1
|
Huang Z, Zhang X, Yang X, Ding S, Cai J. Aberrant brain intra- and internetwork functional connectivity in children with Prader-Willi syndrome. Neuroradiology 2024; 66:135-144. [PMID: 38001311 PMCID: PMC10761436 DOI: 10.1007/s00234-023-03259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
PURPOSE Prader-Willi syndrome (PWS) suffers from brain functional reorganization and developmental delays during childhood, but the underlying neurodevelopmental mechanism is unclear. This paper aims to investigate the intra- and internetwork functional connectivity (FC) changes, and their relationships with developmental delays in PWS children. METHODS Resting-state functional magnetic resonance imaging datasets of PWS children and healthy controls (HCs) were acquired. Independent component analysis was used to acquire core resting-state networks (RSNs). The intra- and internetwork FC patterns were then investigated. RESULTS In terms of intranetwork FC, children with PWS had lower FC in the dorsal attention network, the auditory network, the medial visual network (VN) and the sensorimotor network (SMN) than HCs (FWE-corrected, p < 0.05). In terms of internetwork FC, PWS children had decreased FC between the following pairs of regions: posterior default mode network (DMN) and anterior DMN; posterior DMN and SMN; SMN and posterior VN and salience network and medial VN (FDR-corrected, p < 0.05). Partial correlation analyses revealed that the intranetwork FC patterns were positively correlated with developmental quotients in PWS children, while the internetwork FC patterns were completely opposite (p < 0.05). Intranetwork FC patterns showed an area under the receiver operating characteristic curve of 0.947, with a sensitivity of 96.15% and a specificity of 81.25% for differentiating between PWS and HCs. CONCLUSION Impaired intra- and internetwork FC patterns in PWS children are associated with developmental delays, which may result from neural pathway dysfunctions. Intranetwork FC reorganization patterns can discriminate PWS children from HCs. REGISTRATION NUMBER ON THE CHINESE CLINICAL TRAIL REGISTRY ChiCTR2100046551.
Collapse
Affiliation(s)
- Zhongxin Huang
- Department of Radiology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Second Road 400014, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Xiangmin Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Second Road 400014, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Xinyi Yang
- Department of Radiology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Second Road 400014, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Shuang Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Second Road 400014, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Second Road 400014, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China.
| |
Collapse
|
2
|
Progress in Brain Magnetic Resonance Imaging of Individuals with Prader-Willi Syndrome. J Clin Med 2023; 12:jcm12031054. [PMID: 36769704 PMCID: PMC9917938 DOI: 10.3390/jcm12031054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Prader-Willi syndrome (PWS), a rare epigenetic disease mapping the imprinted chromosomal domain of 15q11.2-q13.3, manifests a regular neurodevelopmental trajectory in different phases. The current multimodal magnetic resonance imaging (MRI) approach for PWS focues on morphological MRI (mMRI), diffusion MRI (dMRI) and functional MRI (fMRI) to uncover brain alterations. This technique offers another perspective to understand potential neurodevelopmental and neuropathological processes of PWS, in addition to specific molecular gene expression patterns, various clinical manifestations and metabolic phenotypes. Multimodal MRI studies of PWS patients demonstrated common brain changes in the volume of gray matter, the integrity of the fiber tracts and the activation and connectivity of some networks. These findings mainly showed that brain alterations in the frontal reward circuit and limbic system were related to molecular genetics and clinical manifestations (e.g., overwhelming eating, obsessive compulsive behaviors and skin picking). Further exploration using a large sample size and advanced MRI technologies, combined with artificial intelligence algorithms, will be the main research direction to study the structural and functional changes and potential pathogenesis of PWS.
Collapse
|
3
|
Wu N, Yu H, Xu M. Alteration of brain nuclei in obese children with and without Prader-Willi syndrome. Front Neuroinform 2022; 16:1032636. [PMID: 36465689 PMCID: PMC9716021 DOI: 10.3389/fninf.2022.1032636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Introduction: Prader-Willi syndrome (PWS) is a multisystem genetic imprinting disorder mainly characterized by hyperphagia and childhood obesity. Extensive structural alterations are expected in PWS patients, and their influence on brain nuclei should be early and profound. To date, few studies have investigated brain nuclei in children with PWS, although functional and structural alterations of the cortex have been reported widely. Methods: In the current study, we used T1-weighted magnetic resonance imaging to investigate alterations in brain nuclei by three automated analysis methods: shape analysis to evaluate the shape of 14 cerebral nuclei (bilateral thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, and nucleus accumbens), automated segmentation methods integrated in Freesurfer 7.2.0 to investigate the volume of hypothalamic subregions, and region of interest-based analysis to investigate the volume of deep cerebellar nuclei (DCN). Twelve age- and sex-matched children with PWS, 18 obese children without PWS (OB) and 18 healthy controls participated in this study. Results: Compared with control and OB individuals, the PWS group exhibited significant atrophy in the bilateral thalamus, pallidum, hippocampus, amygdala, nucleus accumbens, right caudate, bilateral hypothalamus (left anterior-inferior, bilateral posterior, and bilateral tubular inferior subunits) and bilateral DCN (dentate, interposed, and fastigial nuclei), whereas no significant difference was found between the OB and control groups. Discussion: Based on our evidence, we suggested that alterations in brain nuclei influenced by imprinted genes were associated with clinical manifestations of PWS, such as eating disorders, cognitive disability and endocrine abnormalities, which were distinct from the neural mechanisms of obese children.
Collapse
Affiliation(s)
- Ning Wu
- Department of Medical Imaging, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Huan Yu
- Department of Radiology, Liangxiang Hospital, Beijing, China
| | - Mingze Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
4
|
Yamada K, Watanabe M, Suzuki K. Differential volume reductions in the subcortical, limbic, and brainstem structures associated with behavior in Prader-Willi syndrome. Sci Rep 2022; 12:4978. [PMID: 35322075 PMCID: PMC8943009 DOI: 10.1038/s41598-022-08898-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
Individuals with Prader-Willi syndrome (PWS) exhibit complex behavioral characteristics, including hyperphagia, autistic features, and subsequent age-related maladaptive behaviors. While this suggests functional involvements of subcortical, limbic, and brainstem areas, developmental abnormalities in such structures remain to be investigated systematically. Twenty-one Japanese individuals with PWS and 32 healthy controls with typical development were included. T1-weighted three-dimensional structural magnetic resonance images were analyzed for subcortical, limbic, and brainstem structural volumes, with age as a covariate, using a model-based automatic segmentation tool. Correlations were determined between each volume measurement and behavioral characteristics as indexed by questionnaires and block test scores for hyperphagia (HQ), autistic and obsessional traits, non-verbal intelligence (IQ), and maladaptive behavior (VABS_mal). Compared with the control group, the PWS group showed significantly reduced relative volume ratios per total intracranial volume (TIV) in thalamus, amygdala, and brainstem structures, along with TIV and native volumes in all substructures. While the brainstem volume ratio was significantly lower in all age ranges, amygdala volume ratios were significantly lower during early adulthood and negatively correlated to HQ and VABS_mal but positively correlated to Kohs IQ. Thus, limbic and brainstem volume alterations and differential volume trajectories may contribute to the developmental and behavioral pathophysiology of PWS.
Collapse
Affiliation(s)
- Kenichi Yamada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1 Asahimachi, Chuo-ku, Niigata, 9518585, Japan. .,Hayakawa Children's Clinic, 2-1-5, Nishikobaridai, Nishi-ku, Niigata, 9502015, Japan.
| | - Masaki Watanabe
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1 Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| | - Kiyotaka Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1 Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| |
Collapse
|
5
|
Abstract
OBJECTIVE To explore motor praxis in adults with Prader-Willi syndrome (PWS) in comparison with a control group of people with intellectual disability (ID) and to examine the relationship with brain structural measurements. METHOD Thirty adult participants with PWS and 132 with ID of nongenetic etiology (matched by age, sex, and ID level) were assessed using a comprehensive evaluation of the praxis function, which included pantomime of tool use, imitation of meaningful and meaningless gestures, motor sequencing, and constructional praxis. RESULTS Results support specific praxis difficulties in PWS, with worse performance in the imitation of motor actions and better performance in constructional praxis than ID peers. Compared with both control groups, PWS showed increased gray matter volume in sensorimotor and subcortical regions. However, we found no obvious association between these alterations and praxis performance. Instead, praxis scores correlated with regional volume measures in distributed apparently normal brain areas. CONCLUSIONS Our findings are consistent in showing significant impairment in gesture imitation abilities in PWS and, otherwise, further indicate that the visuospatial praxis domain is relatively preserved. Praxis disability in PWS was not associated with a specific, focal alteration of brain anatomy. Altered imitation gestures could, therefore, be a consequence of widespread brain dysfunction. However, the specific contribution of key brain structures (e.g., areas containing mirror neurons) should be more finely tested in future research.
Collapse
|
6
|
Modenato C, Martin-Brevet S, Moreau CA, Rodriguez-Herreros B, Kumar K, Draganski B, Sønderby IE, Jacquemont S. Lessons Learned From Neuroimaging Studies of Copy Number Variants: A Systematic Review. Biol Psychiatry 2021; 90:596-610. [PMID: 34509290 DOI: 10.1016/j.biopsych.2021.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/06/2023]
Abstract
Pathogenic copy number variants (CNVs) and aneuploidies alter gene dosage and are associated with neurodevelopmental psychiatric disorders such as autism spectrum disorder and schizophrenia. Brain mechanisms mediating genetic risk for neurodevelopmental psychiatric disorders remain largely unknown, but there is a rapid increase in morphometry studies of CNVs using T1-weighted structural magnetic resonance imaging. Studies have been conducted one mutation at a time, leaving the field with a complex catalog of brain alterations linked to different genomic loci. Our aim was to provide a systematic review of neuroimaging phenotypes across CNVs associated with developmental psychiatric disorders including autism and schizophrenia. We included 76 structural magnetic resonance imaging studies on 20 CNVs at the 15q11.2, 22q11.2, 1q21.1 distal, 16p11.2 distal and proximal, 7q11.23, 15q11-q13, and 22q13.33 (SHANK3) genomic loci as well as aneuploidies of chromosomes X, Y, and 21. Moderate to large effect sizes on global and regional brain morphometry are observed across all genomic loci, which is in line with levels of symptom severity reported for these variants. This is in stark contrast with the much milder neuroimaging effects observed in idiopathic psychiatric disorders. Data also suggest that CNVs have independent effects on global versus regional measures as well as on cortical surface versus thickness. Findings highlight a broad diversity of regional morphometry patterns across genomic loci. This heterogeneity of brain patterns provides insight into the weak effects reported in magnetic resonance imaging studies of cognitive dimension and psychiatric conditions. Neuroimaging studies across many more variants will be required to understand links between gene function and brain morphometry.
Collapse
Affiliation(s)
- Claudia Modenato
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Sandra Martin-Brevet
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Clara A Moreau
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique UMR 3571, Department of Neuroscience, Université de Paris, Institut Pasteur, Paris, France
| | - Borja Rodriguez-Herreros
- Service des Troubles du Spectre de l'Autisme et Apparentés, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Kuldeep Kumar
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland; Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ida E Sønderby
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Sébastien Jacquemont
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Yoshikawa K. Necdin: A purposive integrator of molecular interaction networks for mammalian neuron vitality. Genes Cells 2021; 26:641-683. [PMID: 34338396 PMCID: PMC9290590 DOI: 10.1111/gtc.12884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022]
Abstract
Necdin was originally found in 1991 as a hypothetical protein encoded by a neural differentiation‐specific gene transcript in murine embryonal carcinoma cells. Virtually all postmitotic neurons and their precursor cells express the necdin gene (Ndn) during neuronal development. Necdin mRNA is expressed only from the paternal allele through genomic imprinting, a placental mammal‐specific epigenetic mechanism. Necdin and its homologous MAGE (melanoma antigen) family, which have evolved presumedly from a subcomplex component of the SMC5/6 complex, are expressed exclusively in placental mammals. Paternal Ndn‐mutated mice totally lack necdin expression and exhibit various types of neuronal abnormalities throughout the nervous system. Ndn‐null neurons are vulnerable to detrimental stresses such as DNA damage. Necdin also suppresses both proliferation and apoptosis of neural stem/progenitor cells. Functional analyses using Ndn‐manipulated cells reveal that necdin consistently exerts antimitotic, anti‐apoptotic and prosurvival effects. Necdin interacts directly with a number of regulatory proteins including E2F1, p53, neurotrophin receptors, Sirt1 and PGC‐1α, which serve as major hubs of protein–protein interaction networks for mitosis, apoptosis, differentiation, neuroprotection and energy homeostasis. This review focuses on necdin as a pleiotropic protein that integrates molecular interaction networks to promote neuronal vitality in modern placental mammals.
Collapse
|
8
|
Cerebellar Dysfunction in Adults with Prader Willi Syndrome. J Clin Med 2021; 10:jcm10153320. [PMID: 34362104 PMCID: PMC8347444 DOI: 10.3390/jcm10153320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Severe hypotonia during infancy is a hallmark feature of Prader Willi syndrome (PWS). Despite its transient expression, moto development is delayed and deficiencies in motor coordination are present at older ages, with no clear pathophysiological mechanism yet identified. The diverse motor coordination symptoms present in adult PWS patients could be, in part, the result of a common alteration(s) in basic motor control systems. We aimed to examine the motor system in PWS using functional MRI (fMRI) during motor challenge. Twenty-three adults with PWS and 22 matched healthy subjects participated in the study. fMRI testing involved three hand motor tasks of different complexity. Additional behavioral measurements of motor function were obtained by evaluating hand grip strength, functional mobility, and balance. Whole brain activation maps were compared between groups and correlated with behavioral measurements. Performance of the motor tasks in PWS engaged the neural elements typically involved in motor processing. While our data showed no group differences in the simplest task, increasing task demands evoked significantly weaker activation in patients in the cerebellum. Significant interaction between group and correlation pattern with measures of motor function were also observed. Our study provides novel insights into the neural substrates of motor control in PWS by demonstrating reduced cerebellar activation during movement coordination.
Collapse
|
9
|
The RDoC approach for translational psychiatry: Could a genetic disorder with psychiatric symptoms help fill the matrix? the example of Prader-Willi syndrome. Transl Psychiatry 2020; 10:274. [PMID: 32772048 PMCID: PMC7415132 DOI: 10.1038/s41398-020-00964-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
The Research Domain Criteria project (RDoc) proposes a new classification system based on information from several fields in order to encourage translational perspectives. Nevertheless, integrating genetic markers into this classification has remained difficult because of the lack of powerful associations between targeted genes and RDoC domains. We hypothesized that genetic diseases with psychiatric manifestations would be good models for RDoC gene investigations and would thereby extend the translational approach to involve targeted gene pathways. To explore this possibility, we reviewed the current knowledge on Prader-Willi syndrome, a genetic disorder caused by the absence of expression of some of the genes of the chromosome 15q11-13 region inherited from the father. Indeed, we found that the associations between genes of the PW locus and the modification identified in the relevant behavioral, physiological, and brain imaging studies followed the structure of the RDoC matrix and its six domains (positive valence, negative valence, social processing, cognitive systems, arousal/regulatory systems, and sensorimotor systems).
Collapse
|
10
|
Gracia-Marco L, Esteban-Cornejo I, Ubago-Guisado E, Rodriguez-Ayllon M, Mora-Gonzalez J, Solis-Urra P, Cadenas-Sanchez C, Verdejo-Roman J, Catena A, Erickson KI, Ortega FB. Lean mass index is positively associated with white matter volumes in several brain regions in children with overweight/obesity. Pediatr Obes 2020; 15:e12604. [PMID: 31920013 DOI: 10.1111/ijpo.12604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND The relationship of obesity with grey and white matter volumes has been examined in several studies, and the results are decidedly mixed. OBJECTIVE To investigate the associations of body mass index (BMI), fat mass index (FMI) and lean mass index (LMI) with total and regional grey and white matter volumes. METHODS This is a cross-sectional study involving 100 children (60% boys) with overweight/obesity. T1-weighted images were acquired using magnetic resonance imaging. Dual energy X-ray absorptiometry was used to measure body composition. Separate hierarchical regression analyses were performed between predictor variables (BMI, FMI and LMI) and the total brain volumes including sex, years from peak height velocity and parental education as covariates. In addition, FMI was added as a covariate when LMI was the predictor and vice versa. Statistical analyses of imaging data were performed using three whole-brain voxel-wise multiple regression models and adjusted by the same covariates. RESULTS LMI was positively associated with white matter in numerous regions and to a lower extent, with grey matter regions. Further, the relationship between LMI, and grey and white matter regions was independent of FMI levels. CONCLUSIONS LMI seems to be a positive predictor of regional white matter volumes in children with overweight/obesity.
Collapse
Affiliation(s)
- Luis Gracia-Marco
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Growth, Exercise, Nutrition and Development Research Group, Universidad de Zaragoza, Zaragoza, Spain
| | - Irene Esteban-Cornejo
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Esther Ubago-Guisado
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Maria Rodriguez-Ayllon
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jose Mora-Gonzalez
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Patricio Solis-Urra
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.,IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Cristina Cadenas-Sanchez
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.,MOVE-IT Research Group and Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Juan Verdejo-Roman
- Mind, Brain and Behavior Research Center, University of Granada (CIMCYC-UGR), Granada, Spain.,Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Madrid, Spain
| | - Andres Catena
- Department of Experimental Psychology, Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
| | - Kirk I Erickson
- Brain Aging and Cognitive Health Lab, Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
11
|
|
12
|
Miquel M, Nicola SM, Gil-Miravet I, Guarque-Chabrera J, Sanchez-Hernandez A. A Working Hypothesis for the Role of the Cerebellum in Impulsivity and Compulsivity. Front Behav Neurosci 2019; 13:99. [PMID: 31133834 PMCID: PMC6513968 DOI: 10.3389/fnbeh.2019.00099] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022] Open
Abstract
Growing evidence associates cerebellar abnormalities with several neuropsychiatric disorders in which compulsive symptomatology and impulsivity are part of the disease pattern. Symptomatology of autism, addiction, obsessive-compulsive (OCD), and attention deficit/hyperactivity (ADHD) disorders transcends the sphere of motor dysfunction and essentially entails integrative processes under control of prefrontal-thalamic-cerebellar loops. Patients with brain lesions affecting the cortico-striatum thalamic circuitry and the cerebellum indeed exhibit compulsive symptoms. Specifically, lesions of the posterior cerebellar vermis cause affective dysregulation and deficits in executive function. These deficits may be due to impairment of one of the main functions of the cerebellum, implementation of forward internal models of the environment. Actions that are independent of internal models may not be guided by predictive relationships or a mental representation of the goal. In this review article, we explain how this deficit might affect executive functions. Additionally, regionalized cerebellar lesions have been demonstrated to impair other brain functions such as the emergence of habits and behavioral inhibition, which are also altered in compulsive disorders. Similar to the infralimbic cortex, clinical studies and research in animal models suggest that the cerebellum is not required for learning goal-directed behaviors, but it is critical for habit formation. Despite this accumulating data, the role of the cerebellum in compulsive symptomatology and impulsivity is still a matter of discussion. Overall, findings point to a modulatory function of the cerebellum in terminating or initiating actions through regulation of the prefrontal cortices. Specifically, the cerebellum may be crucial for restraining ongoing actions when environmental conditions change by adjusting prefrontal activity in response to the new external and internal stimuli, thereby promoting flexible behavioral control. We elaborate on this explanatory framework and propose a working hypothesis for the involvement of the cerebellum in compulsive and impulsive endophenotypes.
Collapse
Affiliation(s)
- Marta Miquel
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Saleem M Nicola
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Isis Gil-Miravet
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Julian Guarque-Chabrera
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, School of Health Science, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
13
|
Azor AM, Cole JH, Holland AJ, Dumba M, Patel MC, Sadlon A, Goldstone AP, Manning KE. Increased brain age in adults with Prader-Willi syndrome. Neuroimage Clin 2019; 21:101664. [PMID: 30658944 PMCID: PMC6412082 DOI: 10.1016/j.nicl.2019.101664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 11/17/2022]
Abstract
Prader-Willi syndrome (PWS) is the most common genetic obesity syndrome, with associated learning difficulties, neuroendocrine deficits, and behavioural and psychiatric problems. As the life expectancy of individuals with PWS increases, there is concern that alterations in brain structure associated with the syndrome, as a direct result of absent expression of PWS genes, and its metabolic complications and hormonal deficits, might cause early onset of physiological and brain aging. In this study, a machine learning approach was used to predict brain age based on grey matter (GM) and white matter (WM) maps derived from structural neuroimaging data using T1-weighted magnetic resonance imaging (MRI) scans. Brain-predicted age difference (brain-PAD) scores, calculated as the difference between chronological age and brain-predicted age, are designed to reflect deviations from healthy brain aging, with higher brain-PAD scores indicating premature aging. Two separate adult cohorts underwent brain-predicted age calculation. The main cohort consisted of adults with PWS (n = 20; age mean 23.1 years, range 19.8-27.7; 70.0% male; body mass index (BMI) mean 30.1 kg/m2, 21.5-47.7; n = 19 paternal chromosome 15q11-13 deletion) and age- and sex-matched controls (n = 40; age 22.9 years, 19.6-29.0; 65.0% male; BMI 24.1 kg/m2, 19.2-34.2) adults (BMI PWS vs. control P = .002). Brain-PAD was significantly greater in PWS than controls (effect size mean ± SEM +7.24 ± 2.20 years [95% CI 2.83, 11.63], P = .002). Brain-PAD remained significantly greater in PWS than controls when restricting analysis to a sub-cohort matched for BMI consisting of n = 15 with PWS with BMI range 21.5-33.7 kg/m2, and n = 29 controls with BMI 21.7-34.2 kg/m2 (effect size +5.51 ± 2.56 years [95% CI 3.44, 10.38], P = .037). In the PWS group, brain-PAD scores were not associated with intelligence quotient (IQ), use of hormonal and psychotropic medications, nor severity of repetitive or disruptive behaviours. A 24.5 year old man (BMI 36.9 kg/m2) with PWS from a SNORD116 microdeletion also had increased brain PAD of 12.87 years, compared to 0.84 ± 6.52 years in a second control adult cohort (n = 95; age mean 34.0 years, range 19.9-55.5; 38.9% male; BMI 28.7 kg/m2, 19.1-43.1). This increase in brain-PAD in adults with PWS indicates abnormal brain structure that may reflect premature brain aging or abnormal brain development. The similar finding in a rare patient with a SNORD116 microdeletion implicates a potential causative role for this PWS region gene cluster in the structural brain abnormalities associated primarily with the syndrome and/or its complications. Further longitudinal neuroimaging studies are needed to clarify the natural history of this increase in brain age in PWS, its relationship with obesity, and whether similar findings are seen in those with PWS from maternal uniparental disomy.
Collapse
Affiliation(s)
- Adriana M Azor
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - James H Cole
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Anthony J Holland
- Cambridge Intellectual and Developmental Disabilities Research Group, Academic Department of Psychiatry, University of Cambridge, Cambridge, UK; National Institute for Health Research (NIHR) Collaborations for Leadership in Applied Health Care Research and Care (CLAHRC), East of England, UK.
| | - Maureen Dumba
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK.
| | - Maneesh C Patel
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK.
| | - Angelique Sadlon
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Anthony P Goldstone
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK; PsychoNeuroEndocrinology Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Katherine E Manning
- Cambridge Intellectual and Developmental Disabilities Research Group, Academic Department of Psychiatry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Kabasakalian A, Ferretti CJ, Hollander E. Oxytocin and Prader-Willi Syndrome. Curr Top Behav Neurosci 2018; 35:529-557. [PMID: 28956320 DOI: 10.1007/7854_2017_28] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the chapter, we explore the relationship between the peptide hormone, oxytocin (OT), and behavioral and metabolic disturbances observed in the genetic disorder Prader-Willi Syndrome (PWS). Phenotypic and genotypic characteristics of PWS are described, as are the potential implications of an abnormal OT system with respect to neural development including the possible effects of OT dysfunction on interactions with other regulatory mediators, including neurotransmitters, neuromodulators, and hormones. The major behavioral characteristics are explored in the context of OT dysfunction, including hyperphagia, impulsivity, anxiety and emotion dysregulation, sensory processing and interoception, repetitive and restrictive behaviors, and dysfunctional social cognition. Behavioral overlaps with autistic spectrum disorders are discussed. The implications of OT dysfunction on the mechanisms of reward and satiety and their possible role in informing behavioral characteristics are also discussed. Treatment implications and future directions for investigation are considered.
Collapse
Affiliation(s)
- Anahid Kabasakalian
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Casara J Ferretti
- Ferkauf Graduate School of Psychology, Yeshiva University, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eric Hollander
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
15
|
The neural circuitry of restricted repetitive behavior: Magnetic resonance imaging in neurodevelopmental disorders and animal models. Neurosci Biobehav Rev 2018; 92:152-171. [PMID: 29802854 DOI: 10.1016/j.neubiorev.2018.05.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/18/2018] [Accepted: 05/20/2018] [Indexed: 11/23/2022]
Abstract
Restricted, repetitive behaviors (RRBs) are patterns of behavior that exhibit little variation in form and have no obvious function. RRBs although transdiagonstic are a particularly prominent feature of certain neurodevelopmental disorders, yet relatively little is known about the neural circuitry of RRBs. Past work in this area has focused on isolated brain regions and neurotransmitter systems, but implementing a neural circuit approach has the potential to greatly improve understanding of RRBs. Magnetic resonance imaging (MRI) is well-suited to studying the structural and functional connectivity of the nervous system, and is a highly translational research tool. In this review, we synthesize MRI research from both neurodevelopmental disorders and relevant animal models that informs the neural circuitry of RRB. Together, these studies implicate distributed neural circuits between the cortex, basal ganglia, and cerebellum. Despite progress in neuroimaging of RRB, there are many opportunities for conceptual and methodological improvement. We conclude by suggesting future directions for MRI research in RRB, and how such studies can benefit from complementary approaches in neuroscience.
Collapse
|
16
|
Akinola OB, Gabriel MO. Neuroanatomical and molecular correlates of cognitive and behavioural outcomes in hypogonadal males. Metab Brain Dis 2018; 33:491-505. [PMID: 29230619 DOI: 10.1007/s11011-017-0163-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Robust epidemiological, clinical and laboratory evidence supports emerging roles for the sex steroids in such domains as neurodevelopment, behaviour, learning and cognition. Regions of the mammalian brain that are involved in cognitive development and memory do not only express the classical nuclear androgen receptor, but also the non-genomic membrane receptor, which is a G protein-coupled receptor that mediates some rapid effects of the androgens on neurogenesis and synaptic plasticity. Under physiological conditions, hippocampal neurons do express the enzyme aromatase, and therefore actively aromatize testosterone to oestradiol. Although glial expression of the aromatase enzyme is minimal, increased expression following injury suggests a role for sex steroids in neuroprotection. It is therefore plausible to deduce that low levels of circulating androgens in males would perturb neuronal functions in relation to cognition and memory, as well as neural repair following injury. The present review is an overview of some roles of the sex steroids on cognitive function in males, and the neuroanatomical and molecular underpinnings of some behavioural and cognitive deficits characteristic of such genetic disorders noted for low androgen levels, including Klinefelter syndrome, Bardet-Biedl syndrome, Kallman syndrome and Prader-Willi syndrome. Recent literature in relation to some behavioural and cognitive changes secondary to surgical and pharmacological castration are also appraised.
Collapse
Affiliation(s)
- O B Akinola
- Division of Endocrinology, Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| | - M O Gabriel
- Division of Endocrinology, Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
17
|
Manning KE, Tait R, Suckling J, Holland AJ. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults. NEUROIMAGE-CLINICAL 2017. [PMID: 29527494 PMCID: PMC5842730 DOI: 10.1016/j.nicl.2017.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19–27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of myelin content using magnetisation transfer saturation indicated that myelination of the cortex was broadly similar in the PWS and control groups, with the exception of highly localised areas, including the insula. The bilateral nature of these abnormalities suggests a systemic biological cause, with possible developmental and maturational mechanisms discussed, and may offer insight into the contribution of imprinted genes to neural development. Twenty young adults with PWS and forty age and sex-matched control participants underwent multiparameter mapping MRI. Large and widespread bilateral clusters of both increased and decreased grey matter volume were identified in PWS. Volumetric increases in PWS were largely driven by greater cortical thickness. Myelination of the cortex in PWS was broadly similar to the typically-developing control group. Potential developmental and maturational explanations are considered, including insights into the of the role of imprinted genes.
Collapse
Key Words
- ACC, anterior cingulate cortex
- ANTS, Advanced Normalisation Tools Software
- BMI, body mass index
- CamBA, Cambridge Brain Analysis software
- Cortical thickness
- FA, flip angle
- GLM, general linear model
- GM, grey matter
- Genomic imprinting
- Grey matter
- IQ, intelligence quotient
- MPM, multiparameter mapping
- MRI, magnetic resonance imaging
- MT, magnetisation transfer
- Multiparameter mapping
- Myelination
- NHS, National Health Service
- NSPN, NeuroScience in Psychiatry Network
- OFC, orbitofrontal cortex
- PD, proton density
- PFC, prefrontal cortex
- PWS, Prader-Willi syndrome
- PWSA UK, Prader-Willi Syndrome Association UK
- Prader-Willi syndrome
- TE, echo time
- TIV, total intracranial volume
- TR, repetition time
- UPD, uniparental disomy
- WM, white matter
Collapse
Affiliation(s)
| | - Roger Tait
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Anthony J Holland
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, UK; National Institute for Health Research (NIHR) Collaborations for Leadership in Applied Health Care Research and Care (CLAHRC), East of England, UK
| |
Collapse
|
18
|
Rice LJ, Lagopoulos J, Brammer M, Einfeld SL. Microstructural white matter tract alteration in Prader-Willi syndrome: A diffusion tensor imaging study. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:362-367. [DOI: 10.1002/ajmg.c.31572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/27/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Lauren J. Rice
- Brain and Mind Centre; University of Sydney; Camperdown Australia
| | - Jim Lagopoulos
- Brain and Mind Centre; University of Sydney; Camperdown Australia
- Queensland Mind and Neuroscience Thompson Institute; University of the Sunshine Coast; Maroochydore DC Australia
| | - Michael Brammer
- Brain and Mind Centre; University of Sydney; Camperdown Australia
- Department of Neuroimaging; Institute of Psychiatry; King's College London; London UK
| | | |
Collapse
|
19
|
Xu M, Zhang Y, von Deneen KM, Zhu H, Gao J. Brain structural alterations in obese children with and without Prader-Willi Syndrome. Hum Brain Mapp 2017; 38:4228-4238. [PMID: 28543989 PMCID: PMC6866858 DOI: 10.1002/hbm.23660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a genetic imprinting disorder that is mainly characterized by hyperphagia and childhood obesity. Previous neuroimaging studies revealed that there is a significant difference in brain activation patterns between obese children with and without PWS. However, whether there are differences in the brain structure of obese children with and without PWS remains elusive. In the current study, we used T1-weighted and diffusion tensor magnetic resonance imaging to investigate alterations in the brain structure, such as the cortical volume and white matter integrity, in relation to this eating disorder in 12 children with PWS, 18 obese children without PWS (OB) and 18 healthy controls. Compared with the controls, both the PWS and OB groups exhibited alterations in cortical volume, with similar deficit patterns in 10 co-varying brain regions in the bilateral dorsolateral and medial prefrontal cortices, right anterior cingulate cortex, and bilateral temporal lobe. The white matter integrities of the above regions were then examined with an analysis method based on probabilistic tractography. The PWS group exhibited distinct changes in the reduced fractional anisotropy of white matter fibers connected to the co-varying regions, whereas the OB group did not. Our findings indicated that PWS and OB share similar gray matter alterations that are responsible for the development of eating disorders. Additionally, the distinct white matter alterations might explain the symptoms associated with food intake in PWS, including excessive hyperphagia and constant hunger. Hum Brain Mapp 38:4228-4238, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mingze Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
- Department of Biomedical EngineeringPeking UniversityBeijing100871China
| | - Yi Zhang
- Center for Brain Imaging, Xidian UniversityXi'an710071China
- Department of Psychiatry & McKnight Brain InstituteUniversity of FloridaGainesvilleFlorida32610
| | - Karen M. von Deneen
- Center for Brain Imaging, Xidian UniversityXi'an710071China
- Department of Psychiatry & McKnight Brain InstituteUniversity of FloridaGainesvilleFlorida32610
| | - Huaiqiu Zhu
- Department of Biomedical EngineeringPeking UniversityBeijing100871China
| | - Jia‐Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijing100871China
- Beijing City Key Lab for Medical Physics and EngineeringInstitution of Heavy Ion Physics, School of Physics, Peking UniversityBeijing100871China
- McGovern Institute for Brian Research, Peking UniversityBeijing100871China
- Shenzhen Institute of NeuroscienceShenzhen518057China
| |
Collapse
|
20
|
Pujol J, Blanco-Hinojo L, Esteba-Castillo S, Caixàs A, Harrison BJ, Bueno M, Deus J, Rigla M, Macià D, Llorente-Onaindia J, Novell-Alsina R. Anomalous basal ganglia connectivity and obsessive-compulsive behaviour in patients with Prader Willi syndrome. J Psychiatry Neurosci 2016; 41:261-71. [PMID: 26645739 PMCID: PMC4915935 DOI: 10.1503/jpn.140338] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Prader Willi syndrome is a genetic disorder with a behavioural expression characterized by the presence of obsessive-compulsive phenomena ranging from elaborate obsessive eating behaviour to repetitive skin picking. Obsessive-compulsive disorder (OCD) has been recently associated with abnormal functional coupling between the frontal cortex and basal ganglia. We have tested the potential association of functional connectivity anomalies in basal ganglia circuits with obsessive-compulsive behaviour in patients with Prader Willi syndrome. METHODS We analyzed resting-state functional MRI in adult patients and healthy controls. Whole-brain functional connectivity maps were generated for the dorsal and ventral aspects of the caudate nucleus and putamen. A selected obsessive-compulsive behaviour assessment included typical OCD compulsions, self picking and obsessive eating behaviour. RESULTS We included 24 adults with Prader Willi syndrome and 29 controls in our study. Patients with Prader Willi syndrome showed abnormal functional connectivity between the prefrontal cortex and basal ganglia and within subcortical structures that correlated with the presence and severity of obsessive-compulsive behaviours. In addition, abnormally heightened functional connectivity was identified in the primary sensorimotor cortex-putamen loop, which was strongly associated with self picking. Finally, obsessive eating behaviour correlated with abnormal functional connectivity both within the basal ganglia loops and between the striatum and the hypothalamus and the amygdala. LIMITATIONS Limitations of the study include the difficulty in evaluating the nature of content of obsessions in patients with Prader Willi Syndrome and the risk of excessive head motion artifact on brain imaging. CONCLUSION Patients with Prader Willi syndrome showed broad functional connectivity anomalies combining prefrontal loop alterations characteristic of OCD with 1) enhanced coupling in the primary sensorimotor loop that correlated with the most impulsive aspects of the behaviour and 2) reduced coupling of the ventral striatum with limbic structures for basic internal homeostasis that correlated with the obsession to eat.
Collapse
Affiliation(s)
- Jesus Pujol
- Correspondence to: J. Pujol, MRI Department, CRC-Mar, Hospital del Mar, Passeig Marítim 25–29. 08003, Barcelona;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bravo GL, Poje AB, Perissinotti I, Marcondes BF, Villamar MF, Manzardo AM, Luque L, LePage JF, Stafford D, Fregni F, Butler MG. Transcranial direct current stimulation reduces food-craving and measures of hyperphagia behavior in participants with Prader-Willi syndrome. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:266-75. [PMID: 26590516 PMCID: PMC6668339 DOI: 10.1002/ajmg.b.32401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/26/2015] [Indexed: 01/21/2023]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental genetic disorder characterized by intellectual disabilities and insatiable appetite with compulsive eating leading to severe obesity with detrimental health consequences. Transcranial direct current stimulation (tDCS) has been shown to modulate decision-making and cue-induced food craving in healthy adults. We conducted a pilot double blind, sham-controlled, multicenter study of tDCS modulation of food drive and craving in 10 adult PWS participants, 11 adult obese (OB) and 11 adult healthy-weight control (HWC) subjects. PWS and OB subjects received five consecutive daily sessions of active or sham tDCS over the right dorsolateral prefrontal cortex (DLPFC), while HWC received a single sham and active tDCS in a crossover design. Standardized psychometric instruments assessed food craving, drive and hyperphagia by self-report and caregiver assessment over 30 days. Robust baseline differences were observed in severity scores for the Three-Factor Eating Questionnaire (TFEQ) and Dykens Hyperphagia Questionnaire (DHQ) for PWS compared to HWC while obese participants were more similar to HWC. Active tDCS stimulation in PWS was associated with a significant change from baseline in TFEQ Disinhibition (Factor II) (Ƶ = 1.9, P < 0.05, 30 days) and Total Scores (Ƶ = 2.3, P < 0.02, 30 days), and participant ratings of the DHQ Severity (Ƶ = 1.8, P < 0.06, 5 days) and Total Scores (Ƶ = 1.9, P < 0.05, 15 days). These findings support sustained neuromodulatory effects and efficacy of tDCS to reduce food drive and behaviors impacting hyperphagia in PWS. Transcranial direct current stimulation may represent a straight-forward, low risk and low cost method to improve care, management and quality of life in PWS.
Collapse
Affiliation(s)
- Gabriela L. Bravo
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Albert B. Poje
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas
| | - Iago Perissinotti
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bianca F. Marcondes
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mauricio F. Villamar
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ann M. Manzardo
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas,Correspondence to: Ann M. Manzardo, Ph.D., Department of Psychiatry and Behavioral Sciences, Kansas University Medical Center, 3901 Rainbow Blvd, MS 4015, Kansas City, KS 66160.
| | - Laura Luque
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jean F. LePage
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Diane Stafford
- Division of Endocrinology, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Merlin G. Butler
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
22
|
Hurren BJ, Flack NAMS. Prader-Willi Syndrome: A spectrum of anatomical and clinical features. Clin Anat 2016; 29:590-605. [PMID: 26749552 DOI: 10.1002/ca.22686] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022]
Abstract
Prader-Willi Syndrome (PWS) is estimated to affect 400,000 people worldwide. First described clinically in 1956, PWS is now known to be a result of a genetic mutation, involving Chromosome 15. The phenotypical appearance of individuals with the syndrome follows a similar developmental course. During infancy, universal hypotonia accompanied by feeding problems, hypogonadism, and dolichocephaly are evident. Characteristic facial features such as narrow bifrontal diameter, almond-shaped eyes, and small mouth (with downturned corners and thin upper lip) may also be evident at this stage. In early childhood, the craniofacial features become more obvious and a global developmental delay is observed. Simultaneously, individuals develop hyperphagia that leads to excessive or rapid weight gain, which, if untreated, exists throughout their lifespan and may predispose them to numerous, serious health issues. The standard tool for differential diagnosis of PWS is genetic screening; however, clinicians also need to be aware of the characteristic features of this disorder, including differences between the genetic subtypes. As the clinical manifestations of the syndrome vary between individuals and become evident at different developmental time points, early assessment is hindered. This article focuses on the clinical and anatomical manifestations of the syndrome and highlights the areas of discrepancy and limitations within the existing literature. Clin. Anat. 29:590-605, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bradley J Hurren
- Department of Anatomy, University of Otago, Dunedin, 9016, New Zealand
| | | |
Collapse
|
23
|
Puzzle Pieces: Neural Structure and Function in Prader-Willi Syndrome. Diseases 2015; 3:382-415. [PMID: 28943631 PMCID: PMC5548261 DOI: 10.3390/diseases3040382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 11/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a behavioural phenotype encompassing hyperphagia, intellectual disability, social and behavioural difficulties, and propensity to psychiatric illness. Research has tended to focus on the cognitive and behavioural investigation of these features, and, with the exception of eating behaviour, the neural physiology is currently less well understood. A systematic review was undertaken to explore findings relating to neural structure and function in PWS, using search terms designed to encompass all published articles concerning both in vivo and post-mortem studies of neural structure and function in PWS. This supported the general paucity of research in this area, with many articles reporting case studies and qualitative descriptions or focusing solely on the overeating behaviour, although a number of systematic investigations were also identified. Research to date implicates a combination of subcortical and higher order structures in PWS, including those involved in processing reward, motivation, affect and higher order cognitive functions, with both anatomical and functional investigations indicating abnormalities. It appears likely that PWS involves aberrant activity across distributed neural networks. The characterisation of neural structure and function warrants both replication and further systematic study.
Collapse
|
24
|
Willette AA, Kapogiannis D. Does the brain shrink as the waist expands? Ageing Res Rev 2015; 20:86-97. [PMID: 24768742 DOI: 10.1016/j.arr.2014.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that being overweight or obese is related to worse cognitive performance, particularly executive function. Obesity may also increase the risk of Alzheimer's disease. Consequently, there has been increasing interest in whether adiposity is related to gray or white matter (GM, WM) atrophy. In this review, we identified and critically evaluated studies assessing obesity and GM or WM volumes either globally or in specific regions of interest (ROIs). Across all ages, higher adiposity was consistently associated with frontal GM atrophy, particularly in prefrontal cortex. In children and adults <40 years of age, most studies found no relationship between adiposity and occipital or parietal GM volumes, whereas findings for temporal lobe were mixed. In middle-aged and aged adults, a majority of studies found that higher adiposity is associated with parietal and temporal GM atrophy, whereas results for precuneus, posterior cingulate, and hippocampus were mixed. Higher adiposity had no clear association with global or regional WM in any age group. We conclude that higher adiposity may be associated with frontal GM atrophy across all ages and parietal and temporal GM atrophy in middle and old age.
Collapse
Affiliation(s)
- Auriel A Willette
- Laboratory of Neurosciences, National Institute on Aging, 3001 S. Hanover St, NM531, Baltimore, MD 21225, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging, 3001 S. Hanover St, NM531, Baltimore, MD 21225, USA.
| |
Collapse
|
25
|
Foti F, Menghini D, Petrosini L, Vicari S, Valerio G, Orlandi E, Crinò A, Spera S, De Bartolo P, Mandolesi L. Explorative function in Prader-Willi syndrome analyzed through an ecological spatial task. RESEARCH IN DEVELOPMENTAL DISABILITIES 2015; 38:97-107. [PMID: 25575283 DOI: 10.1016/j.ridd.2014.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/28/2014] [Indexed: 06/04/2023]
Abstract
This study was aimed at evaluating the spatial abilities in individuals with Prader-Willi syndrome (PWS) by using an ecological large-scale task with multiple rewards. To evaluate the extent of spatial deficit in PWS individuals, we compare their performances with those of individuals with Williams Syndrome (WS) in which the spatial deficits have been widely described. Participants had to explore an open space to search nine rewards placed in buckets arranged according to three spatial configurations: a Cross, a 3×3 Matrix and a Cluster composed by three groups of three buckets each. PWS individuals exhibited an explorative deficit in Cluster and Cross configurations, while WS participants in Matrix and Cross configurations. The findings indicate that the structural affordances of the environment influence the explorative strategies and can be related to how spatial information is processed.
Collapse
Affiliation(s)
- F Foti
- Department of Psychology, University "Sapienza", Via dei Marsi 78, 00185 Rome, Italy; IRCCS Santa Lucia Foundation (CERC), Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - D Menghini
- Child Neuropsychiatry Unit, "Children's Hospital Bambino Gesù", Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - L Petrosini
- Department of Psychology, University "Sapienza", Via dei Marsi 78, 00185 Rome, Italy; IRCCS Santa Lucia Foundation (CERC), Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - S Vicari
- Child Neuropsychiatry Unit, "Children's Hospital Bambino Gesù", Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - G Valerio
- Department of Motor Science and Wellness, University "Parthenope", Via Medina 40, 80133 Naples, Italy
| | - E Orlandi
- Child Neuropsychiatry Unit, "Children's Hospital Bambino Gesù", Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - A Crinò
- Pediatric and Autoimmune Endocrine Disease Unit, "Children's Hospital Bambino Gesù", Via Torre di Palidoro, 00050 Fiumicino (Rome), Italy
| | - S Spera
- Pediatric and Autoimmune Endocrine Disease Unit, "Children's Hospital Bambino Gesù", Via Torre di Palidoro, 00050 Fiumicino (Rome), Italy
| | - P De Bartolo
- IRCCS Santa Lucia Foundation (CERC), Via del Fosso di Fiorano 65, 00143 Rome, Italy; Faculty of Formation Science, University "Guglielmo Marconi", Via Plinio 44, 00193 Rome, Italy
| | - L Mandolesi
- IRCCS Santa Lucia Foundation (CERC), Via del Fosso di Fiorano 65, 00143 Rome, Italy; Department of Motor Science and Wellness, University "Parthenope", Via Medina 40, 80133 Naples, Italy.
| |
Collapse
|
26
|
Foti F, Menghini D, Orlandi E, Rufini C, Crinò A, Spera S, Vicari S, Petrosini L, Mandolesi L. Learning by observation and learning by doing in Prader-Willi syndrome. J Neurodev Disord 2015; 7:6. [PMID: 25914757 PMCID: PMC4409733 DOI: 10.1186/s11689-015-9102-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND New competencies may be learned through active experience (learning by doing) or observation of others' experience (learning by observation). Observing another person performing a complex action accelerates the observer's acquisition of the same action, limiting the time-consuming process of learning by doing. Here, we compared learning by observation and learning by doing in individuals with Prader-Willi syndrome (PWS). It is hypothesized that PWS individuals could show more difficulties with learning by observation than learning by doing because of their specific difficulty in interpreting and using social information. METHODS The performance of 24 PWS individuals was compared with that of 28 mental age (MA)- and gender-matched typically developing (TD) children in tasks of learning a visuo-motor sequence by observation or by doing. To determine whether the performance pattern exhibited by PWS participants was specific to this population or whether it was a nonspecific intellectual disability effect, we compared the PWS performances with those of a third MA- and gender-matched group of individuals with Williams syndrome (WS). RESULTS PWS individuals were severely impaired in detecting a sequence by observation, were able to detect a sequence by doing, and became as efficient as TD children in reproducing an observed sequence after a task of learning by doing. The learning pattern of PWS children was reversed compared with that of WS individuals. CONCLUSIONS The observational learning deficit in PWS individuals may be rooted, at least partially, in their incapacity to understand and/or use social information.
Collapse
Affiliation(s)
- Francesca Foti
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185 Rome, Italy ; IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Deny Menghini
- Child Neuropsychiatry Unit, Neuroscience Department, "Children's Hospital Bambino Gesù", Piazza Sant'Onofrio 4, 00100 Rome, Italy
| | - Enzo Orlandi
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Cristina Rufini
- Child Neuropsychiatry Unit, Neuroscience Department, "Children's Hospital Bambino Gesù", Piazza Sant'Onofrio 4, 00100 Rome, Italy
| | - Antonino Crinò
- Pediatric and Autoimmune Endocrine Disease Unit, "Children's Hospital Bambino Gesù", Palidoro, Via Torre di Palidoro, 00050 Fiumicino, Rome, Italy
| | - Sabrina Spera
- Pediatric and Autoimmune Endocrine Disease Unit, "Children's Hospital Bambino Gesù", Palidoro, Via Torre di Palidoro, 00050 Fiumicino, Rome, Italy
| | - Stefano Vicari
- Child Neuropsychiatry Unit, Neuroscience Department, "Children's Hospital Bambino Gesù", Piazza Sant'Onofrio 4, 00100 Rome, Italy
| | - Laura Petrosini
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185 Rome, Italy ; IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Laura Mandolesi
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy ; Department of Motor Science and Wellness, University of Naples "Parthenope", Via Medina 40, 80133 Naples, Italy
| |
Collapse
|
27
|
Böhm B, Ritzén EM, Lindgren AC. Growth hormone treatment improves vitality and behavioural issues in children with Prader-Willi syndrome. Acta Paediatr 2015; 104:59-67. [PMID: 25263744 DOI: 10.1111/apa.12813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/20/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022]
Abstract
AIM Prader-Willi syndrome is a neurogenetic disorder, with characteristics such as obesity, short stature, muscular weakness, intellectual deficiencies and deviant social behaviour. This study evaluated whether growth hormone treatment of children with Prader-Willi syndrome resulted in possible and lasting effects on their cognition and behaviour. METHODS We randomised six girls and 13 boys to either a treatment group or a control group. The treatment group received growth hormone (Genotropin(®) 0.033 mg/kg/day) for 2 years, while the control group did not receive treatment in the first year and then received a double dose in the second year. Treatment was then stopped in both groups for 6 months. RESULTS Both groups showed the same intellectual disabilities at the start of the study, and no difference was found after the first and second years. The parents reported that the children showed increased vitality during treatment. When treatment was stopped, the children showed a marked exacerbation of behavioural problems, a significant increase in body fat and a decrease in insulin-like growth factor 1 levels. CONCLUSION We believe this is the first study to show that abrupt-ceasing growth hormone treatment led to a successive deterioration in behavioural problems in children with Prader-Willi syndrome.
Collapse
Affiliation(s)
- Birgitta Böhm
- Department of Women's and Children's Health; Karolinska Institutet; Astrid Lindgren Childrens' Hospital; Stockholm Sweden
| | - E Martin Ritzén
- Department of Women's and Children's Health; Karolinska Institutet; Astrid Lindgren Childrens' Hospital; Stockholm Sweden
- Pediatric Endocrinology, Q2-08; Karolinska Hospital Solna; Stockholm Sweden
| | - Ann Christin Lindgren
- Department of Women's and Children's Health; Karolinska Institutet; Astrid Lindgren Childrens' Hospital; Stockholm Sweden
- Sachs Children's Hospital; South Hospital; Stockholm Sweden
| |
Collapse
|
28
|
Lukoshe A, Hokken-Koelega AC, van der Lugt A, White T. Reduced cortical complexity in children with Prader-Willi Syndrome and its association with cognitive impairment and developmental delay. PLoS One 2014; 9:e107320. [PMID: 25226172 PMCID: PMC4165760 DOI: 10.1371/journal.pone.0107320] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/08/2014] [Indexed: 11/23/2022] Open
Abstract
Background Prader-Willi Syndrome (PWS) is a complex neurogenetic disorder with symptoms involving not only hypothalamic, but also a global, central nervous system dysfunction. Previously, qualitative studies reported polymicrogyria in adults with PWS. However, there have been no quantitative neuroimaging studies of cortical morphology in PWS and no studies to date in children with PWS. Thus, our aim was to investigate and quantify cortical complexity in children with PWS compared to healthy controls. In addition, we investigated differences between genetic subtypes of PWS and the relationship between cortical complexity and intelligence within the PWS group. Methods High-resolution structural magnetic resonance images were acquired in 24 children with genetically confirmed PWS (12 carrying a deletion (DEL), 12 with maternal uniparental disomy (mUPD)) and 11 age- and sex-matched typically developing siblings as healthy controls. Local gyrification index (lGI) was obtained using the FreeSurfer software suite. Results Four large clusters, two in each hemisphere, comprising frontal, parietal and temporal lobes, had lower lGI in children with PWS, compared to healthy controls. Clusters with lower lGI also had significantly lower cortical surface area in children with PWS. No differences in cortical thickness of the clusters were found between the PWS and healthy controls. lGI correlated significantly with cortical surface area, but not with cortical thickness. Within the PWS group, lGI in both hemispheres correlated with Total IQ and Verbal IQ, but not with Performance IQ. Children with mUPD, compared to children with DEL, had two small clusters with lower lGI in the right hemisphere. lGI of these clusters correlated with cortical surface area, but not with cortical thickness or IQ. Conclusions These results suggest that lower cortical complexity in children with PWS partially underlies cognitive impairment and developmental delay, probably due to alterations in gene networks that play a prominent role in early brain development.
Collapse
Affiliation(s)
- Akvile Lukoshe
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Centre Rotterdam/Sophia Children's Hospital Rotterdam Rotterdam, The Netherlands
- * E-mail:
| | - Anita C. Hokken-Koelega
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Centre Rotterdam/Sophia Children's Hospital Rotterdam Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus Medical Centre Rotterdam – Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Lukoshe A, White T, Schmidt MN, van der Lugt A, Hokken-Koelega AC. Divergent structural brain abnormalities between different genetic subtypes of children with Prader-Willi syndrome. J Neurodev Disord 2013; 5:31. [PMID: 24144356 PMCID: PMC4015928 DOI: 10.1186/1866-1955-5-31] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/02/2013] [Indexed: 01/07/2023] Open
Abstract
Background Prader–Willi syndrome (PWS) is a complex neurogenetic disorder with symptoms that indicate not only hypothalamic, but also a global, central nervous system (CNS) dysfunction. However, little is known about developmental differences in brain structure in children with PWS. Thus, our aim was to investigate global brain morphology in children with PWS, including the comparison between different genetic subtypes of PWS. In addition, we performed exploratory cortical and subcortical focal analyses. Methods High resolution structural magnetic resonance images were acquired in 20 children with genetically confirmed PWS (11 children carrying a deletion (DEL), 9 children with maternal uniparental disomy (mUPD)), and compared with 11 age- and gender-matched typically developing siblings as controls. Brain morphology measures were obtained using the FreeSurfer software suite. Results Both children with DEL and mUPD showed smaller brainstem volume, and a trend towards smaller cortical surface area and white matter volume. Children with mUPD had enlarged lateral ventricles and larger cortical cerebrospinal fluid (CSF) volume. Further, a trend towards increased cortical thickness was found in children with mUPD. Children with DEL had a smaller cerebellum, and smaller cortical and subcortical grey matter volumes. Focal analyses revealed smaller white matter volumes in left superior and bilateral inferior frontal gyri, right cingulate cortex, and bilateral precuneus areas associated with the default mode network (DMN) in children with mUPD. Conclusions Children with PWS show signs of impaired brain growth. Those with mUPD show signs of early brain atrophy. In contrast, children with DEL show signs of fundamentally arrested, although not deviant brain development and presented few signs of cortical atrophy. Our results of global brain measurements suggest divergent neurodevelopmental patterns in children with DEL and mUPD.
Collapse
Affiliation(s)
- Akvile Lukoshe
- Dutch Growth Research Foundation, Postbus 23068, Rotterdam 3001, KB, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Zhang Y, Zhao H, Qiu S, Tian J, Wen X, Miller JL, von Deneen KM, Zhou Z, Gold MS, Liu Y. Altered functional brain networks in Prader-Willi syndrome. NMR IN BIOMEDICINE 2013; 26:622-9. [PMID: 23335390 PMCID: PMC3776442 DOI: 10.1002/nbm.2900] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 05/26/2023]
Abstract
Prader-Willi syndrome (PWS) is a genetic imprinting disorder characterized mainly by hyperphagia and early childhood obesity. Previous functional neuroimaging studies used visual stimuli to examine abnormal activities in the eating-related neural circuitry of patients with PWS. It was found that patients with PWS exhibited both excessive hunger and hyperphagia consistently, even in situations without any food stimulation. In the present study, we employed resting-state functional MRI techniques to investigate abnormal brain networks related to eating disorders in children with PWS. First, we applied amplitude of low-frequency fluctuation analysis to define the regions of interest that showed significant alterations in resting-state brain activity levels in patients compared with their sibling control group. We then applied a functional connectivity (FC) analysis to these regions of interest in order to characterize interactions among the brain regions. Our results demonstrated that patients with PWS showed decreased FC strength in the medial prefrontal cortex (MPFC)/inferior parietal lobe (IPL), MPFC/precuneus, IPL/precuneus and IPL/hippocampus in the default mode network; decreased FC strength in the pre-/postcentral gyri and dorsolateral prefrontal cortex (DLPFC)/orbitofrontal cortex (OFC) in the motor sensory network and prefrontal cortex network, respectively; and increased FC strength in the anterior cingulate cortex/insula, ventrolateral prefrontal cortex (VLPFC)/OFC and DLPFC/VLPFC in the core network and prefrontal cortex network, respectively. These findings indicate that there are FC alterations among the brain regions implicated in eating as well as rewarding, even during the resting state, which may provide further evidence supporting the use of PWS as a model to study obesity and to provide information on potential neural targets for the medical treatment of overeating.
Collapse
Affiliation(s)
- Yi Zhang
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- Department of Psychiatry and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Heng Zhao
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Siyou Qiu
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Jie Tian
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiaotong Wen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jennifer L. Miller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Karen M. von Deneen
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- Department of Psychiatry and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Zhenyu Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Mark S. Gold
- Department of Psychiatry and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Yijun Liu
- Department of Psychiatry and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
31
|
Ogura K, Fujii T, Abe N, Hosokai Y, Shinohara M, Fukuda H, Mori E. Regional cerebral blood flow and abnormal eating behavior in Prader-Willi syndrome. Brain Dev 2013; 35:427-34. [PMID: 22921862 DOI: 10.1016/j.braindev.2012.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/14/2012] [Accepted: 07/15/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is a genetically determined neurodevelopmental disorder and is generally regarded as a genetic model of obesity. Individuals with PWS exhibit behavioral symptoms including temper tantrums, rigid thinking, and compulsive behavior. The most striking feature of PWS is abnormal eating behavior, including hyperphagia, intense preoccupation with food, and incessant food seeking. To explore brain regions associated with the behavioral symptoms of PWS, we investigated differences in resting-state regional cerebral blood flow (rCBF) between individuals with PWS and healthy controls. Correlation analyses were also performed to examine the relationship between rCBF and altered eating behavior in PWS individuals. METHODS Twelve adults with PWS and 13 age- and gender-matched controls underwent resting-state single photon emission computerized tomography (SPECT) with N-isopropyl-p-[(123)I] iodoamphetamine (IMP). The rCBF data were analyzed on a voxel-by-voxel basis using SPM5 software. RESULTS The results demonstrated that compared with controls, individuals with PWS had significantly lower rCBF in the right thalamus, left insular cortex, bilateral lingual gyrus, and bilateral cerebellum. They had significantly higher rCBF in the right inferior frontal gyrus, left middle/inferior frontal gyrus (anterior and posterior clusters), and bilateral angular gyrus. Additionally, rCBF in the left insula, which was significantly lower in PWS individuals, was negatively correlated with the eating behavior severity score. CONCLUSIONS These results suggest that specific brain regions, particularly the left insula, may be partly responsible for the behavioral symptoms in PWS.
Collapse
Affiliation(s)
- Kaeko Ogura
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Chevalère J, Postal V, Jauregui J, Copet P, Laurier V, Thuilleaux D. Assessment of Executive Functions in Prader-Willi Syndrome and Relationship with Intellectual Level. JOURNAL OF APPLIED RESEARCH IN INTELLECTUAL DISABILITIES 2013; 26:309-18. [DOI: 10.1111/jar.12044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 11/27/2022]
Affiliation(s)
- J. Chevalère
- Laboratoire de Psychologie; University of Bordeaux; Bordeaux France
| | - V. Postal
- Laboratoire de Psychologie; University of Bordeaux; Bordeaux France
| | - J. Jauregui
- Euskal Herriko Unibertsitatea; San Sebastián Spain
- AP-HP Hôpital Marin; Hendaye France
| | - P. Copet
- AP-HP Hôpital Marin; Hendaye France
| | | | | |
Collapse
|
33
|
Honea RA, Holsen LM, Lepping RJ, Perea R, Butler MG, Brooks WM, Savage CR. The neuroanatomy of genetic subtype differences in Prader-Willi syndrome. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:243-53. [PMID: 22241551 PMCID: PMC3296480 DOI: 10.1002/ajmg.b.32022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite behavioral differences between genetic subtypes of Prader-Willi syndrome (PWS), no studies have been published characterizing brain structure in these subgroups. Our goal was to examine differences in the brain structure phenotype of common subtypes of PWS [chromosome 15q deletions and maternal uniparental disomy 15 (UPD)]. Fifteen individuals with PWS due to a typical deletion [(DEL) type I; n = 5, type II; n = 10], eight with PWS due to UPD, and 25 age-matched healthy-weight individuals (HWC) participated in structural magnetic resonance imaging (MRI) scans. A custom voxel-based morphometry processing stream was used to examine regional differences in gray and white matter volume (WMV) between groups, covarying for age, sex, and body mass index (BMI). Overall, compared to HWC, PWS individuals had lower gray matter volumes (GMV) that encompassed the prefrontal, orbitofrontal and temporal cortices, hippocampus and parahippocampal gyrus, and lower WMVs in the brain stem, cerebellum, medial temporal, and frontal cortex. Compared to UPD, the DEL subtypes had lower GMV primarily in the prefrontal and temporal cortices, and lower white matter in the parietal cortex. The UPD subtype had more extensive lower gray and WMVs in the orbitofrontal and limbic cortices compared to HWC. These preliminary findings are the first structural neuroimaging findings to support potentially separate neural mechanisms mediating the behavioral differences seen in these genetic subtypes.
Collapse
Affiliation(s)
- Robyn A Honea
- Department of Neurology, University of Kansas School of Medicine, Kansas City, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Schilling C, Kühn S, Romanowski A, Banaschewski T, Barbot A, Barker GJ, Brühl R, Büchel C, Charlet K, Conrod PJ, Czech K, Dalley JW, Flor H, Häke I, Ittermann B, Ivanov N, Mann K, Lüdemann K, Martinot JL, Palafox C, Paus T, Poline JB, Reuter J, Rietschel M, Robbins TW, Smolka MN, Ströhle A, Walaszek B, Kathmann N, Schumann G, Heinz A, Garavan H, Gallinat J. Common structural correlates of trait impulsiveness and perceptual reasoning in adolescence. Hum Brain Mapp 2011; 34:374-83. [PMID: 22076840 DOI: 10.1002/hbm.21446] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 06/08/2011] [Accepted: 07/27/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Trait impulsiveness is a potential factor that predicts both substance use and certain psychiatric disorders. This study investigates whether there are common structural cerebral correlates of trait impulsiveness and cognitive functioning in a large sample of healthy adolescents from the IMAGEN project. METHODS Clusters of gray matter (GM) volume associated with trait impulsiveness, Cloningers' revised temperament, and character inventory impulsiveness (TCI-R-I) were identified in a whole brain analysis using optimized voxel-based morphometry in 115 healthy 14-year-olds. The clusters were tested for correlations with performance on the nonverbal tests (Block Design, BD; Matrix Reasoning, MT) of the Wechsler Scale of Intelligence for Children IV reflecting perceptual reasoning. RESULTS Cloningers' impulsiveness (TCI-R-I) score was significantly inversely associated with GM volume in left orbitofrontal cortex (OFC). Frontal clusters found were positively correlated with performance in perceptual reasoning tasks (Bonferroni corrected). No significant correlations between TCI-R-I and perceptual reasoning were observed. CONCLUSIONS The neural correlate of trait impulsiveness in the OFC matches an area where brain function has previously been related to inhibitory control. Additionally, orbitofrontal GM volume was associated with scores for perceptual reasoning. The data show for the first time structural correlates of both cognitive functioning and impulsiveness in healthy adolescent subjects.
Collapse
Affiliation(s)
- Christina Schilling
- Department of Psychiatry and Psychotherapy, Charité University Medicine Campus Mitte, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Holsen LM, Savage CR, Martin LE, Bruce AS, Lepping RJ, Ko E, Brooks WM, Butler MG, Zarcone JR, Goldstein JM. Importance of reward and prefrontal circuitry in hunger and satiety: Prader-Willi syndrome vs simple obesity. Int J Obes (Lond) 2011; 36:638-47. [PMID: 22024642 PMCID: PMC3270121 DOI: 10.1038/ijo.2011.204] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background The majority of research on obesity has focused primarily on clinical features (eating behavior, adiposity measures), or peripheral appetite-regulatory peptides (leptin, ghrelin). However, recent functional neuroimaging studies have demonstrated that some reward circuitry regions which are associated with appetite-regulatory hormones are also involved in the development and maintenance of obesity. Prader-Willi syndrome (PWS), characterized by hyperphagia and hyperghrelinemia reflecting multi-system dysfunction in inhibitory and satiety mechanisms, serves as an extreme model of genetic obesity. Simple (non-PWS) obesity (OB) represents an obesity control state. Objective This study investigated subcortical food motivation circuitry and prefrontal inhibitory circuitry functioning in response to food stimuli before and after eating in individuals with PWS compared with OB. We hypothesized that groups would differ in limbic regions (i.e., hypothalamus, amygdala) and prefrontal regions associated with cognitive control [i.e., dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC)] after eating. Design and Participants Fourteen individuals with PWS, 14 BMI- and age-matched individuals with OB, and 15 age-matched healthy-weight controls (HWC) viewed food and non-food images while undergoing functional MRI before (pre-meal) and after (post-meal) eating. Using SPM8, group contrasts were tested for hypothesized regions: hypothalamus, nucleus accumbens (NAc), amygdala, hippocampus, OFC, medial PFC, and DLPFC. Results Compared with OB and HWC, PWS demonstrated higher activity in reward/limbic regions (NAc, amygdala) and lower activity in hypothalamus and hippocampus, in response to food (vs. non-food) images pre-meal. Post-meal, PWS exhibited higher subcortical activation (hypothalamus, amygdala, hippocampus) compared to OB and HWC. OB showed significantly higher activity versus PWS and HWC in cortical regions (DLPFC, OFC) associated with inhibitory control. Conclusion In PWS compared with obesity per se, results suggest hyperactivations in subcortical reward circuitry and hypoactivations in cortical inhibitory regions after eating, which provides evidence of neural substrates associated with variable abnormal food motivation phenotypes in PWS and simple obesity.
Collapse
Affiliation(s)
- L M Holsen
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Foti F, Menghini D, Petrosini L, Valerio G, Crinò A, Vicari S, Grimaldi T, Mandolesi L. Spatial Competences in Prader–Willi Syndrome: A Radial Arm Maze Study. Behav Genet 2011; 41:445-56. [DOI: 10.1007/s10519-011-9471-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
|