1
|
De Vos K, Mols R, Chatterjee S, Huang MC, Augustijns P, Wolters JC, Annaert P. In Vitro-In Silico Models to Elucidate Mechanisms of Bile Acid Disposition and Cellular Aerobics in Human Hepatocytes. AAPS J 2025; 27:51. [PMID: 40016501 DOI: 10.1208/s12248-024-01010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/08/2024] [Indexed: 03/01/2025] Open
Abstract
Understanding the kinetics of hepatic processes, such as bile acid (BA) handling and cellular aerobic metabolism, is crucial for advancing our knowledge of liver toxicity, particularly drug-induced cholestasis (DiCho). This article aimed to construct interpretable models with parameter estimations serving as reference values when investigating these cell metrics. Longitudinal datasets on BA disposition and oxygen consumption rates were collected using sandwich-cultured human hepatocytes. Chenodeoxycholic acid (CDCA), lithocholic acid (LCA), as well as their amidated and sulfate-conjugated metabolites were quantified with liquid chromatography-mass spectrometry. The bile salt export pump (BSEP) abundance was monitored with targeted proteomics and modelled for activity assessment. Oxygen consumption was measured using Seahorse XFp analyser. Ordinary differential equation-based models were solved in R. The basolateral uptake and efflux clearance of glycine-conjugated CDCA (GCDCA) were estimated at 1.22 µL/min/106 cells (RSE 14%) and 0.11 µL/min/106 cells (RSE 10%), respectively. The GCDCA clearance from canaliculi back to the medium was 2.22 nL/min/106 cells (RSE 17%), and the dissociation constant between (G)CDCA and FXR for regulating BSEP abundance was 25.73 nM (RSE 11%). Sulfation clearance for LCA was 0.19 µL/min/106 cells (RSE 11%). Model performance was further demonstrated by a maximum two-fold deviation of the 95% confidence boundaries from parameter estimates. These in vitro-in silico models provide a quantitative framework for exploring xenobiotic impacts on BA disposition, BSEP activity, and cellular aerobic metabolism in hepatocytes. Model simulations were consistent with reported in vivo data in progressive familial intrahepatic cholestasis type II patients.
Collapse
Affiliation(s)
- Kristof De Vos
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, KU Leuven, 3000, Leuven, Belgium
| | - Raf Mols
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, KU Leuven, 3000, Leuven, Belgium
| | - Sagnik Chatterjee
- DMPK Department, AstraZeneca, Västra Götaland County, Gothenburg, Sweden
| | - Miao-Chan Huang
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, KU Leuven, 3000, Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, KU Leuven, 3000, Leuven, Belgium
| | - Justina Clarinda Wolters
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, KU Leuven, 3000, Leuven, Belgium.
- BioNotus GCV, 2845, Niel, Belgium.
| |
Collapse
|
2
|
Wu CJ, Liu H, Tu LJ, Hu JY. Peroxisome proliferator-activated receptor gamma mutation in familial partial lipodystrophy type three: A case report and review of literature. World J Diabetes 2024; 15:2360-2369. [PMID: 39676812 PMCID: PMC11580599 DOI: 10.4239/wjd.v15.i12.2360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/22/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Familial partial lipodystrophy disease (FPLD) is a collection of rare genetic diseases featuring partial loss of adipose tissue. However, metabolic difficulties, such as severe insulin resistance, diabetes, hypertriglyceridemia, and hypertension frequently occur alongside adipose tissue loss, making it susceptible to misdiagnosis and delaying effective treatment. Numerous genes are implicated in the occurrence of FPLD, and genetic testing has been for conditions linked to single gene mutation related to FPLD. Reviewing recent reports, treatment of the disease is limited to preventing and improving complications in patients. CASE SUMMARY In 2017, a 31-year-old woman with diabetes, hypertension and hypertriglyceridemia was hospitalized. We identified a mutation in her peroxisome proliferator-activated receptor gamma (PPARG) gene, Y151C (p.Tyr151Cys), which results in a nucleotide substitution residue 452 in the DNA-binding domain (DBD) of PPARG. The unaffected family member did not carry this mutation. Pioglitazone, a PPARG agonist, improved the patient's responsiveness to hypoglycemic and antihypertensive therapy. After one year of treatment in our hospital, the fasting blood glucose and glycosylated hemoglobin of the patient were close to normal. CONCLUSION We report a rare PPARG mutation, Y151C, which is located in the DBD of PPARG and leads to FPLD, and the preferred agent is PPARG agonists. We then summarized clinical phenotypic characteristics of FPLD3 caused by PPARG gene mutations, and clarified the relationship between different mutations of PPARG gene and the clinical manifestations of this type of FPLD. Additionally, current treatments for FPLD caused by PPARG mutations are reviewed.
Collapse
Affiliation(s)
- Chao-Jun Wu
- Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Hao Liu
- Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Li-Juan Tu
- Department of Endocrinology, Rare Disease Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| | - Jiong-Yu Hu
- Department of Endocrinology, Rare Disease Center, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China
| |
Collapse
|
3
|
Roux S, Cherradi S, Duong HT. Uncovering the mechanism of troglitazone-mediated idiosyncratic drug-induced liver injury with individual-centric models. Arch Toxicol 2024; 98:3875-3884. [PMID: 39105737 PMCID: PMC11489277 DOI: 10.1007/s00204-024-03833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Idiosyncratic drug-induced liver injury is a rare and unpredictable event. Deciphering its initiating-mechanism is a hard task as its occurrence is individual dependent. Thus, studies that utilize models that are not individual-centric might drive to a general mechanistic conclusion that is not necessarily true. Here, we use the individual-centric spheroid model to analyze the initiating-mechanism of troglitazone-mediated iDILI risk. Individual-centric spheroid models were generated using a proprietary cell educating technology. These educated spheroids contain hepatocytes, hepatic stellate cells, activated monocyte-derived macrophages, and dendritic cells under physiological conditions. We show that phases 1 and 2 drug-metabolizing enzymes were induced in an individual-dependent manner. However, we did not observe any association of DEMs induction and troglitazone (TGZ)-mediated iDILI risk. We analyzed TGZ-mediated iDILI and found that a 44-year-old male showed iDILI risk that is associated with TGZ-mediated suppression of IL-12 expression by autologous macrophages and dendritic cells. We performed a rescue experiment and showed that treatment of spheroids from this 44-year-old male with TGZ and recombinant IL-12 suppressed iDILI risk. We confirmed the mechanism in another 31-year-old female with iDILI risk. We demonstrate here that individual-centric spheroid are versatile models that allow to predict iDILI risk and to analyze a direct effect of the drug on activated macrophages and dendritic cells to uncover the initiating-mechanism of iDILI occurrence. This model opens perspectives for a personalized strategy to mitigate iDILI risk.
Collapse
Affiliation(s)
- Salomé Roux
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, 1682 Rue de La Valsière, 34790, Grabels, France
| | - Sara Cherradi
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, 1682 Rue de La Valsière, 34790, Grabels, France
| | - Hong Tuan Duong
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, 1682 Rue de La Valsière, 34790, Grabels, France.
| |
Collapse
|
4
|
de Bruijn VMP, Rietjens IMCM. From hazard to risk prioritization: a case study to predict drug-induced cholestasis using physiologically based kinetic modeling. Arch Toxicol 2024; 98:3077-3095. [PMID: 38755481 PMCID: PMC11324677 DOI: 10.1007/s00204-024-03775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Cholestasis is characterized by hepatic accumulation of bile acids. Clinical manifestation of cholestasis only occurs in a small proportion of exposed individuals. The present study aims to develop a new approach methodology (NAM) to predict drug-induced cholestasis as a result of drug-induced hepatic bile acid efflux inhibition and the resulting bile acid accumulation. To this end, hepatic concentrations of a panel of drugs were predicted by a generic physiologically based kinetic (PBK) drug model. Their effects on hepatic bile acid efflux were incorporated in a PBK model for bile acids. The predicted bile acid accumulation was used as a measure for a drug's cholestatic potency. The selected drugs were known to inhibit hepatic bile acid efflux in an assay with primary suspension-cultured hepatocytes and classified as common, rare, or no for cholestasis incidence. Common cholestasis drugs included were atorvastatin, chlorpromazine, cyclosporine, glimepiride, ketoconazole, and ritonavir. The cholestasis incidence of the drugs appeared not to be adequately predicted by their Ki for inhibition of hepatic bile acid efflux, but rather by the AUC of the PBK model predicted internal hepatic drug concentration at therapeutic dose level above this Ki. People with slower drug clearance, a larger bile acid pool, reduced bile salt export pump (BSEP) abundance, or given higher than therapeutic dose levels were predicted to be at higher risk to develop drug-induced cholestasis. The results provide a proof-of-principle of using a PBK-based NAM for cholestasis risk prioritization as a result of transporter inhibition and identification of individual risk factors.
Collapse
Affiliation(s)
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Deng Q, Yang Y, Liu Y, Zou M, Huang G, Yang S, Li L, Qu Y, Luo Y, Zhang X. Assessing immune hepatotoxicity of troglitazone with a versatile liver-immune-microphysiological-system. Front Pharmacol 2024; 15:1335836. [PMID: 38873410 PMCID: PMC11169855 DOI: 10.3389/fphar.2024.1335836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Drug-induced liver injury is a prevalent adverse event associated with pharmaceutical agents. More significantly, there are certain drugs that present severe hepatotoxicity only during the clinical phase, consequently leading to the termination of drug development during clinical trials or the withdrawal from the market after approval. The establishment of an evaluation model that can sensitively manifest such hepatotoxicity has always been a challenging aspect in drug development. In this study, we build a liver-immune-microphysiological-system (LIMPS) to fully demonstrate the liver injury triggered by troglitazone (TGZ), a drug that was withdrawn from the market due to hepatotoxicity. Leveraging the capabilities of organ-on-chip technology allows for the dynamic modulation of cellular immune milieu, as well as the synergistic effects between drugs, hepatocytes and multiple immune cells. Through the LIMPS, we discovered that 1) TGZ can promote neutrophils to adhered hepatocytes, 2) the presence of TGZ enhances the crosstalk between macrophages and neutrophils, 3) the induction of damage in hepatocytes by TGZ at clinically relevant blood concentrations not observed in other in vitro experiments, 4) no hepatotoxicity was observed in LIMPS when exposed to rosiglitazone and pioglitazone, structurally similar analogs of TGZ, even at the higher multiples of blood drug concentration levels. As an immune-mediated liver toxicity assessment method, LIMPS is simple to operate and can be used to test multiple drug candidates to detect whether they will cause severe liver toxicity in clinical settings as early as possible.
Collapse
Affiliation(s)
- Quanfeng Deng
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Youlong Yang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuangui Liu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Mengting Zou
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Guiyuan Huang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Shiqi Yang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Lingyu Li
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yueyang Qu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Xiuli Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Roux S, Cherradi S, Duong HT. Exploiting the predictive power of educated spheroids to detect immune-mediated idiosyncratic drug-induced liver injury: the case of troglitazone. Front Pharmacol 2024; 15:1378371. [PMID: 38659594 PMCID: PMC11039894 DOI: 10.3389/fphar.2024.1378371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) is a major concern in drug development because its occurrence is unpredictable. Presently, iDILI prediction is a challenge, and cell toxicity is observed only at concentrations that are much higher than the therapeutic doses in preclinical models. Applying a proprietary cell educating technology, we developed a person-dependent spheroid system that contains autologous educated immune cells that can detect iDILI risk at therapeutic concentrations. Integrating this system into a high-throughput screening platform will help pharmaceutical companies accurately detect the iDILI risk of new molecules de-risking drug development.
Collapse
Affiliation(s)
| | | | - Hong Tuan Duong
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, Grabels, France
| |
Collapse
|
7
|
Bai H, Olson KNP, Pan M, Marshall T, Singh H, Ma J, Gilbride P, Yuan Y, McCormack J, Si L, Maharjan S, Huang D, Qian X, Livermore C, Zhang YS, Xie X. Rapid Prototyping of Thermoplastic Microfluidic 3D Cell Culture Devices by Creating Regional Hydrophilicity Discrepancy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304332. [PMID: 38032118 PMCID: PMC10870023 DOI: 10.1002/advs.202304332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Microfluidic 3D cell culture devices that enable the recapitulation of key aspects of organ structures and functions in vivo represent a promising preclinical platform to improve translational success during drug discovery. Essential to these engineered devices is the spatial patterning of cells from different tissue types within a confined microenvironment. Traditional fabrication strategies lack the scalability, cost-effectiveness, and rapid prototyping capabilities required for industrial applications, especially for processes involving thermoplastic materials. Here, an approach to pattern fluid guides inside microchannels is introduced by establishing differential hydrophilicity using pressure-sensitive adhesives as masks and a subsequent selective coating with a biocompatible polymer. Optimal coating conditions are identified using polyvinylpyrrolidone, which resulted in rapid and consistent hydrogel flow in both the open-chip prototype and the fully bonded device containing additional features for medium perfusion. The suitability of the device for dynamic 3D cell culture is tested by growing human hepatocytes in the device under controlled fluid flow for a 14-day period. Additionally, the study demonstrated the potential of using the device for pharmaceutical high-throughput screening applications, such as predicting drug-induced liver injury. The approach offers a facile strategy of rapid prototyping thermoplastic microfluidic organ chips with varying geometries, microstructures, and substrate materials.
Collapse
Affiliation(s)
| | | | - Ming Pan
- Xellar BiosystemsCambridgeMA02458USA
| | | | | | | | | | | | | | - Longlong Si
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sushila Maharjan
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolCambridgeMA02142USA
| | - Di Huang
- Research Center for Nano‐biomaterials & Regenerative MedicineCollege of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | | | - Carol Livermore
- Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonMA02115USA
| | - Yu Shrike Zhang
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolCambridgeMA02142USA
| | - Xin Xie
- Xellar BiosystemsCambridgeMA02458USA
| |
Collapse
|
8
|
Hyun YE, An S, Kim M, Park IG, Yoon S, Javaid HMA, Vu TNL, Kim G, Choi H, Lee HW, Noh M, Huh JY, Choi S, Kim HR, Jeong LS. Structure–Activity Relationships of Truncated 1′-Homologated Carbaadenosine Derivatives as New PPARγ/δ Ligands: A Study on Sugar Puckering Affecting Binding to PPARs. J Med Chem 2023; 66:4961-4978. [PMID: 36967575 DOI: 10.1021/acs.jmedchem.2c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are associated with the regulation of metabolic homeostasis. Based on a previous report that 1'-homologated 4'-thionucleoside acts as a dual PPARγ/δ modulator, carbocyclic nucleosides 2-5 with various sugar conformations were synthesized to determine whether sugar puckering affects binding to PPARs. (S)-conformer 2 was synthesized using Charette asymmetric cyclopropanation, whereas (N)-conformer 3 was synthesized using stereoselective Simmons-Smith cyclopropanation. All synthesized nucleosides did not exhibit binding affinity to PPARα but exhibited significant binding affinities to PPARγ/δ. The binding affinity of final nucleosides to PPARγ did not differ significantly based on their conformation, but their affinity to PPARδ depended greatly on their conformation, correlated with adiponectin production. (N)-conformer 3h was discovered to be the most potent PPARδ antagonist with good adiponectin production, which exhibited the most effective activity in inhibiting the mRNA levels of LPS-induced IL-1β expression in RAW 264.7 macrophages, implicating its anti-inflammatory activity.
Collapse
|
9
|
Design, synthesis, and molecular modeling of heterodimer and inhibitors of α-amylase as hypoglycemic agents. Mol Divers 2023; 27:209-222. [PMID: 35357619 DOI: 10.1007/s11030-022-10414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/18/2022] [Indexed: 02/08/2023]
Abstract
A series of rosiglitazone-based heterodimers were designed and synthesized, and their α-amylase and antioxidant activity was evaluated. The binding mode of the compounds at the active site of PPARγ and α-amylase enzyme was explored using MolDock docking method. In molecular docking studies against crystal structure of PPARγ (PDB code: 1FM6), compounds 10 and 13 showed interaction with amino acids Arg379, Asp379, Asn385, Ala387, Glu388, Val389, Glu390, and Lys438. Docking results of α-amylase enzyme (PDB code: 5EOF) with compounds 10 and 13 showed excellent interaction with amino acids Ala169, Lys172, Asp173, Tyr174, Val175, Arg176, and Lys178. Depending on the docking score, the designed compounds were selectively prioritized for synthesis. All synthesized compounds were subjected to in vitro α-amylase activity and antioxidant activity. Compounds 10 and 13 were to possess higher potency than acarbose, and most of the compounds showed antioxidant activity. Additionally, the most active compound 10 was evaluated for in vivo anti-diabetic activity.
Collapse
|
10
|
Kim J, Ko H, Hur JS, An S, Lee JW, Deyrup ST, Noh M, Shim SH. Discovery of Pan-peroxisome Proliferator-Activated Receptor Modulators from an Endolichenic Fungus, Daldinia childiae. JOURNAL OF NATURAL PRODUCTS 2022; 85:2804-2816. [PMID: 36475432 DOI: 10.1021/acs.jnatprod.2c00791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adiponectin-synthesis-promoting compounds possess therapeutic potential to treat diverse metabolic diseases, including obesity and diabetes. Phenotypic screening to find adiponectin-synthesis-promoting compounds was performed using the adipogenesis model of human bone marrow mesenchymal stem cells. The extract of the endolichenic fungus Daldinia childiae 047215 significantly promoted adiponectin production. Bioactivity-guided isolation led to 13 active polyketides (1-13), which include naphthol monomers, dimers, and trimers. To the best of our knowledge, trimers of naphthol (1-4) have not been previously isolated as either natural or synthetic products. The novel naphthol trimer 3,1',3',3″-ternaphthalene-5,5',5″-trimethoxy-4,4',4″-triol (2) and a dimer, nodulisporin A (12), exhibited concentration-dependent adiponectin-synthesis-promoting activity (EC50 30.8 and 15.2 μM, respectively). Compounds 2 and 12 bound to all three peroxisome proliferator-activated receptor (PPAR) subtypes, PPARα, PPARγ, and PPARδ. In addition, compound 2 transactivated retinoid X receptor α, whereas 12 did not. Naphthol oligomers 2 and 12 represent novel pan-PPAR modulators and are potential pharmacophores for designing new therapeutic agents against hypoadiponectinemia-associated metabolic diseases.
Collapse
Affiliation(s)
- Jaekyeong Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyejin Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seungchan An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Londonville, New York 12211, United States
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Yang J, Wei Y, Zhao T, Li X, Zhao X, Ouyang X, Zhou L, Zhan X, Qian M, Wang J, Shen X. Magnolol effectively ameliorates diabetic peripheral neuropathy in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154434. [PMID: 36122436 DOI: 10.1016/j.phymed.2022.154434] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/25/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a common complication of diabetes lacking efficient treatment. Magnolol (MG), a peroxisome proliferator-activated receptor γ (PPARγ) agonist, is a natural product derived from Magnolia officinalis and widely used to treat a variety of diseases as a traditional Chinese medicine and Japanese Kampo medicine. PURPOSE Here, we aimed to investigate the potential of MG in ameliorating DPN-like pathology in mice and decipher the mechanism of MG in treating DPN. MATERIALS AND METHODS 12-week-old male streptozotocin (STZ)-induced type 1 diabetic (T1DM) mice and 15-week-old male BKS Cg-m+/+Lepr db/J (db/db) type 2 diabetic mice (T2DM) were used as DPN mice. MG was administrated (i.p) daily for 4 weeks. Peripheral nerve functions of mice were evaluated by measuring mechanical response latency, thermal response latency and motor nerve conduction velocity (MNCV). The mechanisms underlying the amelioration of MG on DPN-like pathology were examined by qRT-PCR, western blot and immunohistochemistry assays, and verified in the DPN mice with PPARγ-specific knockdown in dorsal root ganglia (DRG) neuron and sciatic nerve tissues by injecting adeno-associated virus (AAV)8-PPARγ-RNAi. RESULTS MG promoted DRG neuronal neurite outgrowth and effectively ameliorated neurological dysfunctions in both T1DM and T2DM diabetic mice, including improvement of paw withdrawal threshold, thermal response latency and MNCV. Additionally, MG promoted neurite outgrowth of DRG neurons, protected sciatic nerve myelin sheath structure, and ameliorated foot skin intraepidermal nerve fiber (IENF) density in DPN mice by targeting PPARγ. Mechanism research results indicated that MG improved mitochondrial dysfunction involving PPARγ/MKP-7/JNK/SIRT1/LKB1/AMPK/PGC-1α pathway in DRG neurons, repressed inflammation via PPARγ/NF-κB signaling and inhibited apoptosis through regulation of PPARγ-mediated Bcl-2 family proteins in DRG neurons and sciatic nerves. CONCLUSIONS Our work has detailed the mechanism underlying the amelioration of PPARγ agonist on DPN-like pathology in mice with MG as a probe, and highlighted the potential of MG in the treatment of DPN.
Collapse
Affiliation(s)
- Juanzhen Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Yuxi Wei
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Tong Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Xiaoqian Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Xuejian Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Xingnan Ouyang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Lihua Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Xiuqin Zhan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Minyi Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China.
| | - Jiaying Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China.
| | - Xu Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China.
| |
Collapse
|
12
|
AB186 Inhibits Migration of Triple-Negative Breast Cancer Cells and Interacts with α-Tubulin. Int J Mol Sci 2022; 23:ijms23126859. [PMID: 35743305 PMCID: PMC9225035 DOI: 10.3390/ijms23126859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer-related death among females worldwide. A major challenge is to develop innovative therapy in order to treat breast cancer subtypes resistant to current treatment. In the present study, we examined the effects of two Troglitazone derivatives Δ2-TGZ and AB186. Previous studies showed that both compounds induce apoptosis, nevertheless AB186 was a more potent agent. The kinetic of cellular events was investigated by real-time cell analysis system (RTCA) in MCF-7 (hormone dependent) and MDA-MB-231 (triple negative) breast cancer (TNBC) cells, followed by cell morphology analysis by immuno-localization. Both compounds induced a rapid modification of both impedance-based signals and cellular morphology. This process was associated with an inhibition of cell migration measured by wound healing and transwell assays in TNBC MDA-MB-231 and Hs578T cells. In order to identify cytoplasmic targets of AB186, we performed surface plasmon resonance (SPR) and pull-down analyses. Subsequently, 6 cytoskeleton components were identified as potential targets. We further validated α-tubulin as one of the direct targets of AB186. In conclusion, our results suggested that AB186 could be promising to develop novel therapeutic strategies to treat aggressive forms of breast cancer such as TNBC.
Collapse
|
13
|
Evaluating the hepatoprotective, ameliorative and antioxidant potentials of the crude aqueous leafy extracts of Mangifera indica plant against acute paracetamol-induced hepatotoxicity in a mouse model. Future Sci OA 2022; 8:FSO801. [PMID: 35909999 PMCID: PMC9327647 DOI: 10.2144/fsoa-2021-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Drug-induced hepatotoxicity is a major public health issue of concern. It significantly affects the development of new pharmaceutical drugs and has led to the withdrawal of many promising pharmaceutical drugs from the pharmaceutical market. Aim: The aim of this study was to evaluate the hepatoprotective, ameliorative and antioxidant effects of the crude aqueous leafy extract of Mangifera indica plant and its different separating medium fractions against acute acetaminophen (paracetamol)-induced hepatotoxicity in a mouse model. Methods & materials: Twelve different groups of six mice (three males and three females) were used for this study. Acetaminophen at a single lethal hepatotoxic dose of 3 g/kg was orally administered on the seventh day to the mice in groups 2 to 12 after their 6-day pretreatment duration for the induction of hepatotoxicity; and were then left for 24 hours before the collection of specimen samples were completed, while group 1 served as control. Results: The crude aqueous leafy extract of M. indica (125-250 mg/kg) produced a dose-dependent reversal of the lethal hepatotoxic effect of oral 3 g/kg dose of paracetamol. At the dose of 250 mg/kg, it significantly (p < 0.0001) reduced the levels of hepatic enzymes markers (alanine transaminase [ALT], aspartate transaminase [AST] and alkaline phosphatase [ALP]) in the serum of treated animals. Also, the effects of the crude aqueous leafy extract were found to be statistically significant (p < 0.0001) more than that of its different separating medium fractional components. Conclusion: The findings from this study demonstrated that the crude aqueous leafy extract of M. indica possesses hepatoprotective effect, possibly mediated through the induction of antioxidant enzymes to prevent the occurrence of oxidative stress damage or most likely through the inhibition of pro-inflammatory mediators which are being induced by the lethal hepatotoxic dose of paracetamol.
Collapse
|
14
|
Puri P, Kotwal N. An Approach to the Management of Diabetes Mellitus in Cirrhosis: A Primer for the Hepatologist. J Clin Exp Hepatol 2022; 12:560-574. [PMID: 35535116 PMCID: PMC9077234 DOI: 10.1016/j.jceh.2021.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
The management of diabetes in cirrhosis and liver transplantation can be challenging. There is difficulty in diagnosis and monitoring of diabetes as fasting blood sugar values are low and glycosylated hemoglobin may not be a reliable marker. The challenges in the management of diabetes in cirrhosis include the likelihood of cognitive impairment, risk of hypoglycemia, altered drug metabolism, frequent renal dysfunction, risk of lactic acidosis, and associated malnutrition and sarcopenia. Moreover, calorie restriction and an attempt to lose weight in obese diabetics may be associated with a worsening of sarcopenia. Many commonly used antidiabetic drugs may be unsafe or be associated with a high risk of hypoglycemia in cirrhotics. Post-transplant diabetes is common and may be contributed by immunosuppressive medication. There is inadequate clinical data on the use of antidiabetic drugs in cirrhosis, and the management of diabetes in cirrhosis is hampered by the lack of guidelines focusing on this issue. The current review aims at addressing the practical management of diabetes by a hepatologist.
Collapse
Key Words
- ADA, American Diabetes Association
- AGI, Alfa Glucosidase inhibitors
- BMI, Body mass index
- CLD, Chronic liver disease
- CYP-450, Cytochrome P-450
- Dipeptidyl-peptidase 4, DPP-4
- GLP-1, Glucagon-like peptide-1
- HCC, Hepatocellular carcinoma
- HCV, Hepatitis C virus
- HbA1c, Hemoglobin A1c
- IGF, Insulin-like growth factor
- MALA, Metformin-associated lactic acidosis
- NASH, Nonalcoholic steatohepatitis
- NPL, Neutral protamine lispro
- OGTT, Oral glucose tolerance test
- SMBG, Self-monitoring of blood glucose
- Sodium-glucose cotransporter 2, SGLT2
- VEGF, Vascular endothelial growth factor
- antidiabetic agents
- antihyperglycemic drugs
- chronic liver disease
- cirrhosis
- diabetes mellitus
- eGFR, estimated glomerular filtration rates
Collapse
Affiliation(s)
- Pankaj Puri
- Fortis Escorts Liver and Digestive Diseases Institute, New Delhi, 110025, India
| | | |
Collapse
|
15
|
Shakour N, Sahebkar A, Karimi G, Paseban M, Tasbandi A, Mosaffa F, Tayarani-Najaran Z, Ghodsi R, Hadizadeh F. Design, synthesis and biological evaluation of novel 5-(imidazolyl-methyl) thiazolidinediones as antidiabetic agents. Bioorg Chem 2021; 115:105162. [PMID: 34314919 DOI: 10.1016/j.bioorg.2021.105162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022]
Abstract
A newly designed series of imidazolyl-methyl- l-2,4-thiazolidinediones 9 (a-m) were synthesized and In Silico studies were carried out to rationalize their anti-diabetic activity. Generally, all newly synthesized thiazolidinediones had anti-hyperglycemic activity compared with a diabetic-control group, without toxicity in 3T3 cells (viability ≥ 90%). These studies revealed that the compounds 9e and 9b (11∗10-6mol/kg) lowered blood glucose more effectively when compared to pioglitazone at the same dose. Following the administration of compound 9e, no weight gains or any serious side effects on liver and pancreas were observed. Moreover, the glucose consumption assay results showed a significant glucose-lowering effect (p < 0.001) in HepG2 cells, which were exposed to 11 mM of glucose at concentrations of 1.25-10 mM of compound 9e. Also, the PPAR-γ gene expression study revealed that pioglitazone and 9e showed similar behavior relative to the control group.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Paseban
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Tasbandi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Huang R, Zhang C, Wang X, Hu H. PPARγ in Ischemia-Reperfusion Injury: Overview of the Biology and Therapy. Front Pharmacol 2021; 12:600618. [PMID: 33995008 PMCID: PMC8117354 DOI: 10.3389/fphar.2021.600618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a complex pathophysiological process that is often characterized as a blood circulation disorder caused due to various factors (such as traumatic shock, surgery, organ transplantation, burn, and thrombus). Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. Theoretically, IRI can occur in various tissues and organs, including the kidney, liver, myocardium, and brain, among others. The advances made in research regarding restoring tissue perfusion in ischemic areas have been inadequate with regard to decreasing the mortality and infarct size associated with IRI. Hence, the clinical treatment of patients with severe IRI remains a thorny issue. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of a superfamily of nuclear transcription factors activated by agonists and is a promising therapeutic target for ameliorating IRI. Therefore, this review focuses on the role of PPARγ in IRI. The protective effects of PPARγ, such as attenuating oxidative stress, inhibiting inflammatory responses, and antagonizing apoptosis, are described, envisaging certain therapeutic perspectives.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
An S, Kim G, Kim HJ, Ahn S, Kim HY, Ko H, Hyun YE, Nguyen M, Jeong J, Liu Z, Han J, Choi H, Yu J, Kim JW, Lee HW, Jacobson KA, Cho WJ, Kim YM, Kang KW, Noh M, Jeong LS. Discovery and Structure-Activity Relationships of Novel Template, Truncated 1'-Homologated Adenosine Derivatives as Pure Dual PPARγ/δ Modulators. J Med Chem 2020; 63:16012-16027. [PMID: 33325691 DOI: 10.1021/acs.jmedchem.0c01874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Following our report that A3 adenosine receptor (AR) antagonist 1 exhibited a polypharmacological profile as a dual modulator of peroxisome proliferator-activated receptor (PPAR)γ/δ, we discovered a new template, 1'-homologated adenosine analogues 4a-4t, as dual PPARγ/δ modulators without AR binding. Removal of binding affinity to A3AR was achieved by 1'-homologation, and PPARγ/δ dual modulation was derived from the structural similarity between the target nucleosides and PPAR modulator drug, rosiglitazone. All the final nucleosides were devoid of AR-binding affinity and exhibited high binding affinities to PPARγ/δ but lacked PPARα binding. 2-Cl derivatives exhibited dual receptor-binding affinity to PPARγ/δ, which was absent for the corresponding 2-H derivatives. 2-Propynyl substitution prevented PPARδ-binding affinity but preserved PPARγ affinity, indicating that the C2 position defines a pharmacophore for selective PPARγ ligand designs. PPARγ/δ dual modulators functioning as both PPARγ partial agonists and PPARδ antagonists promoted adiponectin production, suggesting their therapeutic potential against hypoadiponectinemia-associated cancer and metabolic diseases.
Collapse
Affiliation(s)
- Seungchan An
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Hyun Jin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Sungjin Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Hyun Young Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hyejin Ko
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Mai Nguyen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Juri Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Zijing Liu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Jinhe Han
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Hongseok Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Ji Won Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hyuk Woo Lee
- Future Medicine Company Ltd., Seongnam, Gyeonggi-do 13449, Korea
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Won Jea Cho
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Young-Mi Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Keon Wook Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,Natural Products Research Institute, Seoul National University, Seoul 08826, Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
19
|
Roth RA, Ganey PE. What have we learned from animal models of idiosyncratic, drug-induced liver injury? Expert Opin Drug Metab Toxicol 2020; 16:475-491. [PMID: 32324077 DOI: 10.1080/17425255.2020.1760246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Idiosyncratic, drug-induced liver injury (IDILI) continues to plague patients and restrict the use of drugs that are pharmacologically effective. Mechanisms of IDILI are incompletely understood, and a better understanding would reduce speculation and could help to identify safer drug candidates preclinically. Animal models have the potential to enhance knowledge of mechanisms of IDILI. AREAS COVERED Numerous hypotheses have emerged to explain IDILI pathogenesis, many of which center on the roles of the innate and/or adaptive immune systems. Animal models based on these hypotheses are reviewed in the context of their contributions to understanding of IDILI and their limitations. EXPERT OPINION Animal models of IDILI based on an activated adaptive immune system have to date failed to reproduce major liver injury that is of most concern clinically. The only models that have so far resulted in pronounced liver injury are based on the multiple determinant hypothesis or the inflammatory stress hypothesis. The liver pathogenesis in IDILI animal models involves various leukocytes and immune mediators such as cytokines. Insights from animal models are changing the way we view IDILI pathogenesis and are leading to better approaches to preclinical prediction of IDILI potential of new drug candidates.
Collapse
Affiliation(s)
- Robert A Roth
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University , East Lansing, MI, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University , East Lansing, MI, USA
| |
Collapse
|
20
|
Pan G. Roles of Hepatic Drug Transporters in Drug Disposition and Liver Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:293-340. [PMID: 31571168 DOI: 10.1007/978-981-13-7647-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic drug transporters are mainly distributed in parenchymal liver cells (hepatocytes), contributing to drug's liver disposition and elimination. According to their functions, hepatic transporters can be roughly divided into influx and efflux transporters, translocating specific molecules from blood into hepatic cytosol and mediating the excretion of drugs and metabolites from hepatic cytosol to blood or bile, respectively. The function of hepatic transport systems can be affected by interspecies differences and inter-individual variability (polymorphism). In addition, some drugs and disease can redistribute transporters from the cell surface to the intracellular compartments, leading to the changes in the expression and function of transporters. Hepatic drug transporters have been associated with the hepatic toxicity of drugs. Gene polymorphism of transporters and altered transporter expressions and functions due to diseases are found to be susceptible factors for drug-induced liver injury (DILI). In this chapter, the localization of hepatic drug transporters, their regulatory factors, physiological roles, and their roles in drug's liver disposition and DILI are reviewed.
Collapse
Affiliation(s)
- Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai, China.
| |
Collapse
|
21
|
Jia R, Oda S, Tsuneyama K, Urano Y, Yokoi T. Establishment of a mouse model of troglitazone-induced liver injury and analysis of its hepatotoxic mechanism. J Appl Toxicol 2019; 39:1541-1556. [PMID: 31294483 DOI: 10.1002/jat.3838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/17/2019] [Accepted: 06/01/2019] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury is a major problem in drug development and clinical drug therapy. Troglitazone (TGZ), a thiazolidinedione antidiabetic drug for the treatment of type II diabetes mellitus, was found to induce rare idiosyncratic severe liver injury in patients, which led to its withdrawal in 2000. However, in normal experimental animals in vivo TGZ has never induced liver injury. To explore TGZ hepatotoxic mechanism, we established a novel mouse model of TGZ-induced liver injury. Administration of BALB/c female mice with a single intraperitoneal TGZ dose (300 mg/kg) significantly elevated alanine aminotransferase and aspartate aminotransferase levels 6 hours after the treatment. The ratio of oxidative stress marker glutathione/disulfide glutathione was significantly decreased. The increased hepatic mRNA levels of inflammation- and oxidative stress-related factors were observed in TGZ-treated mice. Subsequently, hepatic transcriptome profiles of TGZ-exposed liver were compared with those of non-hepatotoxic rosiglitazone. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was activated in TGZ-induced liver injury. The activation of the JAK/STAT pathway promoted phosphorylation of STAT3 in TGZ-treated mice. Consequently, upregulation of STAT3 activation increased mRNA levels of its downstream genes. In conclusion, a single intraperitoneal dose of TGZ exposure could induce liver injury in BALB/c female mice and, by a hepatic transcriptomic analysis, we found that the activation of JAK/STAT pathway might be related to TGZ-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ru Jia
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuya Urano
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
22
|
Grancini V, Resi V, Palmieri E, Pugliese G, Orsi E. Management of diabetes mellitus in patients undergoing liver transplantation. Pharmacol Res 2019; 141:556-573. [PMID: 30690071 DOI: 10.1016/j.phrs.2019.01.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Diabetes is a common feature in cirrhotic individuals both before and after liver transplantation and negatively affects prognosis. Certain aetiological agents of chronic liver disease and loss of liver function per se favour the occurrence of pre-transplant diabetes in susceptible individuals, whereas immunosuppressant treatment, changes in lifestyle habits, and donor- and procedure-related factors contribute to diabetes development/persistence after transplantation. Challenges in the management of pre-transplant diabetes include the profound nutritional alterations characterizing cirrhotic individuals and the limitations to the use of drugs with liver metabolism. Special issues in the management of post-transplant diabetes include the diabetogenic potential of immunosuppressant drugs and the increased cardiovascular risk characterizing solid organ transplant survivors. Overall, the pharmacological management of cirrhotic patients undergoing liver transplantation is complicated by the lack of specific guidelines reflecting the paucity of data on the impact of glycaemic control and the safety and efficacy of anti-hyperglycaemic agents in these individuals.
Collapse
Affiliation(s)
- Valeria Grancini
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda - Ospedale Maggiore Policlinico" Foundation, and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Veronica Resi
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda - Ospedale Maggiore Policlinico" Foundation, and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eva Palmieri
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda - Ospedale Maggiore Policlinico" Foundation, and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, and Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Emanuela Orsi
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda - Ospedale Maggiore Policlinico" Foundation, and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| |
Collapse
|
23
|
Menon V, Lincoff AM, Nicholls SJ, Jasper S, Wolski K, McGuire DK, Mehta CR, Rosenstock J, Lopez C, Marcinak J, Cao C, Nissen SE. Fasiglifam-Induced Liver Injury in Patients With Type 2 Diabetes: Results of a Randomized Controlled Cardiovascular Outcomes Safety Trial. Diabetes Care 2018; 41:2603-2609. [PMID: 30459247 DOI: 10.2337/dc18-0755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/21/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate the cardiovascular (CV) safety of fasiglifam, a first-in-man G-protein-coupled receptor 40 (GPR40) agonist, in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS A phase 3 multicenter randomized double-blind placebo-controlled two-arm trial was intended to randomize 5,000 participants with type 2 diabetes at high CV risk to fasiglifam or placebo. The primary objective of the trial was to rule out an upper noninferiority bound >1.3 for a one-sided 97.5% confidence limit of the hazard ratio (HR) for CV composite events during treatment with fasiglifam compared with placebo. The primary outcome was the time to first occurrence of any component of the major adverse CV event composite of CV death, nonfatal myocardial infarction, nonfatal stroke, and hospitalization for unstable angina. RESULTS The study enrolled 3,207 participants but was terminated because of liver safety concerns. Increased rates of liver enzyme elevation (AST/ALT ≥3-5 × upper limit of normal [ULN]) with fasiglifam were observed. The incidence of ALT or AST ≥3 × ULN with fasiglifam compared with placebo was 2.1% vs. 0.5%, P < 0.001, and the incidence for ≥10 × ULN was 0.31% vs. 0.06%, P < 0.001. A primary CV composite outcome occurred in 40 participants, 2.5% each in the fasiglifam and placebo arms at 12 months (HR 1.05; 95% CI 0.67, 1.63). CONCLUSIONS Development of fasiglifam was terminated due to concerns of drug-induced liver injury. Performance of a U.S. Food and Drug Administration-mandated CV outcomes trial supported the termination of the fasiglifam clinical program.
Collapse
Affiliation(s)
- Venu Menon
- Cleveland Clinic Coordinating Center for Clinical Research (C5Research), Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| | - A Michael Lincoff
- Cleveland Clinic Coordinating Center for Clinical Research (C5Research), Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| | - Stephen J Nicholls
- South Australian Heart and Medical Research Institute, The University of Adelaide, Adelaide, Australia
| | - Susan Jasper
- Cleveland Clinic Coordinating Center for Clinical Research (C5Research), Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| | - Kathy Wolski
- Cleveland Clinic Coordinating Center for Clinical Research (C5Research), Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH
| | - Darren K McGuire
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | - Claudia Lopez
- Takeda Development Center Americas, Inc., Deerfield, IL
| | - John Marcinak
- Takeda Development Center Americas, Inc., Deerfield, IL
| | - Charlie Cao
- Takeda Development Center Americas, Inc., Deerfield, IL
| | | | | |
Collapse
|
24
|
Kamalian L, Douglas O, Jolly CE, Snoeys J, Simic D, Monshouwer M, Williams DP, Kevin Park B, Chadwick AE. The utility of HepaRG cells for bioenergetic investigation and detection of drug-induced mitochondrial toxicity. Toxicol In Vitro 2018; 53:136-147. [PMID: 30096366 DOI: 10.1016/j.tiv.2018.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/03/2018] [Accepted: 08/05/2018] [Indexed: 12/12/2022]
Abstract
The importance of mitochondrial toxicity in drug-induced liver injury is well established. The bioenergetic phenotype of the HepaRG cell line was defined in order to assess their suitability as a model of mitochondrial hepatotoxicity. Bioenergetic phenotyping categorised the HepaRG cells as less metabolically active when measured beside the more energetic HepG2 cells. However, inhibition of mitochondrial ATP synthase induced an increase in glycolytic activity of both HepaRG and HepG2 cells suggesting an active Crabtree Effect in both cell lines. The suitability of HepaRG cells for the acute metabolic modification assay as a screen for mitotoxicity was confirmed using a panel of compounds, including both positive and negative mitotoxic compounds. Seahorse respirometry studies demonstrated that a statistically significant decrease in spare respiratory capacity is the first indication of mitochondrial dysfunction. Furthermore, based upon comparing changes in respiratory parameters to those of the positive controls, rotenone and carbonyl cyanide m-chlorophenyl hydrazone, compounds were categorised into two mechanistic groups; inhibitors or uncouplers of the electron transport chain. Overall, the findings from this study have demonstrated that HepaRG cells, despite having different resting bioenergetic phenotype to HepG2 cells are a suitable model to detect drug-induced mitochondrial toxicity with similar detection rates to HepG2 cells.
Collapse
Affiliation(s)
- Laleh Kamalian
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | - Oisin Douglas
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Carol E Jolly
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | - Jan Snoeys
- Pharmacokinetics Dynamics and Metabolism, Janssen Research and Development, Beerse, Belgium.
| | - Damir Simic
- Mechanistic and Investigative Toxicology, Janssen Research and Development, Spring House, PA, USA.
| | - Mario Monshouwer
- Pharmacokinetics Dynamics and Metabolism, Janssen Research and Development, Beerse, Belgium
| | - Dominic P Williams
- Innovative Medicines and Early Development
- Drug Safety and Metabolism
- Translational Safety, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge, CB4 0FZ, United Kingdom.
| | - B Kevin Park
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | - Amy E Chadwick
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Ashton Street, Liverpool L69 3GE, United Kingdom.
| |
Collapse
|
25
|
|
26
|
Angrish MM, McQueen CA, Cohen-Hubal E, Bruno M, Ge Y, Chorley BN. Editor's Highlight: Mechanistic Toxicity Tests Based on an Adverse Outcome Pathway Network for Hepatic Steatosis. Toxicol Sci 2018; 159:159-169. [PMID: 28903485 DOI: 10.1093/toxsci/kfx121] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Risk assessors use liver endpoints in rodent toxicology studies to assess the safety of chemical exposures. Yet, rodent endpoints may not accurately reflect human responses. For this reason and others, human-based invitro models are being developed and anchored to adverse outcome pathways to better predict adverse human health outcomes. Here, a networked adverse outcome pathway-guided selection of biology-based assays for lipid uptake, lipid efflux, fatty acid oxidation, and lipid accumulation were developed. These assays were evaluated in a metabolically competent human hepatocyte cell model (HepaRG) exposed to compounds known to cause steatosis (amiodarone, cyclosporine A, and T0901317) or activate lipid metabolism pathways (troglitazone, Wyeth-14,643, and 22(R)-hydroxycholesterol). All of the chemicals activated at least one assay, however, only T0901317 and cyclosporin A dose-dependently increased lipid accumulation. T0901317 and cyclosporin A increased fatty acid uptake, decreased lipid efflux (inferred from apolipoprotein B100 levels), and increased fatty acid synthase protein levels. Using this biologically-based evaluation of key events regulating hepatic lipid levels, we demonstrated dysregulation of compensatory pathways that normally balance hepatic lipid levels. This approach may provide biological plausibility and data needed to increase confidence in linking invitro-based measurements to chemical effects on adverse human health outcomes.
Collapse
Affiliation(s)
- Michelle M Angrish
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Charlene A McQueen
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Elaine Cohen-Hubal
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Maribel Bruno
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Yue Ge
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Brian N Chorley
- National Health and Environmental Effects Research Laboratory , United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
27
|
A Novel Dual Eigen-Analysis of Mouse Multi-Tissues' Expression Profiles Unveils New Perspectives into Type 2 Diabetes. Sci Rep 2017; 7:5044. [PMID: 28698587 PMCID: PMC5506042 DOI: 10.1038/s41598-017-05405-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex and polygenic disease yet in need of a complete picture of its development mechanisms. To better understand the mechanisms, we examined gene expression profiles of multi-tissues from outbred mice fed with a high-fat diet (HFD) or regular chow at weeks 1, 9, and 18. To analyze such complex data, we proposed a novel dual eigen-analysis, in which the sample- and gene-eigenvectors correspond respectively to the macro- and micro-biology information. The dual eigen-analysis identified the HFD eigenvectors as well as the endogenous eigenvectors for each tissue. The results imply that HFD influences the hepatic function or the pancreatic development as an exogenous factor, while in adipose HFD's impact roughly coincides with the endogenous eigenvector driven by aging. The enrichment analysis of the eigenvectors revealed diverse HFD impact on the three tissues over time. The diversity includes: inflammation, degradation of branched chain amino acids (BCAA), and regulation of peroxisome proliferator activated receptor gamma (PPARγ). We reported that in the pancreas remarkable up-regulation of angiogenesis as downstream of the HIF signaling pathway precedes hyperinsulinemia. The dual eigen-analysis and discoveries provide new evaluations/guidance in T2D prevention and therapy, and will also promote new thinking in biology and medicine.
Collapse
|
28
|
Pro-apoptotic effect of Δ2-TGZ in “claudin-1-low” triple-negative breast cancer cells: involvement of claudin-1. Breast Cancer Res Treat 2017; 165:517-527. [DOI: 10.1007/s10549-017-4378-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/01/2017] [Indexed: 12/20/2022]
|
29
|
Gilibili RR, Chatterjee S, Bagul P, Mosure KW, Murali BV, Mariappan TT, Mandlekar S, Lai Y. Coproporphyrin-I: A Fluorescent, Endogenous Optimal Probe Substrate for ABCC2 (MRP2) Suitable for Vesicle-Based MRP2 Inhibition Assay. Drug Metab Dispos 2017; 45:604-611. [PMID: 28325716 DOI: 10.1124/dmd.116.074740] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/17/2017] [Indexed: 02/13/2025] Open
Abstract
Inside-out-oriented membrane vesicles are useful tools to investigate whether a compound can be an inhibitor of efflux transporters such as multidrug resistance-associated protein 2 (MRP2). However, because of technical limitations of substrate diffusion and low dynamic uptake windows for interacting drugs used in the clinic, estradiol-17β-glucuronide (E17βG) remains the probe substrate that is frequently used in MRP2 inhibition assays. Here we recapitulated the sigmoidal kinetics of MRP2-mediated transport of E17βG, with apparent Michaelis-Menten constant (Km) and Vmax values of 170 ±17 µM and 1447 ± 137 pmol/mg protein/min, respectively. The Hill coefficient (2.05 ± 0.1) suggests multiple substrate binding sites for E17βG transport with cooperative interactions. Using E17βG as a probe substrate, 51 of 97 compounds tested (53%) showed up to 6-fold stimulatory effects. Here, we demonstrate for the first time that coproporphyrin-I (CP-I) is a MRP2 substrate in membrane vesicles. The uptake of CP-I followed a hyperbolic relationship, adequately described by the standard Michaelis-Menten equation (apparent Km and Vmax values were 7.7 ± 0.7 µM and 48 ± 11 pmol/mg protein/min, respectively), suggesting the involvement of a single binding site. Of the 47 compounds tested, 30 compounds were inhibitors of human MRP2 and 8 compounds (17%) stimulated MRP2-mediated CP-I transport. The stimulators were found to share the basic backbone structure of the physiologic steroids, which suggests a potential in vivo relevance of in vitro stimulation of MRP2 transport. We concluded that CP-I could be an alternative in vitro probe substrate replacing E17βG for appreciating MRP2 interactions while minimizing potential false-negative results for MRP2 inhibition due to stimulatory effects.
Collapse
Affiliation(s)
- Ravindranath Reddy Gilibili
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India (R.R.G., S.C., P.B., B.V.M., T.T.M.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (K.W.M., Y.L.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India (S.M.)
| | - Sagnik Chatterjee
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India (R.R.G., S.C., P.B., B.V.M., T.T.M.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (K.W.M., Y.L.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India (S.M.)
| | - Pravin Bagul
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India (R.R.G., S.C., P.B., B.V.M., T.T.M.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (K.W.M., Y.L.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India (S.M.)
| | - Kathleen W Mosure
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India (R.R.G., S.C., P.B., B.V.M., T.T.M.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (K.W.M., Y.L.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India (S.M.)
| | - Bokka Venkata Murali
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India (R.R.G., S.C., P.B., B.V.M., T.T.M.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (K.W.M., Y.L.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India (S.M.)
| | - T Thanga Mariappan
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India (R.R.G., S.C., P.B., B.V.M., T.T.M.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (K.W.M., Y.L.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India (S.M.)
| | - Sandhya Mandlekar
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India (R.R.G., S.C., P.B., B.V.M., T.T.M.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (K.W.M., Y.L.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India (S.M.)
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bangalore, India (R.R.G., S.C., P.B., B.V.M., T.T.M.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (K.W.M., Y.L.); and Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore, India (S.M.)
| |
Collapse
|
30
|
Goracci L, Tortorella S, Tiberi P, Pellegrino RM, Di Veroli A, Valeri A, Cruciani G. Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics. Anal Chem 2017; 89:6257-6264. [DOI: 10.1021/acs.analchem.7b01259] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Laura Goracci
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Sara Tortorella
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Paolo Tiberi
- Molecular Discovery Ltd., Centennial
Park, Borehamwood, Hertfordshire, United Kingdom
| | - Roberto Maria Pellegrino
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Alessandra Di Veroli
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Aurora Valeri
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gabriele Cruciani
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
31
|
Woodhead JL, Watkins PB, Howell BA, Siler SQ, Shoda LKM. The role of quantitative systems pharmacology modeling in the prediction and explanation of idiosyncratic drug-induced liver injury. Drug Metab Pharmacokinet 2016; 32:40-45. [PMID: 28129975 DOI: 10.1016/j.dmpk.2016.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/14/2016] [Accepted: 11/15/2016] [Indexed: 01/12/2023]
Abstract
Idiosyncratic drug-induced liver injury (iDILI) is a serious concern in drug development. The rarity and multifactorial nature of iDILI makes it difficult to predict and explain. Recently, human leukocyte antigen (HLA) allele associations have provided strong support for a role of an adaptive immune response in the pathogenesis of many iDILI cases; however, it is likely that an adaptive immune attack requires several preceding events. Quantitative systems pharmacology (QSP), an in silico modeling technique that leverages known physiology and the results of in vitro experiments in order to make predictions about how drugs affect biological processes, is proposed as a potentially useful tool for predicting and explaining critical events that likely precede immune-mediated iDILI, as well as the immune attack itself. DILIsym, a QSP platform for drug-induced liver injury, has demonstrated success in predicting the presence of delayed hepatocellular stress events that likely precede the iDILI cascade, and has successfully predicted hepatocellular stress likely underlying iDILI attributed to troglitazone and tolvaptan. The incorporation of a model of the adaptive immune system into DILIsym would represent and important advance. In summary, QSP methods can play a key role in the future prediction and understanding of both immune-mediated and non-immune-mediated iDILI.
Collapse
Affiliation(s)
- Jeffrey L Woodhead
- DILIsym Services, Inc., 6 Davis Drive, Research Triangle Park, NC 27709, USA.
| | - Paul B Watkins
- Institute for Drug Safety Sciences, UNC-Eshelman School of Pharmacy, 6 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Brett A Howell
- DILIsym Services, Inc., 6 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Scott Q Siler
- DILIsym Services, Inc., 6 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Lisl K M Shoda
- DILIsym Services, Inc., 6 Davis Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
32
|
Oorts M, Baze A, Bachellier P, Heyd B, Zacharias T, Annaert P, Richert L. Drug-induced cholestasis risk assessment in sandwich-cultured human hepatocytes. Toxicol In Vitro 2016; 34:179-186. [DOI: 10.1016/j.tiv.2016.03.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/09/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
|
33
|
Bile acids in drug induced liver injury: Key players and surrogate markers. Clin Res Hepatol Gastroenterol 2016; 40:257-266. [PMID: 26874804 DOI: 10.1016/j.clinre.2015.12.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/21/2015] [Accepted: 12/27/2015] [Indexed: 02/04/2023]
Abstract
Bile acid research has gained great momentum since the role of bile acids as key signaling molecules in the enterohepatic circulation was discovered. Their physiological function in regulating their own homeostasis, as well as energy and lipid metabolism make them interesting targets for the pharmaceutical industry in the context of diseases such as bile acid induced diarrhea, bile acid induced cholestasis or nonalcoholic steatohepatitis. Changes in bile acid homeostasis are also linked to various types of drug-induced liver injury (DILI). However, the key question whether bile acids are surrogate markers for monitoring DILI or key pathogenic players in the onset and progression of DILI is under intense investigation. The purpose of this review is to summarize the different facets of bile acids in the context of normal physiology, hereditary defects of bile acid transport and DILI.
Collapse
|
34
|
C/EBPβ-Thr217 Phosphorylation Stimulates Macrophage Inflammasome Activation and Liver Injury. Sci Rep 2016; 6:24268. [PMID: 27067260 PMCID: PMC4828658 DOI: 10.1038/srep24268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/23/2016] [Indexed: 12/20/2022] Open
Abstract
Amplification of liver injury is mediated by macrophages but the signaling by which the macrophage inflammasome enhances liver injury is not completely understood. The CCAAT/Enhancer Binding Protein-β (C/EBPβ) is a critical signaling molecule for macrophages because expression of a dominant inhibitor of C/EBPβ DNA-binding sites or a targeted deletion of C/EBPβ results in impaired macrophage differentiation. We reported that expression of the phosphorylation-mutant C/EBPβ-Glu217, which mimics phosphorylated C/EBPβ-Thr217, was sufficient to confer macrophage survival to Anthrax lethal toxin. Here, using primary hepatocytes, primary liver macrophages, dominant positive and negative transgenic mice of the C/EBPβ-Thr217 phosphoacceptor, macrophage ablation, and an inhibitory peptide of C/EBPβ-Thr217 phosphorylation, we determined that this phosphorylation is essential for the activation of the inflammasome in liver macrophages and for the hepatocyte apoptosis induced by hepatotoxins that results in liver injury. Similar findings were observed in the livers of patients with acute injury induced by Toxic Oil Syndrome.
Collapse
|
35
|
Qiu X, Zhang Y, Liu T, Shen H, Xiao Y, Bourner MJ, Pratt JR, Thompson DC, Marathe P, Humphreys WG, Lai Y. Disruption of BSEP Function in HepaRG Cells Alters Bile Acid Disposition and Is a Susceptive Factor to Drug-Induced Cholestatic Injury. Mol Pharm 2016; 13:1206-16. [PMID: 26910619 DOI: 10.1021/acs.molpharmaceut.5b00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present study, we characterized in vitro biosynthesis and disposition of bile acids (BAs) as well as hepatic transporter expression followed by ABCB11 (BSEP) gene knockout in HepaRG cells (HepaRG-KO cells). BSEP KO in HepaRG cells led to time-dependent BA accumulation, resulting in reduced biosynthesis of BAs and altered BA disposition. In HepaRG-KO cells, the expression of NTCP, OATP1B1, OATP2B1, BCRP, P-gp, and MRP2 were reduced, whereas MRP3 and OCT1 were up-regulated. As a result, BSEP KO altered the disposition of BAs and subsequently underwent adaptive regulations of BA synthesis and homeostasis to enable healthy growth of the cells. Although BSEP inhibitors caused no or slight increase of BAs in HepaRG wild type cells (HepaRG-WT cells), excessive intracellular accumulation of BAs was observed in HepaRG-KO cells exposed to bosentan and troglitazone, but not dipyridamole. LDH release in the medium was remarkably increased in HepaRG-KO cultures exposed to troglitazone (50 μM), suggesting drug-induced cellular injury. The results revealed that functional impairment of BSEP predisposes the cells to altered BA disposition and is a susceptive factor to drug-induced cholestatic injury. In total, BSEP inhibition might trigger the processes but is not a sole determinant of cholestatic cellular injury. As intracellular BA accumulation is determined by BSEP function and the subsequent adaptive gene regulation, assessment of intracellular BA accumulation in HepaRG-KO cells could be a useful approach to evaluate drug-induced liver injury (DILI) potentials of drugs that could disrupt other BA homeostasis pathways beyond BSEP inhibition.
Collapse
Affiliation(s)
| | | | | | | | - Yongling Xiao
- Life Science and Technology Center, Sigma-Aldrich , St. Louis, Missouri 63103, United States
| | - Maureen J Bourner
- Life Science and Technology Center, Sigma-Aldrich , St. Louis, Missouri 63103, United States
| | - Jennifer R Pratt
- Life Science and Technology Center, Sigma-Aldrich , St. Louis, Missouri 63103, United States
| | - David C Thompson
- Life Science and Technology Center, Sigma-Aldrich , St. Louis, Missouri 63103, United States
| | | | | | | |
Collapse
|
36
|
Cytotoxicity of thiazolidinedione-, oxazolidinedione- and pyrrolidinedione-ring containing compounds in HepG2 cells. Toxicol In Vitro 2015; 29:1887-96. [PMID: 26193171 DOI: 10.1016/j.tiv.2015.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/24/2015] [Accepted: 07/16/2015] [Indexed: 11/23/2022]
Abstract
Liver damage occurred in some patients who took troglitazone (TGZ) for type II diabetes. The 2,4-thiazolidinedione (TZD) ring in TGZ's structure has been implicated in its hepatotoxicity. To further examine the potential role of a TZD ring in toxicity we used HepG2 cells to evaluate two series of compounds containing different cyclic imides. N-phenyl analogues comprised 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT); 3-(3,5-dichlorophenyl)-2,4-oxazolidinedione (DCPO) and N-(3,5-dichlorophenyl)succinimide (NDPS). Benzylic compounds, which closely resemble TGZ, included 5-(3,5-dichlorophenylmethyl)-2,4-thiazolidinedione (DCPMT); 5-(4-methoxyphenylmethyl)-2,4-thiazolidinedione (MPMT); 5-(4-methoxyphenylmethylene)-2,4-thiazolidinedione (MPMT-I); 5-(4-methoxyphenylmethyl)-2,4-oxazolidinedione (MPMO); 3-(4-methoxyphenylmethyl)succinimide (MPMS) and 3-(4-methoxyphenylmethylene)succinimide (MPMS-I). Cytotoxicity was assessed using the MTS assay after incubating the compounds (0-250μM) with HepG2 cells for 24h. Only certain TZD derivatives (TGZ, DCPT, DCPMT and MPMT-I) markedly decreased cell viability, whereas MPMT had low toxicity. In contrast, analogues without a TZD ring (DCPO, NDPS, MPMO, MPMS and MPMS-I) were not cytotoxic. These findings suggest that a TZD ring may be an important determinant of toxicity, although different structural features, chemical stability, cellular uptake or metabolism, etc., may also be involved. A simple clustering approach, using chemical fingerprints, assigned each compound to one of three classes (each containing one active compound and close homologues), and provided a framework for rationalizing the activity in terms of structure.
Collapse
|
37
|
Abstract
Drug-induced liver injury (DILI) is the most common organ toxicity encountered in regulatory animal toxicology studies required prior to the clinical development of new drug candidates. Very few reports have evaluated the value of these studies for predicting DILI in humans. Indeed, compounds inducing liver toxicity in regulatory toxicology studies are not always correlated with a risk of DILI in humans. Conversely, compounds associated with the occurrence of DILI in phase 3 studies or after market release are often tested negative in regulatory toxicology studies. Idiosyncratic DILI is a rare event that is precipitated in an individual by the simultaneous occurrence of several critical factors. These factors may relate to the host (e.g. human leukocyte antigen polymorphism, inflammation), the drug (e.g. reactive metabolites) or the environment (e.g. diet/microbiota). This type of toxicity therefore cannot be detected in conventional animal toxicology studies. Several animal models have recently been proposed for the identification of drugs with the potential to cause idiosyncratic DILI: rats treated with lipopolysaccharide, Sod2(+/-) mice, panels of inbred mouse strains or chimeric mice with humanized livers. These models are not suitable for use in the prospective screening of new drug candidates. Humans therefore constitute the best model for predicting and assessing idiopathic DILI.
Collapse
|
38
|
Nazreen S, Alam MS, Hamid H, Yar MS, Dhulap A, Alam P, Pasha MAQ, Bano S, Alam MM, Haider S, Kharbanda C, Ali Y, Pillai K. Design, Synthesis, and Biological Evaluation of Thiazolidine-2,4-dione Conjugates as PPAR-γ Agonists. Arch Pharm (Weinheim) 2015; 348:421-32. [DOI: 10.1002/ardp.201400280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 02/21/2015] [Accepted: 02/27/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Syed Nazreen
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | - Mohammad Sarwar Alam
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | - Hinna Hamid
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Jamia Hamdard (Hamdard University); New Delhi India
| | - Abhijeet Dhulap
- CSIR Unit for Research and Development of Information Products; Pune India
| | - Perwez Alam
- Functional Genomics Unit; CSIR-Institute of Genomics & Integrative Biology; Delhi India
| | | | - Sameena Bano
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | | | - Saqlain Haider
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | - Chetna Kharbanda
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | - Yakub Ali
- Department of Chemistry, Faculty of Science; Jamia Hamdard (Hamdard University); New Delhi India
| | - Kolakappi Pillai
- Department of Pharmacology, Faculty of Pharmacy; Jamia Hamdard (Hamdard University); New Delhi India
| |
Collapse
|
39
|
Hu D, Wu CQ, Li ZJ, Liu Y, Fan X, Wang QJ, Ding RG. Characterizing the mechanism of thiazolidinedione-induced hepatotoxicity: An in vitro model in mitochondria. Toxicol Appl Pharmacol 2015; 284:134-41. [PMID: 25727309 DOI: 10.1016/j.taap.2015.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/28/2015] [Accepted: 02/17/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To characterize the mechanism of action of thiazolidinedione (TZD)-induced liver mitochondrial toxicity caused by troglitazone, rosiglitazone, and pioglitazone in HepaRG cells. METHODS Human hepatoma cells (HepaRG) were treated with troglitazone, rosiglitazone, or pioglitazone (12.5, 25, and 50μM) for 48h. The Seahorse Biosciences XF24 Flux Analyzer was used to measure mitochondrial oxygen consumption. The effect of TZDs on reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected by flow cytometry. The mitochondrial ultrastructure of HepaRG cells was observed under a transmission electrical microscope (TEM). mtDNA content was evaluated by real-time PCR, and ATP content and mitochondrial respiratory chain (MRC) complex I, II, III, IV activity were measured via chemiluminescence. Results were considered statistically significant at p<0.05. RESULTS Among the three drugs, troglitazone exhibited the highest potency, followed by rosiglitazone, and then pioglitazone. The TZDs caused varying degrees of mitochondrial respiratory function disorders including decreases in oxygen consumption, MRC activity, and ATP level, and an elevation in ROS level. TZD treatment resulted in mtDNA content decline, reduction in MMP, and alterations of mitochondrial structure. CONCLUSION All investigated TZDs show a certain degree of mitochondrial toxicity, with troglitazone exhibiting the highest potency. The underlying mechanism of TZD-induced hepatotoxicity may be associated with alterations in mitochondrial respiratory function disorders, oxidative stress, and changes in membrane permeability. These parameters may be used early in drug development to further optimize risk:benefit profiles.
Collapse
Affiliation(s)
- Dan Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Chun-qi Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Ze-jun Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; Guang Dong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yue Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Xing Fan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Quan-jun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China.
| | - Ri-gao Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, PR China.
| |
Collapse
|
40
|
Design, synthesis, in silico molecular docking and biological evaluation of novel oxadiazole based thiazolidine-2,4-diones bis-heterocycles as PPAR-γ agonists. Eur J Med Chem 2014; 87:175-85. [DOI: 10.1016/j.ejmech.2014.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/24/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
41
|
Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity. Clin Pharmacol Ther 2014; 96:589-98. [PMID: 25068506 PMCID: PMC4480860 DOI: 10.1038/clpt.2014.158] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/17/2014] [Indexed: 01/08/2023]
Abstract
Troglitazone (TGZ) causes delayed, life-threatening drug-induced liver injury in some patients but was not hepatotoxic in rats. This study investigated altered bile acid homeostasis as a mechanism of TGZ hepatotoxicity using a systems pharmacology model incorporating drug/metabolite disposition, bile acid physiology/pathophysiology, hepatocyte life cycle, and liver injury biomarkers. In the simulated human population, TGZ (200-600 mg/day × 6 months) resulted in delayed increases in serum alanine transaminase >3× the upper limit of normal in 0.3-5.1%, with concomitant bilirubin elevations >2× the upper limit of normal in 0.3-3.6%, of the population. By contrast, pioglitazone (15-45 mg/day × 6 months) did not elicit hepatotoxicity, consistent with clinical data. TGZ was not hepatotoxic in the simulated rat population. In summary, mechanistic modeling based only on bile acid effects accurately predicted the incidence, delayed presentation, and species differences in TGZ hepatotoxicity, in addition to predicting the relative liver safety of pioglitazone. Systems pharmacology models integrating physiology and experimental data can evaluate drug-induced liver injury mechanisms and may be useful to predict the hepatotoxic potential of drug candidates.
Collapse
|
42
|
Yang K, Brouwer KLR. Hepatocellular exposure of troglitazone metabolites in rat sandwich-cultured hepatocytes lacking Bcrp and Mrp2: interplay between formation and excretion. Drug Metab Dispos 2014; 42:1219-26. [PMID: 24799397 PMCID: PMC4053994 DOI: 10.1124/dmd.114.057190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 05/05/2014] [Indexed: 11/22/2022] Open
Abstract
Inhibition of bile acid transport by troglitazone (TGZ) and its major metabolite, TGZ sulfate (TS), may lead to hepatocellular accumulation of toxic bile acids; TS accumulation and hepatotoxicity may be associated with impaired TS biliary excretion. This study evaluated the impact of impaired transport of breast cancer resistance protein (Bcrp) and multidrug resistance-associated protein 2 (Mrp2) on the hepatobiliary disposition of generated metabolites, TS and TGZ glucuronide (TG). Sandwich-cultured hepatocytes (SCH) from Mrp2-deficient (TR(-)) rats in combination with Bcrp knockdown using RNA interference were employed. The biliary excretion index (BEI) of generated TS was not significantly altered by impaired Bcrp (20.9 to 21.1%) and/or Mrp2 function (24.4% and 17.5% in WT and TR(-) rat SCH, respectively). Thus, loss-of-function of Mrp2 and/or Bcrp do not appear to be risk factors for increased hepatocellular TS accumulation in rats, potentially because of a compensatory transporter(s) that excretes TS into bile. Further investigations revealed that the compensatory TS biliary transporter was not the bile salt export pump (Bsep) or P-glycoprotein (P-gp). Interestingly, TGZ sulfation was significantly decreased in TR(-) compared with WT rat SCH (total recovery: 2.8 versus 5.0% of TGZ dose), resulting in decreased hepatocellular TS accumulation, even though sulfotransferase activity in TR(-) rat hepatocyte S9 fraction was similar. Hepatocellular TG accumulation was significantly increased in TR(-) compared with WT rat SCH due to increased glucuronidation and negligible TG biliary excretion. These data emphasize that the interplay between metabolite formation and excretion determines hepatocellular exposure to generated metabolites such as TS and TG.
Collapse
Affiliation(s)
- Kyunghee Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
43
|
Bordessa A, Colin-Cassin C, Grillier-Vuissoz I, Kuntz S, Mazerbourg S, Husson G, Vo M, Flament S, Martin H, Chapleur Y, Boisbrun M. Optimization of troglitazone derivatives as potent anti-proliferative agents: towards more active and less toxic compounds. Eur J Med Chem 2014; 83:129-40. [PMID: 24953030 DOI: 10.1016/j.ejmech.2014.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/16/2014] [Accepted: 06/09/2014] [Indexed: 11/25/2022]
Abstract
Δ2-Troglitazone derivatives were shown to exhibit anti-proliferative activity in a PPARγ-independent manner. We prepared various compounds in order to increase their potency and decrease their toxicity towards non-malignant primary cultured hepatocytes. Many compounds induced viabilities less than 20% at 10 μM on various cancer cell lines. Furthermore, five of them showed hepatocyte viability of 80% or more at 200 μM. In addition, compounds 17 and 18 exhibited promising maximum tolerated doses on a murine model, enabling future investigations.
Collapse
Affiliation(s)
- Andrea Bordessa
- Université de Lorraine, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France; CNRS, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France
| | - Christelle Colin-Cassin
- Université de Lorraine, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France; CNRS, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | - Isabelle Grillier-Vuissoz
- Université de Lorraine, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France; CNRS, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | - Sandra Kuntz
- Université de Lorraine, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France; CNRS, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | - Sabine Mazerbourg
- Université de Lorraine, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France; CNRS, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | - Gauthier Husson
- Université de Lorraine, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France; CNRS, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | - Myriam Vo
- Université de Lorraine, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France; CNRS, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France
| | - Stéphane Flament
- Université de Lorraine, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France; CNRS, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | - Hélène Martin
- Université de Franche-Comté, Laboratoire de Toxicologie Cellulaire, EA 4267, 25030 Besançon Cedex, France
| | - Yves Chapleur
- Université de Lorraine, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France; CNRS, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France
| | - Michel Boisbrun
- Université de Lorraine, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France; CNRS, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
44
|
Lee YH, Goh WWB, Ng CK, Raida M, Wong L, Lin Q, Boelsterli UA, Chung MCM. Integrative toxicoproteomics implicates impaired mitochondrial glutathione import as an off-target effect of troglitazone. J Proteome Res 2013; 12:2933-45. [PMID: 23659346 PMCID: PMC3805328 DOI: 10.1021/pr400219s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Troglitazone,
a first-generation thiazolidinedione of antihyperglycaemic
properties, was withdrawn from the market due to unacceptable idiosyncratic
hepatotoxicity. Despite intensive research, the underlying mechanism
of troglitazone-induced liver toxicity remains unknown. Here we report
the use of the Sod2+/– mouse model of silent mitochondrial oxidative-stress-based
and quantitative mass spectrometry-based proteomics to track the mitochondrial
proteome changes induced by physiologically relevant troglitazone
doses. By quantitative untargeted proteomics, we first globally profiled
the Sod2+/– hepatic
mitochondria proteome and found perturbations including GSH metabolism
that enhanced the toxicity of the normally nontoxic troglitazone.
Short- and long-term troglitazone administration in Sod2+/– mouse led to a mitochondrial
proteome shift from an early compensatory response to an eventual
phase of intolerable oxidative stress, due to decreased mitochondrial
glutathione (mGSH) import protein, decreased dicarboxylate ion carrier
(DIC), and the specific activation of ASK1-JNK and FOXO3a with prolonged
troglitazone exposure. Furthermore, mapping of the detected proteins
onto mouse specific protein-centered networks revealed lipid-associated
proteins as contributors to overt mitochondrial and liver injury when
under prolonged exposure to the lipid-normalizing troglitazone. By
integrative toxicoproteomics, we demonstrated a powerful systems approach
in identifying the collapse of specific fragile nodes and activation
of crucial proteome reconfiguration regulators when targeted by an
exogenous toxicant.
Collapse
Affiliation(s)
- Yie Hou Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gunness P, Mueller D, Shevchenko V, Heinzle E, Ingelman-Sundberg M, Noor F. 3D organotypic cultures of human HepaRG cells: a tool for in vitro toxicity studies. Toxicol Sci 2013; 133:67-78. [PMID: 23377618 DOI: 10.1093/toxsci/kft021] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Drug-induced human hepatotoxicity is difficult to predict using the current in vitro systems. In this study, long-term 3D organotypic cultures of the human hepatoma HepaRG cell line were prepared using a high-throughput hanging drop method. The organotypic cultures were maintained for 3 weeks and assessed for (1) liver specific functions, including phase I enzyme and transporter activities, (2) expression of liver-specific proteins, and (3) responses to three drugs (acetaminophen, troglitazone, and rosiglitazone). Our results show that the organotypic cultures maintain high liver-specific functionality during 3 weeks of culture. The immunohistochemistry analyses illustrate that the organotypic cultures express liver-specific markers such as albumin, CYP3A4, CYP2E1, and MRP-2 throughout the cultivation period. Accordingly, the production rates of albumin and glucose, as well as CYP2E1 activity, were significantly higher in the 3D versus the 2D cultures. Toxicity studies show that the organotypic cultures are more sensitive to acetaminophen- and rosiglitazone-induced toxicity but less sensitive to troglitazone-induced toxicity than the 2D cultures. Furthermore, the EC50 value (2.7mM) for acetaminophen on the 3D cultures was similar to in vivo toxicity. In summary, the results from our study suggest that the 3D organotypic HepaRG culture is a promising in vitro tool for more accurate assessment of acute and also possibly for chronic drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Patrina Gunness
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Zhou B, Buckley ST, Patel V, Liu Y, Luo J, Krishnaveni MS, Ivan M, DeMaio L, Kim KJ, Ehrhardt C, Crandall ED, Borok Z. Troglitazone attenuates TGF-β1-induced EMT in alveolar epithelial cells via a PPARγ-independent mechanism. PLoS One 2012; 7:e38827. [PMID: 22745681 PMCID: PMC3380041 DOI: 10.1371/journal.pone.0038827] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 05/13/2012] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator activated receptor γ (PPARγ) agonists are effective antifibrotic agents in a number of tissues. Effects of these agents on epithelial-mesenchymal transition (EMT) of primary alveolar epithelial cells (AEC) and potential mechanisms underlying effects on EMT have not been well delineated. We examined effects of troglitazone, a synthetic PPARγ agonist, on transforming growth factor (TGF)-β1-induced EMT in primary rat AEC and an alveolar epithelial type II (AT2) cell line (RLE-6TN). TGF-β1 (2.5 ng/mL) induced EMT in both cell types, as evidenced by acquisition of spindle-like morphology, increased expression of the mesenchymal marker α-smooth muscle actin (α-SMA) and downregulation of the tight junctional protein zonula occludens-1 (ZO-1). Concurrent treatment with troglitazone (or rosiglitazone), ameliorated effects of TGF-β1. Furthermore, following stimulation with TGF-β1 for 6 days, troglitazone reversed EMT-related morphological changes and restored both epithelial and mesenchymal markers to control levels. Treatment with GW9662 (an irreversible PPARγ antagonist), or overexpression of a PPARγ dominant negative construct, failed to inhibit these effects of troglitazone in AEC. Troglitazone not only attenuated TGF-β1-induced phosphorylation of Akt and glycogen synthase kinase (GSK)-3β, but also inhibited nuclear translocation of β-catenin, phosphorylation of Smad2 and Smad3 and upregulation of the EMT-associated transcription factor SNAI1. These results demonstrate inhibitory actions of troglitazone on TGF-β1-induced EMT in AEC via a PPARγ-independent mechanism likely through inhibition of β-catenin-dependent signaling downstream of TGF-β1, supporting a role for interactions between TGF-β and Wnt/β-catenin signaling pathways in EMT.
Collapse
Affiliation(s)
- Beiyun Zhou
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Stephen T. Buckley
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Vipul Patel
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yixin Liu
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jiao Luo
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Manda Sai Krishnaveni
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Mihaela Ivan
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lucas DeMaio
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kwang-Jin Kim
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Edward D. Crandall
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Salamone S, Colin C, Grillier-Vuissoz I, Kuntz S, Mazerbourg S, Flament S, Martin H, Richert L, Chapleur Y, Boisbrun M. Synthesis of new troglitazone derivatives: anti-proliferative activity in breast cancer cell lines and preliminary toxicological study. Eur J Med Chem 2012; 51:206-15. [PMID: 22409968 DOI: 10.1016/j.ejmech.2012.02.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 02/08/2023]
Abstract
Breast cancer is the most prevalent cancer in women. The development of resistances to therapeutic agents and the absence of targeted therapy for triple negative breast cancer motivate the search for alternative treatments. With this aim in mind, we synthesised new derivatives of troglitazone, a compound which was formerly used as an anti-diabetic agent and which exhibits anti-proliferative activity on various cancer cell lines. Among the compounds prepared, some displayed micromolar activity against hormone-dependent and hormone-independent breast cancer cells. Furthermore, the influence of the compounds on the viability of primary cultures of human hepatocytes was evaluated. This enabled us to obtain for the first time interesting structure-toxicity relationships in this family of compounds, resulting in 6b and 8b, which show good anti-proliferative activities and poor toxicity towards hepatocytes, compared to troglitazone.
Collapse
Affiliation(s)
- Stéphane Salamone
- Groupe SUCRES, UMR 7565, Nancy-Université-CNRS, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Patel NN, Crincoli CM, Frederick DM, Tchao R, Harvison PJ. Effect of structural modifications on 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione-induced hepatotoxicity in Fischer 344 rats. J Appl Toxicol 2012; 32:108-17. [PMID: 21337588 PMCID: PMC3175016 DOI: 10.1002/jat.1639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/01/2010] [Accepted: 11/17/2010] [Indexed: 11/06/2022]
Abstract
Glitazones, used for type II diabetes, have been associated with liver damage in humans. A structural feature known as a 2,4-thiazolidinedione (TZD) ring may contribute to this toxicity. TZD rings are of interest since continued human exposure via the glitazones and various prototype drugs is possible. Previously, we found that 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT) was hepatotoxic in rats. To evaluate the importance of structure on DCPT toxicity, we therefore studied two series of analogs. The TZD ring was replaced with: a mercaptoacetic acid group {[[[(3,5-dichlorophenyl)amino]carbonyl]thio]acetic acid, DCTA}; a methylated TZD ring [3-(3,5-dichlorophenyl)-5-methyl-2,4-thiazolidinedione, DPMT]; and isomeric thiazolidinone rings [3-(3,5-dichlorophenyl)-2- and 3-(3,5-dichlorophenyl)-4-thiazolidinone, 2-DCTD and 4-DCTD, respectively]. The following phenyl ring-modified analogs were also tested: 3-phenyl-, 3-(4-chlorophenyl)-, 3-(3,5-dimethylphenyl)- and 3-[3,5-bis(trifluoromethyl)phenyl]-2,4-thiazolidinedione (PTZD, CPTD, DMPT and DFMPT, respectively). Toxicity was assessed in male Fischer 344 rats 24 h after administration of the compounds. In the TZD series only DPMT produced liver damage, as evidenced by elevated serum alanine aminotransferase (ALT) activities at 0.6 and 1.0 mmol kg(-1) (298.6 ± 176.1 and 327.3 ± 102.9 Sigma-Frankel units ml(-1) , respectively) vs corn oil controls (36.0 ± 11.3) and morphological changes in liver sections. Among the phenyl analogs, hepatotoxicity was observed in rats administered PTZD, CPTD and DMPT; with ALT values of 1196.2 ± 133.6, 1622.5 ± 218.5 and 2071.9 ± 217.8, respectively (1.0 mmol kg(-1) doses). Morphological examination revealed severe hepatic necrosis in these animals. Our results suggest that hepatotoxicity of these compounds is critically dependent on the presence of a TZD ring and also the phenyl substituents.
Collapse
Affiliation(s)
- Niti N Patel
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
49
|
Frederick DM, Jacinto EY, Patel NN, Rushmore TH, Tchao R, Harvison PJ. Cytotoxicity of 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT) and analogues in wild type and CYP3A4 stably transfected HepG2 cells. Toxicol In Vitro 2011; 25:2113-9. [PMID: 21964476 DOI: 10.1016/j.tiv.2011.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 10/17/2022]
Abstract
The thiazolidinedione (TZD) ring is a constituent of the glitazones that are used to treat type II diabetes. Liver injury has been reported following chronic glitazone use; however, they do not produce hepatic damage in common laboratory animal species. In contrast, 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT) causes hepatotoxicity in rats. DCPT toxicity is dependent upon the presence of an intact TZD ring and cytochrome P450 (CYP)-mediated biotransformation. To further investigate TZD ring-induced toxicity, DCPT and several structural analogues or potential metabolites were tested in vitro using wild type human hepatoma HepG2 and HepG2 cells stably transfected with the CYP3A4 isozyme. CYP3A4 activity was confirmed by measuring testosterone 6β-hydroxylation. Both cell lines were treated with 0-250 μM of the compounds in Hanks' balanced salt solution. Cell viability was measured after 24 h. DCPT and S-(3,5-dichlorophenyl)aminocarbonyl thioglycolic acid (DCTA) were the most toxic compounds of the series. Furthermore, DCPT was significantly more toxic in transfected cells (LC50=160.2±5.9 μM) than in wild type cells (LC50=233.0±19.7 μM). Treatment with a CYP3A4 inhibitor or inducer attenuated or potentiated DCPT cytotoxicity, respectively. These results suggest that DCPT-induced cytotoxicity in the transfected HepG2 cells is partially dependent on CYP3A4.
Collapse
Affiliation(s)
- Douglas M Frederick
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
50
|
Kakiuchi-Kiyota S, Arnold LL, Yokohira M, Suzuki S, Pennington KL, Cohen SM. Evaluation of PPARγ agonists on rodent endothelial cell proliferation. Toxicology 2011; 287:91-8. [DOI: 10.1016/j.tox.2011.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
|