1
|
Zhu L, Su G, Li R, Ma T, Chen W, Song J, Wu Q, An Y, Wang C, Zhang Z. The role of hypoxia/ischemia preconditioning in ischemic stroke. Neuroscience 2025; 568:343-354. [PMID: 39863133 DOI: 10.1016/j.neuroscience.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/25/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Ischemic stroke can cause damage to neurons, resulting in neurological dysfunction. The main treatments in the acute phase include intravenous thrombolysis, endovascular stent-assisted vascular thrombectomy and antiplatelet therapy. Due to the limitations of the time window and the risk of early intracranial hemorrhage, finding active treatment plans is crucial for improving therapy. Preconditioning can enhance the tolerance to acute injuries such as ischemic stroke and mechanical brain injury. This tolerance, induced by stressors like ischemia and hypoxia, can become an effective and convenient treatment approach for ischemic stroke. The molecular mechanisms involved in preconditioning are extremely complex. This article focuses on the main preconditioning treatment methods for ischemic stroke, discusses the specific molecular mechanisms of different treatment methods, and explores their action pathways and effects on corresponding target cells, thus opening up a brand-new direction for the treatment strategies of ischemic stroke.
Collapse
Affiliation(s)
- Longni Zhu
- Department of Neurology Lanzhou University Second Hospital Lanzhou Gansu China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences Lanzhou University Lanzhou Gansu China
| | - Ruixin Li
- Department of Neurology Lanzhou University Second Hospital Lanzhou Gansu China
| | - Tianfei Ma
- Department of Rehabilitation Lanzhou University First Hospital Lanzhou Gansu China
| | - Wei Chen
- Department of Neurology Lanzhou University Second Hospital Lanzhou Gansu China
| | - Jinyang Song
- Department of Neurology Lanzhou University Second Hospital Lanzhou Gansu China
| | - Qionghui Wu
- Department of Neurology Lanzhou University Second Hospital Lanzhou Gansu China
| | - Yang An
- Department of Neurology Lanzhou University Second Hospital Lanzhou Gansu China
| | - Chenyu Wang
- Institute of Pathology, School of Basic Medical Sciences Lanzhou University Lanzhou Gansu China
| | - Zhenchang Zhang
- Department of Neurology Lanzhou University Second Hospital Lanzhou Gansu China.
| |
Collapse
|
2
|
McDonough A, Weinstein JR. Glial 'omics in ischemia: Acute stroke and chronic cerebral small vessel disease. Glia 2025; 73:495-518. [PMID: 39463002 PMCID: PMC11785505 DOI: 10.1002/glia.24634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Vascular injury and pathologies underlie common diseases including ischemic stroke and cerebral small vessel disease (CSVD). Prior work has identified a key role for glial cells, including microglia, in the multifaceted and temporally evolving neuroimmune response to both stroke and CSVD. Transcriptional profiling has led to important advances including identification of distinct gene expression signatures in ischemia-exposed, flow cytometrically sorted microglia and more recently single cell RNA sequencing-identified microglial subpopulations or clusters. There is a reassuring degree of overlap in the results from these two distinct methodologies with both identifying a proliferative and a separate type I interferon responsive microglial element. Similar patterns were later seen using multimodal and spatial transcriptomal profiling in ischemia-exposed microglia and astrocytes. Methodological advances including enrichment of specific neuroanatomic/functional regions (such as the neurovascular unit) prior to single cell RNA sequencing has led to identification of novel cellular subtypes and generation of new credible hypotheses as to cellular function based on the enhanced cell sub-type specific gene expression patterns. A ribosomal tagging strategy focusing on the cellular translatome analyses carried out in the acute phases post stroke has revealed distinct inflammation-regulating roles for microglia and astrocytes in this setting. Early spatial transcriptomics experiments using cerebral ischemia models have identified regionally distinct microglial cell clusters in ischemic core versus penumbra. There is great potential for combination of these methods for multi-omics approaches to further elucidate glial responses in the context of both acute ischemic stroke and chronic CSVD.
Collapse
Affiliation(s)
- Ashley McDonough
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington 98195-6465
| | - Jonathan R. Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington 98195-6465
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington 98195-6465
| |
Collapse
|
3
|
Zhai ZH, Huang ZY, Huang KX, Zhong YQ, Tao EX, Yang YF. The Role of Casr Inhibition-Mediated M2 Microglial Transformation in Ischemic Preconditioning Against Stroke. Curr Med Sci 2025; 45:82-92. [PMID: 39982646 DOI: 10.1007/s11596-025-00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/12/2024] [Accepted: 11/28/2024] [Indexed: 02/22/2025]
Abstract
OBJECTIVE Stroke is a main cause of disability and mortality worldwide. It has been reported that ischemic preconditioning (IP) has neuroprotective effects against stroke. This study aimed to verify the mechanism by which calcium-sensing receptor (Casr) inhibition-mediated M2 microglial transformation in the IP protects against stroke, which will provide a potential therapeutic target for stroke. METHODS Middle cerebral artery occlusion (MCAO) rats and oxygen-glucose deprivation (OGD) neurons were used in this study. IP was induced via the transient MCAO and OGD methods. RNA sequencing (RNA-Seq) was used to explore the underlying key molecules. Western blotting and immunohistochemistry were performed to detect the expression of Casr and the M1 and M2 microglial markers. CCK8 was used to detect cell viability. The calcium concentration was detected via the use of Fluo-4 AM, a fluorescence probe. The Casr inhibitor NPS2143 and the Casr activator R568 were used to explore the role of Casr in M2 microglial transformation and neuroprotection. RESULTS We first revealed that IP induced M2 microglial transformation in ischemic injury. In addition, MCAO injury increased Casr expression and the calcium concentration, which was inhibited by IP. Furthermore, Casr activation inhibited the M2 microglial transformation induced by IP. Finally, we found that Casr inhibition improved the survival rate, alleviated neurological deficits, and reduced the infarct volume induced by MCAO. CONCLUSIONS We confirmed that Casr-related neuroprotection induced by IP is associated with the transformation of M2 microglia. These findings can be used to understand the protective mechanisms of IP against ischemic stroke.
Collapse
Affiliation(s)
- Zhi-Hao Zhai
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
- Department of Physiology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518000, China
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518000, China
| | - Zuo-Yu Huang
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518000, China
| | - Kai-Xun Huang
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Yuan-Qiang Zhong
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - En-Xiang Tao
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Yun-Feng Yang
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Wang S, He Q, Qu Y, Yin W, Zhao R, Wang X, Yang Y, Guo ZN. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy. Neural Regen Res 2024; 19:2430-2443. [PMID: 38526280 PMCID: PMC11090435 DOI: 10.4103/1673-5374.391313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 03/26/2024] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide, with limited treatment options available in clinical practice. The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function. Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect. Neural stem cells regulate multiple physiological responses, including nerve repair, endogenous regeneration, immune function, and blood-brain barrier permeability, through the secretion of bioactive substances, including extracellular vesicles/exosomes. However, due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation, limitations in the treatment effect remain unresolved. In this paper, we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke, review current neural stem cell therapeutic strategies and clinical trial results, and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells. We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
Collapse
Affiliation(s)
- Siji Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qianyan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenjing Yin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuyutian Wang
- Department of Breast Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
5
|
Di Santo C, Siniscalchi A, La Russa D, Tonin P, Bagetta G, Amantea D. Brain Ischemic Tolerance Triggered by Preconditioning Involves Modulation of Tumor Necrosis Factor-α-Stimulated Gene 6 (TSG-6) in Mice Subjected to Transient Middle Cerebral Artery Occlusion. Curr Issues Mol Biol 2024; 46:9970-9983. [PMID: 39329947 PMCID: PMC11430743 DOI: 10.3390/cimb46090595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Ischemic preconditioning (PC) induced by a sub-lethal cerebral insult triggers brain tolerance against a subsequent severe injury through diverse mechanisms, including the modulation of the immune system. Tumor necrosis factor (TNF)-α-stimulated gene 6 (TSG-6), a hyaluronate (HA)-binding protein, has recently been involved in the regulation of the neuroimmune response following ischemic stroke. Thus, we aimed at assessing whether the neuroprotective effects of ischemic PC involve the modulation of TSG-6 in a murine model of transient middle cerebral artery occlusion (MCAo). The expression of TSG-6 was significantly elevated in the ischemic cortex of mice subjected to 1 h MCAo followed by 24 h reperfusion, while this effect was further potentiated (p < 0.05 vs. MCAo) by pre-exposure to ischemic PC (i.e., 15 min MCAo) 72 h before. By immunofluorescence analysis, we detected TSG-6 expression mainly in astrocytes and myeloid cells populating the lesioned cerebral cortex, with a more intense signal in tissue from mice pre-exposed to ischemic PC. By contrast, levels of TSG-6 were reduced after 24 h of reperfusion in plasma (p < 0.05 vs. SHAM), but were dramatically elevated when severe ischemia (1 h MCAo) was preceded by ischemic PC (p < 0.001 vs. MCAo) that also resulted in significant neuroprotection. In conclusion, our data demonstrate that neuroprotection exerted by ischemic PC is associated with the elevation of TSG-6 protein levels both in the brain and in plasma, further underscoring the beneficial effects of this endogenous modulator of the immune system.
Collapse
Affiliation(s)
- Chiara Di Santo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| | - Antonio Siniscalchi
- Department of Neurology and Stroke Unit, Annunziata Hospital, 87100 Cosenza, Italy
| | - Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| |
Collapse
|
6
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
7
|
Guan X, Zhu S, Song J, Liu K, Liu M, Xie L, Wang Y, Wu J, Xu X, Pang T. Microglial CMPK2 promotes neuroinflammation and brain injury after ischemic stroke. Cell Rep Med 2024; 5:101522. [PMID: 38701781 PMCID: PMC11148565 DOI: 10.1016/j.xcrm.2024.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024]
Abstract
Neuroinflammation plays a significant role in ischemic injury, which can be promoted by oxidized mitochondrial DNA (Ox-mtDNA). Cytidine/uridine monophosphate kinase 2 (CMPK2) regulates mtDNA replication, but its role in neuroinflammation and ischemic injury remains unknown. Here, we report that CMPK2 expression is upregulated in monocytes/macrophages and microglia post-stroke in humans and mice, respectively. Microglia/macrophage CMPK2 knockdown using the Cre recombination-dependent adeno-associated virus suppresses the inflammatory responses in the brain, reduces infarcts, and improves neurological outcomes in ischemic CX3CR1Cre/ERT2 mice. Mechanistically, CMPK2 knockdown limits newly synthesized mtDNA and Ox-mtDNA formation and subsequently blocks NLRP3 inflammasome activation in microglia/macrophages. Nordihydroguaiaretic acid (NDGA), as a CMPK2 inhibitor, is discovered to reduce neuroinflammation and ischemic injury in mice and prevent the inflammatory responses in primary human monocytes from ischemic patients. Thus, these findings identify CMPK2 as a promising therapeutic target for ischemic stroke and other brain disorders associated with neuroinflammation.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Sitong Zhu
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jinqian Song
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Mei Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P.R. China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yifang Wang
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P.R. China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P.R. China.
| | - Xiaojun Xu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang Province 322000, P.R. China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China.
| |
Collapse
|
8
|
Helbing DL, Haas F, Cirri E, Rahnis N, Dau TTD, Kelmer Sacramento E, Oraha N, Böhm L, Lajqi T, Fehringer P, Morrison H, Bauer R. Impact of inflammatory preconditioning on murine microglial proteome response induced by focal ischemic brain injury. Front Immunol 2024; 15:1227355. [PMID: 38655254 PMCID: PMC11036884 DOI: 10.3389/fimmu.2024.1227355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Preconditioning with lipopolysaccharide (LPS) induces neuroprotection against subsequent cerebral ischemic injury, mainly involving innate immune pathways. Microglia are resident immune cells of the central nervous system (CNS) that respond early to danger signals through memory-like differential reprogramming. However, the cell-specific molecular mechanisms underlying preconditioning are not fully understood. To elucidate the distinct molecular mechanisms of preconditioning on microglia, we compared these cell-specific proteomic profiles in response to LPS preconditioning and without preconditioning and subsequent transient focal brain ischemia and reperfusion, - using an established mouse model of transient focal brain ischemia and reperfusion. A proteomic workflow, based on isolated microglia obtained from mouse brains by cell sorting and coupled to mass spectrometry for identification and quantification, was applied. Our data confirm that LPS preconditioning induces marked neuroprotection, as indicated by a significant reduction in brain infarct volume. The established brain cell separation method was suitable for obtaining an enriched microglial cell fraction for valid proteomic analysis. The results show a significant impact of LPS preconditioning on microglial proteome patterns by type I interferons, presumably driven by the interferon cluster regulator proteins signal transducer and activator of transcription1/2 (STAT1/2).
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
- German Center for Mental Health (DZPG), Site Halle-Jena-Magdeburg, Jena, Germany
| | - Fabienne Haas
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Emilio Cirri
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Norman Rahnis
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | | | - Nova Oraha
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Leopold Böhm
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
| | - Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, Heidelberg, Germany
| | - Pascal Fehringer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
9
|
Tregub PP, Kulikov VP, Ibrahimli I, Tregub OF, Volodkin AV, Ignatyuk MA, Kostin AA, Atiakshin DA. Molecular Mechanisms of Neuroprotection after the Intermittent Exposures of Hypercapnic Hypoxia. Int J Mol Sci 2024; 25:3665. [PMID: 38612476 PMCID: PMC11011936 DOI: 10.3390/ijms25073665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The review introduces the stages of formation and experimental confirmation of the hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and signaling pathways involved in the formation of ischemic tolerance in the brain during intermittent hypercapnic hypoxia. Importantly, the combined effect of hypoxia and hypercapnia exerts a more pronounced neuroprotective effect compared to their separate application. Some signaling systems are associated with the predominance of the hypoxic stimulus (HIF-1α, A1 receptors), while others (NF-κB, antioxidant activity, inhibition of apoptosis, maintenance of selective blood-brain barrier permeability) are mainly modulated by hypercapnia. Most of the molecular and cellular mechanisms involved in the formation of brain tolerance to ischemia are due to the contribution of both excess carbon dioxide and oxygen deficiency (ATP-dependent potassium channels, chaperones, endoplasmic reticulum stress, mitochondrial metabolism reprogramming). Overall, experimental studies indicate the dominance of hypercapnia in the neuroprotective effect of its combined action with hypoxia. Recent clinical studies have demonstrated the effectiveness of hypercapnic-hypoxic training in the treatment of childhood cerebral palsy and diabetic polyneuropathy in children. Combining hypercapnic hypoxia with pharmacological modulators of neuro/cardio/cytoprotection signaling pathways is likely to be promising for translating experimental research into clinical medicine.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Vladimir P. Kulikov
- Department of Ultrasound and Functional Diagnostics, Altay State Medical University, 656040 Barnaul, Russia;
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | | | - Artem V. Volodkin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Michael A. Ignatyuk
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Andrey A. Kostin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Dmitrii A. Atiakshin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| |
Collapse
|
10
|
Gellner AK, Reis J, Fiebich BL, Fritsch B. Cx3cr1 deficiency interferes with learning- and direct current stimulation-mediated neuroplasticity of the motor cortex. Eur J Neurosci 2024; 59:177-191. [PMID: 38049944 DOI: 10.1111/ejn.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/18/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
Microglia are essential contributors to synaptic transmission and stability and communicate with neurons via the fractalkine pathway. Transcranial direct current stimulation [(t)DCS], a form of non-invasive electrical brain stimulation, modulates cortical excitability and promotes neuroplasticity, which has been extensively demonstrated in the motor cortex and for motor learning. The role of microglia and their fractalkine receptor CX3CR1 in motor cortical neuroplasticity mediated by DCS or motor learning requires further elucidation. We demonstrate the effects of pharmacological microglial depletion and genetic Cx3cr1 deficiency on the induction of DCS-induced long-term potentiation (DCS-LTP) ex vivo. The relevance of microglia-neuron communication for DCS response and structural neuroplasticity underlying motor learning are assessed via 2-photon in vivo imaging. The behavioural consequences of impaired CX3CR1 signalling are investigated for both gross and fine motor learning. We show that DCS-mediated neuroplasticity in the motor cortex depends on the presence of microglia and is driven in part by CX3CR1 signalling ex vivo and provide the first evidence of microglia interacting with neurons during DCS in vivo. Furthermore, CX3CR1 signalling is required for motor learning and underlying structural neuroplasticity in concert with microglia interaction. Although we have recently demonstrated the microglial response to DCS in vivo, we now provide a link between microglial integrity and neuronal activity for the expression of DCS-dependent neuroplasticity. In addition, we extend the knowledge on the relevance of CX3CR1 signalling for motor learning and structural neuroplasticity. The underlying molecular mechanisms and the potential impact of DCS in rescuing CX3CR1 deficits remain to be addressed in the future.
Collapse
Affiliation(s)
- Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Neurology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany
| | - Janine Reis
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brita Fritsch
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
11
|
Zhang F, Yang D, Li J, Du C, Sun X, Li W, Liu F, Yang Y, Li Y, Fu L, Li R, Zhang CX. Synaptotagmin-11 regulates immune functions of microglia in vivo. J Neurochem 2023; 167:680-695. [PMID: 37924268 DOI: 10.1111/jnc.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Membrane trafficking pathways mediate key microglial activities such as cell migration, cytokine secretion, and phagocytosis. However, the underlying molecular mechanism remains poorly understood. Previously, we found that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt associated with Parkinson's disease (PD) and schizophrenia, inhibits cytokine release and phagocytosis in primary microglia. Here we reported the in vivo function of Syt11 in microglial immune responses using an inducible microglia-specific Syt11-conditional-knockout (cKO) mouse strain. Syt11-cKO resulted in activation of microglia and elevated mRNA levels of IL-6, TNF-α, IL-1β, and iNOS in various brain regions under both resting state and LPS-induced acute inflammation state in adult mice. In a PD mouse model generated by microinjection of preformed α-synuclein fibrils into the striatum, a reduced number of microglia migrated toward the injection sites and an enhanced phagocytosis of α-synuclein fibrils by microglia were found in Syt11-cKO mice. To understand the molecular mechanism of Syt11 function, we identified its direct binding proteins vps10p-tail-interactor-1a (vti1a) and vti1b. The linker domain of Syt11 interacted with both proteins and a peptide derived from it competitively inhibited the interaction of Syt11 with vti1a/vti1b in vitro and in cells. Importantly, application of this peptide induced more cytokine secretion in wild-type microglia upon LPS treatment, phenocopying defects in Syt11 knockdown cells. Altogether, we propose that Syt11 inhibits microglial activation in vivo and regulates cytokine secretion through interactions with vti1a and vti1b.
Collapse
Affiliation(s)
- Feifan Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Dong Yang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jingchen Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xinran Sun
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Wanru Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fengwei Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yiwei Yang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuhong Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Lei Fu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Rena Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
12
|
Quan H, Zhang R. Microglia dynamic response and phenotype heterogeneity in neural regeneration following hypoxic-ischemic brain injury. Front Immunol 2023; 14:1320271. [PMID: 38094292 PMCID: PMC10716326 DOI: 10.3389/fimmu.2023.1320271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Hypoxic-ischemic brain injury poses a significant threat to the neural niche within the central nervous system. In response to this pathological process, microglia, as innate immune cells in the central nervous system, undergo rapid morphological, molecular and functional changes. Here, we comprehensively review these dynamic changes in microglial response to hypoxic-ischemic brain injury under pathological conditions, including stroke, chronic intermittent hypoxia and neonatal hypoxic-ischemic brain injury. We focus on the regulation of signaling pathways under hypoxic-ischemic brain injury and further describe the process of microenvironment remodeling and neural tissue regeneration mediated by microglia after hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Hongxin Quan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Runrui Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| |
Collapse
|
13
|
Zhang Z, Guo Z, Tu Z, Yang H, Li C, Hu M, Zhang Y, Jin P, Hou S. Cortex-specific transcriptome profiling reveals upregulation of interferon-regulated genes after deeper cerebral hypoperfusion in mice. Front Physiol 2023; 14:1056354. [PMID: 36994418 PMCID: PMC10040763 DOI: 10.3389/fphys.2023.1056354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Background: Chronic cerebral hypoperfusion (CCH) is commonly accompanied by brain injury and glial activation. In addition to white matter lesions, the intensity of CCH greatly affects the degree of gray matter damage. However, little is understood about the underlying molecular mechanisms related to cortical lesions and glial activation following hypoperfusion. Efforts to investigate the relationship between neuropathological alternations and gene expression changes support a role for identifying novel molecular pathways by transcriptomic mechanisms.Methods: Chronic cerebral ischemic injury model was induced by the bilateral carotid artery stenosis (BCAS) using 0.16/0.18 mm microcoils. Cerebral blood flow (CBF) was evaluated using laser speckle contrast imaging (LSCI) system. Spatial learning and memory were assessed by Morris water maze test. Histological changes were evaluated by Hematoxylin staining. Microglial activation and neuronal loss were further examined by immunofluorescence staining. Cortex-specific gene expression profiling analysis was performed in sham and BCAS mice, and then validated by quantitative RT-PCR and immunohistochemistry (IHC).Results: In our study, compared with the sham group, the right hemisphere CBF of BCAS mice decreased to 69% and the cognitive function became impaired at 4 weeks postoperation. Besides, the BCAS mice displayed profound gray matter damage, including atrophy and thinning of the cortex, accompanied by neuronal loss and increased activated microglia. Gene set enrichment analysis (GSEA) revealed that hypoperfusion-induced upregulated genes were significantly enriched in the pathways of interferon (IFN)-regulated signaling along with neuroinflammation signaling. Ingenuity pathway analysis (IPA) predicted the importance of type I IFN signaling in regulating the CCH gene network. The obtained RNA-seq data were validated by qRT-PCR in cerebral cortex, showing consistency with the RNA-seq results. Also, IHC staining revealed elevated expression of IFN-inducible protein in cerebral cortex following BCAS-hypoperfusion.Conclusion: Overall, the activation of IFN-mediated signaling enhanced our understanding of the neuroimmune responses induced by CCH. The upregulation of IFN-regulated genes (IRGs) might exert a critical impact on the progression of cerebral hypoperfusion. Our improved understanding of cortex-specific transcriptional profiles will be helpful to explore potential targets for CCH.
Collapse
Affiliation(s)
- Zengyu Zhang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Zimin Guo
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Zhilan Tu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Hualan Yang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Chao Li
- School of Pharmacy, Hubei University of Science and Technology, Hubei, China
| | - Mengting Hu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yuan Zhang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Pengpeng Jin
- Department of Chronic Disease Management, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- *Correspondence: Shuangxing Hou, ; Pengpeng Jin,
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- *Correspondence: Shuangxing Hou, ; Pengpeng Jin,
| |
Collapse
|
14
|
Zhang L, Zhou H, Wang S, Guan Y, Zhang C, Fang D. Changes in microglia during drug treatment of stroke. IBRAIN 2022; 8:227-240. [PMID: 37786889 PMCID: PMC10528798 DOI: 10.1002/ibra.12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 10/04/2023]
Abstract
Microglia are the main immune cells in the brain and the first defense barrier of the nervous system. Microglia play a complex role in the process of stroke. A growing number of studies focus on the mechanism of action of drugs functions and how to regulate microglia. Therefore, we talk about the pathophysiological mechanisms of stroke and elaborate on the microglia signaling pathways of drug action in stroke models and how these drugs play a role in stroke treatment in this review. Understanding how drugs modulate proinflammatory and anti-inflammatory responses of microglia may be critical to implementing therapeutic strategies using immune interventions in stroke.
Collapse
Affiliation(s)
- Ling‐Jing Zhang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Hong‐Su Zhou
- Department of AnesthesiaGraduate School of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shi‐Ya Wang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Yi‐Huan Guan
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Chao Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - De‐Rong Fang
- Department of Family PlanningAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
15
|
Wood TR, Hildahl K, Helmbrecht H, Corry KA, Moralejo DH, Kolnik SE, Prater KE, Juul SE, Nance E. A ferret brain slice model of oxygen-glucose deprivation captures regional responses to perinatal injury and treatment associated with specific microglial phenotypes. Bioeng Transl Med 2022; 7:e10265. [PMID: 35600642 PMCID: PMC9115703 DOI: 10.1002/btm2.10265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
Organotypic brain slice models are an ideal technological platform to investigate therapeutic options for hypoxic-ischemic (HI) brain injury, a leading cause of morbidity and mortality in neonates. The brain exhibits regional differences in the response to HI injury in vivo. This can be modeled using organotypic brain slices, which maintain three-dimensional regional structures and reflect the regional differences in injury response. Here, we developed an organotypic whole hemisphere (OWH) slice culture model of HI injury using the gyrencephalic ferret brain at a developmental stage equivalent to a full-term human infant in order to better probe region-specific cellular responses to injury. Each slice encompassed the cortex, corpus callosum, subcortical white matter, hippocampus, basal ganglia, and thalamus. Regional responses to treatment with either erythropoietin (Epo) or the ketone body acetoacetate (AcAc) were highly heterogenous. While both treatments suppressed global injury responses and oxidative stress, significant neuroprotection was only seen in a subset of regions, with others displaying no response or potential exacerbation of injury. Similar regional heterogeneity was seen in the morphology and response of microglia to injury and treatment, which mirrored those seen after injury in vivo. Within each region, machine-learning-based classification of microglia morphological shifts in response to injury predicted the neuroprotective response to each therapy, with different morphologies associated with different treatment responses. This suggests that the ferret OWH slice culture model provides a platform for examining regional responses to injury in the gyrencephalic brain, as well as for screening combinations of therapeutics to provide global neuroprotection after injury.
Collapse
Affiliation(s)
- Thomas R. Wood
- Department of Pediatrics, Division of NeonatologyUniversity of WashingtonSeattleWashingtonUSA
- Center on Human Development and DisabilityUniversity of WashingtonSeattleWashingtonUSA
| | - Kate Hildahl
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Hawley Helmbrecht
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Kylie A. Corry
- Department of Pediatrics, Division of NeonatologyUniversity of WashingtonSeattleWashingtonUSA
| | - Daniel H. Moralejo
- Department of Pediatrics, Division of NeonatologyUniversity of WashingtonSeattleWashingtonUSA
| | - Sarah E. Kolnik
- Department of Pediatrics, Division of NeonatologyUniversity of WashingtonSeattleWashingtonUSA
| | | | - Sandra E. Juul
- Department of Pediatrics, Division of NeonatologyUniversity of WashingtonSeattleWashingtonUSA
- Center on Human Development and DisabilityUniversity of WashingtonSeattleWashingtonUSA
| | - Elizabeth Nance
- Center on Human Development and DisabilityUniversity of WashingtonSeattleWashingtonUSA
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
16
|
Amantea D, La Russa D, Frisina M, Giordano F, Di Santo C, Panno ML, Pignataro G, Bagetta G. Ischemic Preconditioning Modulates the Peripheral Innate Immune System to Promote Anti-Inflammatory and Protective Responses in Mice Subjected to Focal Cerebral Ischemia. Front Immunol 2022; 13:825834. [PMID: 35359933 PMCID: PMC8962743 DOI: 10.3389/fimmu.2022.825834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
The development of tolerance triggered by a sublethal ischemic episode (preconditioning, PC) involves a complex crosstalk between neurons, astrocytes and microglia, although the role of the peripheral immune system in this context is largely unexplored. Here, we report that severe cerebral ischemia caused by transient middle cerebral artery occlusion (MCAo) in adult male mice elevates blood counts of inflammatory neutrophils and monocytes, and plasma levels of miRNA-329-5p. These inflammatory responses are prevented by ischemic PC induced by 15 min MCAo, 72h before the severe insult (1h MCAo). As compared with sham-operated animals, mice subjected to either ischemic PC, MCAo or a combination of both (PC+MCAo) display spleen contraction. However, protein levels of Ym1 (a marker of polarization of myeloid cells towards M2/N2 protective phenotypes) are elevated only in spleen from the experimental groups PC and PC+MCAo, but not MCAo. Conversely, Ym1 protein levels only increase in circulating leukocytes from mice subjected to 1h MCAo, but not in preconditioned animals, which is coincident with a dramatic elevation of Ym1 expression in the ipsilateral cortex. By immunofluorescence analysis, we observe that expression of Ym1 occurs in amoeboid-shaped myeloid cells, mainly representing inflammatory monocytes/macrophages and neutrophils. As a result of its immune-regulatory functions, ischemic PC prevents elevation of mRNA levels of the pro-inflammatory cytokine interleukin (IL)-1β in the ipsilateral cortex, while not affecting IL-10 mRNA increase induced by MCAo. Overall, the elevated anti-inflammatory/pro-inflammatory ratio observed in the brain of mice pre-exposed to PC is associated with reduced brain infarct volume and ischemic edema, and with amelioration of functional outcome. These findings reaffirm the crucial and dualistic role of the innate immune system in ischemic stroke pathobiology, extending these concepts to the context of ischemic tolerance and underscoring their relevance for the identification of novel therapeutic targets for effective stroke treatment.
Collapse
Affiliation(s)
- Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Daniele La Russa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Marialaura Frisina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Chiara Di Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Giuseppe Pignataro
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, “Federico II” University, Naples, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| |
Collapse
|
17
|
Hamner MA, McDonough A, Gong DC, Todd LJ, Rojas G, Hodecker S, Ransom CB, Reh TA, Ransom BR, Weinstein JR. Microglial depletion abolishes ischemic preconditioning in white matter. Glia 2021; 70:661-674. [PMID: 34939240 DOI: 10.1002/glia.24132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 01/17/2023]
Abstract
Ischemic preconditioning (IPC) is a phenomenon whereby a brief, non-injurious ischemic exposure enhances tolerance to a subsequent ischemic challenge. The mechanism of IPC has mainly been studied in rodent stroke models where gray matter (GM) constitutes about 85% of the cerebrum. In humans, white matter (WM) is 50% of cerebral volume and is a critical component of stroke damage. We developed a novel CNS WM IPC model using the mouse optic nerve (MON) and identified the involved immune signaling pathways. Here we tested the hypothesis that microglia are necessary for WM IPC. Microglia were depleted by treatment with the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622. MONs were exposed to transient ischemia in vivo, acutely isolated 72 h later, and subjected to oxygen-glucose deprivation (OGD) to simulate a severe ischemic injury (i.e., stroke). Functional and structural axonal recovery was assessed by recording compound action potentials (CAPs) and by microscopy using quantitative stereology. Microglia depletion eliminated IPC-mediated protection. In control mice, CAP recovery was improved in preconditioned MONs compared with non-preconditioned MONs, however, in PLX5622-treated mice, we observed no difference in CAP recovery between preconditioned and non-preconditioned MONs. Microgliadepletion also abolished IPC protective effects on axonal integrity and survival of mature (APC+ ) oligodendrocytes after OGD. IPC-mediated protection was independent of retinal injury suggesting it results from mechanistic processes intrinsic to ischemia-exposed WM. We conclude that preconditioned microglia are critical for IPC in WM. The "preconditioned microglia" phenotype might protect against other CNS pathologies and is a neurotherapeutic horizon worth exploring.
Collapse
Affiliation(s)
- Margaret A Hamner
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ashley McDonough
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Davin C Gong
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Levi J Todd
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, USA
| | - German Rojas
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Sibylle Hodecker
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Christopher B Ransom
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Thomas A Reh
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Bruce R Ransom
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington, USA.,Neuroscience Department, City University of Hong Kong, Kowloon, Hong Kong
| | - Jonathan R Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Wu C, Zhao L, Li X, Xu Y, Guo H, Huang Z, Wang Q, Liu H, Chen D, Zhu M. Integrated Bioinformatics Analysis of Potential mRNA and miRNA Regulatory Networks in Mice With Ischemic Stroke Treated by Electroacupuncture. Front Neurol 2021; 12:719354. [PMID: 34566862 PMCID: PMC8461332 DOI: 10.3389/fneur.2021.719354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The complicated molecular mechanisms underlying the therapeutic effect of electroacupuncture (EA) on ischemic stroke are still unclear. Recently, more evidence has revealed the essential role of the microRNA (miRNA)–mRNA networks in ischemic stroke. However, a systematic analysis of novel key genes, miRNAs, and miRNA–mRNA networks regulated by EA in ischemic stroke is still absent. Methods: We established a middle cerebral artery occlusion (MCAO) mouse model and performed EA therapy on ischemic stroke mice. Behavior tests and measurement of infarction area were applied to measure the effect of EA treatment. Then, we performed RNA sequencing to analyze differentially expressed genes (DEGs) and functional enrichment between the EA and control groups. In addition, a protein–protein interaction (PPI) network was built, and hub genes were screened by Cytoscape. Upstream miRNAs were predicted by miRTarBase. Then hub genes and predicted miRNAs were verified as key biomarkers by RT-qPCR. Finally, miRNA–mRNA networks were constructed to explore the potential mechanisms of EA in ischemic stroke. Results: Our analysis revealed that EA treatment could significantly alleviate neurological deficits in the affected limbs and reduce infarct area of the MCAO model mice. A total of 174 significant DEGs, including 53 upregulated genes and 121 downregulated genes, were identified between the EA and control groups. Functional enrichment analysis showed that these DEGs were associated with the FOXO signaling pathway, NF-kappa B signaling pathway, T-cell receptor signaling pathway, and other vital pathways. The top 10 genes with the highest degree scores were identified as hub genes based on the degree method, but only seven genes were verified as key genes according to RT-qPCR. Twelve upstream miRNAs were predicted to target the seven key genes. However, only four miRNAs were significantly upregulated and indicated favorable effects of EA treatment. Finally, comprehensive analysis of the results identified the miR-425-5p-Cdk1, mmu-miR-1186b-Prc1, mmu-miR-434-3p-Prc1, and mmu-miR-453-Prc1 miRNA–mRNA networks as key networks that are regulated by EA and linked to ischemic stroke. These networks might mainly take place in neuronal cells regulated by EA in ischemic stroke. Conclusion: In summary, our study identified key DEGs, miRNAs, and miRNA–mRNA regulatory networks that may help to facilitate the understanding of the molecular mechanism underlying the effect of EA treatment on ischemic stroke.
Collapse
Affiliation(s)
- Chunxiao Wu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijun Zhao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xinrong Li
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yingshan Xu
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongji Guo
- Clinical Medical of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zifeng Huang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Qizhang Wang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Helu Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Dongfeng Chen
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Zhu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
19
|
Prater KE, Aloi MS, Pathan JL, Winston CN, Chernoff RA, Davidson S, Sadgrove M, McDonough A, Zierath D, Su W, Weinstein JR, Garden GA. A Subpopulation of Microglia Generated in the Adult Mouse Brain Originates from Prominin-1-Expressing Progenitors. J Neurosci 2021; 41:7942-7953. [PMID: 34380760 PMCID: PMC8460141 DOI: 10.1523/jneurosci.1893-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Microglia maintain brain health and play important roles in disease and injury. Despite the known ability of microglia to proliferate, the precise nature of the population or populations capable of generating new microglia in the adult brain remains controversial. We identified Prominin-1 (Prom1; also known as CD133) as a putative cell surface marker of committed brain myeloid progenitor cells. We demonstrate that Prom1-expressing cells isolated from mixed cortical cultures will generate new microglia in vitro To determine whether Prom1-expressing cells generate new microglia in vivo, we used tamoxifen inducible fate mapping in male and female mice. Induction of Cre recombinase activity at 10 weeks in Prom1-expressing cells leads to the expression of TdTomato in all Prom1-expressing progenitors and newly generated daughter cells. We observed a population of new TdTomato-expressing microglia at 6 months of age that increased in size at 9 months. When microglia proliferation was induced using a transient ischemia/reperfusion paradigm, little proliferation from the Prom1-expressing progenitors was observed with the majority of new microglia derived from Prom1-negative cells. Together, these findings reveal that Prom1-expressing myeloid progenitor cells contribute to the generation of new microglia both in vitro and in vivo Furthermore, these findings demonstrate the existence of an undifferentiated myeloid progenitor population in the adult mouse brain that expresses Prom1. We conclude that Prom1-expressing myeloid progenitors contribute to new microglia genesis in the uninjured brain but not in response to ischemia/reperfusion.SIGNIFICANCE STATEMENT Microglia, the innate immune cells of the CNS, can divide to slowly generate new microglia throughout life. Newly generated microglia may influence inflammatory responses to injury or neurodegeneration. However, the origins of the new microglia in the brain have been controversial. Our research demonstrates that some newly born microglia in a healthy brain are derived from cells that express the stem cell marker Prominin-1. This is the first time Prominin-1 cells are shown to generate microglia.
Collapse
Affiliation(s)
| | - Macarena S Aloi
- Departments of Neurology and
- Pathology, University of Washington, Seattle, Washington 98195
| | | | | | | | | | - Matthew Sadgrove
- Department of Neurology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | | | - Wei Su
- Departments of Neurology and
| | - Jonathan R Weinstein
- Departments of Neurology and
- Center on Human Development and Disability, University of Washington, Seattle, Washington 98195
| | - Gwenn A Garden
- Departments of Neurology and
- Pathology, University of Washington, Seattle, Washington 98195
- Center on Human Development and Disability, University of Washington, Seattle, Washington 98195
- Department of Neurology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
20
|
Liu J, Gu Y, Guo M, Ji X. Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci Ther 2021; 27:869-882. [PMID: 34237192 PMCID: PMC8265941 DOI: 10.1111/cns.13642] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
As the organ with the highest demand for oxygen, the brain has a poor tolerance to ischemia and hypoxia. Despite severe ischemia/hypoxia induces the occurrence and development of various central nervous system (CNS) diseases, sublethal insult may induce strong protection against subsequent fatal injuries by improving tolerance. Searching for potential measures to improve brain ischemic/hypoxic is of great significance for treatment of ischemia/hypoxia related CNS diseases. Ischemic/hypoxic preconditioning (I/HPC) refers to the approach to give the body a short period of mild ischemic/hypoxic stimulus which can significantly improve the body's tolerance to subsequent more severe ischemia/hypoxia event. It has been extensively studied and been considered as an effective therapeutic strategy in CNS diseases. Its protective mechanisms involved multiple processes, such as activation of hypoxia signaling pathways, anti-inflammation, antioxidant stress, and autophagy induction, etc. As a strategy to induce endogenous neuroprotection, I/HPC has attracted extensive attention and become one of the research frontiers and hotspots in the field of neurotherapy. In this review, we discuss the basic and clinical research progress of I/HPC on CNS diseases, and summarize its mechanisms. Furthermore, we highlight the limitations and challenges of their translation from basic research to clinical application.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Hammond BP, Manek R, Kerr BJ, Macauley MS, Plemel JR. Regulation of microglia population dynamics throughout development, health, and disease. Glia 2021; 69:2771-2797. [PMID: 34115410 DOI: 10.1002/glia.24047] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The dynamic expansions and contractions of the microglia population in the central nervous system (CNS) to achieve homeostasis are likely vital for their function. Microglia respond to injury or disease but also help guide neurodevelopment, modulate neural circuitry throughout life, and direct regeneration. Throughout these processes, microglia density changes, as does the volume of area that each microglia surveys. Given that microglia are responsible for sensing subtle alterations to their environment, a change in their density could affect their capacity to mobilize rapidly. In this review, we attempt to synthesize the current literature on the ligands and conditions that promote microglial proliferation across development, adulthood, and neurodegenerative conditions. Microglia display an impressive proliferative capacity during development and in neurodegenerative diseases that is almost completely absent at homeostasis. However, the appropriate function of microglia in each state is critically dependent on density fluctuations that are primarily induced by proliferation. Proliferation is a natural microglial response to insult and often serves neuroprotective functions. In contrast, inappropriate microglial proliferation, whether too much or too little, often precipitates undesirable consequences for nervous system health. Thus, fluctuations in the microglia population are tightly regulated to ensure these immune cells can execute their diverse functions.
Collapse
Affiliation(s)
- Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupali Manek
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Yu H, Xu Z, Qu G, Wang H, Lin L, Li X, Xie X, Lei Y, He X, Chen Y, Li Y. Hypoxic Preconditioning Enhances the Efficacy of Mesenchymal Stem Cells-Derived Conditioned Medium in Switching Microglia toward Anti-inflammatory Polarization in Ischemia/Reperfusion. Cell Mol Neurobiol 2021; 41:505-524. [PMID: 32424775 PMCID: PMC11448619 DOI: 10.1007/s10571-020-00868-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Activation of pro-inflammatory microglia is an important mechanism of the cerebral ischemia-reperfusion (I/R)-induced neuronal injury and dysfunction. Mesenchymal stem cells (MSCs) together with their paracrine factors demonstrated curative potential in immune disorders and inflammatory diseases, as well as in ischemic diseases. However, it remains unclear whether conditioned medium from MSCs could effectively regulate the activation and polarization of microglia exposed to I/R stimulation. In this study, we investigated the effects of conditioned medium from bone marrow MSCs (BMSCs-CM) on I/R-stimulated microglia and the potential mechanism involved, as well as the way to obtain more effective BMSCs-CM. First, cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) was established in microglia to mimic the I/R. BMSCs-CM from different culture conditions (normoxic: 21% O2; hypoxic: 1% O2; hypoxia preconditioning: preconditioning with 1% O2 for 24 h) was used to treat the microglia. Our results showed that BMSCs-CM effectively promoted the survival and alleviated the injury of microglia. Moreover, in microglia exposed to OGD/R, BMSCs-CM inhibited significantly the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), CD86 and inducible nitric oxide synthase, whereas upregulated the levels of anti-inflammatory cytokine (IL-10), CD206 and Arginase-1. These results suggested that BMSCs-CM promoted the polarization of anti-inflammatory microglia. In particular, BMSCs-CM from cultures with hypoxia preconditioning was more effective in alleviating cell injury and promoting anti-inflammatory microglia polarization than BMSCs-CM from normoxic cultures and from hypoxic cultures. Furthermore, inhibition of exosomes secretion could largely mitigate these effects of BMSCs-CM. In conclusion, our results suggested that hypoxia preconditioning of BMSCs could enhance the efficacy of BMSCs-CM in alleviating OGD/R-induced injury and in promoting the anti-inflammatory polarization of microglia, and these beneficial effects of BMSCs-CM owed substantially to exosomes.
Collapse
Affiliation(s)
- Han Yu
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Pathology, The Affiliated Hospital of Hubei University of Medicine, The First People's Hospital of Xiangyang, Xiangyang, 441000, China
| | - Zhihong Xu
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaojing Qu
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Huimin Wang
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lulu Lin
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xianyu Li
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaolin Xie
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yifeng Lei
- The Institute of Technological Sciences & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Xiaohua He
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yinping Li
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
23
|
Zhang X, Heng Y, Kooistra SM, van Weering HRJ, Brummer ML, Gerrits E, Wesseling EM, Brouwer N, Nijboer TW, Dubbelaar ML, Boddeke EWGM, Eggen BJL. Intrinsic DNA damage repair deficiency results in progressive microglia loss and replacement. Glia 2021; 69:729-745. [PMID: 33068332 PMCID: PMC7821301 DOI: 10.1002/glia.23925] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022]
Abstract
The DNA excision repair protein Ercc1 is important for nucleotide excision, double strand DNA break, and interstrand DNA crosslink repair. In constitutive Ercc1-knockout mice, microglia display increased phagocytosis, proliferation and an enhanced responsiveness to lipopolysaccharide (LPS)-induced peripheral inflammation. However, the intrinsic effects of Ercc1-deficiency on microglia are unclear. In this study, Ercc1 was specifically deleted from Cx3cr1-expressing cells and changes in microglia morphology and immune responses at different times after deletion were determined. Microglia numbers were reduced with approximately 50% at 2-12 months after Ercc1 deletion. Larger and more ramified microglia were observed following Ercc1 deletion both in vivo and in organotypic hippocampal slice cultures. Ercc1-deficient microglia were progressively lost, and during this period, microglia proliferation was transiently increased. Ercc1-deficient microglia were gradually replaced by nondeficient microglia carrying a functional Ercc1 allele. In contrast to constitutive Ercc1-deficient mice, microglia-specific deletion of Ercc1 did not induce microglia activation or increase their responsiveness to a systemic LPS challenge. Gene expression analysis suggested that Ercc1 deletion in microglia induced a transient aging signature, which was different from a priming or disease-associated microglia gene expression profile.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Yang Heng
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Susanne M. Kooistra
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Hilmar R. J. van Weering
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Maaike L. Brummer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Evelyn M. Wesseling
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Tjalling W. Nijboer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Marissa L. Dubbelaar
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Erik W. G. M. Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Center for Healthy Ageing, Department of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular NeurobiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
24
|
Hou K, Li G, Yu J, Xu K, Wu W. Receptors, Channel Proteins, and Enzymes Involved in Microglia-mediated Neuroinflammation and Treatments by Targeting Microglia in Ischemic Stroke. Neuroscience 2021; 460:167-180. [PMID: 33609636 DOI: 10.1016/j.neuroscience.2021.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Stroke is the largest contributor to global neurological disability-adjusted life-years, posing a huge economic and social burden to the world. Though pharmacological recanalization with recombinant tissue plasminogen activator and mechanical thrombectomy have greatly improved the prognosis of patients with ischemic stroke, clinically, there is still no effective treatment for the secondary injury caused by cerebral ischemia. In recent years, more and more evidences show that neuroinflammation plays a pivotal role in the pathogenesis and progression of ischemic cerebral injury. Microglia are brain resident innate immune cells and act the role peripheral macrophages. They play critical roles in mediating neuroinflammation after ischemic stroke. Microglia-mediated neuroinflammation is not an isolated process and has complex relationships with other pathophysiological processes as oxidative/nitrative stress, excitotoxicity, necrosis, apoptosis, pyroptosis, autophagy, and adaptive immune response. Upon activation, microglia differentially express various receptors, channel proteins, and enzymes involved in promoting or inhibiting the inflammatory processes, making them the targets of intervention for ischemic stroke. To inhibit microglia-related neuroinflammation and promote neurological recovery after ischemic stroke, numerous biochemical agents, cellular therapies, and physical methods have been demonstrated to have therapeutic potentials. Though accumulating experimental evidences have demonstrated that targeting microglia is a promising approach in the treatment of ischemic stroke, the clinical progress is slow. Till now, no clinical study could provide convincing evidence that any biochemical or physical therapies could exert neuroprotective effect by specifically targeting microglia following ischemic stroke.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| |
Collapse
|
25
|
A Binary Cre Transgenic Approach Dissects Microglia and CNS Border-Associated Macrophages. Immunity 2020; 54:176-190.e7. [PMID: 33333014 DOI: 10.1016/j.immuni.2020.11.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/09/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
The developmental and molecular heterogeneity of tissue macrophages is unravelling, as are their diverse contributions to physiology and pathophysiology. Moreover, also given tissues harbor macrophages in discrete anatomic locations. Functional contributions of specific cell populations can in mice be dissected using Cre recombinase-mediated mutagenesis. However, single promoter-based Cre models show limited specificity for cell types. Focusing on macrophages in the brain, we establish here a binary transgenic system involving complementation-competent NCre and CCre fragments whose expression is driven by distinct promoters: Sall1ncre: Cx3cr1ccre mice specifically target parenchymal microglia and compound transgenic Lyve1ncre: Cx3cr1ccre animals target vasculature-associated macrophages, in the brain, as well as other tissues. We imaged the respective cell populations and retrieved their specific translatomes using the RiboTag in order to define them and analyze their differential responses to a challenge. Collectively, we establish the value of binary transgenesis to dissect tissue macrophage compartments and their functions.
Collapse
|
26
|
La Russa D, Frisina M, Secondo A, Bagetta G, Amantea D. Modulation of Cerebral Store-operated Calcium Entry-regulatory Factor (SARAF) and Peripheral Orai1 Following Focal Cerebral Ischemia and Preconditioning in Mice. Neuroscience 2020; 441:8-21. [PMID: 32569806 DOI: 10.1016/j.neuroscience.2020.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022]
Abstract
Store-operated Ca2+ entry (SOCE) contributes to Ca2+ refilling of endoplasmic reticulum (ER), but also provides Ca2+ influx involved in physiological and pathological signalling functions. Upon depletion of Ca2+ store, the sensor protein stromal interaction molecule (STIM) activates Orai1, forming an ion-conducting pore highly selective for Ca2+. SOCE-associated regulatory factor (SARAF) associates with STIM1 to facilitate a slow form of Ca2+-dependent inactivation of SOCE or interacts with Orai1 to stimulate SOCE in STIM1-independent manner. We have investigated whether cerebral ischemic damage and neuroprotection conferred by ischemic preconditioning (PC) in mouse are associated with changes in the expression of the molecular components of SOCE. Ischemic PC induced by 15-min occlusion of the middle cerebral artery (MCAo) resulted in significant amelioration of histological and functional outcomes produced, 72 h later, by a more severe ischemia (1 h MCAo). Neither ischemia, nor PC affected the expression of Orai1 in the frontoparietal cortex. However, the number of Orai1-immunopositive cells, mostly corresponding to Ly-6G+ neutrophils, was significantly elevated in the blood after the ischemic insult, regardless of previous PC. The expression of Stim1 and SARAF, mainly localised in NeuN-immunopositive neurons, was reduced in the ischemic cortex. Interestingly, neuroprotection by ischemic PC prevented the reduction of SARAF expression in the lesioned cortex and this could be interpreted as a compensatory mechanism to restore ER Ca2+ refilling in neurons in the absence of STIM1. Thus, preventing SARAF downregulation may represent a pivotal mechanism implicated in neuroprotection provided by ischemic PC and should be exploited as an original target for novel stroke therapies.
Collapse
Affiliation(s)
- Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy
| | - Marialaura Frisina
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Italy.
| |
Collapse
|
27
|
LeBlang CJ, Medalla M, Nicoletti NW, Hays EC, Zhao J, Shattuck J, Cruz AL, Wolozin B, Luebke JI. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci 2020; 14:285. [PMID: 32327969 PMCID: PMC7161592 DOI: 10.3389/fnins.2020.00285] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammatory processes play an integral role in the exacerbation and progression of pathology in tauopathies, a class of neurodegenerative disease characterized by aggregation of hyperphosphorylated tau protein. The RNA binding protein (RBP) T-cell Intracellular Antigen 1 (TIA1) is an important regulator of the innate immune response in the periphery, dampening cytotoxic inflammation and apoptosis during cellular stress, however, its role in neuroinflammation is unknown. We have recently shown that TIA1 regulates tau pathophysiology and toxicity in part through the binding of phospho-tau oligomers into pathological stress granules, and that haploinsufficiency of TIA1 in the P301S mouse model of tauopathy results in reduced accumulation of toxic tau oligomers, pathologic stress granules, and the development of downstream pathological features of tauopathy. The putative role of TIA1 as a regulator of the peripheral immune response led us to investigate the effects of TIA1 on neuroinflammation in the context of tauopathy, a chronic stressor in the neural environment. Here, we evaluated indicators of neuroinflammation including; reactive microgliosis and phagocytosis, pro-inflammatory cytokine release, and oxidative stress in hippocampal neurons and glia of wildtype and P301S transgenic mice expressing TIA1+/+, TIA1+/-, and TIA1-/- in both early (5 month) and advanced (9 month) disease states through biochemical, ultrastructural, and histological analyses. Our data show that both TIA1 haploinsufficiency and TIA1 knockout exacerbate neuroinflammatory processes in advanced stages of tauopathy, suggesting that TIA1 dampens the immune response in the central nervous system during chronic stress.
Collapse
Affiliation(s)
- Chelsey Jenna LeBlang
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Nicholas William Nicoletti
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Emma Catherine Hays
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - James Zhao
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jenifer Shattuck
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Anna Lourdes Cruz
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin Wolozin
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Department of Neuroscience, Boston University, Boston, MA, United States
| | - Jennifer Irene Luebke
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|