1
|
Zech HB, von Bargen C, Oetting A, Möckelmann N, Möller-Koop C, Witt M, Struve N, Petersen C, Betz C, Rothkamm K, Münscher A, Clauditz TS, Rieckmann T. Tissue microarray analyses of the essential DNA repair factors ATM, DNA-PKcs and Ku80 in head and neck squamous cell carcinoma. Radiat Oncol 2024; 19:150. [PMID: 39478631 PMCID: PMC11523811 DOI: 10.1186/s13014-024-02541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) negative for Human Papillomavirus (HPV) has remained a difficult to treat entity, whereas tumors positive for HPV are characterized by radiosensitivity and favorable patient outcome. On the cellular level, radiosensitivity is largely governed by the tumor cells` ability to repair radiation-induced DNA double-strand breaks (DSBs), but no biomarker is established that could guide clinical decision making. Therefore, we tested the impact of the expression levels of ATM, the central kinase of the DNA damage response as well as DNA-PKcs and Ku80, two major factors in the main DSB repair pathway non-homologous end joining (NHEJ). METHODS A tissue microarray of a single center HNSCC cohort was stained for ATM, DNA-PKcs and Ku80 and the expression scored based on staining intensity and the percentages of tumor cells stained. Scores were correlated with clinicopathological parameters and survival. RESULTS Samples from 427 HNSCC patients yielded interpretable stainings and were scored following an established algorithm. The majority of tumors showed strong expression of both NHEJ factors, whereas the expression of ATM varied more. The expression scores of ATM and DNA-PKcs were not associated with patient survival. For HPV-negative HNSCC, the minority of tumors without strong Ku80 expression trended towards superior survival when treatment included radiotherapy. Focusing stronger on staining intensity to define the subgroup with lowest and therefore potentially insufficient expression levels in the HPV-negative subgroup, we observed significantly better overall survival for patients treated with radiotherapy but not with surgery alone. CONCLUSIONS Our data suggest that HPV-negative HNSCC with particularly low Ku80 expression represent a highly radiosensitive subpopulation. Confirmation in independent cohorts is required.
Collapse
Affiliation(s)
- Henrike Barbara Zech
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara von Bargen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agnes Oetting
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Möckelmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Otorhinolaryngology, Marienkrankenhaus, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Witt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Otorhinolaryngology, Marienkrankenhaus, Hamburg, Germany
| | | | - Thorsten Rieckmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Wang Z, Liang X, Yi G, Wu T, Sun Y, Zhang Z, Fu M. Bioinformatics analysis proposes a possible role for long noncoding RNA MIR17HG in retinoblastoma. Cancer Rep (Hoboken) 2024; 7:e1933. [PMID: 38321787 PMCID: PMC10864729 DOI: 10.1002/cnr2.1933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Retinoblastoma (RB) is the most common prevalent intraocular malignancy among infants and children, particularly in underdeveloped countries. With advancements in genomics and transcriptomics, noncoding RNAs have been increasingly utilized to investigate the molecular pathology of diverse diseases. AIMS This study aims to establish the competing endogenous RNAs network associated with RB, analyse the function of mRNAs and lncRNAs, and finds the relevant regulatory network. METHODS AND RESULTS This study establishes a network of competing endogenous RNAs by Spearman correlation analysis and prediction based on RB patients and healthy children. Enrichment analyzes based on Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes are conducted to analyze the potential biological functions of lncRNA and mRNA networks. Weighted gene co-expression network analysis (WGCNA) is employed to identify gene cluster modules exhibiting the strongest correlation with RB. The results indicate a significant correlation between the lncRNA MIR17HG (R = .73, p = .02) and the RB phenotype. ceRNA networks reveal downstream miRNAs (hsa-mir-425-5p and hsa-mir455-5p) and mRNAs (MDM2, IPO11, and ITGA1) associated with MIR17Hg. As an inhibitor of the p53 signaling pathway, MDM2 can suppress the development of RB. CONCLUSION In conclusion, lncRNAs play a role in RB, and the MIR17HG/hsa-mir-425-5p/MDM2 pathway may contribute to RB development by inhibiting the p53 signaling pathway.
Collapse
Affiliation(s)
- Zijin Wang
- The Second Clinical Medicine SchoolSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaotian Liang
- Department of Cardiovascular Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Guoguo Yi
- Department of OphthalmologyThe Sixth Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Tong Wu
- The First Clinical Medicine SchoolSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuxin Sun
- The Second Clinical Medicine SchoolSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ziran Zhang
- The Second Clinical Medicine SchoolSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Fu
- Department of Ophthalmology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
Gołąbek K, Hudy D, Gaździcka J, Miśkiewicz-Orczyk K, Nowak-Chmura M, Asman M, Komosińska-Vassev K, Ścierski W, Golusiński W, Misiołek M, Strzelczyk JK. The Analysis of Selected miRNAs and Target MDM2 Gene Expression in Oral Squamous Cell Carcinoma. Biomedicines 2023; 11:3053. [PMID: 38002053 PMCID: PMC10668942 DOI: 10.3390/biomedicines11113053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
MiRNAs could play an important role in tumorigenesis and progression. The oncoprotein MDM2 (murine double minute 2) was identified as a negative regulator of the tumour suppressor p53. This study aims to analyse the expression of the MDM2 target miRNA candidates (miR-3613-3p, miR-371b-5p and miR-3658) and the MDM2 gene in oral squamous cell carcinoma tumour and margin samples and their association with the selected socio-demographic and clinicopathological characteristics. The study group consisted of 50 patients. The miRNAs and MDM2 gene expression levels were assessed by qPCR. The expression analysis of the miRNAs showed the expression of only one of them, i.e., miR-3613-3p. We found no statistically significant differences in the miR-3613-3p expression in tumour samples compared to the margin samples. When analysing the effect of smoking on miR-3613-3p expression, we demonstrated a statistically significant difference between smokers and non-smokers. In addition, we showed an association between the miR-3613-3p expression level and some clinical parameters in tumour samples (T, N and G). Our study demonstrates that miR-3613-3p overexpression is involved in the tumour progression of OSCC. This indicates that miR-3613-3p possesses potential prognostic values.
Collapse
Affiliation(s)
- Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Katarzyna Miśkiewicz-Orczyk
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Magdalena Nowak-Chmura
- Department of Invertebrate Zoology and Parasitology, Institute of Biology, Pedagogical University of Cracov, Podbrzezie 3 St., 31-054 Kraków, Poland
| | - Marek Asman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności St., 41-200 Sosnowiec, Poland
| | - Wojciech Ścierski
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| |
Collapse
|
4
|
Świętek A, Gołąbek K, Hudy D, Gaździcka J, Biernacki K, Miśkiewicz-Orczyk K, Zięba N, Misiołek M, Strzelczyk JK. The Potential Association between E2F2, MDM2 and p16 Protein Concentration and Selected Sociodemographic and Clinicopathological Characteristics of Patients with Oral Squamous Cell Carcinoma. Curr Issues Mol Biol 2023; 45:3268-3278. [PMID: 37185737 PMCID: PMC10137059 DOI: 10.3390/cimb45040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND E2F transcription factor 2 (E2F2), murine double minute 2 (MDM2) and p16 are some of the key proteins associated with the control of the cell cycle. The aim of this study was to evaluate E2F2, MDM2 and p16 concentrations in the tumour and margin samples of oral squamous cell carcinoma and to assess their association with some selected sociodemographic and clinicopathological characteristics of the patients. METHODS The study group consisted of 73 patients. Protein concentrations were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS There were no statistically significant differences in the levels of E2F2, MDM2 or p16 in the tumour samples as compared to the margin specimens. We found that patients with N0 showed significantly lower E2F2 concentrations than patients with N1 in the tumour samples and the median protein concentration of E2F2 was higher in HPV-negative patients in the tumour samples. Moreover, the level of p16 in the margin samples was lower in alcohol drinkers as compared to non-drinkers. Similar observations were found in concurrent drinkers and smokers compared to non-drinkers and non-smokers. CONCLUSIONS E2F2 could potentially promote tumour progression and metastasis. Moreover, our results showed a differential level of the analysed proteins in response to alcohol consumption and the HPV status.
Collapse
Affiliation(s)
- Agata Świętek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
- Silesia LabMed Research and Implementation Centre, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Katarzyna Miśkiewicz-Orczyk
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowskiej St., 41-800 Zabrze, Poland
| | - Natalia Zięba
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowskiej St., 41-800 Zabrze, Poland
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowskiej St., 41-800 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| |
Collapse
|
5
|
Gołąbek K, Rączka G, Gaździcka J, Miśkiewicz-Orczyk K, Zięba N, Krakowczyk Ł, Misiołek M, Strzelczyk JK. Expression Profiles of CDKN2A, MDM2, E2F2 and LTF Genes in Oral Squamous Cell Carcinoma. Biomedicines 2022; 10:biomedicines10123011. [PMID: 36551770 PMCID: PMC9775533 DOI: 10.3390/biomedicines10123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most commonly detected neoplasms worldwide. Not all mechanisms associated with cell cycle disturbances are known in OSCC. Examples of genes involved in the control of the cell cycle are CDKN2A, MDM2, E2F2 and LTF. The aim of this study was to examine the possible association between CDKN2A, MDM2, E2F2 and LTF mRNA expression and influence on clinical variables. METHODS The study group consisted of 88 Polish patients. The gene expression levels were assessed by quantitative reverse transcription PCR. RESULTS We found no statistically significant differences in the expression level of CDKN2A, MDM2, E2F2 and LTF genes in tumour samples compared to margin samples. No association was found between the gene expression levels and clinical parameters, except E2F2. The patients with G2 tumours had a significantly higher gene expression level of E2F2 than patients with low-grade G1 tumours. CONCLUSIONS We have not demonstrated that a change in expression profiles of genes has a significant impact on the pathogenesis of OSCC. It may also be useful to conduct further studies on the use of E2F2 expression profile changes as a factor to describe the invasiveness and dynamics of OSCC development.
Collapse
Affiliation(s)
- Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland
- Correspondence:
| | - Grzegorz Rączka
- Department of Forest Management Planning, Poznań University of Life Sciences, 71 C Wojska Polskiego Str., 60-625 Poznan, Poland
| | - Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland
| | - Katarzyna Miśkiewicz-Orczyk
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowskiej Str., 41-800 Zabrze, Poland
| | - Natalia Zięba
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowskiej Str., 41-800 Zabrze, Poland
| | - Łukasz Krakowczyk
- Clinic of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, 15 Wybrzeże Armii Krajowej Str., 44-102 Gliwice, Poland
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowskiej Str., 41-800 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland
| |
Collapse
|
6
|
Genome stability pathways in head and neck cancers. Int J Genomics 2013; 2013:464720. [PMID: 24364026 PMCID: PMC3834617 DOI: 10.1155/2013/464720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022] Open
Abstract
Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding of genomic stability in squamous cell carcinoma of the head and neck (HNSCC), with an emphasis on DNA repair pathways. HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC pathophysiology and uncovering new, promising treatment strategies.
Collapse
|
7
|
Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2308-16. [PMID: 23665456 DOI: 10.1016/j.bbapap.2013.04.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/21/2013] [Accepted: 04/29/2013] [Indexed: 01/11/2023]
|
8
|
Nuclear survivin and its relationship to DNA damage repair genes in non-small cell lung cancer investigated using tissue array. PLoS One 2013; 8:e74161. [PMID: 24066112 PMCID: PMC3774659 DOI: 10.1371/journal.pone.0074161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To investigate the predictive role and association of nuclear survivin and the DNA double-strand breaks repair genes in non-small cell lung cancer (NSCLC): DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku heterodimeric regulatory complex 70-KD subunit (Ku70) and ataxia-telangiectasia mutated (ATM). METHODS The protein expression of nuclear survivin, DNA-PKcs, Ku70 and ATM were investigated using immunohistochemistry in tumors from 256 patients with surgically resected NSCLC. Furthermore, we analyzed the correlation between the expression of nuclear survivin, DNA-PKcs, Ku70 and ATM. Univariate and multivariate analyses were performed to determine the prognostic factors that inuenced the overall survival and disease-free survival of NSCLC. RESULTS The expression of nuclear survivin, DNA-PKcs, Ku70 and ATM was significantly higher in tumor tissues than in normal tissues. By dichotomizing the specimens as expressing low or high levels of nuclear survivin, nuclear survivin correlated significantly with the pathologic stage (P = 0.009) and lymph node status (P = 0.004). The nuclear survivin levels were an independent prognostic factor for both the overall survival and the disease-free survival in univariate and multivariate analyses. Patients with low Ku70 and DNA-PKcs expression had a greater benefit from radiotherapy than patients with high expression of Ku70 (P = 0.012) and DNA-PKcs (P = 0.02). Nuclear survivin expression positively correlated with DNA-PKcs (P<0.001) and Ku70 expression (P<0.001). CONCLUSIONS Nuclear survivin may be a prognostic factor for overall survival in patients with resected stage I-IIIA NSCLC. DNA-PKcs and Ku70 could predict the effect of radiotherapy in patients with NSCLC. Nuclear survivin may also stimulates DNA double-strand breaks repair by its interaction with DNA-PKcs and Ku70.
Collapse
|
9
|
The potential role of Ku80 in primary central nervous system lymphoma as a prognostic factor. Contemp Oncol (Pozn) 2013; 17:58-63. [PMID: 23788963 PMCID: PMC3685349 DOI: 10.5114/wo.2013.33775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 08/24/2012] [Accepted: 11/14/2012] [Indexed: 01/15/2023] Open
Abstract
The aim of our study was to detect the expression of Ku80 in primary central nervous system lymphoma and to evaluate the relationship between Ku80 expression level and clinical outcomes. Thirty-eight patients with primary central nervous system lymphoma (PCNSL) were included in this retrospective study. The expression of Ku80 in tumor samples was determined by immunohistochemistry. One thousand neoplastic cells per specimen were counted. The expression levels were compared with the clinical data and statistically analyzed. The results of this study show that the expression of Ku80 can be found in the majority of PCNSLs. The mean expression level of Ku80 in 38 PCNSL is 64.1 ±24.5. A significant difference in Ku80 expression could be found between the age < 65 years group and age ≥ 65 years group (P = 0.006). Kaplan-Meier analysis revealed that patients who showed a high Ku80 expression had a significantly shorter median survival time (MST) than patients who had low Ku80 expression (P = 0.036). Patients’ age, tumor location, and treatment protocol were significantly related to prognosis in PCNSL (P < 0.05). The expression of Ku80 was observed in the majority of PCNSLs. Ku80 was a predictive factor for survival in this study. In addition to Ku80, other clinical variables including age, tumor location and therapeutic protocol are correlated significantly with overall survival.
Collapse
|
10
|
Yang J, Xu X, Hao Y, Chen J, Lu H, Qin J, Peng L, Chen B. Expression of DNA-PKcs and BRCA1 as prognostic indicators in nasopharyngeal carcinoma following intensity-modulated radiation therapy. Oncol Lett 2013; 5:1199-1204. [PMID: 23599763 PMCID: PMC3629188 DOI: 10.3892/ol.2013.1196] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/16/2013] [Indexed: 11/06/2022] Open
Abstract
The mechanisms of radiation-induced effects in cancer mainly involve double-strand breaks (DSBs) which are important in maintaining the stability of genes. The DNA repair genes breast cancer 1 (BRCA1) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are capable of maintaining genetic stability through two distinct and complementary repair mechanisms for DNA DSBs, known as repair-homologous recombination (HR) and non-homologous end joining (NHEJ). DNA-PKcs is a member of the phosphatidylinositol 3-kinase (PI3K) family. The PI3K/AKT cell signaling pathway is implicated in cell migration and invasion. The BRCA1 protein is implicated in multiple complex cellular processes that are related to chromosome sensitivity to mutagens. To determine the protein expression and clinical implications of DNA-PKcs and BRCA1 in nasopharyngeal carcinoma (NPC) and cancer progression, we evaluated its expression status by immunohistochemistry in 87 patients who received intensity-modulated radiation therapy (IMRT). In NPC, negative expression of DNA-PKcs was detected in 35 of the 87 (40.2%) cancer types and was significantly associated with poor patient survival (P<0.05). The overexpression of DNA-PKcs and BRCA1 also led to significantly improved distant metastasis-free survival compared with patients who did not overexpress both genes, although the expression level of BRCA1 and distant metastasis-free survival were not closely correlated. In addition, multivariate analysis indicated that DNA-PKcs status is a predictive marker of distant metastasis-free survival. In conclusion, lower expression of DNA-PKcs may be correlated with higher distant metastasis in patients with NPC. DNA-PKcs may be a predictive marker of distant metastasis after IMRT, independent of the classical prognostic marker. BRCA1 may additionally exert a synergistic effect to predict distant metastasis-free survival.
Collapse
Affiliation(s)
- Jiao Yang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060; ; Department of Radiotherapy, Clinical Cancer Center, People's Hospital of Guangxi Autonomous Region, Nanning 530021, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Moeller BJ, Yordy JS, Williams MD, Giri U, Raju U, Molkentine DP, Byers LA, Heymach JV, Story MD, Lee JJ, Sturgis EM, Weber RS, Garden AS, Ang KK, Schwartz DL. DNA repair biomarker profiling of head and neck cancer: Ku80 expression predicts locoregional failure and death following radiotherapy. Clin Cancer Res 2011; 17:2035-43. [PMID: 21349997 DOI: 10.1158/1078-0432.ccr-10-2641] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE Radiotherapy plays an integral role in the treatment of head and neck squamous cell carcinoma (HNSCC). Although proteins involved in DNA repair may predict HNSCC response to radiotherapy, none has been validated in this context. We examined whether differential expression of double-strand DNA break (DSB) repair proteins in HNSCC, the chief mediators of DNA repair following irradiation, predict for treatment outcomes. EXPERIMENTAL DESIGN Archival HNSCC tumor specimens (n = 89) were assembled onto a tissue microarray and stained with antibodies raised against 38 biomarkers. The biomarker set was enriched for proteins involved in DSB repair, in addition to established mechanistic markers of radioresistance. Staining was correlated with treatment response and survival alongside established clinical and pathologic covariates. Results were validated in an independent intramural cohort (n = 34). RESULTS Ku80, a key mediator of DSB repair, correlated most closely with clinical outcomes. Ku80 was overexpressed in half of all tumors, and its expression was independent of all other covariates examined. Ku80 overexpression was an independent predictor for both locoregional failure and mortality following radiotherapy (P < 0.01). The predictive power of Ku80 overexpression was confined largely to HPV-negative HNSCC, where it conferred a nine-fold greater risk of death at two years. CONCLUSIONS Ku80 overexpression is a common feature of HNSCC, and is a candidate DNA repair-related biomarker for radiation treatment failure and death, particularly in patients with high-risk HPV-negative disease. It is a promising, mechanistically rational biomarker to select individual HPV-negative HNSCC patients for strategies to intensify treatment.
Collapse
Affiliation(s)
- Benjamin J Moeller
- Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Canazza A, De Grazia U, Fumagalli L, Brait L, Ghielmetti F, Fariselli L, Croci D, Salmaggi A, Ciusani E. In vitro effects of Cyberknife-driven intermittent irradiation on glioblastoma cell lines. Neurol Sci 2011; 32:579-88. [PMID: 21301910 DOI: 10.1007/s10072-011-0485-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 01/22/2011] [Indexed: 01/23/2023]
Abstract
Radiosurgery is used increasingly upon recurrence of high-grade gliomas to deliver a high dose of focused radiation to a defined target. The purpose of our study was to compare intermittent irradiation (IIR) by using a CyberKnife (CK) with continuous irradiation (CIR) by using a conventional linear accelerator (LINAC). A significant decrease in surviving fraction was observed after IIR irradiation compared with after CIR at a dose of 8 Gy. Three hours after irradiation, most of the DNA damage was repaired in U87. Slightly higher basal levels of Ku70/80 mRNA were found in U87 compared with A172, while radiation treatment induced only minor regulation of Ku70/80 and Rad51 transcription in either cell lines. IIR treatment using CK significantly decreased the survival in U87 and A172 compared with CIR. Although the two cell lines differed in DNA repair capability, the role of Ku70/80 and Rad51 in the cell line radiosensitivity seemed marginal.
Collapse
Affiliation(s)
- Alessandra Canazza
- Laboratory of Clinical Investigation, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
van den Broek GB, Wildeman M, Rasch CRN, Armstrong N, Schuuring E, Begg AC, Looijenga LHJ, Scheper R, van der Wal JE, Menkema L, van Diest PJ, Balm AJM, van Velthuysen MLF, van den Brekel MWM. Molecular markers predict outcome in squamous cell carcinoma of the head and neck after concomitant cisplatin-based chemoradiation. Int J Cancer 2009; 124:2643-50. [PMID: 19253368 DOI: 10.1002/ijc.24254] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Not all patients with squamous cell carcinomas of the head and neck (HNSCC) benefit from concurrent cisplatin-based chemoradiation, but reliable predictive markers for outcome after chemoradiation are scarce. We have investigated potential prognostic biomarkers for outcome in a large group of patients. Ninety-one tumor biopsies taken from consecutive HNSCC patients were evaluated for protein expression on a tissue microarray. Using immunohistochemistry, 18 biomarkers, involved in various cellular pathways were investigated. Univariable and multivariable proportional hazard analyses were performed to investigate associations between each individual marker and outcome. In addition, the global test was used to test all variables simultaneously and selected combinations of markers for an overall association with local control. Univariable analysis showed statistically significant increased relative risks of RB, P16 and MRP2 for local control and MDR1 and HIF-1alpha for overall survival. MRP2, MDR1 and P16 levels were positively associated with outcome whereas RB and HIF-1alpha had a negative relationship. Using Goeman's global testing no combination of markers was identified that was associated with local control. Grouping the markers according to their function revealed an association between a combination of 3 markers (P16, P21 and P27) and outcome (p = 0.05) was found. In the multivariable analysis, MRP2 and RB remained significant independent predictive markers for local control. This study describes the prognostic value of biomarkers for the outcome in patients uniformly treated with concurrent chemoradiation. MRP2 and RB were found to be associated with outcome in patients treated with concurrent chemoradiation.
Collapse
Affiliation(s)
- Guido B van den Broek
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pavón MA, Parreño M, León X, Sancho FJ, Céspedes MV, Casanova I, Lopez-Pousa A, Mangues MA, Quer M, Barnadas A, Mangues R. Ku70 predicts response and primary tumor recurrence after therapy in locally advanced head and neck cancer. Int J Cancer 2008; 123:1068-79. [PMID: 18546291 DOI: 10.1002/ijc.23635] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
5-Fluorouracil and cisplatin-based induction chemotherapy (IC) is commonly used to treat locally advanced head and neck squamous cell carcinoma (HNSCC). The role of nonhomologous end joining (NHEJ) genes (Ku70, Ku80 and DNA-PKcs) in double-strand break (DSB) repair, genomic instability and apoptosis suggest a possible impact on tumor response to radiotherapy, 5-fluorouracil or cisplatin, as these agents are direct or indirect inductors of DSBs. We evaluated the relationship between Ku80, Ku70 or DNA PKcs mRNA expression in pretreatment tumor biopsies, and tumor response to IC or local recurrence, in 50 patients with HNSCC. Additionally, in an independent cohort of 75 patients with HNSCC, we evaluated the relationship between tumor Ku70 protein expression and the same clinical outcomes or patient survival. Tumors in the responder group had significantly higher mRNA levels for Ku70, Ku80 and DNA-PKcs than those in the nonresponder group. Ku70 mRNA was the marker most significantly associated with response to IC. Moreover, high tumor Ku70 mRNA expression was associated with significantly longer local recurrence-free survival (LRFS). Ku70 protein expression was also significantly related to response, and patients with higher percentage of tumor cells expressing Ku70 had longer LRFS. In addition, the percentage of Ku70 positive cells, tumor localization and node involvement were significantly associated with overall survival of patient. Therefore, Ku70 expression is a candidate predictive marker that could distinguish patients who are likely to benefit from chemoradiotherapy or radiotherapy after the induction chemotherapy treatment, suggesting a contribution of the NHEJ system in HNSCC clinical outcome.
Collapse
Affiliation(s)
- Miguel Angel Pavón
- Grup d'Oncogènesi i Antitumorals, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER) and Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Negroni A, Stronati L, Grollino MG, Barattini P, Gumiero D, Danesi DT. Radioresistance in a tumour cell line correlates with radiation inducible Ku 70/80 end-binding activity. Int J Radiat Biol 2008; 84:265-76. [PMID: 18386192 DOI: 10.1080/09553000801953318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE The aims of the present study were to better understand the role of Ku 80, which is involved in double-strand break repair in mammalian cells in the mechanism of radiation resistance and to verify the possibility of increasing cell radiosensitivity by targeted inhibition of Ku autoantigen 80 (Ku 80). MATERIALS AND METHODS Western blot and electrophoretic mobility shift assay (EMSA) were performed on the human bladder carcinoma cell line RT112 (radioresistant) and on the human colorectal carcinoma cell line SW48 (radiosensitive) to assess the expression levels of DNA-dependent protein kinase (DNA-PK) components and the DNA-binding activity of the Ku 70/80 heterodimer after exposure to radiation, respectively. Ku 80 silencing was carried out with the use of small interfering RNA (siRNA). RESULTS Greater differences in the DNA-binding activity of Ku 70/80 and Ku 80 phosphorylation level were observed in RT112 as compared to SW48 after X-ray treatment. There is no correlation between Ku expression and DNA-binding activity at lower doses. A significant increase in nuclear Ku 80 expression was observed one hour after the exposure, only at the higher doses, while the DNA-PK catalytic subunits (DNA-PKcs) and Ku 70 levels did not change significantly. Inhibition of Ku 80 expression by siRNA induced radiosensitivity in the RT112 cell line. CONCLUSIONS Our data demonstrate that in a bladder tumour cell line up-regulation of Ku end-binding activity without any marked change in Ku expression underlie radiation resistance.
Collapse
Affiliation(s)
- Anna Negroni
- Section of Toxicology and Biomedical Sciences, ENEA-National Agency for New Technology, Energy and Environment, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The temperature-sensitive phenotypes of yku70Delta and yku80Delta have provided a useful tool for understanding telomere homeostasis. Mutating the helicase domain of the telomerase inhibitor Pif1 resulted in the inactivation of cell cycle checkpoints and the subsequent rescue of temperature sensitivity of the yku70Delta strain. The inactivation of Pif1 in yku70Delta increased overall telomere length. However, the long G-rich, single-stranded overhangs at the telomeres, which are the major cause of temperature sensitivity, were slightly increased. Interestingly, the rescue of temperature sensitivity in strains having both pif1-m2 and yku70Delta mutations depended on the homologous recombination pathway. Furthermore, the BLM/WRN helicase yeast homolog Sgs1 exacerbated the temperature sensitivity of the yku70Delta strain. Therefore, the yKu70-80 heterodimer and telomerase maintain telomere size, and the helicase activity of Pif1 likely also helps to balance the overall size of telomeres and G-rich, single-stranded overhangs in wild-type cells by regulating telomere protein homeostasis. However, the absence of yKu70 may provide other proteins such as those involved in homologous recombination, Sgs1, or Pif1 additional access to G-rich, single-stranded DNA and may determine telomere size, cell cycle checkpoint activation, and, ultimately, temperature sensitivity.
Collapse
|
17
|
Chang HW, Kim SY, Yi SL, Son SH, Song DY, Moon SY, Kim JH, Choi EK, Ahn SD, Shin SS, Lee KK, Lee SW. Expression of Ku80 correlates with sensitivities to radiation in cancer cell lines of the head and neck. Oral Oncol 2006; 42:979-86. [PMID: 16472552 DOI: 10.1016/j.oraloncology.2005.12.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 12/08/2005] [Indexed: 01/03/2023]
Abstract
The Ku protein is essential for the repair of a majority of DNA double-strand breaks in mammalian cells. The purpose of this study was to investigate the relationship between the expression of Ku70/80 and sensitivity to radiation in cancer cell lines of the head and neck. The sensitivity to radiation in various head and neck cancer cell lines (AMC-HN-1 to -9) was analyzed by colony forming assay. Of the nine cell lines examined, the most radiosensitive cell line (AMC-HN-3) and the most radioresistant cell line (AMC-HN-9) were selected for this experiments. The expression of Ku70/80 was examined after irradiation using real time PCR, Western blotting and immunofluorescence in two different cell lines. Cell cycle distribution after irradiation were analysed. A differential radioresponse was demonstrated by expression of Ku70/80 in AMC-HN-3 and AMC-HN-9 cells. While the expression of Ku70 was slightly increased in the radioresistant AMC-HN-9 cell line, the expression of Ku80 was remarkably increased, suggesting a correlation between Ku80 expression and radiation resistance. Overexpression of Ku80 plays an important role in the repair of DNA damage induced by radiation. Ku80 expression may provide an effective predictive assay of radiosensitivity in head and neck cancers.
Collapse
Affiliation(s)
- Hyo Won Chang
- Department of Otolaryngology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Beskow C, Kanter L, Holgersson A, Nilsson B, Frankendal B, Avall-Lundqvist E, Lewensohn R. Expression of DNA damage response proteins and complete remission after radiotherapy of stage IB-IIA of cervical cancer. Br J Cancer 2006; 94:1683-9. [PMID: 16685270 PMCID: PMC2361310 DOI: 10.1038/sj.bjc.6603153] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The primary aim of this study was to investigate if the expression of the DNA damage identifying protein DNA-PKcs known to be involved in DNA repair after treatment with ionising radiation can be used as a predictive marker for radiotherapy (RT) response in cervical cancer. Formalin-fixed primary tumour biopsies from 109 patients with cervical cancer, FIGO-stage IB–IIA, treated with preoperative brachytherapy followed by radical surgery were analysed by immunohistochemistry. In addition, correlation studies between early pathological tumour response to radiation and expression of Ku86, Ku70, Mdm-2, p53 and p21 in primary tumours were also performed. We found that tumour-transformed tissue shows positive immunostaining of DNA-PKcs, Ku86 and Ku70, while non-neoplastic squamous epithelium and tumour-free cervix glands show negative immunoreactivity. Expression of DNA-PKcs positively correlated with both Ku86 and Ku70, and a statistically significant correlation between the Ku subunits was also found. After RT, 85 patients demonstrated pathologic complete remission (pCR), whereas 24 patients had residual tumour in the surgical specimen (non-pCR). The main finding of our study is that there was no correlation between the outcome of RT and the expression of DNA-PK subunits. Positive p53 tumours were significantly more common among non-pCR cases than in patients with pCR (P=0.031). Expression of p21 and Mdm-2 did not correlate with the outcome of RT.
Collapse
Affiliation(s)
- C Beskow
- Department of Gynaecologic Oncology, Radiumhemmet, Karolinska University Hospital, Solna, SE-171, 76 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
19
|
Sturgeon CM, Knight ZA, Shokat KM, Roberge M. Effect of combined DNA repair inhibition and G2 checkpoint inhibition on cell cycle progression after DNA damage. Mol Cancer Ther 2006; 5:885-92. [PMID: 16648558 DOI: 10.1158/1535-7163.mct-05-0358] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In response to DNA damage, cell survival can be enhanced by activation of DNA repair mechanisms and of checkpoints that delay cell cycle progression to allow more time for DNA repair. Inhibiting both responses with drugs might cause cancer cells to undergo cell division in the presence of lethal amounts of unrepaired DNA. However, we show that interfering with DNA repair via inhibition of DNA-dependent protein kinase (DNA-PK) reduces the ability of checkpoint inhibitors to abrogate G2 arrest and their radiosensitizing activity. Cells exposed to the DNA-PK inhibitor AMA37, DNA-PK-deficient cells, and nonhomologous end joining-deficient cells all enter prolonged G2 arrest after exposure to ionizing radiation doses as low as 2 Gy. The checkpoint kinase Chk2 becomes rapidly and transiently overactivated, whereas Chk1 shows sustained overactivation that parallels the prolonged accumulation of cells in G2. Therefore, in irradiated cells, DNA repair inhibition elicits abnormally strong checkpoint signaling that causes essentially irreversible G2 arrest and strongly reduces the ability of checkpoint kinase inhibitors to overcome G2 arrest and radiosensitize cells. Variable levels of proteins controlling DNA repair have been documented in cancer cells. Therefore, these results have relevance to the development of DNA-PK inhibitors and G2 checkpoint inhibitors as experimental therapeutic approaches to enhance the selective killing of tumor cells by radiotherapy or DNA-damaging chemotherapeutic agents.
Collapse
Affiliation(s)
- Christopher M Sturgeon
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | |
Collapse
|
20
|
Banerjee S, Smith S, Myung K. Suppression of gross chromosomal rearrangements by yKu70-yKu80 heterodimer through DNA damage checkpoints. Proc Natl Acad Sci U S A 2006; 103:1816-21. [PMID: 16446442 PMCID: PMC1413618 DOI: 10.1073/pnas.0504063102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inactivation of either subunit of the Ku70-Ku80 heterodimer, which functions in nonhomologous end-joining and telomere maintenance, generates severe defects such as sensitivity to DNA damage, telomere shortening, and increased gross chromosomal rearrangements (GCRs) that are frequently observed in many cancers. To understand the mechanism of Ku as a genome gatekeeper, we overexpressed the yKu70-yKu80 heterodimer and monitored the formation of GCRs. Ku overexpression suppressed the formation of either spontaneously generated GCRs or those induced by treatments with different DNA damaging agents. Interestingly, this suppression depended on Ku's interaction with DNA damage checkpoints and not through nonhomologous end-joining. We also demonstrate that the inactivation of telomerase inhibitor, Pif1 along with Ku overexpression or the overexpression of Pif1 in either yku70 or yku80 strains arrested the cell cycle at S phase in a DNA damage checkpoint-dependent fashion. Lastly, Ku overexpression causes cell growth delay, which depends on intact Rad27. In summary, the results presented here suggest that Ku functions as a genomic gatekeeper through its crosstalk with DNA damage checkpoints.
Collapse
Affiliation(s)
- Soma Banerjee
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892
| | - Stephanie Smith
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892
- *To whom correspondence should be addressed at:
Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Building 49, Room 4A22, Bethesda, MD 20892. E-mail:
| |
Collapse
|
21
|
Lee SW, Cho KJ, Park JH, Kim SY, Nam SY, Lee BJ, Kim SB, Choi SH, Kim JH, Ahn SD, Shin SS, Choi EK, Yu E. Expressions of Ku70 and DNA-PKcs as prognostic indicators of local control in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2005; 62:1451-7. [PMID: 16029807 DOI: 10.1016/j.ijrobp.2004.12.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 12/10/2004] [Accepted: 12/17/2004] [Indexed: 11/29/2022]
Abstract
PURPOSE The objective of this study was to determine whether the expressions of the two components of DNA-dependent protein kinase, Ku70 and DNA-protein kinase catalytic subunit (DNA-PKcs), influence the response to radiotherapy (RT) and outcome of treatment of nondisseminated nasopharyngeal carcinoma (NPC) in patients who received definitive RT. METHODS AND MATERIALS Sixty-six patients with NPC who were treated with radiotherapy alone or with concurrent chemotherapy between June 1995 and December 2001 were divided into groups based on the levels of immunoreactivity for Ku70 and DNA-PKcs in pretreatment biopsy specimens. The overexpression of Ku70 or DNA-PKcs groups included patients whose biopsy specimens showed at least 50% immunopositive tumor cells; patients in which less than 50% of the tumor cells in the biopsy tissues were immunopositive were placed in the low Ku70 and DNA-PKcs groups. The immunoreactivities for Ku70 and DNA-PKcs were retrospectively compared with the sensitivity of the tumor to radiation and the patterns of therapy failure. Univariate analyses were performed to determine the prognostic factors that influenced locoregional control of NPC. RESULTS The 5-year locoregional control rate was significantly higher in the low Ku70 group (Ku-) (85%) than in the high Ku70 group (Ku+) (42%) (p = 0.0042). However, there were no differences in the metastases-free survival rates between the 2 groups (Ku70+, 82%; Ku70- 78%; p = 0.8672). Univariate analysis indicated that the overexpression of Ku70 surpassed other well-known predictive clinicopathologic parameters as an independent prognostic factor for locoregional control. Eighteen of 22 patients who had locoregional recurrences of the tumor displayed an overexpression of Ku70. No significant association was found between the level of DNA-PKcs expression and the clinical outcome. CONCLUSIONS Our data suggest that the level of Ku70 expression can be used as a molecular marker to predict the response to RT and the locoregional control after RT and concurrent chemotherapy in patients with nondisseminated NPC.
Collapse
Affiliation(s)
- Sang-Wook Lee
- Department of Radiation Oncology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|