1
|
Feng X, Piper RJ, Prentice F, Clayden JD, Baldeweg T. Functional brain connectivity in children with focal epilepsy: A systematic review of functional MRI studies. Seizure 2024; 117:164-173. [PMID: 38432080 DOI: 10.1016/j.seizure.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Epilepsy is increasingly recognised as a brain network disorder and many studies have investigated functional connectivity (FC) in children with epilepsy using functional MRI (fMRI). This systematic review of fMRI studies, published up to November 2023, investigated profiles of FC changes and their clinical relevance in children with focal epilepsy compared to healthy controls. A literature search in PubMed and Web of Science yielded 62 articles. We categorised the results into three groups: 1) differences in correlation-based FC between patients and controls; 2) differences in other FC measures between patients and controls; and 3) associations between FC and disease variables (for example, age of onset), cognitive and seizure outcomes. Studies revealed either increased or decreased FC across multiple brain regions in children with focal epilepsy. However, findings lacked consistency: conflicting FC alterations (decreased and increased FC) co-existed within or between brain regions across all focal epilepsy groups. The studies demonstrated overall that 1) interhemispheric connections often displayed abnormal connectivity and 2) connectivity within and between canonical functional networks was decreased, particularly for the default mode network. Focal epilepsy disrupted FC in children both locally (e.g., seizure-onset zones, or within-brain subnetworks) and globally (e.g., whole-brain network architecture). The wide variety of FC study methodologies limits clinical application of the results. Future research should employ longitudinal designs to understand the evolution of brain networks during the disease course and explore the potential of FC biomarkers for predicting cognitive and postsurgical seizure outcomes.
Collapse
Affiliation(s)
- Xiyu Feng
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Rory J Piper
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom; Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom
| | - Freya Prentice
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Jonathan D Clayden
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom
| | - Torsten Baldeweg
- Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford, London WC1N 1EH, United Kingdom.
| |
Collapse
|
2
|
Tan L, Tang H, Luo H, Chen X, Zheng Z, Ruan J, Zhang D. Exploring brain network oscillations during seizures in drug-naïve patients with juvenile absence epilepsy. Front Neurol 2024; 15:1340959. [PMID: 38550342 PMCID: PMC10972980 DOI: 10.3389/fneur.2024.1340959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2025] Open
Abstract
OBJECTIVE We aimed to investigate the brain network activity during seizures in patients with untreated juvenile absence epilepsy. METHODS Thirty-six juvenile absence epilepsy (JAE) patients with a current high frequency of seizures (more than five seizures during a 2 h EEG examination) were included. Each participant underwent a 2 h video EEG examination. Five 10 s EEG epochs for inter-ictal, pre-ictal, and post-ictal, and five 5 s EEG epochs for ictal states were extracted. Five 10 s resting-state EEG epochs for each participant from a sex- and age-matched healthy control (HC) were enrolled. The topological parameters of the brain networks were calculated using a graph theory analysis. RESULTS Compared with the resting state of the HC group, the global efficiency, local efficiency, and clustering coefficients of the JAE group decreased in the inter-ictal state. In addition, the ictal state showed significantly increased global and local efficiency and clustering coefficients (p < 0.05) and a decreased small-world index and the shortest path length (p < 0.05) in the theta and alpha bands, compared to the remaining states within the JAE group. Moreover, subgroup analysis revealed that those JAE patients with typical 3 Hz discharges had upgraded global efficiency, local efficiency, and clustering coefficients in both delta and beta1 bands, compared to those JAE patients with non-3 Hz discharges during seizures. CONCLUSION The present study supported the idea that the changes in the EEG brain networks in JAE patients are characterized by decreased global and local efficiency and clustering coefficient in the alpha band. Moreover, the onset of seizures is accompanied by excessively enhanced network efficiency. JAE patients with different ictal discharge patterns may have different functional network oscillations.
Collapse
Affiliation(s)
- Linjie Tan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haoling Tang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiu Chen
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhong Zheng
- Neurobiological Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Center for Neurological Function Test and Neuromodulation, West China Xiamen Hospital, Sichuan University, Xiamen, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dechou Zhang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Zhang T, Zhang Y, Ren J, Zhou H, Yang M, Li L, Lei D, Gong Q, Zhou D, Yang T. Dynamic alterations of striatal-related functional networks in juvenile absence epilepsy. Epilepsy Behav 2023; 149:109506. [PMID: 37925871 DOI: 10.1016/j.yebeh.2023.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE To explore the features of dynamic functional connectivity (dFC) variability of striatal-cortical/subcortical networks in juvenile absence epilepsy (JAE). METHODS We collected resting-state functional magnetic imaging data from 18 JAE patients and 28 healthy controls. The striatum was divided into six pairs of regions: the inferior-ventral striatum (VSi), superior-ventral striatum (VSs), dorsal-caudal putamen, dorsal-rostral putamen, dorsal-caudate (DC) and ventral-rostral putamen. We assessed the dFC variability of each subdivision in the whole brain using the sliding-window method, and correlated altered circuit with clinical variables in JAE patients. RESULTS We found altered dFC variability of striatal-cortical/subcortical networks in patients with JAE. The VSs exhibited decreased dFC variability with subcortical regions, and dFC variability between VSs and thalamus was negatively correlated with epilepsy duration. For the striatal-cortical networks, the dFC variability was decreased in VSi-affective network but increased in DC-executive network. The altered dynamics of striatal-cortical networks involved crucial nodes of the default mode network (DMN). CONCLUSION JAE patients exhibit excessive stability in the striatal-subcortical networks. For striatal-cortical networks in JAE, the striatal-affective circuit was more stable, while the striatal-executive circuit was more variable. Furthermore, crucial nodes of DMN were changed in striatal-cortical networks in JAE.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huanyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Menghan Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianhua Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Wang Y, Li Y, Sun F, Xu Y, Xu F, Wang S, Wang X. Altered neuromagnetic activity in default mode network in childhood absence epilepsy. Front Neurosci 2023; 17:1133064. [PMID: 37008207 PMCID: PMC10060817 DOI: 10.3389/fnins.2023.1133064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
PurposeThe electrophysiological characterization of resting state oscillatory functional connectivity within the default mode network (DMN) during interictal periods in childhood absence epilepsy (CAE) remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigated how the connectivity within the DMN was altered in CAE.MethodsUsing a cross-sectional design, we analyzed MEG data from 33 children newly diagnosed with CAE and 26 controls matched for age and sex. The spectral power and functional connectivity of the DMN were estimated using minimum norm estimation combined with the Welch technique and corrected amplitude envelope correlation.ResultsDefault mode network showed stronger activation in the delta band during the ictal period, however, the relative spectral power in other bands was significantly lower than that in the interictal period (pcorrected < 0.05 for DMN regions, except bilateral medial frontal cortex, left medial temporal lobe, left posterior cingulate cortex in the theta band, and the bilateral precuneus in the alpha band). It should be noted that the significant power peak in the alpha band was lost compared with the interictal data. Compared with controls, the interictal relative spectral power of DMN regions (except bilateral precuneus) in CAE patients was significantly increased in the delta band (pcorrected < 0.01), whereas the values of all DMN regions in the beta-gamma 2 band were significantly decreased (pcorrected < 0.01). In the higher frequency band (alpha-gamma1), especially in the beta and gamma1 band, the ictal node strength of DMN regions except the left precuneus was significantly higher than that in the interictal periods (pcorrected < 0.01), and the node strength of the right inferior parietal lobe increased most significantly in the beta band (Ictal: 3.8712 vs. Interictal: 0.7503, pcorrected < 0.01). Compared with the controls, the interictal node strength of DMN increased in all frequency bands, especially the right medial frontal cortex in the beta band (Controls: 0.1510 vs. Interictal: 3.527, pcorrected < 0.01). Comparing relative node strength between groups, the right precuneus in CAE children decreased significantly (β: Controls: 0.1009 vs. Interictal: 0.0475; γ 1: Controls:0.1149 vs. Interictal:0.0587, pcorrected < 0.01) such that it was no longer the central hub.ConclusionThese findings indicated DMN abnormalities in CAE patients, even in interictal periods without interictal epileptic discharges. Abnormal functional connectivity in CAE may reflect abnormal anatomo-functional architectural integration in DMN, as a result of cognitive mental impairment and unconsciousness during absence seizure. Future studies are needed to examine if the altered functional connectivity can be used as a biomarker for treatment responses, cognitive dysfunction, and prognosis in CAE patients.
Collapse
|
5
|
Zhang W, Xin M, Song G, Liang J. Childhood absence epilepsy patients with cognitive impairment have decreased sleep spindle density. Sleep Med 2023; 103:89-97. [PMID: 36773472 DOI: 10.1016/j.sleep.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To explore the differences in sleep spindle (SS) characteristics during stage N2 sleep between children with childhood absence epilepsy and healthy controls, and between children with childhood absence epilepsy with or without cognitive impairment. METHODS We recruited 29 children (14 females, 15 males, mean age: 8 (2.5) years) with childhood absence epilepsy who did not undergone antiseizure treatments previously and 30 age-matched controls (14 females, 16 males, mean age: 9 (3.0) years). For all patients, data on medical history were collected. Each child was monitored overnight by long-term video electroencephalography and was evaluated by the Wechsler Intelligence Scale for Children-Fourth Edition. Next, we compared anterior SS characteristics, including density, frequency, cycle length, duration, amplitude, and percentage of sleep stages. RESULTS The childhood absence epilepsy group exhibited lower spindle density and duration in the first 37.5 min of stage N2 sleep than the control group (P < 0.01). A decrease in spindle density could be observed in the childhood absence epilepsy group with aggravated cognition impairment. The spindle density was substantially lower in the cognitively impaired group than in the cognitively unimpaired group (P < 0.01). No significant differences were observed in SS amplitude, SS frequency, SS cycle length, and the distribution of sleep stages. CONCLUSIONS Reduction in spindle density and duration is associated with the mechanisms underlying childhood absence epilepsy. The deficit in SS density is related with impaired cognition. This deficiency in SSs may be a useful predictive indicator of cognitive impairment in children with absence epilepsy, indicating that SSs may become a useful biomarker and potential adjuvant anti-seizure target for cognitive impairment caused by childhood absence epilepsy.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China.
| | - Meiying Xin
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China.
| | - Ge Song
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jianmin Liang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China.
| |
Collapse
|
6
|
Khalife MR, Scott RC, Hernan AE. Mechanisms for Cognitive Impairment in Epilepsy: Moving Beyond Seizures. Front Neurol 2022; 13:878991. [PMID: 35645970 PMCID: PMC9135108 DOI: 10.3389/fneur.2022.878991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
There has been a major emphasis on defining the role of seizures in the causation of cognitive impairments like memory deficits in epilepsy. Here we focus on an alternative hypothesis behind these deficits, emphasizing the mechanisms of information processing underlying healthy cognition characterized as rate, temporal and population coding. We discuss the role of the underlying etiology of epilepsy in altering neural networks thereby leading to both the propensity for seizures and the associated cognitive impairments. In addition, we address potential treatments that can recover the network function in the context of a diseased brain, thereby improving both seizure and cognitive outcomes simultaneously. This review shows the importance of moving beyond seizures and approaching the deficits from a system-level perspective with the guidance of network neuroscience.
Collapse
Affiliation(s)
- Mohamed R. Khalife
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Rod C. Scott
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- Institute of Child Health, Neurosciences Unit University College London, London, United Kingdom
| | - Amanda E. Hernan
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
7
|
Warbrick T. Simultaneous EEG-fMRI: What Have We Learned and What Does the Future Hold? SENSORS (BASEL, SWITZERLAND) 2022; 22:2262. [PMID: 35336434 PMCID: PMC8952790 DOI: 10.3390/s22062262] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023]
Abstract
Simultaneous EEG-fMRI has developed into a mature measurement technique in the past 25 years. During this time considerable technical and analytical advances have been made, enabling valuable scientific contributions to a range of research fields. This review will begin with an introduction to the measurement principles involved in EEG and fMRI and the advantages of combining these methods. The challenges faced when combining the two techniques will then be considered. An overview of the leading application fields where EEG-fMRI has made a significant contribution to the scientific literature and emerging applications in EEG-fMRI research trends is then presented.
Collapse
Affiliation(s)
- Tracy Warbrick
- Brain Products GmbH, Zeppelinstrasse 7, 82205 Gilching, Germany
| |
Collapse
|
8
|
Fang S, Li L, Weng S, Guo Y, Zhang Z, Wang L, Fan X, Wang Y, Jiang T. Decreasing Shortest Path Length of the Sensorimotor Network Induces Frontal Glioma-Related Epilepsy. Front Oncol 2022; 12:840871. [PMID: 35252008 PMCID: PMC8888886 DOI: 10.3389/fonc.2022.840871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 01/12/2023] Open
Abstract
Background Glioma-related epilepsy (GRE) is a common symptom in patients with prefrontal glioma. Epilepsy onset is associated with functional network alterations. This study investigated alterations of functional networks in patients with prefrontal glioma and GRE. Methods Sixty-five patients with prefrontal lobe gliomas were retrospectively assessed and classified into GRE and non-GRE groups. Additionally, 25 healthy participants were enrolled after matching for general information. Imaging data were acquired within 72 h in pre-operation. The sensorimotor network was used to delineate alterations in functional connectivity (FC) and topological properties. One-way analysis of variance and post-hoc analysis with Bonferroni correction were used to calculate differences of FC and topological properties. Results All significant alterations were solely found in the sensorimotor network. Irrespective of gliomas located in the left or right prefrontal lobes, the edge between medial Brodmann area 6 and caudal ventrolateral Brodmann area 6 decreased FC in the GRE group compared with the non-GRE group [p < 0.0001 (left glioma), p = 0.0002 (right glioma)]. Moreover, the shortest path length decrease was found in the GRE group compared with the non-GRE group [p = 0.0292 (left glioma) and p = 0.0129 (right glioma)]. Conclusions The reduction of FC between the medial BA 6 (supplementary motor area) and caudal ventrolateral BA 6 in the ipsilateral hemisphere and the shortening of the path length of the sensorimotor network were characteristics alterations in patients with GRE onset. These findings fill in the gap which is the relationship between GRE onset and the alterations of functional networks in patients with prefrontal glioma. Significance Statement Glioma related epilepsy is the most common symptom of prefrontal glioma. It is important to identify characteristic alterations in functional networks in patients with GRE. We found that all significant alterations occurred in the sensorimotor network. Moreover, a decreased FC in the supplementary motor area and a shortening of the path’s length are additional characteristics of glioma-related epilepsy. We believe that our findings indicate new directions of research that will contribute to future investigations of glioma-related epilepsy onset.
Collapse
Affiliation(s)
- Shengyu Fang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lianwang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shimeng Weng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuhao Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Pretreatment Topological Disruptions of Whole-brain Networks Exist in Childhood Absence Epilepsy: A Resting-state EEG-fMRI Study. Epilepsy Res 2022; 182:106909. [DOI: 10.1016/j.eplepsyres.2022.106909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 11/19/2022]
|
10
|
Fallahi A, Pooyan M, Habibabadi JM, Hashemi-Fesharaki SS, Tabatabaei NH, Ay M, Nazem-Zadeh MR. A novel approach for extracting functional brain networks involved in mesial temporal lobe epilepsy based on self organizing maps. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Sun J, Li Y, Zhang K, Sun Y, Wang Y, Miao A, Xiang J, Wang X. Frequency-Dependent Dynamics of Functional Connectivity Networks During Seizure Termination in Childhood Absence Epilepsy: A Magnetoencephalography Study. Front Neurol 2021; 12:744749. [PMID: 34759883 PMCID: PMC8573389 DOI: 10.3389/fneur.2021.744749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Objective: Our aim was to investigate the dynamics of functional connectivity (FC) networks during seizure termination in patients with childhood absence epilepsy (CAE) using magnetoencephalography (MEG) and graph theory (GT) analysis. Methods: MEG data were recorded from 22 drug-naïve patients diagnosed with CAE. FC analysis was performed to evaluate the FC networks in seven frequency bands of the MEG data. GT analysis was used to assess the topological properties of FC networks in different frequency bands. Results: The patterns of FC networks involving the frontal cortex were altered significantly during seizure termination compared with those during the ictal period. Changes in the topological parameters of FC networks were observed in specific frequency bands during seizure termination compared with those in the ictal period. In addition, the connectivity strength at 250–500 Hz during the ictal period was negatively correlated with seizure frequency. Conclusions: FC networks associated with the frontal cortex were involved in the termination of absence seizures. The topological properties of FC networks in different frequency bands could be used as new biomarkers to characterize the dynamics of FC networks related to seizure termination.
Collapse
Affiliation(s)
- Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ke Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yingfan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ailiang Miao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jing Xiang
- Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Wang X, Fang P, Jiao D, Hu T, Yang Q, Liang W, Li Y, Yan Y, Liu L. Topological Organization Alterations of Whole-Brain Functional Networks in Patients with Childhood Absence Epilepsy: Associations with Treatment Effects. DISEASE MARKERS 2021; 2021:2727596. [PMID: 34257743 PMCID: PMC8257349 DOI: 10.1155/2021/2727596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE The purpose of the current study is to detect changes of topological organization of whole-brain functional networks and their relationship with the clinical treatment effects of antiepileptic drugs (AEDs) for patients with childhood absence epilepsy (CAE) using resting-state functional MRI (RS-fMRI). Patients and Methods. RS-fMRI data from 30 CAE patients were collected and compared with findings from 30 age- and gender-matched healthy controls (HCs). The patients were treated with first-line AEDs for 46.03 months before undergoing a second RS-fMRI scan. RESULTS CAE children at baseline showed a reduced clustering coefficient (Cp) and local efficiency (El) than the HC group, implying the reduction of functional segregation. CAE children at baseline also showed smaller characteristic path length (Lp) and higher global efficiency (Eg) compared with the HC group, implying the impairment of functional segregation. However, those metrics showed no significant differences between CAE children at follow-up and the HC group which indicated a clear renormalization of topological organization after AED treatments. CAE at follow-up also showed significantly decreased connectivity between several network regions, with which the thalamus is mainly involved. Furthermore, the reduced connectivity change between the left superior parietal gyrus and the left thalamus is positively correlated with the symptom improvements after AED treatment. CONCLUSION We highlighted the convergence and divergence of brain functional network dysfunctions in CAE patients and provided crucial insights into pathophysiological mechanisms and the AED effects.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Peng Fang
- Department of Military Medical Psychology, Air Force Medical University, China
| | - Dongmei Jiao
- Department of Internal Medicine, The Second Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, China
| | - Tian Hu
- Department of Radiology, Yanan University Affiliated Hospital, China
| | - Qi Yang
- Department of Radiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, China
| | - Wei Liang
- Department of Military Medical Psychology, Air Force Medical University, China
| | - Yijun Li
- Department of Military Medical Psychology, Air Force Medical University, China
| | - Yibing Yan
- Department of Pediatrics, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Libo Liu
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
13
|
Ding D, Zhou D, Sander JW, Wang W, Li S, Hong Z. Epilepsy in China: major progress in the past two decades. Lancet Neurol 2021; 20:316-326. [PMID: 33743240 DOI: 10.1016/s1474-4422(21)00023-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
China has approximately 10 million people with epilepsy. There is a vast epilepsy treatment gap in China, mainly driven by deficiencies in health-care delivery and social discrimination resulting from cultural beliefs about epilepsy. WHO's Global Campaign Against Epilepsy project in China showed that it was possible to treat epilepsy in primary care settings, which was a notable milestone. The China Association Against Epilepsy has been a necessary force to stimulate interest in epilepsy care and research by the medical and scientific community. Nearly 20 different anti-seizure medications are now available in China. Non-pharmacological options are also available, but there are still unmet needs for epilepsy management. The Chinese epilepsy research portfolio is varied, but the areas in which there are the most concentrated focus and expertise are epidemiology and clinical research. The challenges for further improvement in delivering care for people with epilepsy in China are primarily related to public health and reducing inequalities within this vast country.
Collapse
Affiliation(s)
- Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, UK; Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands.
| | - Wenzhi Wang
- Department of Neuroepidemiology, Beijing Neurosurgical Institute, Beijing, China
| | - Shichuo Li
- China Association against Epilepsy, Beijing, China
| | - Zhen Hong
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Wang F, Yin Y, Yang Y, Liang T, Huang T, He C, Hu J, Zhang J, Yang Y, Xing Q, Zhang T, Liu H. Connectome-based prediction of brain age in Rolandic epilepsy: a protocol for a multicenter cross-sectional study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:511. [PMID: 33850908 PMCID: PMC8039653 DOI: 10.21037/atm-21-574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Rolandic epilepsy (RE) is a common pediatric idiopathic partial epilepsy syndrome. Children with RE display varying degrees of cognitive impairment. In epilepsy, age-related neuroanatomic and cognitive changes differ greatly from those observed in the healthy brain, and may be defined as accelerated brain aging. Connectome-based predictive modeling (CPM) is a recently developed machine learning approach that uses whole-brain connectivity measured with neuroimaging data ("neural fingerprints") to predict brain-behavior relationships. The aim of the study will be to develop and validate a CPM for predicting brain age in patients with RE. METHODS A multicenter, cross-sectional study will be conducted in 5 Chinese hospitals. A total of 100 RE patients (including 50 patients receiving anti-epileptic drugs and 50 drug-naïve patients) and 100 healthy children will be recruited to undergo a neuropsychological test using the Wechsler Intelligence Scale. Magnetic resonance images will also be collected. CPM will be applied to predict the brain age of children with RE based on brain functional connectivity. DISCUSSION The findings of the study will facilitate our understanding of developmental changes in the brain in children with RE and could also be an important milestone in the journey toward developing effective early interventions for this disorder. TRIAL REGISTRATION The study has been registered with Chinese Clinical Trial Registry (ChiCTR2000032984).
Collapse
Affiliation(s)
- Fuqin Wang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Yu Yin
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Yang Yang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Ting Liang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tingting Huang
- Department of Radiology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Cheng He
- Department of Radiology, Chongqing University Central Hospital, Chongqing, China
| | - Jie Hu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Jingjing Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Yanli Yang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Qianlu Xing
- Department of Pediatrics, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tijiang Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Heng Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| |
Collapse
|
15
|
Chen L, Li X, Shen L. Self-limited focal epilepsy decreased regional brain activity in sensorimotor areas. Acta Neurol Scand 2021; 143:188-194. [PMID: 32975833 DOI: 10.1111/ane.13350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The fractional amplitude of low-frequency fluctuation (fALFF) method was used to identify the regional brain activity deficits of self-limited focal epilepsy with centrotemporal spikes (SLFECS) relative to normal controls (NCs). METHODS A total of 21 SLFECS (10 females, 11 males; mean age, 8.57 ± 1.5 years) and 21 status-matched (age, sex, and education) NCs (10 females, 11 males; mean age, 8.76 ± 2.19 years) were recruited. The fALFF method was applied to identify SLFECS-related regional brain alterations. Receiver operating characteristic (ROC) curve was applied to identify the ability of these regional brain areas in distinguishing the SLFECS group from the NCs group. The relationships between the regional brain activity deficits and clinical features were evaluated by Pearson's correlation analysis. RESULTS Self-limited focal epilepsy with centrotemporal spikes was associated with widespread regional brain activity alterations, including left cuneus with higher fALFF values, and bilateral striatum, bilateral precentral gyrus, ventral and dorsal pathway of sensory area, left dorsolateral prefrontal cortex, and left Rolandic area with lower fALFF values. ROC curve revealed excellent AUC value (0.964) of these areas in distinguishing the SLFECS group from the NCs group with high degree of sensitivity (90.5%) and specificity (95.2%). Intelligence quotient score positively correlated with the fALFF value in the left striatum (r = 0.453, p = 0.039). CONCLUSIONS The fALFF parameter could be served as a potential biomarker to identify the SLFECS-related regional brain deficits in the sensorimotor cortex and their pathways, which may be the etiology of paresthesia in SLFECS.
Collapse
Affiliation(s)
- Liu‐cheng Chen
- Department of radiology The First Affiliated Hospital of Bengbu Medical College, Anhui Key Laboratory of Digital Medicine and Intelligent Health Bengbu China
- Department of Imaging Diagnosis, Medical Imaging College Bengbu Medical College Bengbu China
| | - Xiaofen Li
- Department of radiology Jiangxi Provincial People's Hospital Affiliated to Nanchang University Nanchang China
| | - Longshan Shen
- Department of radiology The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| |
Collapse
|
16
|
Zhang T, Zhang Y, Ren J, Yang C, Zhou H, Li L, Lei D, Gong Q, Zhou D, Yang T. Aberrant basal ganglia-thalamo-cortical network topology in juvenile absence epilepsy: A resting-state EEG-fMRI study. Seizure 2020; 84:78-83. [PMID: 33307464 DOI: 10.1016/j.seizure.2020.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The underlying pathophysiology of juvenile absence epilepsy (JAE) is unclear. Since cortical and subcortical brain regions are thought to be altered in genetic generalized epilepsy, the present study examined the resting-state functional network topology of the same regions in JAE. METHODS Electroencephalography and functional magnetic resonance imaging (EEG-fMRI) were performed on 18 JAE patients and 28 healthy controls (HCs). The topology of functional networks was analyzed using the graph-theoretic method. Both global and nodal network parameters were calculated, and parameters differing significantly between the two groups were correlated with clinical variables. RESULTS Both JAE patients and HCs had small-world functional network topological architectures. However, JAE patients showed higher values for the global parameters of clustering coefficient (Cp) and normalized characteristic path length (Lambda). At the nodal level, patients exhibited greater centrality at widespread cortices, including the left superior parietal gyrus, right superior temporal gyrus, right orbital part of middle frontal gyrus and bilateral supplementary motor area. Conversely, patients showed decreased nodal centrality predominantly in the limbic network, left thalamus and right caudate nucleus. Degree centrality in the right hippocampus and betweenness centrality in the right caudate nucleus positively correlated with epilepsy duration. CONCLUSION The global functional network of JAE shows small-world properties, but tends to be regular with higher segregation and lower integration. Regions in the basal ganglia-thalamo-cortical network have aberrant nodal centrality. The hippocampus and caudate nucleus may reorganize as epilepsy progresses. Our findings indicate the pathogenesis and compensatory mechanisms to seizure attacks and cognitive deficits of JAE.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cheng Yang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huanyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Tianhua Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Gonen OM, Kwan P, O'Brien TJ, Lui E, Desmond PM. Resting-state functional MRI of the default mode network in epilepsy. Epilepsy Behav 2020; 111:107308. [PMID: 32698105 DOI: 10.1016/j.yebeh.2020.107308] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 02/09/2023]
Abstract
The default mode network (DMN) is a major neuronal network that deactivates during goal-directed tasks. Recent advances in neuroimaging have shed light on its structure and function. Alterations in the DMN are increasingly recognized in a range of neurological and psychiatric conditions including epilepsy. This review first describes the current understanding of the DMN in health, normal aging, and disease as it is acquired via resting-state functional magnetic resonance imaging (MRI), before focusing on how it is affected in various types of focal and generalized epilepsy. These findings support the potential use of DMN parameters as future biomarkers in epilepsy research, diagnosis, and management.
Collapse
Affiliation(s)
- Ofer M Gonen
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia; The Alfred Hospital, VIC, Australia.
| | - Patrick Kwan
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia; The Alfred Hospital, VIC, Australia; Monash University, VIC, Australia
| | - Terence J O'Brien
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia; The Alfred Hospital, VIC, Australia; Monash University, VIC, Australia
| | - Elaine Lui
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia
| | - Patricia M Desmond
- The Royal Melbourne Hospital, VIC, Australia; The University of Melbourne, VIC, Australia
| |
Collapse
|
18
|
Fang S, Zhou C, Fan X, Jiang T, Wang Y. Epilepsy-Related Brain Network Alterations in Patients With Temporal Lobe Glioma in the Left Hemisphere. Front Neurol 2020; 11:684. [PMID: 32765403 PMCID: PMC7380082 DOI: 10.3389/fneur.2020.00684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Seizures are a common symptom in patients with temporal lobe gliomas and may result in brain network alterations. However, brain network changes caused by glioma-related epilepsy (GRE) remain poorly understood. Objective: In this study, we applied graph theory analysis to delineate topological networks with resting-state functional magnetic resonance images (rs-fMRI) and investigated characteristics of functional networks in patients with GRE. Methods: Thirty patients with low-grade gliomas in the left temporal lobe were enrolled and classified into GRE (n = 15) and non-GRE groups. Twenty healthy participants matched for age, sex, and education level were enrolled. All participants had rs-fMRI data. Sensorimotor, visual, default mode, auditory, and right executive control networks were used to construct connection matrices. Topological properties of those sub-networks were investigated. Results: Compared to that in the GRE group, four edges with higher functional connectivity were noted in the non-GRE group. Moreover, 21 edges with higher functional connectivity were identified in the non-GRE group compared to the healthy group. All significant alterations in functional edges belong to the visual network. Increased global efficiency and decreased shortest path lengths were noted in the non-GRE group compared to the GRE and healthy groups. Compared with that in the healthy group, nodal efficiency of three nodes was higher in the GRE and non-GRE groups and the degree centrality of six nodes was altered in the non-GRE group. Conclusion: Temporal lobe gliomas in the left hemisphere and GRE altered visual networks in an opposing manner. These findings provide a novel insight into brain network alterations induced by GRE.
Collapse
Affiliation(s)
- Shengyu Fang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunyao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Fan
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Shi Q, Zhang T, Miao A, Sun J, Sun Y, Chen Q, Hu Z, Xiang J, Wang X. Differences Between Interictal and Ictal Generalized Spike-Wave Discharges in Childhood Absence Epilepsy: A MEG Study. Front Neurol 2020; 10:1359. [PMID: 32038453 PMCID: PMC6992575 DOI: 10.3389/fneur.2019.01359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/09/2019] [Indexed: 12/05/2022] Open
Abstract
Purpose: To investigate the differences between interictal and ictal generalized spike-wave discharges (GSWDs) for insights on how epileptic activity propagates and the physiopathological mechanisms underlying childhood absence epilepsy (CAE). Methods: Twenty-five patients with CAE were studied using magnetoencephalography (MEG). MEG data were digitized at 6,000 Hz during the interictal and ictal GSWDs. GSWDs were analyzed at both neural magnetic source levels and functional connectivity (FC) in multifrequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–80 Hz), ripple (80–250 Hz), and fast ripple (250–500 Hz). Brain FC was studied with the posterior cingulate cortex/precuneus (PCC/pC) as the seed region. Results: The magnetic source of interictal GSWDs mainly locates in the PCC/pC region at 4–8 and 8–12 Hz, while that of ictal GSWDs mainly locates in the medial frontal cortex (MFC) at 80–250 Hz. There were statistically significant differences between interictal and ictal GSWDs (p < 0.05). The FC network involving the PCC/pC showed strong connections in the anterior-posterior pathways (mainly with the frontal cortex) at 80–250 Hz during ictal GSWDs, while the interictal GSWDs FC were mostly limited to the posterior cortex region. There was no significant difference in the magnetic source strength among interictal and ictal GSWDs at all bandwidths. Conclusions: There are significant disparities in the source localization and FC between interictal and ictal GSWDs. Low-frequency activation in the PCC/pC during inhibition of seizures possibly relates to the maintenance of consciousness during interictal GSWDs. High-frequency oscillations (HFOs) of the MFC during CAE may associate with the inducing or occurrence of GSWDs. Weakened network connections may be in favor of preventing overexcitability and relates to the termination of GSWDs.
Collapse
Affiliation(s)
- Qi Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ailiang Miao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Jing Xiang
- Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Shamshiri EA, Sheybani L, Vulliemoz S. The Role of EEG-fMRI in Studying Cognitive Network Alterations in Epilepsy. Front Neurol 2019; 10:1033. [PMID: 31608007 PMCID: PMC6771300 DOI: 10.3389/fneur.2019.01033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 02/01/2023] Open
Abstract
Brain functions do not arise from isolated brain regions, but from interactions in widespread networks necessary for both normal and pathological conditions. These Intrinsic Connectivity Networks (ICNs) support cognitive processes such as language, memory, or executive functions, but can be disrupted by epileptic activity. Simultaneous EEG-fMRI can help explore the hemodynamic changes associated with focal or generalized epileptic discharges, thus providing information about both transient and non-transient impairment of cognitive networks related to spatio-temporal overlap with epileptic activity. In the following review, we discuss the importance of interictal discharges and their impact on cognition in different epilepsy syndromes. We explore the cognitive impact of interictal activity in both animal models and human connectivity networks in order to confirm that this effect could have a possible clinical impact for prescribing medication and characterizing post-surgical outcome. Future work is needed to further investigate electrophysiological changes, such as amplitude/latency of single evoked responses or spontaneous epileptic activity in either scalp or intracranial EEG and determine its relative change in hemodynamic response with subsequent network modifications.
Collapse
Affiliation(s)
- Elhum A Shamshiri
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Laurent Sheybani
- Neurology Clinic, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland.,Neurology Clinic, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Jia X, Xie Y, Dong D, Pei H, Jiang S, Ma S, Huang Y, Zhang X, Wang Y, Zhu Q, Zhang Y, Yao D, Yu L, Luo C. Reconfiguration of dynamic large-scale brain network functional connectivity in generalized tonic-clonic seizures. Hum Brain Mapp 2019; 41:67-79. [PMID: 31517428 PMCID: PMC7267969 DOI: 10.1002/hbm.24787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/02/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
An increasing number of studies in patients with generalized tonic–clonic seizures (GTCS) have reported the alteration of functional connectivity (FC) in many brain networks. However, little is known about the underlying temporal variability of FC in large‐scale brain functional networks in patients. Recently, dynamic FC could provide novel insight into the physiological mechanisms in the brain. Here, we recruited 63 GTCS and 65 age‐ and sex‐matched healthy controls. Dynamic FC approaches were used to evaluate alterations in the temporal variability of FC in patients at the region‐ and network‐levels. In addition, two kinds of brain templates (>102 and > 103 regions) and two kinds of temporal variability FC approaches were adopted to verify the stability of the results. Patients showed increased FC variability in regions of the default mode network (DMN), ventral attention network (VAN) and motor‐related areas. The DAN, VAN, and DMN illustrated enhanced FC variability at the within‐network level. In addition, increased FC variabilities between networks were found between the DMN and cognition‐related networks, including the VAN, dorsal attention network and frontal–parietal network in GTCS. Meanwhile, the alterations in FC variability were relatively consistent across different methods and templates. Therefore, the consistent alteration of FC variability would reflect a dynamic restructuring of the large‐scale brain networks in patients with GTCS. Overly frequent information communication among cognition‐related networks, especially in the DMN, might play a role in the epileptic activity and/or cognitive dysfunction in patients.
Collapse
Affiliation(s)
- Xiaoyan Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Xie
- Neurology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Debo Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuai Ma
- Neurology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yang Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingxing Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhong Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Zhu
- Neurology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yanan Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Yu
- Neurology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
22
|
Bear JJ, Chapman KE, Tregellas JR. The epileptic network and cognition: What functional connectivity is teaching us about the childhood epilepsies. Epilepsia 2019; 60:1491-1507. [PMID: 31247129 PMCID: PMC7175745 DOI: 10.1111/epi.16098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
Our objective was to summarize and evaluate the rapidly expanding body of literature studying functional connectivity in childhood epilepsy. In the self-limited childhood epilepsies, awareness of cognitive comorbidities has been steadily increasing, and recent advances in our understanding of the network effects of these disorders promise insights into the underlying neurobiology. We reviewed publications addressing functional connectivity in children with epilepsy with an emphasis on studies of children with self-limited childhood epilepsies. The majority of studies have been published in the past 10 years and predominantly examine childhood epilepsy with centrotemporal spikes and childhood absence epilepsy. Cognitive network alterations are commonly observed across the childhood epilepsies. Some of these effects appear to be nonspecific to epilepsy syndrome or even to category of neurological disorder. Other patterns, such as changes in the connectivity of cortical language areas in childhood epilepsy with centrotemporal spikes, provide clues to the underlying cognitive deficits seen in affected children. The literature to date is dominated by general observations of connectivity patterns without a priori hypotheses. These data-driven studies build an important foundation for hypothesis generation and are already providing useful insights into the neuropathology of the childhood epilepsies. Future work should emphasize hypothesis-driven approaches and rigorous clinical correlations to better understand how the knowledge of network alterations can be applied to guidance and treatment for the children in our clinics.
Collapse
Affiliation(s)
- Joshua J Bear
- Department of Pediatrics, Section of Neurology, Children’s Hospital Colorado
- Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | - Kevin E Chapman
- Department of Pediatrics, Section of Neurology, Children’s Hospital Colorado
- Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
- Research Service, Rocky Mountain Regional VA Medical Center
| |
Collapse
|
23
|
Jiang Y, Song L, Li X, Zhang Y, Chen Y, Jiang S, Hou C, Yao D, Wang X, Luo C. Dysfunctional white-matter networks in medicated and unmedicated benign epilepsy with centrotemporal spikes. Hum Brain Mapp 2019; 40:3113-3124. [PMID: 30937973 PMCID: PMC6865396 DOI: 10.1002/hbm.24584] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Benign epilepsy with centrotemporal spikes (BECT) is the most common childhood idiopathic focal epilepsy syndrome, which characterized with white-matter abnormalities in the rolandic cortex. Although diffusion tensor imaging research could characterize white-matter structural architecture, it cannot detect neural activity or white-matter functions. Recent studies demonstrated the functional organization of white-matter by using functional magnetic resonance imaging (fMRI), suggesting that it is feasible to investigate white-matter dysfunctions in BECT. Resting-state fMRI data were collected from 24 new-onset drug-naive (unmedicated [NMED]), 21 medicated (MED) BECT patients, and 27 healthy controls (HC). Several white-matter functional networks were obtained using a clustering analysis on voxel-by-voxel correlation profiles. Subsequently, conventional functional connectivity (FC) was calculated in four frequency sub-bands (Slow-5:0.01-0.027, Slow-4:0.027-0.073, Slow-3:0.073-0.198, and Slow-2:0.198-0.25 Hz). We also employed a functional covariance connectivity (FCC) to estimate the covariant relationship between two white-matter networks based on their correlations with multiple gray-matter regions. Compared with HC, the NMED showed increased FC and/or FCC in rolandic network (RN) and precentral/postcentral network, and decreased FC and/or FCC in dorsal frontal network, while these alterations were not observed in the MED group. Moreover, the changes exhibited frequency-specific properties. Specifically, only two alterations were shared in at least two frequency bands. Most of these alterations were observed in the frequency bands of Slow-3 and Slow-4. This study provided further support on the existence of white-matter functional networks which exhibited frequency-specific properties, and extended abnormalities of rolandic area from the perspective of white-matter dysfunction in BECT.
Collapse
Affiliation(s)
- Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Li Song
- Neurology DepartmentAffiliated Hospital of North Sichuan Medical College North Sichuan Medical CollegeNanchongChina
| | - Xuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Yaodan Zhang
- Neurology DepartmentAffiliated Hospital of North Sichuan Medical College North Sichuan Medical CollegeNanchongChina
- Chengdu University of Traditional Chinese MedicineChengdu, SichuanChina
| | - Yan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Changyue Hou
- Neurology DepartmentAffiliated Hospital of North Sichuan Medical College North Sichuan Medical CollegeNanchongChina
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Xiaoming Wang
- Neurology DepartmentAffiliated Hospital of North Sichuan Medical College North Sichuan Medical CollegeNanchongChina
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| |
Collapse
|
24
|
Wang J, Li Y, Wang Y, Huang W. Multimodal Data and Machine Learning for Detecting Specific Biomarkers in Pediatric Epilepsy Patients With Generalized Tonic-Clonic Seizures. Front Neurol 2018; 9:1038. [PMID: 30619025 PMCID: PMC6297879 DOI: 10.3389/fneur.2018.01038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023] Open
Abstract
Previous neuroimaging studies of epilepsy with generalized tonic-clonic seizures (GTCS) focus mainly on adults. However, the neural mechanisms that underline this type of epilepsy remain unclear, especially for children. The aim of the present study was to detect the effect of epilepsy on brains of children with GTCS and to investigate whether the changes in the brain can be used to discriminate between epileptic children and healthy children at the level of the individual. To achieve this purpose, we measured gray matter (GM) volume and fractional amplitude of low-frequency fluctuation (fALFF) differences on multimodel magnetic resonance imaging in 14 children with GTCS and 30 age- and gender-matched healthy controls. The patients showed GM volume reduction and a fALFF increase in the thalamus, hippocampus, temporal and other deep nuclei. A significant decrease of fALFF was mainly found in the default mode network (DMN). In addition, epileptic duration was significantly negatively related to the GM volumes and significantly positively related to the fALFF value of right thalamus. A support vector machine (SVM) applied to the GM volume of the right thalamus correctly identified epileptic children with a statistically significant accuracy of 74.42% (P < 0.002). A SVM applied to the fALFF of the right thalamus correctly identified epileptic children with a statistically significant accuracy of 83.72% (P < 0.002). The consistent neuroimaging results indicated that the right thalamus plays an important role in reflecting the chronic damaging effect of GTCS epilepsy in children. The length of time of a child's epileptic history was correlated with greater GM volume reduction and a fALFF increase in the right thalamus. GM volumes and fALFF values in the right thalamus can identify children with GTCS from the healthy controls with high accuracy and at an individual subject level. These results are likely to be valuable in explaining the clinical problems and understanding the brain abnormalities underlying this disorder.
Collapse
Affiliation(s)
- Jianping Wang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongxin Li
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ya Wang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Jia X, Ma S, Jiang S, Sun H, Dong D, Chang X, Zhu Q, Yao D, Yu L, Luo C. Disrupted Coupling Between the Spontaneous Fluctuation and Functional Connectivity in Idiopathic Generalized Epilepsy. Front Neurol 2018; 9:838. [PMID: 30344508 PMCID: PMC6182059 DOI: 10.3389/fneur.2018.00838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
Purpose: The purpose of this study was to comprehensively evaluate alterations of resting-state spontaneous brain activity in patients with idiopathic generalized epilepsy (IGE) and its subgroups [juvenile myoclonic epilepsy (JME) and generalized tonic-clonic seizures (GTCS)]. Methods: Resting state functional magnetic resonance imaging (fMRI) data were acquired from 60 patients with IGE and 60 healthy controls (HCs). Amplitude of low frequency fluctuation (ALFF), global functional connectivity density (gFCD), local FCD (lFCD), and long range FCD (lrFCD) were used to evaluate spontaneous brain activity in the whole brain. Moreover, the coupling between ALFF and FCDs (gFCD, lFCD, and lrFCD) was analyzed on both voxel-wise and subject-wise levels. Two-sample t-tests were used to analyze the difference in ALFF, FCDs and coupling on a subject-wise level between the two groups. Nonparametric permutation tests were used to evaluate differences in coupling on a voxel-wise level. Key findings: Patients with IGE and its subgroups showed reduced ALFF, gFCD and lrFCD in posterior regions of the default mode network (DMN). In addition, decreased ALFF and increased coupling with FCD were found in the cerebellum, while decreased coupling was observed in the bilateral pre- and postcentral gyrus in IGE compared with the coupling in HCs. Similar findings were found in the analysis between each of the two subgroups of IGE (JME and GTCS) and HCs, and JME patients had increased coupling in the cerebellum and bilateral middle occipital gyrus compared with coupling in the GTCS patients. Significance: This study demonstrated a multifactor abnormality of the DMN in IGE and emphasized that the abnormality in the cerebellum was associated with dysfunctional motor symptoms during seizures and might participate in the regulation of GSWDs in IGE.
Collapse
Affiliation(s)
- Xiaoyan Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuai Ma
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Neurology Department, Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Honbin Sun
- Neurology Department, Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Debo Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuebin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Zhu
- Neurology Department, Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Yu
- Neurology Department, Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
Chen S, Fang J, An D, Xiao F, Chen D, Chen T, Zhou D, Liu L. The focal alteration and causal connectivity in children with new-onset benign epilepsy with centrotemporal spikes. Sci Rep 2018; 8:5689. [PMID: 29632387 PMCID: PMC5890242 DOI: 10.1038/s41598-018-23336-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/09/2018] [Indexed: 02/05/2023] Open
Abstract
The aim of the current study was to find the epileptic focus and examine its causal relationship to other brain regions in children with new-onset benign childhood epilepsy with centrotemporal spikes (BECTS). Resting-state functional magnetic resonance imaging (fMRI) was performed in 66 children with BECTS and 37 matched control children. We compared the amplitude of low frequency fluctuation (ALFF) signals between the two groups to find the potential epileptogenic zone (EZ), then used Granger causality analysis (GCA) to explore the causal effects of EZ on the whole brain. Children with BECTS had significantly increased ALFF in the right Broca’s area, and decreased ALFF in bilateral fusiform gyrus. The patients also showed increased driving effect from the EZ in Broca’s area to the right prefrontal lobe, and decreased effects to the frontal lobe and posterior parts of the language network. The causal effect on left Wernicke’s area negatively correlated with verbal IQ (VIQ) score. Our research on new-onset BECTS patients illustrates a possible compensatory mechanism in the language network at early stages of BECTS, and the negative correlation of GCA and VIQ suggest the disturbance of epileptiform activity on language. These findings shed light on the mechanisms of and language dysfunction in BECTS.
Collapse
Affiliation(s)
- Sihan Chen
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, PR China
| | - Dongmei An
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Fenglai Xiao
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Deng Chen
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tao Chen
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dong Zhou
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Ling Liu
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
27
|
Lee HJ, Kim EH, Yum MS, Ko TS, Kim HW. Attention profiles in childhood absence epilepsy compared with attention-deficit/hyperactivity disorder. Brain Dev 2018; 40:94-99. [PMID: 28992996 DOI: 10.1016/j.braindev.2017.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study aimed to compare the attention profiles of subjects with childhood absence epilepsy (CAE) to those of children with attention-deficit/hyperactivity disorder (ADHD) and controls. METHOD We retrospectively reviewed the medical records of 20 children (age 7.2 ± 1.6 years, 5 boys) in whom CAE was diagnosed at the Department of Pediatric Neurology of Asan Medical Center, Seoul, Korea. ADHD and control subjects were selected from children who visited the Department of Pediatric Psychiatry and were confirmed as having or not having ADHD based on Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) and the Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime version (K-SADS-PL). The 20 children with CAE, 20 with ADHD and 20 controls completed the Advanced Test of Attention (ATA), which is a computerized continuous performance task. RESULTS The CAE subjects without ADHD showed increased Omission errors (p=.013) on the visual ATA and Response time (p=0.044) on the auditory ATA than the controls, although these differences did not remain significant after multiple comparison correction. The CAE subjects without ADHD had significantly decreased Response time variability on the visual ATA than the ADHD group (p<0.001). The CAE subjects with comorbid ADHD showed increased Commission errors (p=0.020) and Response time variability (p=0.016) on the visual ATA and increased Commission errors (p=0.022) on the auditory ATA than the CAE subjects without ADHD, although statistical significance disappeared after multiple comparison adjustments. CONCLUSION These findings suggest that selective attention is impaired in children with CAE and comorbid ADHD contributes to further impairment of sustained attention and response inhibition.
Collapse
Affiliation(s)
- Hyun-Jeong Lee
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eun-Hee Kim
- Department of Pediatric Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Mi-Sun Yum
- Department of Pediatric Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Tae-Sung Ko
- Department of Pediatric Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyo-Won Kim
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Qiu W, Yu C, Gao Y, Miao A, Tang L, Huang S, Jiang W, Sun J, Xiang J, Wang X. Disrupted topological organization of structural brain networks in childhood absence epilepsy. Sci Rep 2017; 7:11973. [PMID: 28931825 PMCID: PMC5607318 DOI: 10.1038/s41598-017-10778-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/14/2017] [Indexed: 11/26/2022] Open
Abstract
Childhood absence epilepsy (CAE) is the most common paediatric epilepsy syndrome and is characterized by frequent and transient impairment of consciousness. In this study, we explored structural brain network alterations in CAE and their association with clinical characteristics. A whole-brain structural network was constructed for each participant based on diffusion-weighted MRI and probabilistic tractography. The topological metrics were then evaluated. For the first time, we uncovered modular topology in CAE patients that was similar to healthy controls. However, the strength, efficiency and small-world properties of the structural network in CAE were seriously damaged. At the whole brain level, decreased strength, global efficiency, local efficiency, clustering coefficient, normalized clustering coefficient and small-worldness values of the network were detected in CAE, while the values of characteristic path length and normalized characteristic path length were abnormally increased. At the regional level, especially the prominent regions of the bilateral precuneus showed reduced nodal efficiency, and the reduction of efficiency was significantly correlated with disease duration. The current results demonstrate significant alterations of structural networks in CAE patients, and the impairments tend to grow worse over time. Our findings may provide a new way to understand the pathophysiological mechanism of CAE.
Collapse
Affiliation(s)
- Wenchao Qiu
- Department of Neurology, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Chuanyong Yu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Gao
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ailiang Miao
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Tang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Shuyang Huang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Wenwen Jiang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Xiang
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Center, USA
| | - Xiaoshan Wang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Wang Y, Li Y, Wang H, Chen Y, Huang W. Altered Default Mode Network on Resting-State fMRI in Children with Infantile Spasms. Front Neurol 2017; 8:209. [PMID: 28579971 PMCID: PMC5437852 DOI: 10.3389/fneur.2017.00209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/01/2017] [Indexed: 01/21/2023] Open
Abstract
Infantile spasms (IS) syndrome is an age-dependent epileptic encephalopathy, which occurs in children characterized by spasms, impaired consciousness, and hypsarrhythmia. Abnormalities in default mode network (DMN) might contribute to the loss of consciousness during seizures and cognitive deficits in children with IS. The purpose of the present study was to investigate the changes in DMN with functional connectivity (FC) and amplitude of low-frequency fluctuation (ALFF), the two methods to discover the potential neuronal underpinnings of IS. The consistency of the two calculate methods of DMN abnormalities in IS patients was also our main focus. To avoid the disturbance of interictal epileptic discharge, our testing was performed within the interictal durations without epileptic discharges. Resting-state fMRI data were collected from 13 patients with IS and 35 sex- and age-matched healthy controls. FC analysis with seed in posterior cingulate cortex (PCC) was used to compare the differences between two groups. We chose PCC as the seed region because PCC is the only node in the DMN that directly interacts with virtually all other nodes according to previous studies. Furthermore, the ALFF values within the DMN were also calculated and compared between the two groups. The FC results showed that IS patients exhibited markedly reduced connectivity between posterior seed region and other areas within DMN. In addition, part of the brain areas within the DMN showing significant difference of FC had significantly lower ALFF signal in the patient group than that in the healthy controls. The observed disruption in DMN through the two methods showed that the coherence of brain signal fluctuation in DMN during rest was broken in IS children. Neuronal functional impairment or altered integration in DMN would be one neuroimaging characteristic, which might help us to understand the underlying neural mechanism of IS. Further studies are needed to determine whether the disturbed FC and ALFF observed in the DMN are related to cognitive performance in IS patients.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Human Anatomy, Southern Medical University, Guangzhou, China
| | - Yongxin Li
- Institute of Human Anatomy, Southern Medical University, Guangzhou, China
| | - Huirong Wang
- Electromechanic Engineering College, Guangdong Engineering Polytechnic, Guangzhou, China
| | - Yanjun Chen
- Institute of Human Anatomy, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Institute of Human Anatomy, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Li Q, Chen Y, Wei Y, Chen S, Ma L, He Z, Chen Z. Functional Network Connectivity Patterns between Idiopathic Generalized Epilepsy with Myoclonic and Absence Seizures. Front Comput Neurosci 2017; 11:38. [PMID: 28588471 PMCID: PMC5440462 DOI: 10.3389/fncom.2017.00038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022] Open
Abstract
The extensive cerebral cortex and subcortical structures are considered as the major regions related to the generalized epileptiform discharges in idiopathic generalized epilepsy. However, various clinical syndromes and electroencephalogram (EEG) signs exist across generalized seizures, such as the loss of consciousness during absence seizures (AS) and the jerk of limbs during myoclonic seizures (MS). It is presumed that various functional systems affected by discharges lead to the difference in syndromes of these seizures. Twenty epileptic patients with MS, 21 patients with AS, and 21 healthy controls were recruited in this study. The functional network connectivity was analyzed based on the resting-state functional magnetic resonance imaging scans. The statistical analysis was performed in three groups to assess the difference in the functional brain networks in two types of generalized seizures. Twelve resting-state networks were identified in three groups. Both patient groups showed common abnormalities, including decreased functional connectivity in salience network (SN), cerebellum network, and primary perceptional networks and decreased connection between SN and visual network, compared with healthy controls. Interestingly, the frontal part of high-level cognitive resting-state networks showed increased functional connectivity (FC) in patients with MS, but decreased FC in patients with AS. Moreover, patients with MS showed decreased negative connections between high-level cognitive networks and primary system. The common alteration in both patient groups, including SN, might reflect a similar mechanism associated with the loss of consciousness during generalized seizures. This study provided the evidence of brain network in generalized epilepsy to understand the difference between MS and AS.
Collapse
Affiliation(s)
- Qifu Li
- Department of Neurology, First Affiliated Hospital of Hainan Medical UniversityHaikou, China.,Department of Neurology, First Hospital of China Medical UniversityShenyang, China
| | - Yongmin Chen
- Department of Neurology, First Affiliated Hospital of Hainan Medical UniversityHaikou, China
| | - Yong Wei
- Department of Radiology, Maternal and Child Health Care Hospital of Hainan ProvinceHaikou, China
| | - Shengmei Chen
- Department of Neurology, First Affiliated Hospital of Hainan Medical UniversityHaikou, China
| | - Lin Ma
- Department of Neurology, First Affiliated Hospital of Hainan Medical UniversityHaikou, China
| | - Zhiyi He
- Department of Neurology, First Hospital of China Medical UniversityShenyang, China
| | - Zhibin Chen
- Department of Neurology, First Affiliated Hospital of Hainan Medical UniversityHaikou, China
| |
Collapse
|
31
|
Warren AEL, Harvey AS, Abbott DF, Vogrin SJ, Bailey C, Davidson A, Jackson GD, Archer JS. Cognitive network reorganization following surgical control of seizures in Lennox-Gastaut syndrome. Epilepsia 2017; 58:e75-e81. [PMID: 28295228 DOI: 10.1111/epi.13720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2017] [Indexed: 01/03/2023]
Abstract
We previously observed that adults with Lennox-Gastaut syndrome (LGS) show abnormal functional connectivity among cognitive networks, suggesting that this may contribute to impaired cognition. Herein we report network reorganization following seizure remission in a child with LGS who underwent functional magnetic resonance imaging (fMRI) before and after resection of a cortical dysplasia. Concurrent electroencephalography (EEG) was acquired during presurgical fMRI. Presurgical and postsurgical functional connectivity were compared using (1) graph theoretical analyses of small-world network organization and node-wise strength; and (2) seed-based analyses of connectivity within and between five functional networks. To explore the specificity of these postsurgical network changes, connectivity was further compared to nine children with LGS who did not undergo surgery. The presurgical EEG-fMRI revealed diffuse activation of association cortex during interictal discharges. Following surgery and seizure control, functional connectivity showed increased small-world organization, stronger connectivity in subcortical structures, and greater within-network integration/between-network segregation. These changes suggest network improvement, and diverged sharply from the comparison group of nonoperated children. Following surgery, this child with LGS achieved seizure control and showed extensive reorganization of networks that underpin cognition. This case illustrates that the epileptic process of LGS can directly contribute to abnormal network organization, and that this network disruption may be reversible.
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - A Simon Harvey
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Neurology, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Heidelberg, Victoria, Australia
| | - David F Abbott
- Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Simon J Vogrin
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Catherine Bailey
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Andrew Davidson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Anaesthesia and Pain Management, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Graeme D Jackson
- Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Neurology, Austin Health, Melbourne, Victoria, Australia
| | - John S Archer
- Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia.,Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Neurology, Austin Health, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Altered degree centrality in childhood absence epilepsy: A resting-state fMRI study. J Neurol Sci 2016; 373:274-279. [PMID: 28131205 DOI: 10.1016/j.jns.2016.12.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/14/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
Modern network studies have suggested that the pathology of many neurological diseases is in fact not equally distributed over the brain but preferentially affects the hub regions. This study aims to investigate how hub regions were affected in Children with Childhood absence epilepsy (CAE) using resting-state fMRI (rs-fMRI). As one important measures obtained from rs-fMRI, degree centrality (DC) calculates the number of direct connections between a given node and the rest of the brain within the entire connectivity matrix of the brain. In this study, twenty-five CAE children and 25 healthy controls were recruited to investigate the DC changes in CAE patients. Compared with healthy controls, children with CAE showed significantly decreased DC in default mode network (DMN, medial prefrontal cortex, posterior cingulate cortex, precuneus and middle temporal cortex) and increased DC in thalamus. Importantly, significant negative correlation between the epilepsy duration and DC was found in precuneus. Our results suggested selective and specific disruption of hub nodes, especially thalamus and the highly connected brain regions within DMN, might underlie the pathophysiological mechanism of CAE.
Collapse
|
33
|
Dong L, Lu Q, Huang Y, Zhou X. Frontal Absence Seizures: Clinical and EEG Analysis of Four Cases. CHINESE MEDICAL SCIENCES JOURNAL = CHUNG-KUO I HSUEH K'O HSUEH TSA CHIH 2016; 31:254-257. [PMID: 28065223 DOI: 10.1016/s1001-9294(17)30009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Liling Dong
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qiang Lu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yan Huang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiangqin Zhou
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
34
|
Dong L, Wang P, Peng R, Jiang S, Klugah-Brown B, Luo C, Yao D. Altered basal ganglia-cortical functional connections in frontal lobe epilepsy: A resting-state fMRI study. Epilepsy Res 2016; 128:12-20. [PMID: 27792884 DOI: 10.1016/j.eplepsyres.2016.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/05/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate alterations of basal ganglia-cortical functional connections in patients with frontal lobe epilepsy (FLE). METHOD Resting-state functional magnetic resonance imaging (fMRI) data were gathered from 19 FLE patients and 19 age- and gender-matched healthy controls. Functional connectivity (FC) analysis was used to assess the functional connections between basal ganglia and cerebral cortex. Regions of interest, including the left/right caudate, putamen, pallidum and thalamus, were selected as the seeds. Two sample t-test was used to determine the difference between patients and controls, while controlling the age, gender and head motions. RESULTS Compared with controls, FLE patients demonstrated increased FCs between basal ganglia and regions including the right fusiform gyrus, the bilateral cingulate gyrus, the precuneus and anterior cingulate gyrus. Reduced FCs were mainly located in a range of brain regions including the bilateral middle occipital gyrus, the ventral frontal lobe, the right putamen, the left fusiform gyrus and right rolandic operculum. In addition, the relationships between basal ganglia-cingulate connections and durations of epilepsy were also found. CONCLUSION The alterations of functional integrity within the basal ganglia, as well as its connections to limbic and ventral frontal areas, indicate the important roles of the basal ganglia-cortical functional connections in FLE, and provide new insights in the pathophysiological mechanism of FLE.
Collapse
Affiliation(s)
- Li Dong
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Pu Wang
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Rui Peng
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Sisi Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Klugah-Brown
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
35
|
Qiu W, Gao Y, Yu C, Miao A, Tang L, Huang S, Hu Z, Xiang J, Wang X. Structural Abnormalities in Childhood Absence Epilepsy: Voxel-Based Analysis Using Diffusion Tensor Imaging. Front Hum Neurosci 2016; 10:483. [PMID: 27733824 PMCID: PMC5039196 DOI: 10.3389/fnhum.2016.00483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/12/2016] [Indexed: 11/30/2022] Open
Abstract
Purpose: Childhood absence epilepsy (CAE) is a common syndrome of idiopathic generalized epilepsy. However, little is known about the brain structural changes in this type of epilepsy, especially in the default mode network (DMN) regions. This study aims at using the diffusion tensor imaging (DTI) technique to quantify structural abnormalities of DMN nodes in CAE patients. Method: DTI data were acquired in 14 CAE patients (aged 8.64 ± 2.59 years, seven females and seven males) and 16 age- and sex-matched healthy controls. The data were analyzed using voxel-based analysis (VBA) and statistically compared between patients and controls. Pearson correlation was explored between altered DTI metrics and clinical parameters. The difference of brain volumes between patients and controls were also tested using unpaired t-test. Results: Patients showed significant increase of mean diffusivity (MD) and radial diffusivity (RD) in left medial prefrontal cortex (MPFC), and decrease of fractional anisotropy (FA) in left precuneus and axial diffusivity (AD) in both left MPFC and precuneus. In correlation analysis, MD value from left MPFC was positively associated with duration of epilepsy. Neither the disease duration nor the seizure frequency showed significant correlation with FA values. Between-group comparison of brain volumes got no significant difference. Conclusion: The findings indicate that structural impairments exist in DMN regions in children suffering from absence epilepsy and MD values positively correlate with epilepsy duration. This may contribute to understanding the pathological mechanisms of chronic neurological deficits and promote the development of new therapies for this disorder.
Collapse
Affiliation(s)
- Wenchao Qiu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University Nanjing, China
| | - Yuan Gao
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University Nanjing, China
| | - Chuanyong Yu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University Nanjing, China
| | - Ailiang Miao
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University Nanjing, China
| | - Lu Tang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University Nanjing, China
| | - Shuyang Huang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital Nanjing, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University Nanjing, China
| |
Collapse
|
36
|
Abstract
Ictal and interictal epileptiform discharges affect brain functional dynamics, but the issue of how they occur is still under debate. The present study evaluated the brain electrical activity that underlies epileptic seizures by focusing analysis on four electroencephalographic time stages around seizure onset. The dynamics of the functional organization of the brain regions at rest, and then immediately before, during, and after, epileptic seizures in a group of five patients diagnosed with intractable temporal epilepsy was examined. The analysis is based on the probability of connections between different brain regions as determined by partial directed coherence. A probability-based graph is constructed for each stage and then the dynamics of reorganization is described using invariant measures on the basis of the graphs obtained. The functional reorganization of brain connectivity is illustrated for each time period, reflecting their temporal variations. The graph method applied proved to be useful in depicting temporal variations in functional brain connectivity because of ictal disruptions in temporal epilepsy, thus providing the possibility of further evaluation of these changes in individual cases to support medical decisions.
Collapse
|
37
|
Rajaei H, Cabrerizo M, Janwattanapong P, Pinzon-Ardila A, Gonzalez-Arias S, Adjouadi M. Connectivity maps of different types of epileptogenic patterns. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:1018-1021. [PMID: 28268497 DOI: 10.1109/embc.2016.7590875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
EEG functional connectivity maps, showing the interactions between brain areas in context to the placement of electrodes, were used for the investigation and comparison of three different types of epileptiform activity defined as single spike, spike followed by slow wave and repetitive spike. A nonlinear data-driven method was used to extract connectivity matrices that helped to identify network synchronization based on the number of connections for all brain regions, as represented by the 10-20 EEG system. This quantification was used to assess these three types of spike patterns in relation to the type of seizure, focal or generalized. Results showed some differences between connectivity patterns of single spikes related to focal epilepsy and connectivity patterns of repetitive spikes related to generalized epilepsy. The variance statistical analysis reported a significant difference (P - value ≪ 0.001) between single spike connectivity maps and other spike types. The results obtained, augment the prospects for diagnosis and enhance recognition of disease type via EEG-based connectivity maps.
Collapse
|
38
|
Luo C, Yang F, Deng J, Zhang Y, Hou C, Huang Y, Cao W, Wang J, Xiao R, Zeng N, Wang X, Yao D. Altered functional and effective connectivity in anticorrelated intrinsic networks in children with benign childhood epilepsy with centrotemporal spikes. Medicine (Baltimore) 2016; 95:e3831. [PMID: 27310959 PMCID: PMC4998445 DOI: 10.1097/md.0000000000003831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
There are 2 intrinsic networks in the human brain: the task positive network (TPN) and task negative network (alternately termed the default mode network, DMN) in which inverse correlations have been observed during resting state and event-related functional magnetic resonance imaging (fMRI). The antagonism between the 2 networks might indicate a dynamic interaction in the brain that is associated with development.To evaluate the alterations in the relations of the 2 networks in children with benign childhood epilepsy with centrotemporal spikes (BECTS), resting state fMRI was performed in 17 patients with BECTS and 17 healthy controls. The functional and effective connectivities of 29 nodes in the TPN and DMN were analyzed. Positive functional connectivity (FC) within the networks and negative FC between the 2 networks were observed in both groups.The patients exhibited increased FC within both networks, particularly in the frontoparietal nodes such as the left superior frontal cortex, and enhanced antagonism between the 2 networks, suggesting abnormal functional integration of the nodes of the 2 networks in the patients. Granger causality analysis revealed a significant difference in the degree of outflow to inflow in the left superior frontal cortex and the left ventral occipital lobe.The alterations observed in the combined functional and effective connectivity analyses might indicate an association of an abnormal ability to integrate information between the DMN and TPN and the epileptic neuropathology of BECTS and provide preliminary evidence supporting the occurrence of abnormal development in children with BECTS.
Collapse
Affiliation(s)
- Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu
| | | | - Jiayan Deng
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu
| | | | - Changyue Hou
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu
| | | | - Weifang Cao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu
| | | | - Ruhui Xiao
- Radiology Department, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Nanlin Zeng
- Radiology Department, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | | | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu
| |
Collapse
|
39
|
Hu Y, Mi X, Xu X, Fang W, Zeng K, Yang M, Li C, Wang S, Li M, Wang X. The Brain Activity in Brodmann Area 17: A Potential Bio-Marker to Predict Patient Responses to Antiepileptic Drugs. PLoS One 2015; 10:e0139819. [PMID: 26439500 PMCID: PMC4595505 DOI: 10.1371/journal.pone.0139819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 07/28/2015] [Indexed: 12/29/2022] Open
Abstract
In this study, we aimed to predict newly diagnosed patient responses to antiepileptic drugs (AEDs) using resting-state functional magnetic resonance imaging tools to explore changes in spontaneous brain activity. We recruited 21 newly diagnosed epileptic patients, 8 drug-resistant (DR) patients, 11 well-healed (WH) patients, and 13 healthy controls. After a 12-month follow-up, 11 newly diagnosed epileptic patients who showed a poor response to AEDs were placed into the seizures uncontrolled (SUC) group, while 10 patients were enrolled in the seizure-controlled (SC) group. By calculating the amplitude of fractional low-frequency fluctuations (fALFF) of blood oxygen level-dependent signals to measure brain activity during rest, we found that the SUC patients showed increased activity in the bilateral occipital lobe, particularly in the cuneus and lingual gyrus compared with the SC group and healthy controls. Interestingly, DR patients also showed increased activity in the identical cuneus and lingual gyrus regions, which comprise Brodmann's area 17 (BA17), compared with the SUC patients; however, these abnormalities were not observed in SC and WH patients. The receiver operating characteristic (ROC) curves indicated that the fALFF value of BA17 could differentiate SUC patients from SC patients and healthy controls with sufficient sensitivity and specificity prior to the administration of medication. Functional connectivity analysis was subsequently performed to evaluate the difference in connectivity between BA17 and other brain regions in the SUC, SC and control groups. Regions nearby the cuneus and lingual gyrus were found positive connectivity increased changes or positive connectivity changes with BA17 in the SUC patients, while remarkably negative connectivity increased changes or positive connectivity decreased changes were found in the SC patients. Additionally, default mode network (DMN) regions showed negative connectivity increased changes or negative changes with BA17 in the SUC patients. The abnormal increased in BA17 activity may be a key point that plays a substantial role in facilitating seizure onset.
Collapse
Affiliation(s)
- Yida Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiujuan Mi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Weidong Fang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Kebin Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mingming Yang
- Department of Pediatrics, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Chenyu Li
- Department of Neurology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Shasha Wang
- The Nursing Department, Chongqing Three Gorges Central Hospital, Chongqing, People’s Republic of China
| | - Minghui Li
- The Nursing Department, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- * E-mail:
| |
Collapse
|
40
|
Wu Y, Ji GJ, Zang YF, Liao W, Jin Z, Liu YL, Li K, Zeng YW, Fang F. Local Activity and Causal Connectivity in Children with Benign Epilepsy with Centrotemporal Spikes. PLoS One 2015. [PMID: 26225427 PMCID: PMC4520539 DOI: 10.1371/journal.pone.0134361] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aim of the current study was to localize the epileptic focus and characterize its causal relation with other brain regions, to understand the cognitive deficits in children with benign childhood epilepsy with centrotemporal spikes (BECTS). Resting-state functional magnetic resonance imaging (fMRI) was performed in 37 children with BECTS and 25 children matched for age, sex and educational achievement. We identified the potential epileptogenic zone (EZ) by comparing the amplitude of low frequency fluctuation (ALFF) of spontaneous blood oxygenation level dependent fMRI signals between the groups. Granger causality analysis was applied to explore the causal effect between EZ and the whole brain. Compared with controls, children with BECTS had significantly increased ALFF in the right postcentral gyrus and bilateral calcarine, and decreased ALFF in the left anterior cingulate cortex, bilateral putaman/caudate, and left cerebellum. ALFF values in the putaman/caudate were positively correlated with verbal IQ scores in patients. The ALFF values in cerebellum and performance IQ scores were negatively correlated in patients. These results suggest that ALFF disturbances in the putaman/caudate and cerebellum play an important role in BECTS cognitive dysfunction. Compared with controls, the patients showed increased driving effect from the EZ to the right medial frontal cortex and posterior cingulate cortex and decreased causal effects from the EZ to left inferior frontal gyrus. The causal effect of the left inferior frontal gyrus negatively correlated with disease duration, which suggests a relation between the epileptiform activity and language impairment. All together, these findings provide additional insight into the neurophysiological mechanisms of epilepitogenisis and cognitive dysfunction associated with BECTS.
Collapse
Affiliation(s)
- Yun Wu
- Department of Neurology, Beijing Children’s Hospital Affiliated to Capital Medical University, Beijing, China
- * E-mail: (YW); (FF)
| | - Gong-Jun Ji
- Laboratory of Cognitive Neuropsychology, Department of Medical Psychology, Anhui Medical University, Hefei, China
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wei Liao
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Zhen Jin
- fMRI Center, The 306 Hospital of People’s Liberation Army, Beijing, China
| | - Ya-Li Liu
- fMRI Center, The 306 Hospital of People’s Liberation Army, Beijing, China
| | - Ke Li
- fMRI Center, The 306 Hospital of People’s Liberation Army, Beijing, China
| | - Ya-Wei Zeng
- fMRI Center, The 306 Hospital of People’s Liberation Army, Beijing, China
| | - Fang Fang
- Department of Neurology, Beijing Children’s Hospital Affiliated to Capital Medical University, Beijing, China
- * E-mail: (YW); (FF)
| |
Collapse
|
41
|
Benuzzi F, Ballotta D, Mirandola L, Ruggieri A, Vaudano AE, Zucchelli M, Ferrari E, Nichelli PF, Meletti S. An EEG-fMRI Study on the Termination of Generalized Spike-And-Wave Discharges in Absence Epilepsy. PLoS One 2015; 10:e0130943. [PMID: 26154563 PMCID: PMC4496065 DOI: 10.1371/journal.pone.0130943] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
Introduction Different studies have investigated by means of EEG-fMRI coregistration the brain networks related to generalized spike-and-wave discharges (GSWD) in patients with idiopathic generalized epilepsy (IGE). These studies revealed a widespread GSWD-related neural network that involves the thalamus and regions of the default mode network. In this study we investigated which brain regions are critically involved in the termination of absence seizures (AS) in a group of IGE patients. Methods Eighteen patients (6 male; mean age 25 years) with AS were included in the EEG-fMRI study. Functional data were acquired at 3T with continuous simultaneous video-EEG recording. Event-related analysis was performed with SPM8 software, using the following regressors: (1) GSWD onset and duration; (2) GSWD offset. Data were analyzed at single-subject and at group level with a second level random effect analysis. Results A mean of 17 events for patient was recorded (mean duration of 4.2 sec). Group-level analysis related to GSWD onset respect to rest confirmed previous findings revealing thalamic activation and a precuneus/posterior cingulate deactivation. At GSWD termination we observed a decrease in BOLD signal over the bilateral dorsolateral frontal cortex respect to the baseline (and respect to GSWD onset). The contrast GSWD offset versus onset showed a BOLD signal increase over the precuneus-posterior cingulate region bilaterally. Parametric correlations between electro-clinical variables and BOLD signal at GSWD offset did not reveal significant effects. Conclusion The role of the decreased neural activity of lateral prefrontal cortex at GSWD termination deserve future investigations to ascertain if it has a role in promoting the discharge offset, as well as in the determination of the cognitive deficits often present in patients with AS. The increased BOLD signal at precuneal/posterior cingulate cortex might reflect the recovery of neural activity in regions that are “suspended” during spike and waves activity, as previously hypothesized.
Collapse
Affiliation(s)
- Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Mirandola
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, NOCSAE Hospital-ASL, Modena, Italy
| | - Andrea Ruggieri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, NOCSAE Hospital-ASL, Modena, Italy
| | | | | | - Paolo Frigio Nichelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, NOCSAE Hospital-ASL, Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, NOCSAE Hospital-ASL, Modena, Italy
- * E-mail:
| |
Collapse
|
42
|
Hsiao FJ, Yu HY, Chen WT, Kwan SY, Chen C, Yen DJ, Yiu CH, Shih YH, Lin YY. Increased Intrinsic Connectivity of the Default Mode Network in Temporal Lobe Epilepsy: Evidence from Resting-State MEG Recordings. PLoS One 2015; 10:e0128787. [PMID: 26035750 PMCID: PMC4452781 DOI: 10.1371/journal.pone.0128787] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/30/2015] [Indexed: 11/23/2022] Open
Abstract
The electrophysiological signature of resting state oscillatory functional connectivity within the default mode network (DMN) during spike-free periods in temporal lobe epilepsy (TLE) remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigated how the connectivity within the DMN was altered in TLE, and we examined the effect of lateralized TLE on functional connectivity. Sixteen medically intractable TLE patients and 22 controls participated in this study. Whole-scalp 306-channel MEG epochs without interictal spikes generated from both MEG and EEG data were analyzed using a minimum norm estimate (MNE) and source-based imaginary coherence analysis. With this processing, we obtained the cortical activation and functional connectivity within the DMN. The functional connectivity was increased between DMN and the right medial temporal (MT) region at the delta band and between DMN and the bilateral anterior cingulate cortex (ACC) regions at the theta band. The functional change was associated with the lateralization of TLE. The right TLE showed enhanced DMN connectivity with the right MT while the left TLE demonstrated increased DMN connectivity with the bilateral MT. There was no lateralization effect of TLE upon the DMN connectivity with ACC. These findings suggest that the resting-state functional connectivity within the DMN is reinforced in temporal lobe epilepsy during spike-free periods. Future studies are needed to examine if the altered functional connectivity can be used as a biomarker for treatment responses, cognitive dysfunction and prognosis in patients with TLE.
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
- Laboratory of Neurophysiology at Medical Research Division, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (FJH); (YYL)
| | - Hsiang-Yu Yu
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ta Chen
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Laboratory of Neurophysiology at Medical Research Division, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shang-Yeong Kwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien Chen
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Der-Jen Yen
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Hing Yiu
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yang-Hsin Shih
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Laboratory of Neurophysiology at Medical Research Division, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (FJH); (YYL)
| |
Collapse
|
43
|
Li Q, Cao W, Liao X, Chen Z, Yang T, Gong Q, Zhou D, Luo C, Yao D. Altered resting state functional network connectivity in children absence epilepsy. J Neurol Sci 2015; 354:79-85. [PMID: 25982500 DOI: 10.1016/j.jns.2015.04.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/09/2015] [Accepted: 04/30/2015] [Indexed: 02/05/2023]
Abstract
Altered functional connectivity has been associated with the influence of epileptic activity. Abnormalities in connectivity, particularly in dorsal attention (DAN), salience (SN) and default mode (DMN) networks, might contribute to the loss of consciousness during seizures and cognitive deficits in patients with children absence epilepsy (CAE). The objective of the present study was to identify whether the functional network connectivity (FNC) is changed between patients with CAE and healthy controls. Using independent component analysis, twelve resting state networks (RSNs) were identified in resting state functional magnetic resonance imaging data sets in eighteen CAE patients and twenty-one healthy controls. Analyses of the group differences in FNC strength were conducted, controlling for age and gender effects. The findings showed that some functional networks were clustered into two subgroups, correlated within subgroups and antagonized with each other. Compared with the controls, patients with CAE demonstrated abnormal FNC strength among three networks: DMN, DAN and SN. In addition, the antagonism of two subgroups was altered. These results might reflect the underlying neuronal functional impairment or altered integration among these RSNs in CAE, suggesting that the abnormal functional connectivity is likely to imply the pathological mechanism associated with the accumulative influence of epileptic activity. These findings contribute to the understanding of the behavior abnormality in CAE, such as disturbed executive and attentional functions and the loss of consciousness during absence seizures.
Collapse
Affiliation(s)
- Qifu Li
- Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Weifang Cao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China; Department of Radiology, Taishan Medical University, Taian 271016, China
| | - Xiaoping Liao
- Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Zhibin Chen
- Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Tianhua Yang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
44
|
Altered intrinsic connectivity networks in frontal lobe epilepsy: a resting-state fMRI study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:864979. [PMID: 25525456 PMCID: PMC4261631 DOI: 10.1155/2014/864979] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/12/2014] [Accepted: 11/02/2014] [Indexed: 11/18/2022]
Abstract
Examining the resting-state networks (RSNs) may help us to understand the neural mechanism of the frontal lobe epilepsy (FLE). Resting-state functional MRI (fMRI) data were acquired from 46 patients with FLE (study group) and 46 age- and gender-matched healthy subjects (control group). The independent component analysis (ICA) method was used to identify RSNs from each group. Compared with the healthy subjects, decreased functional connectivity was observed in all the networks; however, in some areas of RSNs, functional connectivity was increased in patients with FLE. The duration of epilepsy and the seizure frequency were used to analyze correlation with the regions of interest (ROIs) in the nine RSNs to determine their influence on FLE. The functional network connectivity (FNC) was used to study the impact on the disturbance and reorganization of FLE. The results of this study may offer new insight into the neuropathophysiological mechanisms of FLE.
Collapse
|
45
|
Centeno M, Carmichael DW. Network Connectivity in Epilepsy: Resting State fMRI and EEG-fMRI Contributions. Front Neurol 2014; 5:93. [PMID: 25071695 PMCID: PMC4081640 DOI: 10.3389/fneur.2014.00093] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/25/2014] [Indexed: 12/18/2022] Open
Abstract
There is a growing body of evidence pointing toward large-scale networks underlying the core phenomena in epilepsy, from seizure generation to cognitive dysfunction or response to treatment. The investigation of networks in epilepsy has become a key concept to unlock a deeper understanding of the disease. Functional imaging can provide valuable information to characterize network dysfunction; in particular resting state fMRI (RS-fMRI), which is increasingly being applied to study brain networks in a number of diseases. In patients with epilepsy, network connectivity derived from RS-fMRI has found connectivity abnormalities in a number of networks; these include the epileptogenic, cognitive and sensory processing networks. However, in majority of these studies, the effect of epileptic transients in the connectivity of networks has been neglected. EEG–fMRI has frequently shown networks related to epileptic transients that in many cases are concordant with the abnormalities shown in RS studies. This points toward a relevant role of epileptic transients in the network abnormalities detected in RS-fMRI studies. In this review, we summarize the network abnormalities reported by these two techniques side by side, provide evidence of their overlapping findings, and discuss their significance in the context of the methodology of each technique. A number of clinically relevant factors that have been associated with connectivity changes are in turn associated with changes in the frequency of epileptic transients. These factors include different aspects of epilepsy ranging from treatment effects, cognitive processes, or transition between different alertness states (i.e., awake–sleep transition). For RS-fMRI to become a more effective tool to investigate clinically relevant aspects of epilepsy it is necessary to understand connectivity changes associated with epileptic transients, those associated with other clinically relevant factors and the interaction between them, which represents a gap in the current literature. We propose a framework for the investigation of network connectivity in patients with epilepsy that can integrate epileptic processes that occur across different time scales such as epileptic transients and disease duration and the implications of this approach are discussed.
Collapse
Affiliation(s)
- Maria Centeno
- Imaging and Biophysics Unit, Institute of Child Health, University College London , London , UK ; Epilepsy Unit, Great Ormond Street Hospital , London , UK
| | - David W Carmichael
- Imaging and Biophysics Unit, Institute of Child Health, University College London , London , UK ; Epilepsy Unit, Great Ormond Street Hospital , London , UK
| |
Collapse
|
46
|
Kim JB, Suh SI, Seo WK, Oh K, Koh SB, Kim JH. Altered thalamocortical functional connectivity in idiopathic generalized epilepsy. Epilepsia 2014; 55:592-600. [PMID: 24650142 DOI: 10.1111/epi.12580] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2014] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Aberrant thalamocortical network has been hypothesized to play a crucial role in the fundamental pathogenesis underlying idiopathic generalized epilepsy (IGE). We aimed to investigate alterations of thalamocortical functional network in patients with IGE using thalamic seed-based functional connectivity (FC) analysis, and their relationships with frontal cognitive functions and clinical characteristics. METHODS Forty-nine IGE patients (31 with juvenile myoclonic epilepsy, 17 with IGE with generalized tonic-clonic seizures only, one with juvenile absence epilepsy) and 42 control subjects were prospectively recruited. Voxel-based morphometry (VBM) was first performed to detect thalamic region of gray matter (GM) reduction in patients compared to controls. Between-group comparison of thalamocortical FC was then carried out using resting-state functional magnetic resonance imaging (MRI) analysis seeding at thalamic region of volume difference. In addition, thalamocortical FC was correlated with frontal cognitive performance and clinical variables. RESULTS Neuropsychological assessment revealed that patients with IGE had poorer performance than controls on most of the frontal cognitive functions. VBM detected a reduction in GM in the anteromedial thalamus in patients relative to controls. FC analysis seeding at the anteromedial thalamus revealed a reduction of thalamocortical FC in the bilateral medial prefrontal cortex and precuneus/posterior cingulate cortex in patients with IGE compared to controls. Thalamocortical FC strength of bilateral medial prefrontal cortex correlated negatively with disease duration, but did not correlate with seizure frequency or frontal cognitive functions in patients with IGE. SIGNIFICANCE Our results indicate that IGE is associated with decreased thalamocortical FC between anteromedial thalamus and medial prefrontal cortex and precuneus/posterior cingulate cortex. Our finding of greater reduction of medial prefrontal FC in relation to increasing disease duration suggests that thalamoprefrontal network abnormality, the proposed pathophysiologic mechanism underlying IGE, may be the consequence of the long-standing burden of the disease.
Collapse
Affiliation(s)
- Jung Bin Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Yang T, Fang Z, Ren J, Xiao F, Li Q, Liu L, Lei D, Gong Q, Zhou D. Altered spontaneous activity in treatment-naive childhood absence epilepsy revealed by Regional Homogeneity. J Neurol Sci 2014; 340:58-62. [PMID: 24746024 DOI: 10.1016/j.jns.2014.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 02/05/2023]
Abstract
PURPOSE To explore the differences in regional spontaneous activities throughout the whole brain by the Regional Homogeneity (ReHo) method in untreated childhood absence epilepsy (CAE), in order to understand the neuro-pathophysiological mechanism of function impairments in CAE. METHODS The rest-functional MRI was used to measure the ReHo in 16 patients with untreated CAE and 16 age- and sex-matched healthy controls. The correlations between the ReHo at each voxel of the whole brain and duration of epilepsy were analyzed. RESULTS Compared with healthy controls, we found that ReHo was decreased in bilateral thalamus, caudate, posterior lobe of cerebellum and areas mainly in the default mode network (DMN) (including precuneus and posterior cingulate cortex-PCC, bilateral inferior lateral parietal lobule). The increase of ReHo was found in bilateral insula, left occipital cortex. Moreover, a correlation analysis of the ReHo measurement versus the epilepsy duration was performed, and highly positive correlation was observed in precuneus/PCC and supplementary motor area (SMA). SIGNIFICANCE The current findings demonstrated alterations of ReHo in the striato-thalamo-cortical network in drug naïve CAE subjects during interictal resting state. Some regions with decreased ReHo followed the pattern of 'default' state of brain function. In addition, positive correlations between the ReHo values in the precuneus/PCC and SMA and the disease duration were identified. These results indicate that the involvement of these regions may be related to the pathomechanisms of seizure generation and the neurological deficits observed in CAE patients. ReHo has demonstrated the capability to characterize spontaneous brain dysfunction in epilepsy.
Collapse
Affiliation(s)
- Tianhua Yang
- Department of Neurology, West China Hospital, Sichuan University, Cheng du, PR China
| | - Zhijia Fang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, PR China
| | - Jiechuan Ren
- Department of Neurology, West China Hospital, Sichuan University, Cheng du, PR China
| | - Fenglai Xiao
- Department of Neurology, West China Hospital, Sichuan University, Cheng du, PR China
| | - Qifu Li
- Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, PR China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Cheng du, PR China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, PR China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, PR China.
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Cheng du, PR China.
| |
Collapse
|
48
|
Lee C, Kim SM, Jung YJ, Im CH, Kim DW, Jung KY. Causal influence of epileptic network during spike-and-wave discharge in juvenile myoclonic epilepsy. Epilepsy Res 2014; 108:257-66. [DOI: 10.1016/j.eplepsyres.2013.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/07/2013] [Accepted: 11/03/2013] [Indexed: 11/16/2022]
|
49
|
van Diessen E, Diederen SJH, Braun KPJ, Jansen FE, Stam CJ. Functional and structural brain networks in epilepsy: what have we learned? Epilepsia 2013; 54:1855-65. [PMID: 24032627 DOI: 10.1111/epi.12350] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2013] [Indexed: 02/06/2023]
Abstract
Brain functioning is increasingly seen as a complex interplay of dynamic neural systems that rely on the integrity of structural and functional networks. Recent studies that have investigated functional and structural networks in epilepsy have revealed specific disruptions in connectivity and network topology and, consequently, have led to a shift from "focus" to "networks" in modern epilepsy research. Disruptions in these networks may be associated with cognitive and behavioral impairments often seen in patients with chronic epilepsy. In this review, we aim to provide an overview that would introduce the clinical neurologist and epileptologist to this new theoretical paradigm. We focus on the application of a theory, called "network analysis," to characterize resting-state functional and structural networks and discuss current and future clinical applications of network analysis in patients with epilepsy.
Collapse
Affiliation(s)
- Eric van Diessen
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Bagshaw AP, Cavanna AE. Resting state networks in paroxysmal disorders of consciousness. Epilepsy Behav 2013; 26:290-4. [PMID: 23089152 DOI: 10.1016/j.yebeh.2012.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Functional MRI (fMRI) has transformed academic neuroscience in the last decade and is now the most widely used non-invasive functional brain imaging technique. However, it has had much less of an impact in clinical neuroscience. While a majority of fMRI applications examine brain function in response to an externally driven task, an alternative approach characterizes the brain's intrinsic functional architecture. This involves fMRI scanning in the absence of an explicit task (i.e., in the resting state) and is, therefore, much more easily performed and tolerated by neurological and neuropsychiatric patient groups. The data are easily acquired, and the functional networks extracted are reproducible and reliable. However, quantifying networks of distributed brain activity and identifying the most informative features in a particular disorder remain a challenge. Progress has been made in this direction in recent years, with the adoption of mathematical tools from communications engineering. Specific alterations to the brain's functional connectivity at rest have been observed in generalized and focal epilepsies, as well as in non-epileptic attack disorder. The challenge for the future is to exploit knowledge of how the brain works as a complex system in order to develop more accurate and sensitive diagnostic tests for neurological and neuropsychiatric disorders.
Collapse
|