OPCs differentiation and maturation through WNT/β-catenin signaling pathway, which would contribute ultimately to axonal hypomyelination.
Collapse
Affiliation(s)
- Peixian Huang
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
| | - Qiuping Zhou
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- School of MedicineSouth China University of TechnologyGuangzhou510006GuangdongChina
| | - Qiongyu Lin
- Department of critical care medicineJieyang People's HospitalJieyang522000GuangdongChina
| | - Lanfen Lin
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- Department of critical care medicineGuangdong Second Provincial General HospitalGuangzhou510317GuangdongChina
| | - Huifang Wang
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- Affiliated South China HospitalSourthern Medical University (Guangdong Provincial People's Hospital)Guangzhou510515GuangdongChina
| | - Xuan Chen
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- Shantou University Medical CollegeShantou5105063GuangdongChina
| | - Shuqi Jiang
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- School of MedicineSouth China University of TechnologyGuangzhou510006GuangdongChina
| | - Hui Fu
- Department of AnatomyWuhan University School of Basic Medical SciencesWuhan430072HubeiChina
| | - Yiyu Deng
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
| |
Collapse
|
32
|
Li H, Luo Y, Zhu L, Hua W, Zhang Y, Zhang H, Zhang L, Li Z, Xing P, Zhang Y, Hong B, Yang P, Liu J. Glia-derived exosomes: Promising therapeutic targets. Life Sci 2019; 239:116951. [PMID: 31626787 DOI: 10.1016/j.lfs.2019.116951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 01/08/2023]
Abstract
Glia is an important component of the nervous system that is involved in neurotransmitter uptake, signal transduction, myelin synthesis, neurodevelopment, and immune response. Exosomes are extracellular vesicles that are secreted from certain types of cells, and are known to mediate glia function. Glia-derived exosomes (GDEs) can transport proteins, nucleotides and cellular waste, and exert both protective and toxic effects on the nervous system. GDEs promote glia-neuron communication, anti-stress responses, anti-inflammation and neurite outgrowth, and may also be involved in neurological disease such as glioma, glioblastoma, Alzheimer's disease, Parkinson disease and neuronal HIV infections. This review summarizes the current research on GDEs and their functions, with emphasis on their therapeutic potential.
Collapse
Affiliation(s)
- He Li
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Graduate School, Second Military Medical University, Shanghai, China
| | - Yin Luo
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Luojiang Zhu
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Graduate School, Second Military Medical University, Shanghai, China
| | - Weilong Hua
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Graduate School, Second Military Medical University, Shanghai, China
| | - Yongxin Zhang
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hongjian Zhang
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lei Zhang
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zifu Li
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Pengfei Xing
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yongwei Zhang
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bo Hong
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Pengfei Yang
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Liu
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
33
|
Vardjan N, Parpura V, Verkhratsky A, Zorec R. Gliocrine System: Astroglia as Secretory Cells of the CNS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:93-115. [PMID: 31583585 DOI: 10.1007/978-981-13-9913-8_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Astrocytes are secretory cells, actively participating in cell-to-cell communication in the central nervous system (CNS). They sense signaling molecules in the extracellular space, around the nearby synapses and also those released at much farther locations in the CNS, by their cell surface receptors, get excited to then release their own signaling molecules. This contributes to the brain information processing, based on diffusion within the extracellular space around the synapses and on convection when locales relatively far away from the release sites are involved. These functions resemble secretion from endocrine cells, therefore astrocytes were termed to be a part of the gliocrine system in 2015. An important mechanism, by which astrocytes release signaling molecules is the merger of the vesicle membrane with the plasmalemma, i.e., exocytosis. Signaling molecules stored in astroglial secretory vesicles can be discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This leads to a fusion pore formation, a channel that must widen to allow the exit of the Vesiclal cargo. Upon complete vesicle membrane fusion, this process also integrates other proteins, such as receptors, transporters and channels into the plasma membrane, determining astroglial surface signaling landscape. Vesiclal cargo, together with the whole vesicle can also exit astrocytes by the fusion of multivesicular bodies with the plasma membrane (exosomes) or by budding of vesicles (ectosomes) from the plasma membrane into the extracellular space. These astroglia-derived extracellular vesicles can later interact with various target cells. Here, the characteristics of four types of astroglial secretory vesicles: synaptic-like microvesicles, dense-core vesicles, secretory lysosomes, and extracellular vesicles, are discussed. Then machinery for vesicle-based exocytosis, second messenger regulation and the kinetics of exocytotic vesicle content discharge or release of extracellular vesicles are considered. In comparison to rapidly responsive, electrically excitable neurons, the receptor-mediated cytosolic excitability-mediated astroglial exocytotic vesicle-based transmitter release is a relatively slow process.
Collapse
Affiliation(s)
- Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia. .,Celica Biomedical, 1000, Ljubljana, Slovenia.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia. .,Celica Biomedical, 1000, Ljubljana, Slovenia.
| |
Collapse
|