1
|
Garcia TFM, Desio JAF, de Souza EF, Henkes SFC, Santos LS, de Carvalho Muenho J, Gonçlaves CL, Dos Santos JCC. The silent saboteur: oxidative stress and the path to cognitive dysfunction. Neurodegener Dis Manag 2025:1-28. [PMID: 40424201 DOI: 10.1080/17582024.2025.2510175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Oxidative stress (OS) plays a central role in age-related cognitive decline and neurodegeneration and is increasingly recognized as a key factor in the pathogenesis of Alzheimer's disease (AD) and Parkinson's disease (PD). Elevated OS biomarkers are detectable from the earliest stages of these disorders. In this critical narrative review, we explore the bioenergetic cascade underlying neurodegeneration, emphasizing pathophysiological alterations, mechanisms, and therapeutic targets. Recent evidence suggests that OS and impaired cellular energy dynamics are both early markers and downstream effects of neuroinflammation, contributing to symptom severity and reduced treatment efficacy. A deeper understanding of these interrelated processes is essential for the development of more effective interventions. Monitoring OS-related metabolites may offer a promising strategy for identifying therapeutic targets and enabling early clinical intervention, ultimately aiming to reduce neuroinflammation and improve patient outcomes in AD and PD.
Collapse
Affiliation(s)
- Tulia Fernanda Meira Garcia
- Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte, Caicó, Rio Grande do Norte, Brazil
| | | | | | | | - Luana Stangherlin Santos
- Department of Cardiology, Complexo Hospitalar de Doenças Cardiopulmonares (CDAN), Luanda, Angola
| | - Julcileia de Carvalho Muenho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Angola
| | - Cinara Ludvig Gonçlaves
- Department of Cardiology, Complexo Hospitalar de Doenças Cardiopulmonares (CDAN), Luanda, Angola
| | | |
Collapse
|
2
|
Lobanova E, Zhang YP, Emin D, Brelstaff J, Kahanawita L, Malpetti M, Quaegebeur A, Triantafilou K, Triantafilou M, Zetterberg H, Rowe JB, Williams-Gray CH, Bryant CE, Klenerman D. ASC specks as a single-molecule fluid biomarker of inflammation in neurodegenerative diseases. Nat Commun 2024; 15:9690. [PMID: 39528447 PMCID: PMC11555386 DOI: 10.1038/s41467-024-53547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Immunotherapeutic strategies for Alzheimer's and Parkinson's disease would be facilitated by better measures of inflammation. Here we established an ultra-sensitive single-molecule pull-down immunoassay combined with direct stochastic optical reconstruction microscopy (dSTORM) to measure the number, size and shape of individual extracellular inflammasome ASC specks. We assayed human post-mortem brain, serum and cerebrospinal fluid of patients with Parkinson's and Alzheimer's as well as healthy elderly. The number of ASC specks increased and showed altered morphology in the blood of early-stage Parkinson's and Alzheimer's patients compared to controls, mimicking those found in the brain and cerebrospinal fluid. In serum samples we also measured the number of Aβ, p-tau and α-syn aggregates and formed a composite biomarker of (ASC + p-tau)/Aβ and (ASC + α-syn)/Aβ ratios that distinguished age-matched healthy controls from patients with early-stage Alzheimer's with AUC of 92% and early-stage Parkinson's with AUC of 97%. Our findings confirm ASC specks as a fluid candidate biomarker of inflammation for neurodegenerative diseases with blood being the main focus for further development as convenient sample for diagnostics and clinical trials.
Collapse
Affiliation(s)
- Evgeniia Lobanova
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Yu P Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0XY, UK
| | - Derya Emin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0XY, UK
| | - Jack Brelstaff
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Lakmini Kahanawita
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Annelies Quaegebeur
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Kathy Triantafilou
- School of Medicine, Division of Infection and Immunity, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Martha Triantafilou
- School of Medicine, Division of Infection and Immunity, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Trust, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Caroline H Williams-Gray
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Clare Elizabeth Bryant
- Department of Medicine, Box 157, Level 5, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
3
|
Rupar MJ, Hanson H, Rogers S, Botlick B, Trimmer S, Hickman JJ. Modelling the innate immune system in microphysiological systems. LAB ON A CHIP 2024; 24:3604-3625. [PMID: 38957150 PMCID: PMC11264333 DOI: 10.1039/d3lc00812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
This critical review aims to highlight how modeling of the immune response has adapted over time to utilize microphysiological systems. Topics covered here will discuss the integral components of the immune system in various human body systems, and how these interactions are modeled using these systems. Through the use of microphysiological systems, we have not only expanded on foundations of basic immune cell information, but have also gleaned insight on how immune cells work both independently and collaboratively within an entire human body system.
Collapse
Affiliation(s)
- Michael J Rupar
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Hannah Hanson
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Stephanie Rogers
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Brianna Botlick
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Steven Trimmer
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - James J Hickman
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| |
Collapse
|
4
|
Sadowski K, Zając W, Milanowski Ł, Koziorowski D, Figura M. Exploring Fecal Microbiota Transplantation for Modulating Inflammation in Parkinson's Disease: A Review of Inflammatory Markers and Potential Effects. Int J Mol Sci 2024; 25:7741. [PMID: 39062985 PMCID: PMC11277532 DOI: 10.3390/ijms25147741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by numerous motor and non-motor symptoms. Recent data highlight a potential interplay between the gut microbiota and the pathophysiology of PD. The degeneration of dopaminergic neurons in PD leads to motor symptoms (tremor, rigidity, and bradykinesia), with antecedent gastrointestinal manifestations, most notably constipation. Consequently, the gut emerges as a plausible modulator in the neurodegenerative progression of PD. Key molecular changes in PD are discussed in the context of the gut-brain axis. Evidence suggests that the alterations in the gut microbiota composition may contribute to gastroenteric inflammation and influence PD symptoms. Disturbances in the levels of inflammatory markers, including tumor necrosis factor-α (TNF α), interleukin -1β (IL-1β), and interleukin-6 (IL-6), have been observed in PD patients. These implicate the involvement of systemic inflammation in disease pathology. Fecal microbiota transplantation emerges as a potential therapeutic strategy for PD. It may mitigate inflammation by restoring gut homeostasis. Preclinical studies in animal models and initial clinical trials have shown promising results. Overall, understanding the interplay between inflammation, the gut microbiota, and PD pathology provides valuable insights into potential therapeutic interventions. This review presents recent data about the bidirectional communication between the gut microbiome and the brain in PD, specifically focusing on the involvement of inflammatory biomarkers.
Collapse
Affiliation(s)
- Karol Sadowski
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Weronika Zając
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Łukasz Milanowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Monika Figura
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| |
Collapse
|
5
|
Mian M, Tahiri J, Eldin R, Altabaa M, Sehar U, Reddy PH. Overlooked cases of mild cognitive impairment: Implications to early Alzheimer's disease. Ageing Res Rev 2024; 98:102335. [PMID: 38744405 PMCID: PMC11180381 DOI: 10.1016/j.arr.2024.102335] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Mild cognitive impairment (MCI) marks the initial phase of memory decline or other cognitive functions like language or spatial perception, while individuals typically retain the capacity to carry out everyday tasks independently. Our comprehensive article investigates the intricate landscape of cognitive disorders, focusing on MCI and Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRD). The study aims to understand the signs of MCI, early Alzheimer's disease, and healthy brain aging while assessing factors influencing disease progression, pathology development and susceptibility. A systematic literature review of over 100 articles was conducted, emphasizing MCI, AD and ADRD within the elderly populations. The synthesis of results reveals significant findings regarding ethnicity, gender, lifestyle, comorbidities, and diagnostic tools. Ethnicity was found to influence MCI prevalence, with disparities observed across diverse populations. Gender differences were evident in cognitive performance and decline, highlighting the need for personalized management strategies. Lifestyle factors and comorbidities were identified as crucial influencers of cognitive health. Regarding diagnostic tools, the Montreal Cognitive Assessment (MoCA) emerged as superior to the Mini-Mental State Examination (MMSE) in early MCI detection. Overall, our article provides insights into the multifaceted nature of cognitive disorders, emphasizing the importance of tailored interventions and comprehensive assessment strategies for effective cognitive health management.
Collapse
Affiliation(s)
- Maamoon Mian
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jihane Tahiri
- School of Biology, Texas Tech University, Lubbock, TX 79430, USA
| | - Ryan Eldin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Mohamad Altabaa
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
6
|
McLaughlin AP, Lambert E, Milton R, Mariani N, Kose M, Nikkheslat N, Patsalos O, Ferraro L, Chamseddine G, Panagiotopoulos S, Chang A, Ramar S, Patel A, Rubino F, Mondelli V. Peripheral inflammation associated with depression and reduced weight loss: a longitudinal study of bariatric patients. Psychol Med 2024; 54:601-610. [PMID: 37652080 DOI: 10.1017/s0033291723002283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
BACKGROUND Research implicates inflammation in the vicious cycle between depression and obesity, yet few longitudinal studies exist. The rapid weight loss induced by bariatric surgery is known to improve depressive symptoms dramatically, but preoperative depression diagnosis may also increase the risk for poor weight loss. Therefore, we investigated longitudinal associations between depression and inflammatory markers and their effect on weight loss and clinical outcomes in bariatric patients. METHODS This longitudinal observational study of 85 patients with obesity undergoing bariatric surgery included 41 cases with depression and 44 controls. Before and 6 months after surgery, we assessed depression by clinical interview and measured serum high-sensitivity C-reactive protein (hsCRP) and inflammatory cytokines, including interleukin (IL)-6 and IL-10. RESULTS Before surgery, depression diagnosis was associated with significantly higher serum hsCRP, IL-6, and IL-6/10 ratio levels after controlling for confounders. Six months after surgery, patients with pre-existing depression still had significantly higher inflammation despite demonstrating similar weight loss to controls. Hierarchical regression showed higher baseline hsCRP levels predicted poorer weight loss (β = -0.28, p = 0.01) but had no effect on depression severity at follow-up (β = -0.02, p = 0.9). Instead, more severe baseline depressive symptoms and childhood emotional abuse predicted greater depression severity after surgery (β = 0.81, p < 0.001; and β = 0.31, p = 0.001, respectively). CONCLUSIONS Depression was significantly associated with higher inflammation beyond the effect of obesity and other confounders. Higher inflammation at baseline predicted poorer weight loss 6 months after surgery, regardless of depression diagnosis. Increased inflammation, rather than depression, may drive poor weight loss outcomes among bariatric patients.
Collapse
Affiliation(s)
- Anna P McLaughlin
- Department of Psychological Medicine, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
- National Institute for Health and Care Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, and King's College London, London, UK
| | - Ellen Lambert
- Department of Psychological Medicine, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
- National Institute for Health and Care Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, and King's College London, London, UK
| | - Rebecca Milton
- Department of Psychological Medicine, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Nicole Mariani
- Department of Psychological Medicine, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Melisa Kose
- Department of Psychological Medicine, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Naghmeh Nikkheslat
- Department of Psychological Medicine, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - Olivia Patsalos
- Department of Psychological Medicine, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
- National Institute for Health and Care Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, and King's College London, London, UK
| | - Luca Ferraro
- ASST Santi Paolo e Carlo, Azienda Socio Sanitaria Territorale Santi Paolo e Carlo, Milan, Italy
- Department of Metabolic & Bariatric Surgery, Diabetes & Nutritional Science Division, King's College Hospital, London, UK
| | - Ghassan Chamseddine
- Department of Metabolic & Bariatric Surgery, Diabetes & Nutritional Science Division, King's College Hospital, London, UK
| | - Spyros Panagiotopoulos
- Department of Metabolic & Bariatric Surgery, Diabetes & Nutritional Science Division, King's College Hospital, London, UK
| | - Avril Chang
- Department of Metabolic & Bariatric Surgery, Diabetes & Nutritional Science Division, King's College Hospital, London, UK
| | - Sasindran Ramar
- Department of Metabolic & Bariatric Surgery, Diabetes & Nutritional Science Division, King's College Hospital, London, UK
| | - Ameet Patel
- Department of Metabolic & Bariatric Surgery, Diabetes & Nutritional Science Division, King's College Hospital, London, UK
| | - Francesco Rubino
- Department of Metabolic & Bariatric Surgery, Diabetes & Nutritional Science Division, King's College Hospital, London, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
- National Institute for Health and Care Research (NIHR) Maudsley Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, and King's College London, London, UK
| |
Collapse
|
7
|
Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ, El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation 2024; 21:32. [PMID: 38263227 PMCID: PMC10807115 DOI: 10.1186/s12974-024-03024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders caused by the interaction of genetic, environmental, and familial factors. These diseases have distinct pathologies and symptoms that are linked to specific cell populations in the brain. Notably, the immune system has been implicated in both diseases, with a particular focus on the dysfunction of microglia, the brain's resident immune cells, contributing to neuronal loss and exacerbating symptoms. Researchers use models of the neuroimmune system to gain a deeper understanding of the physiological and biological aspects of these neurodegenerative diseases and how they progress. Several in vitro and in vivo models, including 2D cultures and animal models, have been utilized. Recently, advancements have been made in optimizing these existing models and developing 3D models and organ-on-a-chip systems, holding tremendous promise in accurately mimicking the intricate intracellular environment. As a result, these models represent a crucial breakthrough in the transformation of current treatments for PD and AD by offering potential for conducting long-term disease-based modeling for therapeutic testing, reducing reliance on animal models, and significantly improving cell viability compared to conventional 2D models. The application of 3D and organ-on-a-chip models in neurodegenerative disease research marks a prosperous step forward, providing a more realistic representation of the complex interactions within the neuroimmune system. Ultimately, these refined models of the neuroimmune system aim to aid in the quest to combat and mitigate the impact of debilitating neuroimmune diseases on patients and their families.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK
| | - Ruchi Sharma
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Bianca C Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Annabel J Curle
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Vandana Kothakota
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Maria V Hangad
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Institute On Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
8
|
Liu P, Tang W, Xiang K, Li G. Pterostilbene in the treatment of inflammatory and oncological diseases. Front Pharmacol 2024; 14:1323377. [PMID: 38259272 PMCID: PMC10800393 DOI: 10.3389/fphar.2023.1323377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Pterostilbene (PTS), a naturally occurring analog of resveratrol (RSV), has garnered significant attention due to its potential therapeutic effects in treating inflammatory and oncological diseases. This comprehensive review elucidates the pharmacological properties, mechanisms of action, and therapeutic potential of PTS. Various studies indicate that PTS exhibits anti-inflammatory, antioxidant, and antitumour properties, potentially making it a promising candidate for clinical applications. Its influence on regulatory pathways like NF-κB and PI3K/Akt underscores its diverse strategies in addressing diseases. Additionally, PTS showcases a favorable pharmacokinetic profile with better oral bioavailability compared to other stilbenoids, thus enhancing its therapeutic potential. Given these findings, there is an increased interest in incorporating PTS into treatment regimens for inflammatory and cancer-related conditions. However, more extensive clinical trials are imperative to establish its safety and efficacy in diverse patient populations.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Weihua Tang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Kali Xiang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Guangcai Li
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
9
|
Liang DY, Peng JC, Xie BY, Qin WX, Aschner M, Ou SY, Jiang YM. Effects of combined exposure of manganese and iron on serum inflammatory factor levels among workers. Hum Exp Toxicol 2024; 43:9603271241293112. [PMID: 39504345 DOI: 10.1177/09603271241293112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
OBJECTIVE The aim of the study is to examine the association between long-term occupational exposure to Mn and Fe and their health effects in workers. METHODS 108 Mn workers were selected for the Mn exposure groups; 92 non-Mn workers were in the control group. Inductively coupled plasma-mass spectrometry was used to determine the Mn and Fe concentration in the working environment. Graphite furnace-atomic absorption spectroscopy was used to determine the blood Mn concentration of workers. Serum inflammatory factors were measured by enzyme-linked immunosorbent assay. RESULTS The blood Mn concentration, positive rate of clinical symptoms and serum inflammatory response in the Mn exposure group was higher than in the control group. CONCLUSIONS Low levels of Mn exposure may increase blood Mn concentrations, the rate of complaints of neurological symptoms and promote increased serum inflammatory response in workers.
Collapse
Affiliation(s)
- Dian-Yin Liang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, China
| | - Jian-Chao Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Bing-Yan Xie
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Nanning Maternity and Child Health Hospital, Nanning, China
| | - Wen-Xia Qin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Zaichick S, Caraveo G. Harnessing IGF-1 and IL-2 as biomarkers for calcineurin activity to tailor optimal FK506 dosage in α-synucleinopathies. Front Mol Biosci 2023; 10:1292555. [PMID: 38094080 PMCID: PMC10716490 DOI: 10.3389/fmolb.2023.1292555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction: Rise in Calcium (Ca2+) and hyperactive Ca2+-dependent phosphatase calcineurin represent two key determinants of a-synuclein (a-syn) pathobiology implicated in Parkinson's Disease (PD) and other neurodegenerative diseases. Calcineurin activity can be inhibited with FK506, a Food and Drug Administration (FDA)-approved compound. Our previous work demonstrated a protective effect of low doses of FK506 against a-syn pathology in various models of a-syn related pathobiology. Methods: Control and a-syn-expressing mice (12-18 months old) were injected with vehicle or two single doses of FK506 administered 4 days apart. Cerebral cortex and serum from these mice were collected and assayed using a meso scale discovery quickplex SQ 120 for cytokines and Enzyme-linked immunosorbent assay for IGF-1. Results: In this study we present evidence that reducing calcineurin activity with FK506 in a-syn transgenic mice increased insulin growth factor (IGF-1), while simultaneously decreasing IL-2 levels in both cerebral cortex and serum. Discussion: The highly conserved Ca2+/calcineurin signaling pathway is known to be affected in a-syn-dependent human disease. FK506, an already approved drug for other uses, exhibits high brain penetrance and a proven safety profile. IL-2 and IGF-1 are produced throughout life and can be measured using standard clinical methods. Our findings provide two potential biomarkers that could guide a clinical trial of FK506 in PD patients, without posing significant logistical or regulatory challenges.
Collapse
Affiliation(s)
| | - Gabriela Caraveo
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
11
|
Nettis MA, Lombardo G, Hastings C, Zajkowska Z, Mariani N, Nikkheslat N, Sforzini L, Worrell C, Begum A, Brown M, Cleare AJ, Young AH, Pariante CM, Mondelli V. The interaction between kynurenine pathway, suicidal ideation and augmentation therapy with minocycline in patients with treatment-resistant depression. J Psychopharmacol 2023:2698811231173588. [PMID: 37183855 DOI: 10.1177/02698811231173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS We investigated kynurenine pathway (KP) metabolites levels and their association with suicidal ideation in patients with treatment-resistant depression (TRD) and elevated peripheral inflammation. The effect of antidepressant augmentation with minocycline on KP metabolites was tested. METHODS We analysed data from MINocycline in DEPression, a 4-week, randomized, placebo controlled (1:1) trial of minocycline added to antidepressant treatment in 39 TRD patients (n = 18 minocycline; n = 21 placebo) with C-reactive protein (CRP) ⩾1 mg/L. At baseline and at week 4, we collected data on suicidality (Beck Depression Inventory) and blood samples to measure inflammatory markers and KP metabolites. We tested (1) the association of KP metabolites ratios with inflammatory markers and suicidal ideation at baseline and (2) the role of suicidality and treatment (minocycline vs placebo) in affecting KP changes over time. RESULTS At baseline, kynurenine/tryptophan (KYN/TRP) ratio positively correlated with high-sensitivity CRP (Spearman's ρ = 0.35, p = 0.02) and IL-10, (ρ = 0.41, p = 0.009); and tumour necrosis factor was positively correlated with quinolinic acid/3-hydroxykynurenine ratio (ρ = 0.55, p < 0.001). Moreover, participants with suicidal ideation showed higher levels of KYN/TRP (U = 143.000, p = 0.02) than those without suicidal ideation. There was no significant effect of minocycline on KP metabolites changes from baseline to week 4. However, in the minocycline group, the number of participants with suicidal thoughts decreased from 44.4% (8/18) to 22.2% (4/18). CONCLUSION Increased KP neurotoxic metabolites are associated with elevated peripheral inflammation in depressed individuals, particularly in those with suicidal ideation. Targeting KP in this population could be a potential effective personalized approach. Whether this includes minocycline should be investigated in future larger trials.
Collapse
Affiliation(s)
- Maria Antonietta Nettis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Giulia Lombardo
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Caitlin Hastings
- Wellcome Trust, Mental Health Team, Research Programmes, London, UK
| | - Zuzanna Zajkowska
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Nicole Mariani
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Naghmeh Nikkheslat
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Luca Sforzini
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Courtney Worrell
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Amina Begum
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Mollie Brown
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
| | - Anthony J Cleare
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
12
|
Blood Biomarkers in Patients with Parkinson's Disease: A Review in Context of Anesthetic Care. Diagnostics (Basel) 2023; 13:diagnostics13040693. [PMID: 36832181 PMCID: PMC9955162 DOI: 10.3390/diagnostics13040693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Parkinson's disease (PD) is the second most common inflammatory neurodegenerative disorder after dementia. Preclinical and epidemiological data strongly suggest that chronic neuroinflammation slowly induces neuronal dysfunction. Activated microglia secrete several neurotoxic substances, such as chemokines and proinflammatory cytokines, which may promote blood-brain barrier (BBB) permeabilization. CD4+ T cells comprise proinflammatory cells such as T helper (Th) 1 and Th17 cells, as well as anti-inflammatory cells such as Th2 and T regulatory cells (Tregs). Th1 and Th17 cells can be detrimental to dopamine neurons, whereas Th2 and Tregs are neuroprotective. The results of studies on the serum levels of cytokines such as IFN-γ and TNF-α secreted by Th1 T cells, IL-8 and IL-10 secreted by Th2 T cells, and IL-17 secreted by Th17 cells in PD patients are not uniform. In addition, the relationships between serum cytokine levels and motor and non-motor symptoms of PD are controversial. Surgical stress and anesthesia induce inflammatory responses by disturbing the balance between pro- and anti-inflammatory cytokines, which may exacerbate the neuroinflammatory response in PD patients. Here we review studies on blood inflammatory biomarkers in PD patients and discuss the roles of surgery and anesthesia in PD progression.
Collapse
|
13
|
Lombardo G, Nettis MA, Hastings C, Zajkowska Z, Mariani N, Nikkheslat N, Worrell C, Enache D, McLaughlin A, Kose M, Bogdanova A, Sforzini L, Cleare AJ, Young AH, Dazzan P, Mondelli V, Pariante CM. Sex differences in a double-blind randomized clinical trial with minocycline in treatment-resistant depressed patients: CRP and IL-6 as sex-specific predictors of treatment response. Brain Behav Immun Health 2022; 26:100561. [PMID: 36467125 PMCID: PMC9712814 DOI: 10.1016/j.bbih.2022.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Background Inflammation is a well-known risk factor for depression. Specifically, patients who do not respond to antidepressant treatment show higher levels of inflammatory biomarkers compared with responders. Thus, several studies have investigated the efficacy of anti-inflammatory add-on treatment in this population. However, major depressive disorder is more prevalent in females than in males, with sex differences present in antidepressant treatment response and in immune system regulation. To explore sex differences in inflammatory profiles and treatment responses, we investigated a cohort of patients with treatment resistant depression (TRD), for which they received an adjunctive, anti-inflammatory treatment with minocycline - the Minocycline in Depression (MINDEP) study. Methods The MINDEP study is a 4-week double-blind, randomised, placebo-controlled clinical trial (stratified by sex) with 39 TRD participants, which demonstrated the efficacy of minocycline, an antibiotic with anti-inflammatory properties, in TRD patients with major depressive disorder (MDD) and evidence of low-grade inflammation measured with C-reactive protein (CRP) ≥ 3 mg/L. In these secondary analyses, we investigated the differential effects of minocycline in females (N = 22, 10 randomised to minocycline and 12 randomised to placebo) and in males (N = 17, 8 randomised to minocycline and 9 randomised to placebo) on changes in depressive symptoms (Δ- Hamilton Rating Scale for Depression (HAMD)-17), taking also into consideration CRP levels (CRP ≥3 mg/L vs. CRP <3 mg/L). Additionally, we investigated the role of serum IL-6 in predicting treatment response to minocycline, using sex-specific medians of IL-6, in novel exploratory analyses. Results Sex differences in Δ-HAMD-17 indicate that only females (F = 10.49, p = 0.005), but not males (F = 1.64, p = 0.22), presented an effect of CRP levels on the response to minocycline. Also, we detected sex differences in the relationship between serum CRP and IL-6 levels: CRP was strongly correlated with IL-6 in females (Spearman's ρ = 0.658, P < 0.001) but not in males (ρ = 0.007, p = 0.979). Exploratory analyses found that IL-6 was indeed a better predictor of response than minocycline than CRP, as we found an interaction between study arms and IL-6 groups (above and below the IL-6 sex-specific median) in females (F = 4.435 p = 0.050) and, at trend statistical level, in males (F = 4.258 p = 0.060). Moreover, Δ-HAMD-17 was numerically comparable in the two high-IL-6 group taking minocycline (females, mean 9.20 ± SD 7.80; males, mean 8.80 ± SD 5.97), confirming that high IL-6, differently from high CRP, identified responders to minocycline both in males and females. Conclusion Our findings highlight the need of sex-specific inflammatory biomarkers in predicting antidepressant response to anti-inflammatories in TRD patients, with the possibility of CRP being a relevant predictor of treatment response only for females, and IL-6 being relevant for both sexes.
Collapse
Affiliation(s)
- Giulia Lombardo
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Maria Antonietta Nettis
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK.,National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Caitlin Hastings
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Zuzanna Zajkowska
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Nicole Mariani
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Naghmeh Nikkheslat
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Courtney Worrell
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Daniela Enache
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Anna McLaughlin
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Melisa Kose
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Anna Bogdanova
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Luca Sforzini
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Anthony J Cleare
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK.,National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Allan H Young
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK.,National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Paola Dazzan
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK.,National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Valeria Mondelli
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK.,National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Carmine M Pariante
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK.,National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
14
|
León-Bejarano F, Méndez MO, Alba A, Rodríguez-Leyva I, González FJ, Rodríguez-Aranda MDC, Guevara E, Guirado-López RA, Ramírez-Elías MG. Raman Spectroscopy Study of Skin Biopsies from Patients with Parkinson's Disease: Trends in Alpha-Synuclein Aggregation from the Amide I Region. APPLIED SPECTROSCOPY 2022; 76:1317-1328. [PMID: 35506336 DOI: 10.1177/00037028221101634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurological pathologies with a high prevalence worldwide. PD is characterized by Lewy bodies, whose major component is the aggregates of α-synuclein (αSyn) protein. Interestingly, recent works have demonstrated that skin biopsy studies are a promising diagnostic tool for evaluating α-synucleinopathies. In this sense, this work focuses on the detection of αSyn in skin biopsies employing Raman spectroscopy, using three different approaches: (i) the in vitro Raman spectrum of α-synuclein, (ii) the ex vivo Raman spectra of human skin biopsies from healthy and Parkinson's disease patients, and (iii) theoretical calculations of the Raman spectra obtained from different model αSyn fragments using density functional theory (DFT). Significant differences in the intensity and location of Raman active frequencies in the amide I region were found when comparing healthy and PD subjects related to α-synuclein conformational changes and variations in their aggregation behavior. In samples from healthy patients, we identified well-known Raman peaks at 1655, 1664, and 1680 cm-1 associated with the normal state of the protein. In PD subjects, shifted Raman bands and intensity variations were found at 1650, 1670, and 1687 cm-1 associated with aggregated forms of the protein. DFT calculations reveal that the shape of the amide I Raman peak in model αSyn fragments strongly depends on the degree of aggregation. Sizable frequency shifts and intensity variations are found within the highly relevant 1600-1700 cm-1 domain, revealing the sensitivity of the amide I Raman band to the changes in the local atomic environment. Interestingly, we obtain that the presence of surrounding waters also affects the structure of the amide I band, leading to the appearance of new peaks on the low-frequency side and a notable broadening of the Raman spectra. These results strongly suggest that, through Raman spectroscopy, it is possible to infer the presence of aggregated forms of αSyn in skin biopsies, a result that could have important implications for understanding α-synuclein related diseases.
Collapse
Affiliation(s)
- Fabiola León-Bejarano
- Facultad de Ciencias, 27773Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Martín O Méndez
- Facultad de Ciencias, 27773Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Laboratorio Nacional CI3M, Facultad de Ciencias, 27773Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Alfonso Alba
- Facultad de Ciencias, 27773Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Laboratorio Nacional CI3M, Facultad de Ciencias, 27773Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Francisco J González
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), 27773Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - María Del Carmen Rodríguez-Aranda
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), 27773Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Edgar Guevara
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACyT), 27773Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- CONACYT-Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Miguel G Ramírez-Elías
- Facultad de Ciencias, 27773Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
15
|
Alhowail A, Alsikhan R, Alsaud M, Aldubayan M, Rabbani SI. Protective Effects of Pioglitazone on Cognitive Impairment and the Underlying Mechanisms: A Review of Literature. Drug Des Devel Ther 2022; 16:2919-2931. [PMID: 36068789 PMCID: PMC9441149 DOI: 10.2147/dddt.s367229] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Correspondence: Ahmad Alhowail, Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia, Tel +9665672025858, Email
| | - Rawan Alsikhan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Al Qassim, 51911, Kingdom of Saudi Arabia
| | - May Alsaud
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Maha Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim, 52452, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Su Y, Shi C, Wang T, Liu C, Yang J, Zhang S, Fan L, Zheng H, Li X, Luo H, Zhang S, Hu Z, Fan Y, Hao X, Zhang C, Song B, Mao C, Xu Y. Dysregulation of peripheral monocytes and pro-inflammation of alpha-synuclein in Parkinson's disease. J Neurol 2022; 269:6386-6394. [PMID: 35895134 DOI: 10.1007/s00415-022-11258-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Mounting evidence indicates the involvement of the innate immune system in Parkinson's disease (PD). Nevertheless, the implications of peripheral monocytes have not been fully elucidated. Although alpha-synuclein (α-synuclein) has been described as a pathological hallmark of PD, the proinflammatory effect of α-synuclein on monocytes is understudied. This study aimed to comprehensively characterize peripheral monocytes in PD patients and to investigate the proinflammatory magnitude of fibrillar α-synuclein. METHODS Using flow cytometry, we explored the distribution of monocytic subpopulations. We also investigated the actions of peripheral monocytes in response to lipopolysaccharides (LPS) and to fibrillar α-synuclein stimuli by measuring inflammatory molecule levels in post-culture supernatants. RESULTS Classical monocytes were enriched, in parallel with lower proportions of intermediate and nonclassical monocytes in patients with PD than in controls. Lower levels of TNF-α and IL-6 were spontaneously produced by unstimulated monocytes in patients with PD. LPS and fibrillar α-synuclein stimuli induced high levels of TNF-α, IL-1β, IL-6, and sCD163 in the PD and control groups. Strikingly, the fold induction of TNF-α and IL-6 was lower in patients with PD than that in normal controls under the same stimulation. CONCLUSION Our results revealed a strong dysregulation of peripheral monocytes in PD patients, including subpopulation shifts and impaired response to specific stimuli, and the proinflammatory effect of α-synuclein on monocytes. Further studies are needed to clarify the specific mechanisms by which these immunological abnormalities are present in PD to open the possibility of immunoregulatory therapy.
Collapse
Affiliation(s)
- Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Tai Wang
- Department of Neurology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Chen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuyu Zhang
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenglin Zhang
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
Yang QY, Li XW, Yang R, Qin TY, Long H, Zhang SB, Zhang F. Effects of intraperitoneal injection of lipopolysaccharide-induced peripheral inflammation on dopamine neuron damage in rat midbrain. CNS Neurosci Ther 2022; 28:1624-1636. [PMID: 35789066 PMCID: PMC9437226 DOI: 10.1111/cns.13906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Current studies have documented neuroinflammation is implicated in Parkinson's disease. Recently, growing evidence indicated peripheral inflammation plays an important role in regulation of neuroinflammation and thus conferring protection against dopamine (DA) neuronal damage. However, the underlying mechanisms are not clearly illuminated. Methods The effects of intraperitoneal injection of LPS (LPS[i.p.])‐induced peripheral inflammation on substantia nigra (SN) injection of LPS (LPS[SN])‐elicited DA neuronal damage in rat midbrain were investigated. Rats were intraperitoneally injected with LPS (0.5 mg/kg) daily for 4 consecutive days and then given single injection of LPS (8 μg) into SN with an interval of 0 (LPS(i.p.) 0 day ± LPS(SN)), 30 (LPS(i.p.) 30 days ± LPS(SN)), and 90 (LPS(i.p.) 90 days ± LPS(SN)) days after LPS(i.p.) administration. Results LPS(i.p.) increased the levels of inflammatory factors in peripheral blood in (LPS(i.p.) 0 day ± LPS(SN)). Importantly, in (LPS(i.p.) 0 day ± LPS(SN)) and (LPS(i.p.) 30 days ± LPS(SN)), LPS(i.p.) attenuated LPS(SN)‐induced DA neuronal loss in SN. Besides, LPS(i.p.) reduced LPS(SN)‐induced microglia and astrocytes activation in SN. Furtherly, LPS(i.p.) reduced pro‐inflammatory M1 microglia markers mRNA levels and increased anti‐inflammatory M2 microglia markers mRNA levels. In addition, the increased T‐cell marker expression and the decreased M1 microglia marker expression and more DA neuronal survival were discerned at the same area of rat midbrain in LPS(SN)‐induced DA neuronal damage 30 days after LPS(i.p.) application. Conclusion This study suggested LPS(i.p.)‐induced peripheral inflammation might cause T cells to infiltrate the brain to regulate microglia‐mediated neuroinflammation, thereby protecting DA neurons.
Collapse
Affiliation(s)
- Qiu-Yu Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Xian-Wei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Rong Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Ting-Yang Qin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Hong Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Shi-Bin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Zimmermann M, Brockmann K. Blood and Cerebrospinal Fluid Biomarkers of Inflammation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S183-S200. [PMID: 35661021 PMCID: PMC9535573 DOI: 10.3233/jpd-223277] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Given the clear role of inflammation in the pathogenesis of Parkinson's disease (PD) and its impact on incidence and phenotypical characteristics, this review provides an overview with focus on inflammatory biofluid markers in blood and cerebrospinal fluid (CSF) in PD patient cohorts. In preparation for clinical trials targeting the immune system, we specifically address the following questions: 1) What evidence do we have for pro-inflammatory profiles in blood and in CSF of sporadic and genetic PD patients? 2) Is there a role of anti-inflammatory mediators in blood/CSF? 3) Do inflammatory profiles in blood reflect those in CSF indicative of a cross-talk between periphery and brain? 4) Do blood/CSF inflammatory profiles change over the disease course as assessed in repeatedly taken biosamples? 5) Are blood/CSF inflammatory profiles associated with phenotypical trajectories in PD? 6) Are blood/CSF inflammatory profiles associated with CSF levels of neurodegenerative/PD-specific biomarkers? Knowledge on these questions will inform future strategies for patient stratification and cohort enrichment as well as suitable outcome measures for clinical trials.
Collapse
Affiliation(s)
- Milan Zimmermann
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
19
|
Tran AA, De Smet M, Grant GD, Khoo TK, Pountney DL. Investigating the Convergent Mechanisms between Major Depressive Disorder and Parkinson's Disease. Complex Psychiatry 2021; 6:47-61. [PMID: 34883500 DOI: 10.1159/000512657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) affects more than cognition, having a temporal relationship with neuroinflammatory pathways of Parkinson's disease (PD). Although this association is supported by epidemiological and clinical studies, the underlying mechanisms are unclear. Microglia and astrocytes play crucial roles in the pathophysiology of both MDD and PD. In PD, these cells can be activated by misfolded forms of the protein α-synuclein to release cytokines that can interact with multiple different physiological processes to produce depressive symptoms, including monoamine transport and availability, the hypothalamus-pituitary axis, and neurogenesis. In MDD, glial cell activation can be induced by peripheral inflammatory agents that cross the blood-brain barrier and/or c-Fos signalling from neurons. The resulting neuroinflammation can cause neurodegeneration due to oxidative stress and glutamate excitotoxicity, contributing to PD pathology. Astrocytes are another major link due to their recognized role in the glymphatic clearance mechanism. Research suggesting that MDD causes astrocytic destruction or structural atrophy highlights the possibility that accumulation of α-synuclein in the brain is facilitated as the brain cannot adequately clear the protein aggregates. This review examines research into the overlapping pathophysiology of MDD and PD with particular focus on the roles of glial cells and neuroinflammation.
Collapse
Affiliation(s)
- Angela A Tran
- School of Medical Science, Griffith University, Southport, Queensland, Australia.,School of Medicine, Griffith University, Southport, Queensland, Australia
| | - Myra De Smet
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Gary D Grant
- School of Pharmacy and Pharmacology, Griffith University, Southport, Queensland, Australia
| | - Tien K Khoo
- School of Medicine, Griffith University, Southport, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Dean L Pountney
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
20
|
Sideris DI, Danial JSH, Emin D, Ruggeri FS, Xia Z, Zhang YP, Lobanova E, Dakin H, De S, Miller A, Sang JC, Knowles TPJ, Vendruscolo M, Fraser G, Crowther D, Klenerman D. Soluble amyloid beta-containing aggregates are present throughout the brain at early stages of Alzheimer's disease. Brain Commun 2021; 3:fcab147. [PMID: 34396107 PMCID: PMC8361392 DOI: 10.1093/braincomms/fcab147] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/02/2022] Open
Abstract
Protein aggregation likely plays a key role in the initiation and spreading of Alzheimer's disease pathology through the brain. Soluble aggregates of amyloid beta are believed to play a key role in this process. However, the aggregates present in humans are still poorly characterized due to a lack of suitable methods required for characterizing the low concentration of heterogeneous aggregates present. We have used a variety of biophysical methods to characterize the aggregates present in human Alzheimer's disease brains at Braak stage III. We find soluble amyloid beta-containing aggregates in all regions of the brain up to 200 nm in length, capable of causing an inflammatory response. Rather than aggregates spreading through the brain as disease progresses, it appears that aggregation occurs all over the brain and that different brain regions are at earlier or later stages of the same process, with the later stages causing increased inflammation.
Collapse
Affiliation(s)
- Dimitrios I Sideris
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Neuroscience, Research and Early Development, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, UK
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Derya Emin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Francesco S Ruggeri
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Laboratories of Organic and Physical Chemistry, Wageningen University, Wageningen 6703 WE, Netherlands
| | - Zengjie Xia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Yu P Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Evgeniia Lobanova
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Helen Dakin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Suman De
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Alyssa Miller
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Jason C Sang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0H3, UK
| | - Michele Vendruscolo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Graham Fraser
- Neuroscience, Research and Early Development, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, UK
| | - Damian Crowther
- Neuroscience, Research and Early Development, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
21
|
Milán-Tomás Á, Fernández-Matarrubia M, Rodríguez-Oroz MC. Lewy Body Dementias: A Coin with Two Sides? Behav Sci (Basel) 2021; 11:94. [PMID: 34206456 PMCID: PMC8301188 DOI: 10.3390/bs11070094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Lewy body dementias (LBDs) consist of dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), which are clinically similar syndromes that share neuropathological findings with widespread cortical Lewy body deposition, often with a variable degree of concomitant Alzheimer pathology. The objective of this article is to provide an overview of the neuropathological and clinical features, current diagnostic criteria, biomarkers, and management of LBD. Literature research was performed using the PubMed database, and the most pertinent articles were read and are discussed in this paper. The diagnostic criteria for DLB have recently been updated, with the addition of indicative and supportive biomarker information. The time interval of dementia onset relative to parkinsonism remains the major distinction between DLB and PDD, underpinning controversy about whether they are the same illness in a different spectrum of the disease or two separate neurodegenerative disorders. The treatment for LBD is only symptomatic, but the expected progression and prognosis differ between the two entities. Diagnosis in prodromal stages should be of the utmost importance, because implementing early treatment might change the course of the illness if disease-modifying therapies are developed in the future. Thus, the identification of novel biomarkers constitutes an area of active research, with a special focus on α-synuclein markers.
Collapse
Affiliation(s)
- Ángela Milán-Tomás
- Department of Neurology, Clínica Universidad de Navarra, 28027 Madrid, Spain;
| | - Marta Fernández-Matarrubia
- Department of Neurology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, 28027 Madrid, Spain;
- Department of Neurology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, 31008 Pamplona, Spain
| |
Collapse
|
22
|
Sex-based differences in the activation of peripheral blood monocytes in early Parkinson disease. NPJ PARKINSONS DISEASE 2021; 7:36. [PMID: 33850148 PMCID: PMC8044127 DOI: 10.1038/s41531-021-00180-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence supports the role of brain and systemic inflammation in the etiology of Parkinson disease (PD). We used gene expression profiling to examine the activation state of peripheral blood monocytes in 18 patients with early, untreated PD and 16 healthy control (HC) subjects. Monocytes were isolated by negative selection, and gene expression studied by RNA-seq and gene set enrichment analysis. A computational model that incorporated case/control status, sex, and the interaction between case/control status and sex was utilized. We found that there was a striking effect of sex on monocyte gene expression. There was inflammatory activation of monocytes in females with PD, with enrichment of gene sets associated with interferon gamma stimulation. In males, the activation patterns were more heterogeneous. These data point to the importance of systemic monocyte activation in PD, and the importance of studies which examine the differential effects of sex on pathophysiology of the disease.
Collapse
|
23
|
Nettis MA, Lombardo G, Hastings C, Zajkowska Z, Mariani N, Nikkheslat N, Worrell C, Enache D, McLaughlin A, Kose M, Sforzini L, Bogdanova A, Cleare A, Young AH, Pariante CM, Mondelli V. Augmentation therapy with minocycline in treatment-resistant depression patients with low-grade peripheral inflammation: results from a double-blind randomised clinical trial. Neuropsychopharmacology 2021; 46:939-948. [PMID: 33504955 PMCID: PMC8096832 DOI: 10.1038/s41386-020-00948-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
This study aimed to investigate the role of baseline levels of peripheral inflammation when testing the efficacy of antidepressant augmentation with minocycline in patients with treatment-resistant depression. We conducted a 4-week, placebo-controlled, randomised clinical trial of minocycline (200 mg/day) added to antidepressant treatment in 39 patients selected for elevated levels of serum C-reactive protein (CRP ≥ 1 mg/L), n = 18 randomised to minocycline (M) and n = 21 to placebo (P). The main outcome was the change in Hamilton Depression Rating Scale (HAM-D-17) score from baseline to week 4, expressed both as mean and as full or partial response, in the overall sample and after further stratification for baseline CRP≥3 mg/L. Secondary outcomes included changes in other clinical and inflammatory measures. Changes in HAM-D-17 scores and the proportion of partial responders did not differ between study arms. After stratification for CRP levels <3 mg/L (CRP-) or ≥3 mg/L (CRP+), CRP+/M patients showed the largest changes in HAM-D-17 scores (mean ± SD = 12.00 ± 6.45) compared with CRP-/M (2.42 ± 3.20, p < 0.001), CRP+/P (3.50 ± 4.34, p = 0.003) and CRP-/P (2.11 ± 3.26, p = 0.006) patients, and the largest proportion (83.3%, p = 0.04) of partial treatment response at week 4. The threshold point for baseline CRP to distinguish responders from non-responders to minocycline was 2.8 mg/L. Responders to minocycline had higher baseline IL-6 concentrations than non-responders (p = 0.03); IFNγ was significantly reduced after treatment with minocycline compared with placebo (p = 0.03). Our data show some evidence of efficacy of add-on treatment with minocycline in MDD patients but only in those with low-grade inflammation defined as CRP ≥3 mg/L.
Collapse
Affiliation(s)
- Maria Antonietta Nettis
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
- National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Giulia Lombardo
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Caitlin Hastings
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Zuzanna Zajkowska
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Nicole Mariani
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Naghmeh Nikkheslat
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Courtney Worrell
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Daniela Enache
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Anna McLaughlin
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Melisa Kose
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Luca Sforzini
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Anna Bogdanova
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
| | - Anthony Cleare
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
- National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Allan H Young
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
- National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Carmine M Pariante
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK
- National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Valeria Mondelli
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Psychological Medicine, London, UK.
- National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| |
Collapse
|
24
|
Muruzheva ZM, Ivleva IS, Traktirov DS, Zubov AS, Karpenko MN. The relationship between serum interleukin-1β, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-α levels and clinical features in essential tremor. Int J Neurosci 2021; 132:1143-1149. [PMID: 33345671 DOI: 10.1080/00207454.2020.1865952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND In recent years, there has been discussion that essential tremor (ET) might be a neurodegenerative disease. Indicators of inflammation are considered as possible biomarkers of neurodegeneration. In this connection, the aim of our study was to identify the relationship between serum inflammation markers and clinical features in ET, including the severity of tremor, cognitive decline, depression. METHODS The serum interleukin-1β (IL-1β), IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α) levels were measured in 90 ET patients and 90 healthy control people of the corresponding age and gender. Fahn-Tolosa-Marin scale was used for the severity of the tremor. Cognitive function was assessed using the MoCA. Affective symptoms were measured by the Beck Depression Inventory. RESULTS ET patients had significantly lower serum TNF-α (p < 0.01) but higher serum IL-8 (p < 0.02) and IL-10 (p < 0.01) levels compared to the control patients. The severity of tremor positively correlated with the serum IL-8 level, R = 0.3 (p < 0.01). The serum IL-6 level was higher in ET patients with cognitive impairment compared with normal cognitive ability (p < 0.01). ROC analysis showed that an IL-8 level of 4 pg/ml and higher related with a high risk of severe tremor in ET (AUC-ROC = 0.761). CONCLUSIONS Our findings demonstrate that neuroinflammation makes a certain contribution to the development of ET.
Collapse
Affiliation(s)
- Zamira M Muruzheva
- Pavlov Department of Physiology, Federal State Budgetary Scientific Institution «Institute of Experimental Medicine», Saint-Petersburg, Russia
| | - Irina S Ivleva
- Pavlov Department of Physiology, Federal State Budgetary Scientific Institution «Institute of Experimental Medicine», Saint-Petersburg, Russia
| | - Dmitry S Traktirov
- Pavlov Department of Physiology, Federal State Budgetary Scientific Institution «Institute of Experimental Medicine», Saint-Petersburg, Russia
| | - Alexander S Zubov
- Pavlov Department of Physiology, Federal State Budgetary Scientific Institution «Institute of Experimental Medicine», Saint-Petersburg, Russia
| | - Marina N Karpenko
- Pavlov Department of Physiology, Federal State Budgetary Scientific Institution «Institute of Experimental Medicine», Saint-Petersburg, Russia
| |
Collapse
|
25
|
Turkheimer FE, Althubaity N, Schubert J, Nettis MA, Cousins O, Dima D, Mondelli V, Bullmore ET, Pariante C, Veronese M. Increased serum peripheral C-reactive protein is associated with reduced brain barriers permeability of TSPO radioligands in healthy volunteers and depressed patients: implications for inflammation and depression. Brain Behav Immun 2021; 91:487-497. [PMID: 33160089 DOI: 10.1016/j.bbi.2020.10.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 01/08/2023] Open
Abstract
The relationship between peripheral and central immunity and how these ultimately may cause depressed behaviour has been the focus of a number of imaging studies conducted with Positron Emission Tomography (PET). These studies aimed at testing the immune-mediated model of depression that proposes a direct effect of peripheral cytokines and immune cells on the brain to elicit a neuroinflammatory response via a leaky blood-brain barrier and ultimately depressive behaviour. However, studies conducted so far using PET radioligands targeting the neuroinflammatory marker 18 kDa translocator protein (TSPO) in patient cohorts with depression have demonstrated mild inflammatory brain status but no correlation between central and peripheral immunity. To gain a better insight into the relationship between heightened peripheral immunity and neuroinflammation, we estimated blood-to-brain and blood-to-CSF perfusion rates for two TSPO radiotracers collected in two separate studies, one large cross-sectional study of neuroinflammation in normal and depressed cohorts (N = 51 patients and N = 25 controls) and a second study where peripheral inflammation in N = 7 healthy controls was induced via subcutaneous injection of interferon (IFN)-α. In both studies we observed a consistent negative association between peripheral inflammation, measured with c-reactive protein P (CRP), and radiotracer perfusion into and from the brain parenchyma and CSF. Importantly, there was no association of this effect with the marker of BBB leakage S100β, that was unchanged. These results suggest a different model of peripheral-to-central immunity interaction whereas peripheral inflammation may cause a reduction in BBB permeability. This effect, on the long term, is likely to disrupt brain homeostasis and induce depressive behavioural symptoms.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Noha Althubaity
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Julia Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Maria A Nettis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver Cousins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Danai Dima
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
| | - Valeria Mondelli
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Carmine Pariante
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
26
|
Forloni G. Alzheimer's disease: from basic science to precision medicine approach. BMJ Neurol Open 2020; 2:e000079. [PMID: 33681801 PMCID: PMC7903168 DOI: 10.1136/bmjno-2020-000079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly. Together with cerebral amyloid accumulation, several factors contribute to AD pathology including vascular alterations, systemic inflammation, genetic/epigenetic status and mitochondrial dysfunction. Much is now being devoted to neuroinflammation. However, anti-inflammatory drugs as numerous other therapies, mainly targeted on β-amyloid, have failed to show efficacious effects in AD. Timing, proper selection of patients, and the need for a multitarget approach appear to be the main weak points of current therapeutic efforts. The efficacy of a treatment could be better evaluate if efficient biomarkers are available. We propose here the application of precision medicine principles in AD to simultaneously verify the efficacy of a treatment and the reliability of specific biomarkers according to individually tailored biomarker-guided targeted therapies. People at risk of developing AD or in the very early phase of the disease should be stratified according to: (1) neuropsychological tests; (2) apolipoprotein E (ApoE) genotyping; (3) biochemical analysis of plasma and cerebrospinal fluid (CSF); (4) MRI and positron emission tomography and (5) assessment of their inflammatory profile by an integration of various genetic and biochemical parameters in plasma, CSF and an analysis of microbiota composition. The selected population should be treated with antiamyloidogenic and anti-inflammatory drugs in randomised, longitudinal, placebo-controlled studies using ad hoc profiles (eg, vascular profile, mitochondrial profile, etc…) If these criteria are adopted widely and the results shared, it may be possible to rapidly develop innovative and personalised drug treatment protocols with more realistic chances of being efficacious.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Lombardia, Italy
| |
Collapse
|
27
|
Zhang H, Ma L, Guo WZ, Jiao LB, Zhao HY, Ma YQ, Hao XM. TSPO ligand etifoxine attenuates LPS-induced cognitive dysfunction in mice. Brain Res Bull 2020; 165:178-184. [PMID: 33075418 DOI: 10.1016/j.brainresbull.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
The translocator protein (TSPO), once known as peripheral-type benzodiazepine receptor, was reported to be related with several physiological functions. Etifoxine is a clinically available anxiolytic drug, and has recently shown neuroprotective effects as a TSPO ligand. The aim of the present study was to investigate the influence of etifoxine on LPS-induced neuroinflammation and cognitive dysfunction. C57/BL6 male mice were injected with etifoxine (50 mg/kg, i.p.) three days before lipopolysaccharide (LPS, 500 μg/kg, i.p.) administration. Etifoxine pretreatment alleviated hippocampal inflammation, increased brain levels of progesterone, allopregnanolone and attenuated cognitive dysfunction in LPS-injected mice. While LPS increased expression of caspase-3 and decreased p-Akt/Akt, etifoxine returned caspase-3 and p-Akt/Akt to control levels. Finasteride, a 5α-reductase inhibitor that blocked allopregnanolone production, partially reversed the effects of etifoxine. We concluded that etifoxine exerted neuroprotective effects in LPS-induced neuroinflammation and the neuroprotection may be related with increase of neurosteroids synthesis and decrease of apoptosis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurosurgery, Air Force Medical Center of the Chinese PLA, Beijing, 100142, China.
| | - Li Ma
- Department of Anesthesiology, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Wen-Zhi Guo
- Department of Anesthesiology, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Lin-Bo Jiao
- Department of Anesthesiology, Beijing Shouda E.E.N.T Hospital, Beijing, 100070, China
| | - Hong-Yu Zhao
- Department of Anesthesiology, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Ya-Qun Ma
- Department of Anesthesiology, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Xue-Mei Hao
- Operating Room, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China.
| |
Collapse
|
28
|
Plasma cytokine profile in synucleinophaties with dementia. J Clin Neurosci 2020; 78:323-326. [DOI: 10.1016/j.jocn.2020.04.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/11/2020] [Indexed: 12/24/2022]
|
29
|
Yang H, Gu S, Wu Y, Jiang Y, Zhao J, Cheng Z. Plasma Protein Panels for Mild Cognitive Impairment Among Elderly Chinese Individuals with Different Educational Backgrounds. J Mol Neurosci 2020; 70:1629-1638. [PMID: 32662047 DOI: 10.1007/s12031-020-01659-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022]
Abstract
To explore plasma protein panels as potential biomarkers to screen for mild cognitive impairment (MCI) among elderly Chinese individuals with different educational backgrounds. Forty-four illiterate, 36 lower education (1-6 years), and 55 higher education (7 years or more) elderly individuals were included in the present study. Among all subjects, 67 were healthy individuals and 68 were diagnosed with MCI. Fifty plasma proteins in blood samples collected from these subjects were analyzed via the Luminex assay. Binary logistic regression was utilized to explore diagnostic models for MCI among the three educational subgroups. Then, receiver operating characteristic (ROC) curves were conducted for the clinical validity of the MCI models. Among the analyzed proteins, clusterin was used in the model of MCI among the total sample with a sensitivity (se) of 67.6%, a specificity (sp) of 59.7%, and a classification rate of 63.68%. The MCI model for the illiterate group included cystatin C, plasminogen activator inhibitor-1, and apolipoprotein A-I (se: 71.4%, sp.: 82.6%, accuracy: 77.25%). The sensitivity, specificity, and classification rate of the diagnostic model of MCI in elderly adults with lower education (human serum albumin) were each 75.0%. Additionally, the sensitivity, specificity, and accuracy rate of the diagnostic model for MCI elderly individuals with higher education (alpha-acid glycoprotein + soluble intercellular adhesion molecule-1 + pancreatic polypeptide) were 77.8%, 89.3%, and 83.60%, respectively. The performance of diagnostic models for MCI based on different educational levels is superior to that of diagnostic models for MCI without grouping by educational level.
Collapse
Affiliation(s)
- Hongyu Yang
- Wuxi Mental Health Center, Nanjing Medical University, No.156 Qianrong Road, Wuxi, Jiangsu Province, China
| | - Shouquan Gu
- Wuxi Mental Health Center, Nanjing Medical University, No.156 Qianrong Road, Wuxi, Jiangsu Province, China
| | - Yue Wu
- Wuxi Mental Health Center, Nanjing Medical University, No.156 Qianrong Road, Wuxi, Jiangsu Province, China
| | - Yan Jiang
- Wuxi Mental Health Center, Nanjing Medical University, No.156 Qianrong Road, Wuxi, Jiangsu Province, China
| | - Jinfa Zhao
- Graduate School, Wannan Medical College, No.22 Wenchang Road, Wuhu, Anhui Province, China
| | - Zaohuo Cheng
- Wuxi Mental Health Center, Nanjing Medical University, No.156 Qianrong Road, Wuxi, Jiangsu Province, China.
| |
Collapse
|
30
|
Hirsch EC, Standaert DG. Ten Unsolved Questions About Neuroinflammation in Parkinson's Disease. Mov Disord 2020; 36:16-24. [PMID: 32357266 DOI: 10.1002/mds.28075] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease is a progressive and debilitating disorder that has so far eluded attempts to develop disease-modifying treatment. Both epidemiological and genetic studies support a role of neuroinflammation in the pathophysiology of Parkinson's disease. Postmortem studies and experimental analyses suggest the involvement of both innate and adaptive immunity in the degenerative process. There is also some circumstantial evidence for effects of immune therapies on the disease. In the present article, we review 10 unanswered questions related to neuroinflammatory processes in Parkinson's disease with the goal of stimulating research in the field and accelerating the clinical development of neuroprotective therapies based on anti-inflammatory strategies. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Etienne C Hirsch
- Faculté de Médecine de Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, U 1127, CNRS, Unité Mixte de Recherche (UMR) 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
31
|
Nettis MA, Veronese M, Nikkheslat N, Mariani N, Lombardo G, Sforzini L, Enache D, Harrison NA, Turkheimer FE, Mondelli V, Pariante CM. PET imaging shows no changes in TSPO brain density after IFN-α immune challenge in healthy human volunteers. Transl Psychiatry 2020; 10:89. [PMID: 32152285 PMCID: PMC7063038 DOI: 10.1038/s41398-020-0768-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Depression is associated with peripheral inflammation, but its link with brain microglial activity remains unclear. In seven healthy males, we used repeated translocator protein-Positron Emission Tomography (TSPO-PET) dynamic scans with [11C]PBR28 to image brain microglial activation before and 24 h after the immune challenge interferon (IFN)-α. We also investigated the association between changes in peripheral inflammation, changes in microglial activity, and changes in mood. IFN-α administration decreased [11C]PBR28 PET tissue volume of distribution (Vt) across the brain (-20 ± 4%; t6 = 4.1, p = 0.01), but after correction for radioligand free-plasma fraction there were no longer any changes (+23 ± 31%; t = 0.1, p = 0.91). IFN-α increased serum IL-6 (1826 ± 513%, t6 = -7.5, p < 0.001), IL-7 (39 ± 12%, t6 = -3.6, p = 0.01), IL-10 (328 ± 48%, t6 = -12.8, p < 0.001), and IFN-γ (272 ± 64%, t6 = -7.0, p < 0.001) at 4-6 h, and increased serum TNF-α (49 ± 7.6%, t6 = -7.5, p < 0.001), IL-8 (39 ± 12%, t6 = -3.5, p = 0.013), and C-reactive protein (1320 ± 459%, t6 = -7.2, p < 0.001) at 24 h. IFN-α induced temporary mood changes and sickness symptoms after 4-6 h, measured as an increase in POMS-2 total mood score, confusion and fatigue, and a decrease in vigor and friendliness (all p ≤ 0.04). No association was found between changes in peripheral inflammation and changes in PET or mood measures. Our work suggests that brain TSPO-PET signal is highly dependent of inflammation-induced changes in ligand binding to plasma proteins. This limits its usefulness as a sensitive marker of neuroinflammation and consequently, data interpretation. Thus, our results can be interpreted as showing either that [11C]PBR28 is not sensitive enough under these conditions, or that there is simply no microglial activation in this model.
Collapse
Affiliation(s)
- M A Nettis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK.
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - M Veronese
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London Department of Neuroimaging, London, UK
| | - N Nikkheslat
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
| | - N Mariani
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
| | - G Lombardo
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
| | - L Sforzini
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
- Universita' degli Studi di Milano, Psychiatry Unit, Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, Milan, Italy
| | - D Enache
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - N A Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - F E Turkheimer
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London Department of Neuroimaging, London, UK
| | - V Mondelli
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - C M Pariante
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
- National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
32
|
Gargouri B, Boukholda K, Kumar A, Benazzouz A, Fetoui H, Fiebich BL, Bouchard M. Bifenthrin insecticide promotes oxidative stress and increases inflammatory mediators in human neuroblastoma cells through NF-kappaB pathway. Toxicol In Vitro 2020; 65:104792. [PMID: 32061760 DOI: 10.1016/j.tiv.2020.104792] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
The extensive application of bifenthrin (BF) insecticide in agriculture has raised serious concerns with regard to increased risks of developing neurodegenerative diseases. Recently, our group showed that BF exposure in rodent models induced oxidative stress and inflammation markers in various regions of the brain (frontal cortex, striatum and hippocampus) and this was associated with behavioral changes. This study aimed to confirm such inflammatory and oxidative stress in an in vitro cell culture model of SK-N-SH human neuroblastoma cells. Markers of oxidative stress (ROS, NO, MDA, H2O2), antioxidant enzyme activities (CAT, GPx, SOD) and inflammatory response (TNF-α, IL-6, PGE2) were analyzed in SK-N-SH cells after 24 h of exposure to different concentrations of BF (1-20 μM). Protein synthesis and mRNA expression of the enzymes implicated in the synthesis of PGE2 were also measured (COX-2, mPGES-1) as well as nuclear factor κappaB (NF-κBp65) and antioxidant nuclear erythroid-2 like factor-2 (Nrf-2). Cell viability was analyzed by MTT-tetrazolio (MTT) and lactate dehydrogenase (LDH) assays. Exposure of SK-N-SH cells to BF resulted in a concentration-dependent reduction in the number of viable cells (reduction of MTT and increase in LDH activity). There was also a BF concentration-dependent increase in oxidative stress markers (ROS release, NO, MDA and H2O2) and decrease in the activity of antioxidant enzymes (CAT and GPx activities). There was further a concentration-dependent increase in pro-inflammatory cytokines (TNF-α and IL-6) and inflammatory mediator PGE2, increase in protein synthesis and mRNA expression of inflammatory markers (COX-2, mPGES-1 and NF-κBp65) and decrease in protein synthesis and mRNA expression of antioxidant Nrf-2. Our data shows that BF induces various oxidative stress and inflammatory markers in SK-N-SH human neuroblastoma cells as well as the activation of NF-κBp65 signaling pathway. This is in line with prior results in brain regions of rodents exposed in vivo to BF showing increased oxidative stress in response to BF exposure, occurring in pro-inflammatory conditions and likely activating programmed cell death.
Collapse
Affiliation(s)
- Brahim Gargouri
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Haupt strasse 5, 79104 Freiburg, Germany; Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Asit Kumar
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abdelhamid Benazzouz
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Haupt strasse 5, 79104 Freiburg, Germany.
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, Quebec H3C 3J7, Canada.
| |
Collapse
|
33
|
d'Angelo M, Castelli V, Catanesi M, Antonosante A, Dominguez-Benot R, Ippoliti R, Benedetti E, Cimini A. PPARγ and Cognitive Performance. Int J Mol Sci 2019; 20:ijms20205068. [PMID: 31614739 PMCID: PMC6834178 DOI: 10.3390/ijms20205068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Recent findings have led to the discovery of many signaling pathways that link nuclear receptors with human conditions, including mental decline and neurodegenerative diseases. PPARγ agonists have been indicated as neuroprotective agents, supporting synaptic plasticity and neurite outgrowth. For these reasons, many PPARγ ligands have been proposed for the improvement of cognitive performance in different pathological conditions. In this review, the research on this issue is extensively discussed.
Collapse
Affiliation(s)
- Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Reyes Dominguez-Benot
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|