1
|
Jiang D, Burger CA, Akhanov V, Liang JH, Mackin RD, Albrecht NE, Andrade P, Schafer DP, Samuel MA. Neuronal signal-regulatory protein alpha drives microglial phagocytosis by limiting microglial interaction with CD47 in the retina. Immunity 2022; 55:2318-2335.e7. [PMID: 36379210 PMCID: PMC9772037 DOI: 10.1016/j.immuni.2022.10.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022]
Abstract
Microglia utilize their phagocytic activity to prune redundant synapses and refine neural circuits during precise developmental periods. However, the neuronal signals that control this phagocytic clockwork remain largely undefined. Here, we show that neuronal signal-regulatory protein alpha (SIRPα) is a permissive cue for microglial phagocytosis in the developing murine retina. Removal of neuronal, but not microglial, SIRPα reduced microglial phagocytosis, increased synpase numbers, and impaired circuit function. Conversely, prolonging neuronal SIRPα expression extended developmental microglial phagocytosis. These outcomes depended on the interaction of presynaptic SIRPα with postsynaptic CD47. Global CD47 deficiency modestly increased microglial phagocytosis, while CD47 overexpression reduced it. This effect was rescued by coexpression of neuronal SIRPα or codeletion of neuronal SIRPα and CD47. These data indicate that neuronal SIRPα regulates microglial phagocytosis by limiting microglial SIRPα access to neuronal CD47. This discovery may aid our understanding of synapse loss in neurological diseases.
Collapse
Affiliation(s)
- Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Courtney A Burger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Viktor Akhanov
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justine H Liang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert D Mackin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas E Albrecht
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pilar Andrade
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Yanagida E, Miyoshi H, Takeuchi M, Yoshida N, Nakashima K, Yamada K, Umeno T, Shimasaki Y, Furuta T, Seto M, Ohshima K. Clinicopathological analysis of immunohistochemical expression of CD47 and SIRPα in adult T-cell leukemia/lymphoma. Hematol Oncol 2020; 38:680-688. [PMID: 32569413 DOI: 10.1002/hon.2768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
The interaction of CD47 and signal-regulatory protein alpha (SIRPα) induces "don't eat me signal", leading suppression of phagocytosis. This signal can affect the clinical course of malignant disease. Although CD47 and SIRPα expression are associated with clinicopathological features in several neoplasms, the investigation for adult T-cell leukemia/lymphoma (ATLL) has not been well-documented. This study aimed to declare the association between CD47 and SIRPα expression and clinicopathological features in ATLL. We performed immunostaining on 73 biopsy samples and found that CD47 is primarily expressed in tumor cells, while SIRPα is expressed in non-neoplastic stromal cells. CD47 positive cases showed significantly higher FoxP3 (P = .0232) and lower CCR4 (P = .0214). SIRPα positive cases presented significantly better overall survival than SIRPα negative cases (P = .0132). SIRPα positive cases showed significantly HLA class I (P = .0062), HLA class II (P = .0133), microenvironment PD-L1 (miPD-L1) (P = .0032), and FoxP3 (P = .0229) positivity. In univariate analysis, SIRPα expression was significantly related to prognosis (Hazard ratio [HR] 0.470; 95% confidence interval [CI] 0.253-0.870; P = .0167], although multivariate analysis did not show SIPRα as an independent prognostic factor. The expression of SIRPα on stromal cells reflects activated immune surveillance mechanism in tumor microenvironment and induce good prognosis in ATLL. More detailed studies for gene expression or genomic abnormalities will disclose clinical and biological significance of the CD47 and SIRPα in ATLL.
Collapse
Affiliation(s)
- Eriko Yanagida
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Mai Takeuchi
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Noriaki Yoshida
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan.,Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kazutaka Nakashima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Kyohei Yamada
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Takeshi Umeno
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yasumasa Shimasaki
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Masao Seto
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
3
|
Song Q, Qin S, Pascal LE, Zou C, Wang W, Tong H, Zhang J, Catalona WJ, Dhir R, Morrell M, Balasubramani GK, Lu Y, Wang Z. SIRPB1 promotes prostate cancer cell proliferation via Akt activation. Prostate 2020; 80:352-364. [PMID: 31905248 PMCID: PMC7421598 DOI: 10.1002/pros.23950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Signal regulatory protein β1 (SIRPB1) is a signal regulatory protein member of the immunoglobulin superfamily and is capable of modulating receptor tyrosine kinase-coupled signaling. Copy number variations at the SIRPB1 locus were previously reported to associate with prostate cancer aggressiveness in patients, however, the role of SIRPB1 in prostate carcinogenesis is unknown. METHODS Fluorescence in situ hybridization and laser-capture microdissection coupled with quantitative polymerase chain reaction was utilized to determine SIRPB1 gene amplification and messenger RNA expression in prostate cancer specimens. The effect of knockdown of SIRPB1 by RNA interference in PC3 prostate cancer cells on cell growth in colony formation assays and cell mobility in wound-healing, transwell assays, and cell cycle analysis was determined. Overexpression of SIPRB1 in C4-2 prostate cancer cells on cell migration, invasion, colony formation and cell cycle progression and tumor take rate in xenografts was also determined. Western blot assay of potential downstream SIRPB1 pathways was also performed. RESULTS SIRPB1 gene amplification was detected in up to 37.5% of prostate cancer specimens based on in silico analysis of several publicly available datasets. SIRPB1 gene amplification and overexpression were detected in prostate cancer specimens. The knockdown of SIRPB1 significantly suppressed cell growth in colony formation assays and cell mobility. SIRPB1 knockdown also induced cell cycle arrest during the G0 /G1 phase and enhancement of apoptosis. Conversely, overexpression of SIPRB1 in C4-2 prostate cancer cells significantly enhanced cell migration, invasion, colony formation, and cell cycle progression and increased C4-2 xenograft tumor take rate in nude mice. Finally, this study presented evidence for SIRPB1 regulation of Akt phosphorylation and showed that Akt inhibition could abolish SIRPB1 stimulation of prostate cancer cell proliferation. CONCLUSIONS These results suggest that SIRPB1 is a potential oncogene capable of activating Akt signaling to stimulate prostate cancer proliferation and could be a biomarker for patients at risk of developing aggressive prostate cancer.
Collapse
Affiliation(s)
- Qiong Song
- Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, 530021, P.R. China
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Siyuan Qin
- Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, 530021, P.R. China
| | - Laura E. Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Chunlin Zou
- Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, 530021, P.R. China
| | - Wenchu Wang
- Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, 530021, P.R. China
| | - Haibo Tong
- Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, 530021, P.R. China
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - William J. Catalona
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Megan Morrell
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | | | - Yi Lu
- Center for Translational Medicine & School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, 530021, P.R. China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
- Corresponding author, contact information: Zhou Wang, Ph.D., Department of Urology, University of Pittsburgh School of Medicine, 5200 Centre Avenue, Suite G40, Pittsburgh, PA 15232, Phone: 412-623-3903, Fax: 412-623-3904,
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Corresponding author, contact information: Zhou Wang, Ph.D., Department of Urology, University of Pittsburgh School of Medicine, 5200 Centre Avenue, Suite G40, Pittsburgh, PA 15232, Phone: 412-623-3903, Fax: 412-623-3904,
| |
Collapse
|
4
|
Takahashi S. Molecular functions of SIRPα and its role in cancer. Biomed Rep 2018; 9:3-7. [PMID: 29930800 DOI: 10.3892/br.2018.1102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/21/2018] [Indexed: 01/17/2023] Open
Abstract
Signal regulatory protein α (SIRPα), also known as cluster of differentiation (CD)172a or Src homology 2 domain-containing phosphatase substrate-1, is a cell surface receptor expressed on myeloid and hematopoietic stem cells and neurons. Accumulating data suggests an important role of SIRPα in cell signaling as a negative regulator of the phosphatidylinositol 3-kinase signaling and mitogen-activated protein kinase pathways. In various cancers, including prostate, breast and liver, as well as astrocytoma and myeloid malignancies, downregulation of SIRPα is frequently observed, resulting in activation of these downstream signaling pathways. In turn, cell proliferation, transformation, migration and invasion may occur. Recently, it has been reported that blocking CD47, an anti-phagocytic signal expressed on tumor cells and an SIRPα ligand, may serve as a promising therapeutic approach, particular for the treatment of acute myeloid leukemia. In the present review, the current findings on SIRPα are summarized, with particular focus on its role in cancer.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagino-ku, Sendai 983-8536, Japan
| |
Collapse
|
5
|
Yao C, Li G, Cai M, Qian Y, Wang L, Xiao L, Thaiss F, Shi B. Prostate cancer downregulated SIRP-α modulates apoptosis and proliferation through p38-MAPK/NF-κB/COX-2 signaling. Oncol Lett 2017; 13:4995-5001. [PMID: 28588738 DOI: 10.3892/ol.2017.6070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/26/2017] [Indexed: 01/05/2023] Open
Abstract
The present study investigated the regulatory mechanism of signal-regulatory protein (SIRP)-α in the apoptosis and proliferation of prostate cancer (CaP) cells. The expression profile of SIRP-α in prostate cancer cells was analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting. Then SIRP-α function in CaP cells was further analyzed with the overexpression and RNA interference of SIRP-α. The results revealed that SIRP-α expression levels were decreased in CaP tissues and cell lines, with androgen-independent CaP exhibiting a lower SIRP-α expression compared with androgen-dependent CaP. Overexpression of SIRP-α resulted in a significantly reduced number of live CaP cells by enhancing apoptosis, whereas SIRP-α silencing increased CaP cell proliferation. Mechanistically, SIRP-α decreases cyclooxygenase-2 (COX-2) expression and cytokine production by negatively regulating p38 mitogen-activated protein kinase and nuclear factor-κB pathway. Therefore, SIRP-α knockdown decreases cell apoptosis by enhancing COX-2 expression. The present results indicate that SIRP-α may function as a novel negative regulator to modulate cellular proliferation, survival and migration in CaP cells. The heightened sensitivity of cells restoring SIRP-α function could be exploited in the development of therapeutics that may potentiate the antineoplastic effects of conventional cytokines or chemotherapeutic agents.
Collapse
Affiliation(s)
- Chen Yao
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Gang Li
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Ming Cai
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Yeyong Qian
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Liqin Wang
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Li Xiao
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Friedrich Thaiss
- III Medical Clinic, University Hospital, Eppendorf, D-20246 Hamburg, Germany
| | - Bingyi Shi
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| |
Collapse
|
6
|
Lin XM, Hu L, Gu J, Wang RY, Li L, Tang J, Zhang BH, Yan XZ, Zhu YJ, Hu CL, Zhou WP, Li S, Liu JF, Gonzalez FJ, Wu MC, Wang HY, Chen L. Choline Kinase α Mediates Interactions Between the Epidermal Growth Factor Receptor and Mechanistic Target of Rapamycin Complex 2 in Hepatocellular Carcinoma Cells to Promote Drug Resistance and Xenograft Tumor Progression. Gastroenterology 2017; 152:1187-1202. [PMID: 28065789 PMCID: PMC6661112 DOI: 10.1053/j.gastro.2016.12.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS Choline kinase α (CHKA) catalyzes conversion of choline to phosphocholine and can contribute to carcinogenesis. Little is known about the role of CHKA in the pathogenesis of hepatocellular carcinoma (HCC). METHODS We performed whole-exome and transcriptome sequence analyses of 9 paired HCC and non-tumor-adjacent tissues. We performed tissue chip analyses of 120 primary HCC and non-tumor-adjacent tissues from patients who received surgery in Shanghai, China from January 2006 through December 2009; 48 sets of specimens (HCC and non-tumor-adjacent tissues) were also analyzed. CHKA gene copy number was quantified and findings were validated by quantitative reverse transcription polymerase chain reaction analysis. CHKA messenger RNA and protein levels were determined by polymerase chain reaction, immunohistochemical, and immunoblot analyses. CHKA was examined in 2 hepatocyte cell lines and 7 HCC-derived cell lines, and knocked down with small interfering RNAs in 3 HCC cell lines. Cells were analyzed in proliferation, wound healing, migration, and invasion assays. Cells were injected into tail veins of mice and tumor growth and metastasis were quantified. Immunoprecipitation and immunofluorescence assays were conducted to determine interactions between CHKA and the epidermal growth factor receptor (EGFR) and the mechanistic target of rapamycin complex 2. RESULTS Levels of CHKA messenger RNA were frequently increased in HCC tissues compared with nontumor tissues; increased expression was associated with amplification at the CHKA loci. Tumors that expressed high levels of CHKA had more aggressive phenotypes, and patients with these tumors had shorter survival times after surgery compared to patients whose tumors expressed low levels of CHKA. HCC cell lines that stably overexpressed CHKA had higher levels of migration and invasion than control HCC cells, and formed larger xenograft tumors with more metastases in mice compared to HCC cells that did not overexpress CHKA. CHKA was required for physical interaction between EGFR and mechanistic target of rapamycin complex 2. This complex was required for HCC cells to form metastatic xenograft tumors in mice and to become resistant to EGFR inhibitors. CONCLUSIONS We found levels of CHKA to be increased in human HCCs compared to nontumor tissues, and increased expression to be associated with tumor aggressiveness and reduced survival times of patients. Overexpression of CHKA in HCC cell lines increased their invasiveness, resistance to EGFR inhibitors, and ability to form metastatic tumors in mice by promoting interaction of EGFR with mechanistic target of rapamycin complex 2.
Collapse
Affiliation(s)
- Xi-Meng Lin
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China;,Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Liang Hu
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China;,Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Jin Gu
- Tsinghua National Laboratory for Information Science and Technology, Bioinformatics Division, Synthetic and Systems Biology Center, Department of Automation, Tsinghua University, Beijing, China
| | - Ruo-Yu Wang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Liang Li
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China;,National Center for Liver Cancer, Shanghai, China
| | - Jing Tang
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan, China
| | - Bao-Hua Zhang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xing-Zhou Yan
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yan-Jing Zhu
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China;,National Center for Liver Cancer, Shanghai, China
| | - Cong-Li Hu
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | - Wei-Ping Zhou
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Shao Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China
| | - Jing-Feng Liu
- Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Meng-Chao Wu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Hong-Yang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China.
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China; Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, China; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
7
|
Role of Signal Regulatory Protein α in Arsenic Trioxide-induced Promyelocytic Leukemia Cell Apoptosis. Sci Rep 2016; 6:23710. [PMID: 27010069 PMCID: PMC4806322 DOI: 10.1038/srep23710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/14/2016] [Indexed: 01/30/2023] Open
Abstract
Signal regulatory protein α (SIRPα) has been shown to operate as a negative regulator in cancer cell survival. The mechanism underneath such function, however, remains poorly defined. In the present study, we demonstrate that overexpression of SIRPα in acute promyelocytic leukemia (APL) cells results in apoptosis possibly via inhibiting the β-catenin signaling pathway and upregulating Foxo3a. Pharmacological activation of β-catenin signal pathway attenuates apoptosis caused by SIRPα. Interestingly, we also find that the pro-apoptotic effect of SIRPα plays an important role in arsenic trioxide (ATO)-induced apoptosis in APL cells. ATO treatment induces the SIRPα protein expression in APL cells and abrogation of SIRPα induction by lentivirus-mediated SIRPα shRNA significantly reduces the ATO-induced apoptosis. Mechanistic study further shows that induction of SIRPα protein in APL cells by ATO is mediated through suppression of c-Myc, resulting in reduction of three SIRPα-targeting microRNAs: miR-17, miR-20a and miR-106a. In summary, our results demonstrate that SIRPα inhibits tumor cell survival and significantly contributes to ATO-induced APL cell apoptosis.
Collapse
|
8
|
Suppression of apoptosis by pseudorabies virus Us3 protein kinase through the activation of PI3-K/Akt and NF-κB pathways. Res Vet Sci 2013; 95:764-74. [PMID: 23835241 DOI: 10.1016/j.rvsc.2013.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/29/2013] [Accepted: 06/02/2013] [Indexed: 12/22/2022]
Abstract
The pseudorabies virus (PRV) is a major viral disease that causes huge economic loss in the pig industry globally. Most viruses have been found to generate anti-apoptotic factors that facilitate cell survival in the early stages of infection. This study aimed to investigate the anti-apoptotic effects of PRV and study the underlying mechanisms in the early stage of infection. We investigated and compared whether the two PRV Us3 isoforms, Us3a and Us3b, could block apoptosis induced by virus infection, and further identified molecules involved in the signaling pathways. Our results demonstrated that PRV elicits 3-phosphoinositide dependent protein kinase-1/phosphatidylinositide 3-kinases/Akt (PDK-1/PI3-K/Akt)- and nuclear factor-κB (NF-κB)-dependent signaling in the early stage of infection. Inhibition of the PI3-K/Akt or NF-κB pathway enhanced cell death but no effect was observed on virus replication or PRV gene expression. Transiently-expressed GFP- or His-tagged PRV Us3a and Us3b cDNA protect cells against PRV-, avian reovirus- or bovine ephemeral fever virus-induced apoptosis in the cell lines. Us3a and Us3b transient over-expression upregulated several anti-apopototic signaling events, and the anti-apoptosis activity of Us3a is greater than that of Us3b. Kinase activity-deficient point or double point mutated Us3a lost the kinase activity of Us3a, which showed that kinase activity is required for the anti-apoptosis effect of Us3. Akt and NF-κB activation still occurred in UV-inactivated PRV- and cycloheximide-treated cells. In vivo study showed that PRV-infected trigeminal ganglion increases the expression of anti-apoptosis signaling molecules, including Akt, PDK-1 and IκBα, which is a similar result to that seen in the in vitro experiments. Our study suggests that signaling mechanisms may play important roles in PRV pathogenesis.
Collapse
|
9
|
Kapoor GS, O'Rourke DM. SIRPalpha1 receptors interfere with the EGFRvIII signalosome to inhibit glioblastoma cell transformation and migration. Oncogene 2010; 29:4130-44. [PMID: 20473329 DOI: 10.1038/onc.2010.164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
EGFRvIII, a frequent genetic alteration of the epidermal growth factor receptor (EGFR), has been shown to increase the migratory potential of tumor cells and normal fibroblasts. Previously, we showed that signal regulatory protein alpha1 (SIRPalpha1) receptors interact with SHP-2 to inhibit wild-type (wt) EGFR-mediated tumor migration, survival and cell transformation. However, the effects of SIRPalpha1 inhibitory receptors on EGFRvIII-mediated phenotypes are unclear. The aim of this study was to investigate the effect of SIRPalpha1 receptor on the EGFRvIII signalosome and phenotypes. Overexpression of SIRPalpha1 in U87MG.EGFRvIII cells inhibited transformation and migration in a MAPK-dependent manner, and is independent of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. We observed reduced EGFRvIII/SHP-2/Gab1/Grb2/Sos-1 interaction and enhanced SIRP/SHP-2 association in U87MG.EGFRvIII/SIRPalpha1 cells when compared with empty vector control cells. Interestingly, SIRPalpha1 overexpression differentially modulated SHP-2 phosphorylation at tyrosyl 542 and 580 residues, which may regulate Erk1/2 activity and the EGFRvIII phenotype. In addition, SIRPalpha1-expressing cells exhibited reduced focal adhesion kinase (FAK) phosphorylation and its recruitment to the EGFRvIII/Grb2/Sos-1/Gab1/SHP-2 complex. Collectively, our data indicate that SIRPalpha1 specifically affects the SHP-2/FAK/Grb2/Sos-1/MAPK activation loop to downmodulate EGFRvIII-mediated migration and transformation. Further understanding of the molecular interactions between the SIRPalpha1 inhibitory receptor and the EGFRvIII signalosome may facilitate the identification of novel targets to inhibit the EGFRvIII glioblastoma phenotype.
Collapse
Affiliation(s)
- G S Kapoor
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
10
|
Shen Y, Xu Q, Han Z, Liu H, Zhou GB. Analysis of phenotype-genotype connection: the story of dissecting disease pathogenesis in genomic era in China, and beyond. Philos Trans R Soc Lond B Biol Sci 2007; 362:1043-61. [PMID: 17327209 PMCID: PMC2435570 DOI: 10.1098/rstb.2007.2033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA is the ultimate depository of biological complexity. Thus, in order to understand life and gain insights into disease pathogenesis, genetic information embedded in the sequence of DNA base pairs comprising chromosomes should be deciphered. The stories of investigating the association between phenotype and genotype in China and other countries further demonstrate that genomics can serve as a probe for disease biology. We now know that in Mendelian disorders, one gene is not only a dictator of one phenotype but also a dictator of two or more distinct disorders. Dissecting genetic abnormalities of complex diseases, including diabetes, hypertension, mental diseases, coronary heart disease and cancer, may unravel the complicated networks and crosstalks, and help to simplify the complexity of the disease. The transcriptome and proteomic analysis for medicine not only deepen our understanding of disease pathogenesis, but also provide novel diagnostic and therapeutic strategies. Taken together, genomic research offers a new opportunity for determining how diseases occur, by taking advantage of experiments of nature and a growing array of sophisticated research tools to identify the molecular abnormalities underlying disease processes. We should be ready for the advent of genomic medicine, and put the genome into the doctors' bag, so that we can help patients to conquer diseases.
Collapse
Affiliation(s)
- Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences100005 Beijing, People's Republic of China
- Chinese National Human Genome Center at Beijing100176 Beijing, People's Republic of China
- Authors for correspondence () ()
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences100005 Beijing, People's Republic of China
| | - Zeguang Han
- Chinese National Human Genome Center at Shanghai201203 Shanghai, People's Republic of China
| | - Han Liu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology200025 Shanghai, People's Republic of China
| | - Guang-Biao Zhou
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences510663 Guangzhou, People's Republic of China
- Authors for correspondence () ()
| |
Collapse
|
11
|
Liu Y, Tong Q, Zhou Y, Lee HW, Yang JJ, Bühring HJ, Chen YT, Ha B, Chen CXJ, Yang Y, Zen K. Functional elements on SIRPalpha IgV domain mediate cell surface binding to CD47. J Mol Biol 2006; 365:680-93. [PMID: 17070842 PMCID: PMC1855148 DOI: 10.1016/j.jmb.2006.09.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 09/22/2006] [Accepted: 09/27/2006] [Indexed: 11/17/2022]
Abstract
SIRPalpha and SIRPbeta1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPalpha with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPbeta1 shares highly homologous extracellular IgV structure with SIRPalpha, it does not bind to CD47. Here, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPalpha, but not SIRPbeta1, which determine the extracellular binding interaction of SIRPalpha to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPalpha directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPalpha extracellular binding mediated cell interactions and cell migration. Another SIRPalpha-specific residue, Met102, appears to assist SIRPalpha IgV binding through Gln67 and Ala/Val57. An essential role of these amino acid residues in SIRPalpha binding to CD47 was further confirmed by introducing these residues into the SIRPbeta1 IgV domain, which dramatically converts SIRPbeta1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPalpha binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Differentiation/chemistry
- Antigens, Differentiation/metabolism
- Binding Sites
- CD47 Antigen/chemistry
- CD47 Antigen/metabolism
- Cell Adhesion
- Cell Movement
- HL-60 Cells
- HT29 Cells
- Humans
- Leukocytes/cytology
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation/genetics
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Rabbits
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Receptors, Fc/immunology
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Structural Homology, Protein
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu Y, Soto I, Tong Q, Chin A, Bühring HJ, Wu T, Zen K, Parkos CA. SIRPbeta1 is expressed as a disulfide-linked homodimer in leukocytes and positively regulates neutrophil transepithelial migration. J Biol Chem 2005; 280:36132-40. [PMID: 16081415 DOI: 10.1074/jbc.m506419200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal regulatory proteins (SIRPs) comprise a family of cell surface signaling receptors differentially expressed in leukocytes and the central nervous system. Although the extracellular domains of SIRPs are highly similar, classical motifs in the cytoplasmic or transmembrane domains distinguish them as either activating (beta) or inhibitory (alpha) isoforms. We reported previously that human neutrophils (polymorphonuclear leukocytes (PMN)) express multiple SIRP isoforms and that SIRPalpha binding to its ligand CD47 regulates PMN transmigration. Here we further characterized the expression of PMN SIRPs, and we reported that the major SIRPalpha and SIRPbeta isoforms expressed in PMN include Bit/PTPNS-1 and SIRPbeta1, respectively. Furthermore, although SIRPalpha (Bit/PTPNS-1) is expressed as a monomer, we showed that SIRPbeta1 is expressed on the cell surface as a disulfide-linked homodimer with bond formation mediated by Cys-320 in the membrane-proximal Ig loop. Subcellular fractionation studies revealed a major pool of SIRPbeta1 within the plasma membrane fractions of PMN. In contrast, the majority of SIRPalpha (Bit/PTPNS-1) is present in fractions enriched in secondary granules and is translocated to the cell surface after chemoattractant (formylmethionylleucylphenylalanine) stimulation. Functional studies revealed that antibody-mediated ligation of SIRPbeta1 enhanced formylmethionylleucylphenylalanine-driven PMN transepithelial migration. Co-immunoprecipitation experiments to identify associated adaptor proteins revealed a 10-12-kDa protein associated with SIRPbeta1 that was tyrosine-phosphorylated after PMN stimulation and is not DAP10/12 or Fc receptor gamma chain. These results provide new insights into the structure and function of SIRPs in leukocytes and their potential role(s) in fine-tuning responses to inflammatory stimuli.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Biology, Georgia State University, Atlanta, Georgia 30302, USA.
| | | | | | | | | | | | | | | |
Collapse
|