1
|
Dunacka J, Grembecka B, Majkutewicz I, Wrona D. Central Insulin-like Growth Factor-1 Treatment Enhances Working and Reference Memory by Reducing Neuroinflammation and Amyloid Beta Deposition in a Rat Model of Sporadic Alzheimer's Disease. Pharmaceuticals (Basel) 2025; 18:527. [PMID: 40283962 PMCID: PMC12030085 DOI: 10.3390/ph18040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Brain insulin resistance is a potential causal factor for dementia in Alzheimer's disease (AD). Insulin-like growth factor-1 (IGF-1), a neurotrophin, plays a key role in central insulin signaling and neuroprotection. Intracerebrovenitricular (ICV) administration of streptozotocin (STZ) disrupts insulin signal transduction, leading to brain insulin resistance, which may mimic the early pathophysiological changes in sporadic AD (sAD). In this study, we investigated whether restoring insulin signaling through ICV injection of IGF-1 could ameliorate spatial memory deficits during sAD progression in a rat model induced by ICV STZ injection. Methods: Male Wistar rats (n = 40) were subjected to double ICV injections of STZ (0.75 mg/kg/ventricle, days 2 and 4) and IGF-1 (1 μg/single injection, days 1 and 3), and placed at the Morris water maze (MWM) at baseline, 7, 45 and 90 days after injections. Reference (days 1-3 and day 4 MWM)) and working (days 5-8 MWM) memory, microglia activation (CD68+ cells), and amyloid β (Aβ) deposition (immunohistochemistry) were measured. Results: We found that ICVIGF-1 administration protected working memory demonstrated as (1) reduced latency to reach the platform, and reduced swimming distance in trials 3 (p < 0.05) and 4 (p < 0.01) on days 45 and 90 post-injection and (2) a short-term (up to 45 days post-injection) enhancement of reference memory, manifested by a reduction in swimming distance and latency (p < 0.05). Furthermore, IGF-1 treatment reduced neuroinflammation in CA2 (p < 0.05) and Aβ deposition in CA1(p < 0.01) of the hippocampus. Conclusions: Central IGF-1 attenuates spatial memory deficits in the ICVSTZ-induced sAD model by reducing neuroinflammation and Aβ accumulation in the hippocampus.
Collapse
Affiliation(s)
| | | | | | - Danuta Wrona
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str, 80-308 Gdansk, Poland; (J.D.); (B.G.); (I.M.)
| |
Collapse
|
2
|
Kaur N, Aran KR. Uncovering the intricacies of IGF-1 in Alzheimer's disease: new insights from regulation to therapeutic targeting. Inflammopharmacology 2025; 33:1311-1330. [PMID: 39883327 DOI: 10.1007/s10787-025-01641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/12/2025] [Indexed: 01/31/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway. In addition to the physiological activities in the brain, numerous studies point to a potential protective role of the IGF-1 pathway in the pathogenesis of neurodegenerative diseases, such as AD. Interestingly, patients with AD often exhibit altered insulin and IGF-1 levels, along with an inadequate insulin response. Dysregulation of IGF-1 signaling contributes to hyperphosphorylation of tau, NFT accumulation, increased β- and γ-secretase activity, elevated Aβ production, and impaired Aβ clearance, highlighting the need to explore the role of this signaling for potential therapeutic targets of AD. This review explores the role of IGF signaling in AD pathology, highlighting IGF-1 as a promising therapeutic target due to its significant involvement in disease mechanisms. Modulating IGF-1 activity could help mitigate neurodegeneration and preserve cognitive function in AD. A comprehensive understanding of the mechanisms underlying IGF-1 dysregulation is crucial for developing targeted therapeutic strategies to address the complex and multifaceted nature of AD.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
3
|
Ruggiero M, Cianciulli A, Calvello R, Lofrumento DD, Saponaro C, Filannino FM, Porro C, Panaro MA. Lactoferrin Attenuates Pro-Inflammatory Response and Promotes the Conversion into Neuronal Lineages in the Astrocytes. Int J Mol Sci 2025; 26:405. [PMID: 39796258 PMCID: PMC11720426 DOI: 10.3390/ijms26010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits. To date, many anti-inflammatory agents have been shown to reduce neuroinflammation; however, their potential to restore neuronal loss was poorly investigated. This study investigates the anti-inflammatory effects of lactoferrin on DI-TNC1 astrocyte cell line and its ability to induce astrocyte reprogramming in a context of sustained inflammation. For this purpose, astrocytes were pre-treated with lactoferrin (4 μg/mL) for 24 h, then with lipopolysaccharide (LPS) (400 ng/mL), and examined 2, 9 and 16 days from treatment. The results demonstrate that lactoferrin attenuates astrocyte reactivity by reducing Toll-like receptor 4 (TLR4), Glial fibrillary acidic protein (GFAP) and IL-6 expression, as well as by upregulating Interleukin-10 (IL-10) cytokine and NRF2 expression. Moreover, lactoferrin promotes the reprogramming of reactive astrocytes into proliferative neuroblasts by inducing the overexpression of the Sex determining region Y/SRY-box 2 (SOX2) reprogramming transcription factor. Overall, this study highlights the potential effects of lactoferrin to attenuate neuroinflammation and improve neurogenesis, suggesting a future strategy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, 73100 Lecce, Italy;
| | - Concetta Saponaro
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy;
| | - Francesca Martina Filannino
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (F.M.F.); (C.P.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (F.M.F.); (C.P.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| |
Collapse
|
4
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
5
|
Lyon A, Agius T, Macarthur MR, Kiesworo K, Stavart L, Allagnat F, Mitchell SJ, Riella LV, Uygun K, Yeh H, Déglise S, Golshayan D, Longchamp A. Dietary or pharmacological inhibition of insulin-like growth factor-1 protects from renal ischemia-reperfusion injury in mice. iScience 2024; 27:111256. [PMID: 39759002 PMCID: PMC11700642 DOI: 10.1016/j.isci.2024.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Accepted: 10/23/2024] [Indexed: 01/07/2025] Open
Abstract
One-week protein restriction (PR) limits ischemia-reperfusion (IR) damages and improves metabolic fitness. Similarly, longer-term calory restriction results in increased lifespan, partly via reduced insulin-like growth factor (IGF)-1. However, the influence of short-term PR on IGF-1 and its impact on IR are unknown. PR was achieved in mice via one-week carbohydrate loading and/or through a low-protein diet. PR decreased IGF-1 circulating levels as well as renal and hepatic expression. Upon renal IR, serum IGF-1 positively correlated with renal dysfunction and tissular damages, independently of sex and age. Exogenous IGF-1 administration abrogated PR benefits during IR, while IGF-1 receptor inhibition with linsitinib was protective. IGF-1 was associated with a reduction in forkhead box O (FoxO), and AMP-activated protein kinase (AMPK) signaling pathways previously demonstrated to improve IR resilience in various organs. These data support dietary or pharmacological reduction of IGF-1 signaling to mitigate IR injury prior to solid organ transplantation and beyond.
Collapse
Affiliation(s)
- Arnaud Lyon
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael R. Macarthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kevin Kiesworo
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Louis Stavart
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Leonardo V. Riella
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sebastien Déglise
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Déla Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Hu Y, Ye Y, Ji X, Wu J. The role of hyperbaric oxygen in idiopathic sudden sensorineural hearing loss. Med Gas Res 2024; 14:180-185. [PMID: 39073325 DOI: 10.4103/2045-9912.385943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/10/2023] [Indexed: 07/30/2024] Open
Abstract
Idiopathic sudden sensorineural hearing loss is an unexplained sudden loss of sensorineural hearing, with no specific pathogenesis, and is difficult to treat. The most common therapeutic strategy for idiopathic sudden sensorineural hearing loss is the use of steroids combined with neurotrophic drugs, as other treatments have shown limited efficacy. However, in recent years, hyperbaric oxygen therapy has emerged as a promising treatment option. Studies have shown that hyperbaric oxygen therapy, in combination with conventional treatments, can effectively alleviate inner ear edema, improve blood circulation, and suppress inflammation. Therefore, hyperbaric oxygen therapy plays an important role in the treatment of idiopathic sudden sensorineural hearing loss. In this review, we aim to assess existing studies and summarize the clinical effects and mechanisms of hyperbaric oxygen therapy in idiopathic sudden sensorineural hearing loss, providing a basis for further research on the clinical treatment of this disorder.
Collapse
Affiliation(s)
- Yukun Hu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | | | | | | |
Collapse
|
7
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
8
|
Wright B, King S, Suphioglu C. The Importance of Phosphoinositide 3-Kinase in Neuroinflammation. Int J Mol Sci 2024; 25:11638. [PMID: 39519189 PMCID: PMC11546674 DOI: 10.3390/ijms252111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroinflammation, characterised by the activation of immune cells in the central nervous system (CNS), plays a dual role in both protecting against and contributing to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD) and multiple sclerosis (MS). This review explores the role of phosphoinositide 3-kinase (PI3K), a key enzyme involved in cellular survival, proliferation, and inflammatory responses, within the context of neuroinflammation. Two PI3K isoforms of interest, PI3Kγ and PI3Kδ, are specific to the regulation of CNS cells, such as microglia, astrocytes, neurons, and oligodendrocytes, influencing pathways, such as Akt, mTOR, and NF-κB, that control cytokine production, immune cell activation, and neuroprotection. The dysregulation of PI3K signalling is implicated in chronic neuroinflammation, contributing to the exacerbation of neurodegenerative diseases. Preclinical studies show promise in targeting neuronal disorders using PI3K inhibitors, such as AS605240 (PI3Kγ) and idelalisib (PI3Kδ), which have reduced inflammation, microglial activation, and neuronal death in in vivo models of AD. However, the clinical translation of these inhibitors faces challenges, including blood-brain barrier (BBB) permeability, isoform specificity, and long-term safety concerns. This review highlights the therapeutic potential of PI3K modulation in neuroinflammatory diseases, identifying key gaps in the current research, particularly in the need for brain-penetrating and isoform-specific inhibitors. These findings underscore the importance of future research to develop targeted therapies that can effectively modulate PI3K activity and provide neuroprotection in chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- Brock Wright
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Samuel King
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| |
Collapse
|
9
|
Wang X, Cao L, Liu S, Zhou Y, Zhou J, Zhao W, Gao S, Liu R, Shi Y, Shao C, Fang J. The critical roles of IGFs in immune modulation and inflammation. Cytokine 2024; 183:156750. [PMID: 39243567 DOI: 10.1016/j.cyto.2024.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Insulin-like growth factors (IGFs) are crucial for embryonic and postnatal growth and development, influencing cell survival, metabolism, myogenesis, and cancer progression. Many studies have demonstrated that IGFs also play prominent roles in the modulation of both innate and adaptive immune systems during inflammation. Strikingly, IGFs dictate the phenotype and functional properties of macrophages and T cells. Furthermore, the interplay between IGFs and inflammatory cytokines may generate tissue-protective properties during inflammation. Herein, we review the recent advances on the dialogue between immune cells and IGFs, especially zooming in on the significance of immunomodulatory properties in inflammatory conditions, cancer and autoimmune diseases. The investigation of IGFs may have broad clinical implications.
Collapse
Affiliation(s)
- Xin Wang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lijuan Cao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiarui Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenxuan Zhao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengqi Gao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changshun Shao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jiankai Fang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Lee EH, Yoo H, Kim YJ, Cheon BK, Ryu S, Chang Y, Yun J, Jang H, Kim JP, Kim HJ, Koh SB, Jeong JH, Na DL, Seo SW, Kang SH. Different associations between body mass index and Alzheimer's markers depending on metabolic health. Alzheimers Res Ther 2024; 16:194. [PMID: 39210402 PMCID: PMC11363444 DOI: 10.1186/s13195-024-01563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Increasing evidence supports the association between body mass index (BMI), Alzheimer's disease, and vascular markers. Recently, metabolically unhealthy conditions have been reported to affect the expression of these markers. We aimed to investigate the effects of BMI status on Alzheimer's and vascular markers in relation to metabolic health status. METHODS We recruited 1,736 Asians without dementia (71.6 ± 8.0 years). Participants were categorized into underweight, normal weight, or obese groups based on their BMI. Each group was further divided into metabolically healthy (MH) and unhealthy (MU) groups based on the International Diabetes Foundation definition of metabolic syndrome. The main outcome was Aβ positivity, defined as a Centiloid value of 20.0 or above and the presence of vascular markers, defined as severe white matter hyperintensities (WMH). Logistic regression analyses were performed for Aβ positivity and severe WMH with BMI status or interaction terms between BMI and metabolic health status as predictors. Mediation analyses were performed with hippocampal volume (HV) and baseline Mini-Mental State Examination (MMSE) scores as the outcomes, and linear mixed models were performed for longitudinal change in MMSE scores. RESULTS Being underweight increased the risk of Aβ positivity (odds ratio [OR] = 2.37, 95% confidence interval [CI] 1.13-4.98), whereas obesity decreased Aβ positivity risk (OR = 0.63, 95% CI 0.50-0.80). Especially, obesity decreased the risk of Aβ positivity (OR = 0.38, 95% CI 0.26-0.56) in the MH group, but not in the MU group. Obesity increased the risk of severe WMH (OR = 1.69, 1.16-2.47). Decreased Aβ positivity mediate the relationship between obesity and higher HV and MMSE scores, particularly in the MH group. Obesity demonstrated a slower decline in MMSE (β = 1.423, p = 0.037) compared to being normal weight, especially in the MH group. CONCLUSIONS Our findings provide new evidence that metabolic health has a significant effect on the relationship between obesity and Alzheimer's markers, which, in turn, lead to better clinical outcomes.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Heejin Yoo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Young Ju Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Bo Kyoung Cheon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihwan Yun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Seoul National University Hospital, Seoul National University college of Medicine, Seoul, Republic of Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
11
|
Lendvai ÁZ, Tóth Z, Mahr K, Pénzes J, Vogel-Kindgen S, Gander BA, Vágási CI. IGF-1 induces sex-specific oxidative damage and mortality in a songbird. Oecologia 2024; 205:561-570. [PMID: 39014256 PMCID: PMC11358184 DOI: 10.1007/s00442-024-05587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
The insulin-like growth factor 1 (IGF-1) is a pleiotropic hormone that regulates essential life-history traits and is known for its major contribution to determining individual ageing processes. High levels of IGF-1 have been linked to increased mortality and are hypothesised to cause oxidative stress. This effect has been observed in laboratory animals, but whether it pertains to wild vertebrates has not been tested. This is surprising because studying the mechanisms that shape individual differences in lifespan is important to understanding mortality patterns in populations of free-living animals. We tested this hypothesis under semi-natural conditions by simulating elevated IGF-1 levels in captive bearded reedlings, a songbird species with an exceptionally fast pace of life. We subcutaneously injected slow-release biodegradable microspheres loaded with IGF-1 and achieved a systemic 3.7-fold increase of the hormone within the natural range for at least 24 h. Oxidative damage to lipids showed marked sexual differences: it significantly increased the day after the manipulation in treated males and returned to baseline levels four days post-treatment, while no treatment effect was apparent in females. Although there was no overall difference in survival between the treatment groups, high initial (pre-treatment) IGF-1 and low post-treatment plasma malondialdehyde levels were associated with enhanced survival prospects in males. These results suggest that males may be more susceptible to IGF-1-induced oxidative stress than females and quickly restoring oxidative balance may be related to fitness. IGF-1 levels evolve under opposing selection forces, and natural variation in this hormone's level may reflect the outcome of individual optimization.
Collapse
Affiliation(s)
- Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
| | - Zsófia Tóth
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Pál Juhász-Nagy Doctoral School of Biology Environmental Sciences, University of Debrecen, Debrecen, Hungary
- Department of Biology, Lund University, Lund, Sweden
| | - Katharina Mahr
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Konrad Lorenz Institute of Ethology, Vienna, Austria
| | - Janka Pénzes
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Bruno A Gander
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Csongor I Vágási
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Guerra-Cantera S, Frago LM, Espinoza-Chavarria Y, Collado-Pérez R, Jiménez-Hernaiz M, Torrecilla-Parra M, Barrios V, Belsham DD, Laursen LS, Oxvig C, Argente J, Chowen JA. Palmitic Acid Modulation of the Insulin-Like Growth Factor System in Hypothalamic Astrocytes and Neurons. Neuroendocrinology 2024; 114:958-974. [PMID: 39043147 DOI: 10.1159/000540442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Insulin-like growth factor (IGF)1 and IGF2 have neuroprotective effects, but less is known regarding how other members of the IGF system, including IGF binding proteins (IGFBPs) and the regulatory proteinase pappalysin-1 (PAPP-A) and its endogenous inhibitor stanniocalcin-2 (STC2) participate in this process. Here, we analyzed whether these members of the IGF system are modified in neurons and astrocytes in response to palmitic acid (PA), a fatty acid that induces cell stress when increased centrally. METHODS Primary hypothalamic astrocyte cultures from male and female PND2 rats and the pro-opiomelanocortin (POMC) neuronal cell line, mHypoA-POMC/GFP-2, were treated with PA, IGF1 or both. To analyze the role of STC2 in astrocytes, siRNA assays were employed. RESULTS In astrocytes of both sexes, PA rapidly increased cell stress factors followed by increased Pappa and Stc2 mRNA levels and then a decrease in Igf1, Igf2, and Igfbp2 expression and cell number. Exogenous IGF1 did not revert these effects. In mHypoA-POMC/GFP-2 neurons, PA reduced cell number and Pomc and Igf1 mRNA levels, and increased Igfbp2 and Stc2, again with no effect of exogenous IGF1. PA increased STC2 expression, but no effects of decreasing its levels by interference assays or exogenous STC2 treatment in astrocytes were found. CONCLUSIONS The response of the IGF system to PA was cell and sex specific, but no protective effects of the IGFs were found. However, the modifications in hypothalamic PAPP-A and STC2 indicate that further studies are required to determine their role in the response to fatty acids and possibly in metabolic control.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Yesenia Espinoza-Chavarria
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Torrecilla-Parra
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
13
|
Shen J, Liu L, Yang Y, Zhou M, Xu S, Zhang W, Zhang C. Insulin-Like Growth Factor 1 Has the Potential to Be Used as a Diagnostic Tool and Treatment Target for Autism Spectrum Disorders. Cureus 2024; 16:e65393. [PMID: 39188438 PMCID: PMC11346671 DOI: 10.7759/cureus.65393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Autism spectrum disorder (ASD), a heterogeneous group of neurodevelopmental disorders, is characterized by social impairment and repetitive and stereotypic behaviors. Because of the lack of approved laboratory diagnostic markers and effective therapeutic medications, it is one of the most challenging diseases. Therefore, it is urgent to explore potential diagnosis markers or therapeutic targets. Insulin-like growth factor 1 (IGF-1) is a neurotrophic growth factor that enhances brain development. IGF-1 levels in body fluids are lower in preschool children with ASD than in typically developing children, which may serve as a potential diagnostic marker. In various ASD models associated with genetic or environmental exposure, IGF-1 treatment can improve core symptoms or pathological changes, including neuronal development, neural cell survival, balance of synaptic excitation and inhibition, neuroimmunology, and oxidative stress status. In March 2023 an IGF-1 derivative was approved as the first drug for treating Rett syndrome, an ASD-related neurodevelopmental disorder, to improve fundamental symptoms such as social communication. Thus, in this review, we present accumulating evidence of altered IGF-1 levels in ASD patients and the possible mechanisms, as well as evidence that IGF-1 treatment improves the pathophysiology in various ASD models. IGF-1 has the potential to be an early diagnosis marker and an effective therapeutic for ASD.
Collapse
Affiliation(s)
- Jiamin Shen
- Department of Children Health Care, Jingmen Maternity and Child Health Care Hospital, Jingmen, CHN
| | - Lijuan Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, CHN
| | - Yifan Yang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| | - Miao Zhou
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| | - Shan Xu
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| | - Wanqing Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| | - Chuanjie Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College, Huazhong University of Science and Technology, Wuhan, CHN
| |
Collapse
|
14
|
Firth W, Pye KR, Weightman Potter PG. Astrocytes at the intersection of ageing, obesity, and neurodegeneration. Clin Sci (Lond) 2024; 138:515-536. [PMID: 38652065 DOI: 10.1042/cs20230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.
Collapse
Affiliation(s)
- Wyn Firth
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, U.K
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Paul G Weightman Potter
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
15
|
Fernández-Arjona MDM, Navarro JA, López-Gambero AJ, de Ceglia M, Rodríguez M, Rubio L, Rodríguez de Fonseca F, Barrios V, Chowen JA, Argente J, Rivera P, Suárez J. Sex-based differences in growth-related IGF1 signaling in response to PAPP-A2 deficiency: comparative effects of rhGH, rhIGF1 and rhPAPP-A2 treatments. Biol Sex Differ 2024; 15:34. [PMID: 38589872 PMCID: PMC11000399 DOI: 10.1186/s13293-024-00603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Children with pregnancy-associated plasma protein-A2 (PAPP-A2) mutations resulting in low levels of bioactive insulin-like growth factor-1 (IGF1) and progressive postnatal growth retardation have improved growth velocity and height following recombinant human (rh)IGF1 treatment. The present study aimed to evaluate whether Pappa2 deficiency and pharmacological manipulation of GH/IGF1 system are associated with sex-specific differences in growth-related signaling pathways. METHODS Plasma, hypothalamus, pituitary gland and liver of Pappa2ko/ko mice of both sexes, showing reduced skeletal growth, and liver of these mice treated with rhGH, rhIGF1 and rhPAPP-A2 from postnatal day (PND) 5 to PND35 were analyzed. RESULTS Reduced body and femur length of Pappa2ko/ko mice was associated with increases in: (1) components of IGF1 ternary complexes (IGF1, IGFBP5/Igfbp5, Igfbp3, Igfals) in plasma, hypothalamus and/or liver; and (2) key signaling regulators (phosphorylated PI3K, AKT, mTOR, GSK3β, ERK1/2 and AMPKα) in hypothalamus, pituitary gland and/or liver, with Pappa2ko/ko females having a more prominent effect. Compared to rhGH and rhIGF1, rhPAPP-A2 specifically induced: (1) increased body and femur length, and reduced plasma total IGF1 and IGFBP5 concentrations in Pappa2ko/ko females; and (2) increased Igf1 and Igf1r levels and decreased Ghr, Igfbp3 and Igfals levels in the liver of Pappa2ko/ko females. These changes were accompanied by lower phospho-STAT5, phospho-AKT and phospho-ERK2 levels and higher phospho-AMPK levels in the liver of Pappa2ko/ko females. CONCLUSIONS Sex-specific differences in IGF1 system and signaling pathways are associated with Pappa2 deficiency, pointing to rhPAPP-A2 as a promising drug to alleviate postnatal growth retardation underlying low IGF1 bioavailability in a female-specific manner.
Collapse
Affiliation(s)
- María Del Mar Fernández-Arjona
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Antonio Jesús López-Gambero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, 33000, France
| | - Marialuisa de Ceglia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Miguel Rodríguez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia. Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, Málaga, 29071, Spain
| | - Leticia Rubio
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia. Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, Málaga, 29071, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Vicente Barrios
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo 65, Madrid, 28009, Spain
- La Princesa Research Institute, Madrid, 28009, Spain
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo 65, Madrid, 28009, Spain
- La Princesa Research Institute, Madrid, 28009, Spain
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- IMDEA Food Institute, CEI UAM & CSIC, Madrid, 28049, Spain
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Avenida Menéndez Pelayo 65, Madrid, 28009, Spain.
- La Princesa Research Institute, Madrid, 28009, Spain.
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.
- IMDEA Food Institute, CEI UAM & CSIC, Madrid, 28049, Spain.
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain.
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain.
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Avenida Carlos Haya 82, Málaga, 29010, Spain.
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia. Facultad de Medicina, Universidad de Málaga, Bulevar Louis Pasteur 32, Málaga, 29071, Spain.
| |
Collapse
|
16
|
He L, Zhang R, Yang M, Lu M. The role of astrocyte in neuroinflammation in traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166992. [PMID: 38128844 DOI: 10.1016/j.bbadis.2023.166992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Traumatic brain injury (TBI), a significant contributor to mortality and morbidity worldwide, is a devastating condition characterized by initial mechanical damage followed by subsequent biochemical processes, including neuroinflammation. Astrocytes, the predominant glial cells in the central nervous system, play a vital role in maintaining brain homeostasis and supporting neuronal function. Nevertheless, in response to TBI, astrocytes undergo substantial phenotypic alternations and actively contribute to the neuroinflammatory response. This article explores the multifaceted involvement of astrocytes in neuroinflammation subsequent to TBI, with a particular emphasis on their activation, release of inflammatory mediators, modulation of the blood-brain barrier, and interactions with other immune cells. A comprehensive understanding the dynamic interplay between astrocytes and neuroinflammation in the condition of TBI can provide valuable insights into the development of innovative therapeutic approaches aimed at mitigating secondary damage and fostering neuroregeneration.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Maiqiao Yang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
17
|
Khattab MH, Said SM, Fayez MA, Elaguizy MM, Mohamed AAA, Ghobashy AM. The Association Between Preoperative Insulin-Like Growth Factor 1 Levels and the Total Body Weight Loss in Women Post Laparoscopic Sleeve Gastrectomy. Obes Surg 2024; 34:874-881. [PMID: 38285303 PMCID: PMC10899394 DOI: 10.1007/s11695-024-07077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Despite the well-described optimal initial clinical response of sleeve gastrectomy (SG) in the treatment of obesity, some patients do not achieve optimal initial clinical response. Insulin-like growth factor-1 (IGF-1) has currently shown an association with post-bariatric surgery weight loss. This study aimed to assess the IGF-1 levels in female patients with obesity, the change after surgery, and their association with the metabolic profile and weight loss after surgery. PATIENTS AND METHODS This was a prospective study that was conducted on adult female patients who were recruited for SG. The patients underwent clinical and laboratory investigations that included the IGF-1 measurement. At the 1-year follow-up, the same clinical and laboratory measures were repeated. RESULTS This study included 100 female patients. At the 1-year follow-up, there was a statistically significant reduction in body mass index (BMI) (p < 0.001), fasting HbA1C levels (p < 0.001), and triglycerides (p < 0.001), as well as a statistically significant increase in HDL (p < 0.001) and IGF-1 (p < 0.001). Multiple regression analysis revealed that, among the patients baseline characteristics, the significant predictors for the percentage of total weight loss (%TWL) were the patients' BMI (p < 0.001) and IGF-1 levels (p < 0.001). The ROC curve showed that an IGF1 cutoff value of ≤ 23 ng/ml detected suboptimal initial clinical response, with a sensitivity of 95.35% and a specificity of 100%. CONCLUSION This study underscores the significant impact of SG on weight loss and metabolic improvements in female patients. Baseline IGF-1 levels emerged as a crucial predictor of optimal initial clinical response.
Collapse
Affiliation(s)
| | - Sami M Said
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | | |
Collapse
|
18
|
Raffaele S, Thougaard E, Laursen CCH, Gao H, Andersen KM, Nielsen PV, Ortí-Casañ N, Blichfeldt-Eckhardt M, Koch S, Deb-Chatterji M, Magnus T, Stubbe J, Madsen K, Meyer M, Degn M, Eisel ULM, Wlodarczyk A, Fumagalli M, Clausen BH, Brambilla R, Lambertsen KL. Microglial TNFR2 signaling regulates the inflammatory response after CNS injury in a sex-specific fashion. Brain Behav Immun 2024; 116:269-285. [PMID: 38142915 PMCID: PMC11500189 DOI: 10.1016/j.bbi.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a major role in damage progression and tissue remodeling after acute CNS injury, including ischemic stroke (IS) and spinal cord injury (SCI). Understanding the molecular mechanisms regulating microglial responses to injury may thus reveal novel therapeutic targets to promote CNS repair. Here, we investigated the role of microglial tumor necrosis factor receptor 2 (TNFR2), a transmembrane receptor previously associated with pro-survival and neuroprotective responses, in shaping the neuroinflammatory environment after CNS injury. By inducing experimental IS and SCI in Cx3cr1CreER:Tnfrsf1bfl/fl mice, selectively lacking TNFR2 in microglia, and corresponding Tnfrsf1bfl/fl littermate controls, we found that ablation of microglial TNFR2 significantly reduces lesion size and pro-inflammatory cytokine levels, and favors infiltration of leukocytes after injury. Interestingly, these effects were paralleled by opposite sex-specific modifications of microglial reactivity, which was found to be limited in female TNFR2-ablated mice compared to controls, whereas it was enhanced in males. In addition, we show that TNFR2 protein levels in the cerebrospinal fluid (CSF) of human subjects affected by IS and SCI, as well as healthy donors, significantly correlate with disease stage and severity, representing a valuable tool to monitor the inflammatory response after acute CNS injury. Hence, these results advance our understanding of the mechanisms regulating microglia reactivity after acute CNS injury, aiding the development of sex- and microglia-specific, personalized neuroregenerative strategies.
Collapse
Affiliation(s)
- Stefano Raffaele
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| | - Estrid Thougaard
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Cathrine C H Laursen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Han Gao
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, 510630 Guangzhou, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630 Guangzhou, China
| | - Katrine M Andersen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Pernille V Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Natalia Ortí-Casañ
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9713 AV, Netherlands
| | - Morten Blichfeldt-Eckhardt
- Department of Anaesthesiology, Vejle Hospital, 7100 Vejle, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Simon Koch
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Milani Deb-Chatterji
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense C, Denmark
| | | | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9713 AV, Netherlands
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| | - Bettina H Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Roberta Brambilla
- BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami FL, USA.
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense C, Denmark.
| |
Collapse
|
19
|
Lu J, Wang Z, He Z, Hu Y, Duan H, Liu Z, Li D, Zhong S, Ren J, Zhao G, Mou Y, Yao M. Oligomer-Aβ42 suppress glioma progression via potentiating phagocytosis of microglia. CNS Neurosci Ther 2024; 30:e14495. [PMID: 37849438 PMCID: PMC10805446 DOI: 10.1111/cns.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023] Open
Abstract
AIMS Glioma is characterized by an immunosuppressed environment and a poor prognosis. The accumulation of Amyloid β (Aβ) leads to an active environment during the early stages of Alzheimer's disease (AD). Aβ is also present in glioma tissues; however, the biological and translational implications of Aβ in glioma are elusive. METHODS Immunohistochemical (IHC) staining, Kaplan-Meier (KM) survival analysis and Cox regression analysis on a cohort of 79 patients from our institution were performed to investigate the association between Aβ and the malignancy of glioma. Subsequently, the potential of oligomer-Aβ42 (OAβ42) to inhibit glioma growth was investigated in vivo and in vitro. Immunofluorescence staining and phagocytosis assays were performed to evaluate the activation of microglia. Finally, RNA-seq was utilized to identify the predominant signaling involved in this process and in vitro studies were performed to validate them. RESULTS A positive correlation between Aβ and a favorable prognosis was observed in glioma. Furthermore, OAβ42 suppressed glioma growth by enhancing the phagocytic activity of microglia. Insulin-like growth factor 1 (IGF-1) secreted by OAβ42-activated microglia was essential in the engulfment process. CONCLUSION Our study proved an anti-glioma effect of Aβ, and microglia could serve as a cellular target for treating glioma with OAβ42.
Collapse
Affiliation(s)
- Jie Lu
- Department of Neurosurgery/Neuro‐oncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Zhenning Wang
- Department of Neurosurgery, Dongguan People's Hospital (Affiliated Dongguan Hospital)Southern Medical UniversityDongguanChina
| | - Zhenqiang He
- Department of Neurosurgery/Neuro‐oncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yang Hu
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Hao Duan
- Department of Neurosurgery/Neuro‐oncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zihao Liu
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhouChina
| | - Depei Li
- Department of Neurosurgery/Neuro‐oncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Sheng Zhong
- Department of Neurosurgery/Neuro‐oncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jiaoyan Ren
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Guojun Zhao
- Laboratory Animal CenterThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
| | - Yonggao Mou
- Department of Neurosurgery/Neuro‐oncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhouChina
| |
Collapse
|
20
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Zegarra-Valdivia JA, Pignatelli J, Nuñez A, Torres Aleman I. The Role of Insulin-like Growth Factor I in Mechanisms of Resilience and Vulnerability to Sporadic Alzheimer's Disease. Int J Mol Sci 2023; 24:16440. [PMID: 38003628 PMCID: PMC10671249 DOI: 10.3390/ijms242216440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Despite decades of intense research, disease-modifying therapeutic approaches for Alzheimer's disease (AD) are still very much needed. Apart from the extensively analyzed tau and amyloid pathological cascades, two promising avenues of research that may eventually identify new druggable targets for AD are based on a better understanding of the mechanisms of resilience and vulnerability to this condition. We argue that insulin-like growth factor I (IGF-I) activity in the brain provides a common substrate for the mechanisms of resilience and vulnerability to AD. We postulate that preserved brain IGF-I activity contributes to resilience to AD pathology as this growth factor intervenes in all the major pathological cascades considered to be involved in AD, including metabolic impairment, altered proteostasis, and inflammation, to name the three that are considered to be the most important ones. Conversely, disturbed IGF-I activity is found in many AD risk factors, such as old age, type 2 diabetes, imbalanced diet, sedentary life, sociality, stroke, stress, and low education, whereas the Apolipoprotein (Apo) E4 genotype and traumatic brain injury may also be influenced by brain IGF-I activity. Accordingly, IGF-I activity should be taken into consideration when analyzing these processes, while its preservation will predictably help prevent the progress of AD pathology. Thus, we need to define IGF-I activity in all these conditions and develop a means to preserve it. However, defining brain IGF-I activity cannot be solely based on humoral or tissue levels of this neurotrophic factor, and new functionally based assessments need to be developed.
Collapse
Affiliation(s)
- Jonathan A. Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- School of Medicine, Universidad Señor de Sipán, Chiclayo 14000, Peru
| | - Jaime Pignatelli
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- Cajal Institute (CSIC), 28002 Madrid, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
22
|
Garcia-Segura LM, Méndez P, Arevalo MA, Azcoitia I. Neuroestradiol and neuronal development: Not an exclusive male tale anymore. Front Neuroendocrinol 2023; 71:101102. [PMID: 37689249 DOI: 10.1016/j.yfrne.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The brain synthesizes a variety of neurosteroids, including neuroestradiol. Inhibition of neuroestradiol synthesis results in alterations in basic neurodevelopmental processes, such as neurogenesis, neuroblast migration, neuritogenesis and synaptogenesis. Although the neurodevelopmental actions of neuroestradiol are exerted in both sexes, some of them are sex-specific, such as the well characterized effects of neuroestradiol derived from the metabolism of testicular testosterone during critical periods of male brain development. In addition, recent findings have shown sex-specific actions of neuroestradiol on neuroblast migration, neuritic growth and synaptogenesis in females. Among other factors, the epigenetic regulation exerted by X linked genes, such as Kdm6a/Utx, may determine sex-specific actions of neuroestradiol in the female brain. This review evidences the impact of neuroestradiol on brain formation in both sexes and highlights the interaction of neural steriodogenesis, hormones and sex chromosomes in sex-specific brain development.
Collapse
Affiliation(s)
- Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Pablo Méndez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - M Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Iñigo Azcoitia
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain; Department of Cell Biology, Universidad Complutense de Madrid, C José Antonio Nováis 12, 28040 Madrid, Spain
| |
Collapse
|
23
|
Herrero-Labrador R, Fernández-Irigoyen J, Vecino R, González-Arias C, Ausín K, Crespo I, Fernández Acosta FJ, Nieto-Estévez V, Román MJ, Perea G, Torres-Alemán I, Santamaría E, Vicario C. Brain IGF-I regulates LTP, spatial memory, and sexual dimorphic behavior. Life Sci Alliance 2023; 6:e202201691. [PMID: 37463753 PMCID: PMC10355288 DOI: 10.26508/lsa.202201691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) exerts multiple actions, yet the role of IGF-I from different sources is poorly understood. Here, we explored the functional and behavioral consequences of the conditional deletion of Igf-I in the nervous system (Igf-I Δ/Δ), and demonstrated that long-term potentiation was impaired in hippocampal slices. Moreover, Igf-I Δ/Δ mice showed spatial memory deficits in the Morris water maze, and the significant sex-dependent differences displayed by Igf-I Ctrl/Ctrl mice disappeared in Igf-I Δ/Δ mice in the open field and rota-rod tests. Brain Igf-I deletion disorganized the granule cell layer of the dentate gyrus (DG), and it modified the relative expressions of GAD and VGLUT1, which are preferentially localized to inhibitory and excitatory presynaptic terminals. Furthermore, Igf-I deletion altered protein modules involved in receptor trafficking, synaptic proteins, and proteins that functionally interact with estrogen and androgen metabolism. Our findings indicate that brain IGF-I is crucial for long-term potentiation, and that it is involved in the regulation of spatial memory and sexual dimorphic behaviors, possibly by maintaining the granule cell layer structure and the stability of synaptic-related protein modules.
Collapse
Affiliation(s)
- Raquel Herrero-Labrador
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joaquín Fernández-Irigoyen
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Rebeca Vecino
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Karina Ausín
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Inmaculada Crespo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- CES Cardenal Cisneros, Madrid, Spain
| | | | - Vanesa Nieto-Estévez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M José Román
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Gertrudis Perea
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ignacio Torres-Alemán
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Achucarro Basque Center for Neuroscience, and Ikerbasque Foundation for Science, Bilbao, Spain
| | - Enrique Santamaría
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Carlos Vicario
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
24
|
Nuñez A, Zegarra-Valdivia J, Fernandez de Sevilla D, Pignatelli J, Torres Aleman I. The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states. Mol Psychiatry 2023; 28:3220-3230. [PMID: 37353586 DOI: 10.1038/s41380-023-02136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
After decades of research in the neurobiology of IGF-I, its role as a prototypical neurotrophic factor is undisputed. However, many of its actions in the adult brain indicate that this growth factor is not only involved in brain development or in the response to injury. Following a three-layer assessment of its role in the central nervous system, we consider that at the cellular level, IGF-I is indeed a bona fide neurotrophic factor, modulating along ontogeny the generation and function of all the major types of brain cells, contributing to sculpt brain architecture and adaptive responses to damage. At the circuit level, IGF-I modulates neuronal excitability and synaptic plasticity at multiple sites, whereas at the system level, IGF-I intervenes in energy allocation, proteostasis, circadian cycles, mood, and cognition. Local and peripheral sources of brain IGF-I input contribute to a spatially restricted, compartmentalized, and timed modulation of brain activity. To better define these variety of actions, we consider IGF-I a modulator of brain states. This definition aims to reconcile all aspects of IGF-I neurobiology, and may provide a new conceptual framework in the design of future research on the actions of this multitasking neuromodulator in the brain.
Collapse
Affiliation(s)
- A Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Madrid, Spain
- Universidad Señor de Sipán, Chiclayo, Perú
| | - D Fernandez de Sevilla
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Pignatelli
- CIBERNED, Madrid, Spain
- Cajal Institute (CSIC), Madrid, Spain
| | - I Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- CIBERNED, Madrid, Spain.
- Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
25
|
Guebel DV. Human hippocampal astrocytes: Computational dissection of their transcriptome, sexual differences and exosomes across ageing and mild-cognitive impairment. Eur J Neurosci 2023; 58:2677-2707. [PMID: 37427765 DOI: 10.1111/ejn.16081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/20/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
The role of astrocytes in Alzheimer's disease is often disregarded. Hence, characterization of astrocytes along their early evolution toward Alzheimer would be greatly beneficial. However, due to their exquisite responsiveness, in vivo studies are difficult. So public microarray data of hippocampal homogenates from (healthy) young, (healthy) elder and elder with mild cognitive impairment (MCI) were subjected to re-analysis by a multi-step computational pipeline. Ontologies and pathway analyses were compared after determining the differential genes that, belonging to astrocytes, have splice forms. Likewise, the subset of molecules exportable to exosomes was also determined. The results showed that astrocyte's phenotypes changed significantly. While already 'activated' astrocytes were found in the younger group, major changes occurred during ageing (increased vascular remodelling and response to mechanical stimulus, diminished long-term potentiation and increased long-term depression). MCI's astrocytes showed some 'rejuvenated' features, but their sensitivity to shear stress was markedly lost. Importantly, most of the changes showed to be sex biassed. Men's astrocytes are enriched in a type 'endfeet-astrocytome', whereas women's astrocytes appear close to the 'scar-forming' type (prone to endothelial dysfunction, hypercholesterolemia, loss of glutamatergic synapses, Ca+2 dysregulation, hypoxia, oxidative stress and 'pro-coagulant' phenotype). In conclusion, the computational dissection of the networks based on the hippocampal gene isoforms provides a relevant proxy to in vivo astrocytes, also revealing the occurrence of sexual differences. Analyses of the astrocytic exosomes did not provide an acceptable approximation to the overall functioning of astrocytes in the hippocampus, probably due to the selective cellular mechanisms which charge the cargo molecules.
Collapse
|
26
|
Wang S, Hou K, Gui S, Ma Y, Wang S, Zhao S, Zhu X. Insulin-like growth factor 1 in heat stress-induced neuroinflammation: novel perspective about the neuroprotective role of chromium. STRESS BIOLOGY 2023; 3:23. [PMID: 37676529 PMCID: PMC10441889 DOI: 10.1007/s44154-023-00105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 09/08/2023]
Abstract
Heat stress (HS) can cause a series of stress responses, resulting in numerous negative effects on the body, such as the diminished food intake, carcass quality and reproductive capacity. In addition to the negative effects on the peripheral system, HS leads to central nervous system (CNS) disorders given its toll on neuroinflammation. This neuroinflammatory process is mainly mediated by microglia and astrocytes, which are involved in the activation of glial cells and the secretion of cytokines. While the regulation of inflammatory signaling has a close relationship with the expression of heat shock protein 70 (Hsp70), HS-induced neuroinflammation is closely related to the activation of the TLR4/NF-κB pathway. Moreover, oxidative stress and endoplasmic reticulum (ER) stress are key players in the development of neuroinflammation. Chromium (Cr) has been widely shown to have neuroprotective effects in both humans and animals, despite the lack of mechanistic evidence. Evidence has shown that Cr supplementation can increase the levels of insulin-like growth factor 1 (IGF-1), a major neurotrophic factor with anti-inflammatory and antioxidant effects. This review highlights recent advances in the attenuating effects and potential mechanisms of Cr-mediated IGF-1 actions on HS-induced neuroinflammation, providing presently existing evidence supporting the neuroprotective role of Cr.
Collapse
Affiliation(s)
- Songlin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Kanghui Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Siqi Gui
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
27
|
Bringuier CM, Noristani HN, Perez JC, Cardoso M, Goze-Bac C, Gerber YN, Perrin FE. Up-Regulation of Astrocytic Fgfr4 Expression in Adult Mice after Spinal Cord Injury. Cells 2023; 12:cells12040528. [PMID: 36831195 PMCID: PMC9954417 DOI: 10.3390/cells12040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Spinal cord injury (SCI) leads to persistent neurological deficits without available curative treatment. After SCI astrocytes within the lesion vicinity become reactive, these undergo major morphological, and molecular transformations. Previously, we reported that following SCI, over 10% of resident astrocytes surrounding the lesion spontaneously transdifferentiate towards a neuronal phenotype. Moreover, this conversion is associated with an increased expression of fibroblast growth factor receptor 4 (Fgfr4), a neural stem cell marker, in astrocytes. Here, we evaluate the therapeutic potential of gene therapy upon Fgfr4 over-expression in mature astrocytes following SCI in adult mice. We found that Fgfr4 over-expression in astrocytes immediately after SCI improves motor function recovery; however, it may display sexual dimorphism. Improved functional recovery is associated with a decrease in spinal cord lesion volume and reduced glial reactivity. Cell-specific transcriptomic profiling revealed concomitant downregulation of Notch signaling, and up-regulation of neurogenic pathways in converting astrocytes. Our findings suggest that gene therapy targeting Fgfr4 over-expression in astrocytes after injury is a feasible therapeutic approach to improve recovery following traumatism of the spinal cord. Moreover, we stress that a sex-dependent response to astrocytic modulation should be considered for the development of effective translational strategies in other neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Maida Cardoso
- UMR 5221, Univ. Montpellier, CNRS, 34095 Montpellier, France
| | | | | | - Florence Evelyne Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, 34095 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence:
| |
Collapse
|
28
|
Hyperbaric Oxygen Therapy Promotes Hearing Gain with Increases in Serum IGF-1 and HSP70 in Patients with Idiopathic Sudden Sensorineural Hearing Loss. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1368783. [PMID: 36330225 PMCID: PMC9626202 DOI: 10.1155/2022/1368783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Objective Hyperbaric oxygen therapy (HBOT) has been recommended for the initial and salvage treatment of patients with idiopathic sudden sensorineural hearing loss (ISSHL), but its underlying mechanisms remain unclear. In this study, we investigated whether HBOT alters serum levels of insulin-like growth factor 1 (IGF-1) and heat shock protein 70 (HSP70) in patients with ISSHL. Then, we identified the relationship between hearing recovery and changes in serum IGF-1 and HSP70 levels. Methods Moderately severe to profound unilateral ISSHL patients (n = 70) and healthy control participants (n = 30) were enrolled. The ISSHL patients were randomly assigned to receive medical therapy alone (MT group, n = 35) or both HBOT and medical therapy (HBOT + MT group, n = 35). Audiometric testing was performed before and after treatment. Serum IGF-1 and HSP70 levels were assessed by ELISA in ISSHL patients pre-and posttreatment and healthy controls. Results Before treatment, compared with the healthy controls, serum IGF-1 and HSP70 were lower in ISSHL patients. After treatment, serum IGF-1 and HSP70 increased in both the HBOT + MT and MT groups, although they were significantly higher in the HBOT + MT group (p < 0.01). In the HBOT + MT group, these increases were associated with hearing gains. In addition, IGF-1 was strongly associated with HSP70 (r = 0.621, p = 0.001). No such association was found in the MT group (p = 0.757). Conclusion Administering HBOT in addition to medical therapy can improve the hearing of patients with moderately severe to profound unilateral ISSHL. The improvement is related to the upregulation of IGF-1 and HSP70.
Collapse
|